• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    Copyright (C) 2002 Richard Henderson
4    Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 
6 */
7 #include <linux/export.h>
8 #include <linux/extable.h>
9 #include <linux/moduleloader.h>
10 #include <linux/module_signature.h>
11 #include <linux/trace_events.h>
12 #include <linux/init.h>
13 #include <linux/kallsyms.h>
14 #include <linux/file.h>
15 #include <linux/fs.h>
16 #include <linux/sysfs.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/elf.h>
21 #include <linux/proc_fs.h>
22 #include <linux/security.h>
23 #include <linux/seq_file.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/rcupdate.h>
27 #include <linux/capability.h>
28 #include <linux/cpu.h>
29 #include <linux/moduleparam.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/vermagic.h>
33 #include <linux/notifier.h>
34 #include <linux/sched.h>
35 #include <linux/device.h>
36 #include <linux/string.h>
37 #include <linux/mutex.h>
38 #include <linux/rculist.h>
39 #include <linux/uaccess.h>
40 #include <asm/cacheflush.h>
41 #include <linux/set_memory.h>
42 #include <asm/mmu_context.h>
43 #include <linux/license.h>
44 #include <asm/sections.h>
45 #include <linux/tracepoint.h>
46 #include <linux/ftrace.h>
47 #include <linux/livepatch.h>
48 #include <linux/async.h>
49 #include <linux/percpu.h>
50 #include <linux/kmemleak.h>
51 #include <linux/jump_label.h>
52 #include <linux/pfn.h>
53 #include <linux/bsearch.h>
54 #include <linux/dynamic_debug.h>
55 #include <linux/audit.h>
56 #include <uapi/linux/module.h>
57 #include "module-internal.h"
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/module.h>
61 
62 #ifndef ARCH_SHF_SMALL
63 #define ARCH_SHF_SMALL 0
64 #endif
65 
66 /*
67  * Modules' sections will be aligned on page boundaries
68  * to ensure complete separation of code and data, but
69  * only when CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y
70  */
71 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
72 # define debug_align(X) ALIGN(X, PAGE_SIZE)
73 #else
74 # define debug_align(X) (X)
75 #endif
76 
77 /* If this is set, the section belongs in the init part of the module */
78 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
79 
80 /*
81  * Mutex protects:
82  * 1) List of modules (also safely readable with preempt_disable),
83  * 2) module_use links,
84  * 3) module_addr_min/module_addr_max.
85  * (delete and add uses RCU list operations). */
86 DEFINE_MUTEX(module_mutex);
87 EXPORT_SYMBOL_GPL(module_mutex);
88 static LIST_HEAD(modules);
89 
90 /* Work queue for freeing init sections in success case */
91 static struct work_struct init_free_wq;
92 static struct llist_head init_free_list;
93 
94 #ifdef CONFIG_MODULES_TREE_LOOKUP
95 
96 /*
97  * Use a latched RB-tree for __module_address(); this allows us to use
98  * RCU-sched lookups of the address from any context.
99  *
100  * This is conditional on PERF_EVENTS || TRACING because those can really hit
101  * __module_address() hard by doing a lot of stack unwinding; potentially from
102  * NMI context.
103  */
104 
__mod_tree_val(struct latch_tree_node * n)105 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
106 {
107 	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
108 
109 	return (unsigned long)layout->base;
110 }
111 
__mod_tree_size(struct latch_tree_node * n)112 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
113 {
114 	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
115 
116 	return (unsigned long)layout->size;
117 }
118 
119 static __always_inline bool
mod_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)120 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
121 {
122 	return __mod_tree_val(a) < __mod_tree_val(b);
123 }
124 
125 static __always_inline int
mod_tree_comp(void * key,struct latch_tree_node * n)126 mod_tree_comp(void *key, struct latch_tree_node *n)
127 {
128 	unsigned long val = (unsigned long)key;
129 	unsigned long start, end;
130 
131 	start = __mod_tree_val(n);
132 	if (val < start)
133 		return -1;
134 
135 	end = start + __mod_tree_size(n);
136 	if (val >= end)
137 		return 1;
138 
139 	return 0;
140 }
141 
142 static const struct latch_tree_ops mod_tree_ops = {
143 	.less = mod_tree_less,
144 	.comp = mod_tree_comp,
145 };
146 
147 static struct mod_tree_root {
148 	struct latch_tree_root root;
149 	unsigned long addr_min;
150 	unsigned long addr_max;
151 } mod_tree __cacheline_aligned = {
152 	.addr_min = -1UL,
153 };
154 
155 #define module_addr_min mod_tree.addr_min
156 #define module_addr_max mod_tree.addr_max
157 
__mod_tree_insert(struct mod_tree_node * node)158 static noinline void __mod_tree_insert(struct mod_tree_node *node)
159 {
160 	latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
161 }
162 
__mod_tree_remove(struct mod_tree_node * node)163 static void __mod_tree_remove(struct mod_tree_node *node)
164 {
165 	latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
166 }
167 
168 /*
169  * These modifications: insert, remove_init and remove; are serialized by the
170  * module_mutex.
171  */
mod_tree_insert(struct module * mod)172 static void mod_tree_insert(struct module *mod)
173 {
174 	mod->core_layout.mtn.mod = mod;
175 	mod->init_layout.mtn.mod = mod;
176 
177 	__mod_tree_insert(&mod->core_layout.mtn);
178 	if (mod->init_layout.size)
179 		__mod_tree_insert(&mod->init_layout.mtn);
180 }
181 
mod_tree_remove_init(struct module * mod)182 static void mod_tree_remove_init(struct module *mod)
183 {
184 	if (mod->init_layout.size)
185 		__mod_tree_remove(&mod->init_layout.mtn);
186 }
187 
mod_tree_remove(struct module * mod)188 static void mod_tree_remove(struct module *mod)
189 {
190 	__mod_tree_remove(&mod->core_layout.mtn);
191 	mod_tree_remove_init(mod);
192 }
193 
mod_find(unsigned long addr)194 static struct module *mod_find(unsigned long addr)
195 {
196 	struct latch_tree_node *ltn;
197 
198 	ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
199 	if (!ltn)
200 		return NULL;
201 
202 	return container_of(ltn, struct mod_tree_node, node)->mod;
203 }
204 
205 #else /* MODULES_TREE_LOOKUP */
206 
207 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
208 
mod_tree_insert(struct module * mod)209 static void mod_tree_insert(struct module *mod) { }
mod_tree_remove_init(struct module * mod)210 static void mod_tree_remove_init(struct module *mod) { }
mod_tree_remove(struct module * mod)211 static void mod_tree_remove(struct module *mod) { }
212 
mod_find(unsigned long addr)213 static struct module *mod_find(unsigned long addr)
214 {
215 	struct module *mod;
216 
217 	list_for_each_entry_rcu(mod, &modules, list) {
218 		if (within_module(addr, mod))
219 			return mod;
220 	}
221 
222 	return NULL;
223 }
224 
225 #endif /* MODULES_TREE_LOOKUP */
226 
227 /*
228  * Bounds of module text, for speeding up __module_address.
229  * Protected by module_mutex.
230  */
__mod_update_bounds(void * base,unsigned int size)231 static void __mod_update_bounds(void *base, unsigned int size)
232 {
233 	unsigned long min = (unsigned long)base;
234 	unsigned long max = min + size;
235 
236 	if (min < module_addr_min)
237 		module_addr_min = min;
238 	if (max > module_addr_max)
239 		module_addr_max = max;
240 }
241 
mod_update_bounds(struct module * mod)242 static void mod_update_bounds(struct module *mod)
243 {
244 	__mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
245 	if (mod->init_layout.size)
246 		__mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
247 }
248 
249 #ifdef CONFIG_KGDB_KDB
250 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
251 #endif /* CONFIG_KGDB_KDB */
252 
module_assert_mutex(void)253 static void module_assert_mutex(void)
254 {
255 	lockdep_assert_held(&module_mutex);
256 }
257 
module_assert_mutex_or_preempt(void)258 static void module_assert_mutex_or_preempt(void)
259 {
260 #ifdef CONFIG_LOCKDEP
261 	if (unlikely(!debug_locks))
262 		return;
263 
264 	WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
265 		!lockdep_is_held(&module_mutex));
266 #endif
267 }
268 
269 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
270 module_param(sig_enforce, bool_enable_only, 0644);
271 
272 /*
273  * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
274  * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
275  */
is_module_sig_enforced(void)276 bool is_module_sig_enforced(void)
277 {
278 	return sig_enforce;
279 }
280 EXPORT_SYMBOL(is_module_sig_enforced);
281 
set_module_sig_enforced(void)282 void set_module_sig_enforced(void)
283 {
284 	sig_enforce = true;
285 }
286 
287 /* Block module loading/unloading? */
288 int modules_disabled = 0;
289 core_param(nomodule, modules_disabled, bint, 0);
290 
291 /* Waiting for a module to finish initializing? */
292 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
293 
294 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
295 
register_module_notifier(struct notifier_block * nb)296 int register_module_notifier(struct notifier_block *nb)
297 {
298 	return blocking_notifier_chain_register(&module_notify_list, nb);
299 }
300 EXPORT_SYMBOL(register_module_notifier);
301 
unregister_module_notifier(struct notifier_block * nb)302 int unregister_module_notifier(struct notifier_block *nb)
303 {
304 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
305 }
306 EXPORT_SYMBOL(unregister_module_notifier);
307 
308 /*
309  * We require a truly strong try_module_get(): 0 means success.
310  * Otherwise an error is returned due to ongoing or failed
311  * initialization etc.
312  */
strong_try_module_get(struct module * mod)313 static inline int strong_try_module_get(struct module *mod)
314 {
315 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
316 	if (mod && mod->state == MODULE_STATE_COMING)
317 		return -EBUSY;
318 	if (try_module_get(mod))
319 		return 0;
320 	else
321 		return -ENOENT;
322 }
323 
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)324 static inline void add_taint_module(struct module *mod, unsigned flag,
325 				    enum lockdep_ok lockdep_ok)
326 {
327 	add_taint(flag, lockdep_ok);
328 	set_bit(flag, &mod->taints);
329 }
330 
331 /*
332  * A thread that wants to hold a reference to a module only while it
333  * is running can call this to safely exit.  nfsd and lockd use this.
334  */
__module_put_and_exit(struct module * mod,long code)335 void __noreturn __module_put_and_exit(struct module *mod, long code)
336 {
337 	module_put(mod);
338 	do_exit(code);
339 }
340 EXPORT_SYMBOL(__module_put_and_exit);
341 
342 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)343 static unsigned int find_sec(const struct load_info *info, const char *name)
344 {
345 	unsigned int i;
346 
347 	for (i = 1; i < info->hdr->e_shnum; i++) {
348 		Elf_Shdr *shdr = &info->sechdrs[i];
349 		/* Alloc bit cleared means "ignore it." */
350 		if ((shdr->sh_flags & SHF_ALLOC)
351 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
352 			return i;
353 	}
354 	return 0;
355 }
356 
357 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)358 static void *section_addr(const struct load_info *info, const char *name)
359 {
360 	/* Section 0 has sh_addr 0. */
361 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
362 }
363 
364 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)365 static void *section_objs(const struct load_info *info,
366 			  const char *name,
367 			  size_t object_size,
368 			  unsigned int *num)
369 {
370 	unsigned int sec = find_sec(info, name);
371 
372 	/* Section 0 has sh_addr 0 and sh_size 0. */
373 	*num = info->sechdrs[sec].sh_size / object_size;
374 	return (void *)info->sechdrs[sec].sh_addr;
375 }
376 
377 /* Provided by the linker */
378 extern const struct kernel_symbol __start___ksymtab[];
379 extern const struct kernel_symbol __stop___ksymtab[];
380 extern const struct kernel_symbol __start___ksymtab_gpl[];
381 extern const struct kernel_symbol __stop___ksymtab_gpl[];
382 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
383 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
384 extern const s32 __start___kcrctab[];
385 extern const s32 __start___kcrctab_gpl[];
386 extern const s32 __start___kcrctab_gpl_future[];
387 #ifdef CONFIG_UNUSED_SYMBOLS
388 extern const struct kernel_symbol __start___ksymtab_unused[];
389 extern const struct kernel_symbol __stop___ksymtab_unused[];
390 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
391 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
392 extern const s32 __start___kcrctab_unused[];
393 extern const s32 __start___kcrctab_unused_gpl[];
394 #endif
395 
396 #ifndef CONFIG_MODVERSIONS
397 #define symversion(base, idx) NULL
398 #else
399 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
400 #endif
401 
each_symbol_in_section(const struct symsearch * arr,unsigned int arrsize,struct module * owner,bool (* fn)(const struct symsearch * syms,struct module * owner,void * data),void * data)402 static bool each_symbol_in_section(const struct symsearch *arr,
403 				   unsigned int arrsize,
404 				   struct module *owner,
405 				   bool (*fn)(const struct symsearch *syms,
406 					      struct module *owner,
407 					      void *data),
408 				   void *data)
409 {
410 	unsigned int j;
411 
412 	for (j = 0; j < arrsize; j++) {
413 		if (fn(&arr[j], owner, data))
414 			return true;
415 	}
416 
417 	return false;
418 }
419 
420 /* Returns true as soon as fn returns true, otherwise false. */
each_symbol_section(bool (* fn)(const struct symsearch * arr,struct module * owner,void * data),void * data)421 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
422 				    struct module *owner,
423 				    void *data),
424 			 void *data)
425 {
426 	struct module *mod;
427 	static const struct symsearch arr[] = {
428 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
429 		  NOT_GPL_ONLY, false },
430 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
431 		  __start___kcrctab_gpl,
432 		  GPL_ONLY, false },
433 		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
434 		  __start___kcrctab_gpl_future,
435 		  WILL_BE_GPL_ONLY, false },
436 #ifdef CONFIG_UNUSED_SYMBOLS
437 		{ __start___ksymtab_unused, __stop___ksymtab_unused,
438 		  __start___kcrctab_unused,
439 		  NOT_GPL_ONLY, true },
440 		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
441 		  __start___kcrctab_unused_gpl,
442 		  GPL_ONLY, true },
443 #endif
444 	};
445 
446 	module_assert_mutex_or_preempt();
447 
448 	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
449 		return true;
450 
451 	list_for_each_entry_rcu(mod, &modules, list) {
452 		struct symsearch arr[] = {
453 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
454 			  NOT_GPL_ONLY, false },
455 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
456 			  mod->gpl_crcs,
457 			  GPL_ONLY, false },
458 			{ mod->gpl_future_syms,
459 			  mod->gpl_future_syms + mod->num_gpl_future_syms,
460 			  mod->gpl_future_crcs,
461 			  WILL_BE_GPL_ONLY, false },
462 #ifdef CONFIG_UNUSED_SYMBOLS
463 			{ mod->unused_syms,
464 			  mod->unused_syms + mod->num_unused_syms,
465 			  mod->unused_crcs,
466 			  NOT_GPL_ONLY, true },
467 			{ mod->unused_gpl_syms,
468 			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
469 			  mod->unused_gpl_crcs,
470 			  GPL_ONLY, true },
471 #endif
472 		};
473 
474 		if (mod->state == MODULE_STATE_UNFORMED)
475 			continue;
476 
477 		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
478 			return true;
479 	}
480 	return false;
481 }
482 EXPORT_SYMBOL_GPL(each_symbol_section);
483 
484 struct find_symbol_arg {
485 	/* Input */
486 	const char *name;
487 	bool gplok;
488 	bool warn;
489 
490 	/* Output */
491 	struct module *owner;
492 	const s32 *crc;
493 	const struct kernel_symbol *sym;
494 };
495 
check_exported_symbol(const struct symsearch * syms,struct module * owner,unsigned int symnum,void * data)496 static bool check_exported_symbol(const struct symsearch *syms,
497 				  struct module *owner,
498 				  unsigned int symnum, void *data)
499 {
500 	struct find_symbol_arg *fsa = data;
501 
502 	if (!fsa->gplok) {
503 		if (syms->licence == GPL_ONLY)
504 			return false;
505 		if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
506 			pr_warn("Symbol %s is being used by a non-GPL module, "
507 				"which will not be allowed in the future\n",
508 				fsa->name);
509 		}
510 	}
511 
512 #ifdef CONFIG_UNUSED_SYMBOLS
513 	if (syms->unused && fsa->warn) {
514 		pr_warn("Symbol %s is marked as UNUSED, however this module is "
515 			"using it.\n", fsa->name);
516 		pr_warn("This symbol will go away in the future.\n");
517 		pr_warn("Please evaluate if this is the right api to use and "
518 			"if it really is, submit a report to the linux kernel "
519 			"mailing list together with submitting your code for "
520 			"inclusion.\n");
521 	}
522 #endif
523 
524 	fsa->owner = owner;
525 	fsa->crc = symversion(syms->crcs, symnum);
526 	fsa->sym = &syms->start[symnum];
527 	return true;
528 }
529 
kernel_symbol_value(const struct kernel_symbol * sym)530 static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
531 {
532 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
533 	return (unsigned long)offset_to_ptr(&sym->value_offset);
534 #else
535 	return sym->value;
536 #endif
537 }
538 
kernel_symbol_name(const struct kernel_symbol * sym)539 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
540 {
541 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
542 	return offset_to_ptr(&sym->name_offset);
543 #else
544 	return sym->name;
545 #endif
546 }
547 
kernel_symbol_namespace(const struct kernel_symbol * sym)548 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
549 {
550 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
551 	if (!sym->namespace_offset)
552 		return NULL;
553 	return offset_to_ptr(&sym->namespace_offset);
554 #else
555 	return sym->namespace;
556 #endif
557 }
558 
cmp_name(const void * name,const void * sym)559 static int cmp_name(const void *name, const void *sym)
560 {
561 	return strcmp(name, kernel_symbol_name(sym));
562 }
563 
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,void * data)564 static bool find_exported_symbol_in_section(const struct symsearch *syms,
565 					    struct module *owner,
566 					    void *data)
567 {
568 	struct find_symbol_arg *fsa = data;
569 	struct kernel_symbol *sym;
570 
571 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
572 			sizeof(struct kernel_symbol), cmp_name);
573 
574 	if (sym != NULL && check_exported_symbol(syms, owner,
575 						 sym - syms->start, data))
576 		return true;
577 
578 	return false;
579 }
580 
581 /* Find an exported symbol and return it, along with, (optional) crc and
582  * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
find_symbol(const char * name,struct module ** owner,const s32 ** crc,bool gplok,bool warn)583 const struct kernel_symbol *find_symbol(const char *name,
584 					struct module **owner,
585 					const s32 **crc,
586 					bool gplok,
587 					bool warn)
588 {
589 	struct find_symbol_arg fsa;
590 
591 	fsa.name = name;
592 	fsa.gplok = gplok;
593 	fsa.warn = warn;
594 
595 	if (each_symbol_section(find_exported_symbol_in_section, &fsa)) {
596 		if (owner)
597 			*owner = fsa.owner;
598 		if (crc)
599 			*crc = fsa.crc;
600 		return fsa.sym;
601 	}
602 
603 	pr_debug("Failed to find symbol %s\n", name);
604 	return NULL;
605 }
606 EXPORT_SYMBOL_GPL(find_symbol);
607 
608 /*
609  * Search for module by name: must hold module_mutex (or preempt disabled
610  * for read-only access).
611  */
find_module_all(const char * name,size_t len,bool even_unformed)612 static struct module *find_module_all(const char *name, size_t len,
613 				      bool even_unformed)
614 {
615 	struct module *mod;
616 
617 	module_assert_mutex_or_preempt();
618 
619 	list_for_each_entry_rcu(mod, &modules, list) {
620 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
621 			continue;
622 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
623 			return mod;
624 	}
625 	return NULL;
626 }
627 
find_module(const char * name)628 struct module *find_module(const char *name)
629 {
630 	module_assert_mutex();
631 	return find_module_all(name, strlen(name), false);
632 }
633 EXPORT_SYMBOL_GPL(find_module);
634 
635 #ifdef CONFIG_SMP
636 
mod_percpu(struct module * mod)637 static inline void __percpu *mod_percpu(struct module *mod)
638 {
639 	return mod->percpu;
640 }
641 
percpu_modalloc(struct module * mod,struct load_info * info)642 static int percpu_modalloc(struct module *mod, struct load_info *info)
643 {
644 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
645 	unsigned long align = pcpusec->sh_addralign;
646 
647 	if (!pcpusec->sh_size)
648 		return 0;
649 
650 	if (align > PAGE_SIZE) {
651 		pr_warn("%s: per-cpu alignment %li > %li\n",
652 			mod->name, align, PAGE_SIZE);
653 		align = PAGE_SIZE;
654 	}
655 
656 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
657 	if (!mod->percpu) {
658 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
659 			mod->name, (unsigned long)pcpusec->sh_size);
660 		return -ENOMEM;
661 	}
662 	mod->percpu_size = pcpusec->sh_size;
663 	return 0;
664 }
665 
percpu_modfree(struct module * mod)666 static void percpu_modfree(struct module *mod)
667 {
668 	free_percpu(mod->percpu);
669 }
670 
find_pcpusec(struct load_info * info)671 static unsigned int find_pcpusec(struct load_info *info)
672 {
673 	return find_sec(info, ".data..percpu");
674 }
675 
percpu_modcopy(struct module * mod,const void * from,unsigned long size)676 static void percpu_modcopy(struct module *mod,
677 			   const void *from, unsigned long size)
678 {
679 	int cpu;
680 
681 	for_each_possible_cpu(cpu)
682 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
683 }
684 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)685 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
686 {
687 	struct module *mod;
688 	unsigned int cpu;
689 
690 	preempt_disable();
691 
692 	list_for_each_entry_rcu(mod, &modules, list) {
693 		if (mod->state == MODULE_STATE_UNFORMED)
694 			continue;
695 		if (!mod->percpu_size)
696 			continue;
697 		for_each_possible_cpu(cpu) {
698 			void *start = per_cpu_ptr(mod->percpu, cpu);
699 			void *va = (void *)addr;
700 
701 			if (va >= start && va < start + mod->percpu_size) {
702 				if (can_addr) {
703 					*can_addr = (unsigned long) (va - start);
704 					*can_addr += (unsigned long)
705 						per_cpu_ptr(mod->percpu,
706 							    get_boot_cpu_id());
707 				}
708 				preempt_enable();
709 				return true;
710 			}
711 		}
712 	}
713 
714 	preempt_enable();
715 	return false;
716 }
717 
718 /**
719  * is_module_percpu_address - test whether address is from module static percpu
720  * @addr: address to test
721  *
722  * Test whether @addr belongs to module static percpu area.
723  *
724  * RETURNS:
725  * %true if @addr is from module static percpu area
726  */
is_module_percpu_address(unsigned long addr)727 bool is_module_percpu_address(unsigned long addr)
728 {
729 	return __is_module_percpu_address(addr, NULL);
730 }
731 
732 #else /* ... !CONFIG_SMP */
733 
mod_percpu(struct module * mod)734 static inline void __percpu *mod_percpu(struct module *mod)
735 {
736 	return NULL;
737 }
percpu_modalloc(struct module * mod,struct load_info * info)738 static int percpu_modalloc(struct module *mod, struct load_info *info)
739 {
740 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
741 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
742 		return -ENOMEM;
743 	return 0;
744 }
percpu_modfree(struct module * mod)745 static inline void percpu_modfree(struct module *mod)
746 {
747 }
find_pcpusec(struct load_info * info)748 static unsigned int find_pcpusec(struct load_info *info)
749 {
750 	return 0;
751 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)752 static inline void percpu_modcopy(struct module *mod,
753 				  const void *from, unsigned long size)
754 {
755 	/* pcpusec should be 0, and size of that section should be 0. */
756 	BUG_ON(size != 0);
757 }
is_module_percpu_address(unsigned long addr)758 bool is_module_percpu_address(unsigned long addr)
759 {
760 	return false;
761 }
762 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)763 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
764 {
765 	return false;
766 }
767 
768 #endif /* CONFIG_SMP */
769 
770 #define MODINFO_ATTR(field)	\
771 static void setup_modinfo_##field(struct module *mod, const char *s)  \
772 {                                                                     \
773 	mod->field = kstrdup(s, GFP_KERNEL);                          \
774 }                                                                     \
775 static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
776 			struct module_kobject *mk, char *buffer)      \
777 {                                                                     \
778 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
779 }                                                                     \
780 static int modinfo_##field##_exists(struct module *mod)               \
781 {                                                                     \
782 	return mod->field != NULL;                                    \
783 }                                                                     \
784 static void free_modinfo_##field(struct module *mod)                  \
785 {                                                                     \
786 	kfree(mod->field);                                            \
787 	mod->field = NULL;                                            \
788 }                                                                     \
789 static struct module_attribute modinfo_##field = {                    \
790 	.attr = { .name = __stringify(field), .mode = 0444 },         \
791 	.show = show_modinfo_##field,                                 \
792 	.setup = setup_modinfo_##field,                               \
793 	.test = modinfo_##field##_exists,                             \
794 	.free = free_modinfo_##field,                                 \
795 };
796 
797 MODINFO_ATTR(version);
798 MODINFO_ATTR(srcversion);
799 
800 static char last_unloaded_module[MODULE_NAME_LEN+1];
801 
802 #ifdef CONFIG_MODULE_UNLOAD
803 
804 EXPORT_TRACEPOINT_SYMBOL(module_get);
805 
806 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
807 #define MODULE_REF_BASE	1
808 
809 /* Init the unload section of the module. */
module_unload_init(struct module * mod)810 static int module_unload_init(struct module *mod)
811 {
812 	/*
813 	 * Initialize reference counter to MODULE_REF_BASE.
814 	 * refcnt == 0 means module is going.
815 	 */
816 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
817 
818 	INIT_LIST_HEAD(&mod->source_list);
819 	INIT_LIST_HEAD(&mod->target_list);
820 
821 	/* Hold reference count during initialization. */
822 	atomic_inc(&mod->refcnt);
823 
824 	return 0;
825 }
826 
827 /* Does a already use b? */
already_uses(struct module * a,struct module * b)828 static int already_uses(struct module *a, struct module *b)
829 {
830 	struct module_use *use;
831 
832 	list_for_each_entry(use, &b->source_list, source_list) {
833 		if (use->source == a) {
834 			pr_debug("%s uses %s!\n", a->name, b->name);
835 			return 1;
836 		}
837 	}
838 	pr_debug("%s does not use %s!\n", a->name, b->name);
839 	return 0;
840 }
841 
842 /*
843  * Module a uses b
844  *  - we add 'a' as a "source", 'b' as a "target" of module use
845  *  - the module_use is added to the list of 'b' sources (so
846  *    'b' can walk the list to see who sourced them), and of 'a'
847  *    targets (so 'a' can see what modules it targets).
848  */
add_module_usage(struct module * a,struct module * b)849 static int add_module_usage(struct module *a, struct module *b)
850 {
851 	struct module_use *use;
852 
853 	pr_debug("Allocating new usage for %s.\n", a->name);
854 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
855 	if (!use)
856 		return -ENOMEM;
857 
858 	use->source = a;
859 	use->target = b;
860 	list_add(&use->source_list, &b->source_list);
861 	list_add(&use->target_list, &a->target_list);
862 	return 0;
863 }
864 
865 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)866 int ref_module(struct module *a, struct module *b)
867 {
868 	int err;
869 
870 	if (b == NULL || already_uses(a, b))
871 		return 0;
872 
873 	/* If module isn't available, we fail. */
874 	err = strong_try_module_get(b);
875 	if (err)
876 		return err;
877 
878 	err = add_module_usage(a, b);
879 	if (err) {
880 		module_put(b);
881 		return err;
882 	}
883 	return 0;
884 }
885 EXPORT_SYMBOL_GPL(ref_module);
886 
887 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)888 static void module_unload_free(struct module *mod)
889 {
890 	struct module_use *use, *tmp;
891 
892 	mutex_lock(&module_mutex);
893 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
894 		struct module *i = use->target;
895 		pr_debug("%s unusing %s\n", mod->name, i->name);
896 		module_put(i);
897 		list_del(&use->source_list);
898 		list_del(&use->target_list);
899 		kfree(use);
900 	}
901 	mutex_unlock(&module_mutex);
902 }
903 
904 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)905 static inline int try_force_unload(unsigned int flags)
906 {
907 	int ret = (flags & O_TRUNC);
908 	if (ret)
909 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
910 	return ret;
911 }
912 #else
try_force_unload(unsigned int flags)913 static inline int try_force_unload(unsigned int flags)
914 {
915 	return 0;
916 }
917 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
918 
919 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)920 static int try_release_module_ref(struct module *mod)
921 {
922 	int ret;
923 
924 	/* Try to decrement refcnt which we set at loading */
925 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
926 	BUG_ON(ret < 0);
927 	if (ret)
928 		/* Someone can put this right now, recover with checking */
929 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
930 
931 	return ret;
932 }
933 
try_stop_module(struct module * mod,int flags,int * forced)934 static int try_stop_module(struct module *mod, int flags, int *forced)
935 {
936 	/* If it's not unused, quit unless we're forcing. */
937 	if (try_release_module_ref(mod) != 0) {
938 		*forced = try_force_unload(flags);
939 		if (!(*forced))
940 			return -EWOULDBLOCK;
941 	}
942 
943 	/* Mark it as dying. */
944 	mod->state = MODULE_STATE_GOING;
945 
946 	return 0;
947 }
948 
949 /**
950  * module_refcount - return the refcount or -1 if unloading
951  *
952  * @mod:	the module we're checking
953  *
954  * Returns:
955  *	-1 if the module is in the process of unloading
956  *	otherwise the number of references in the kernel to the module
957  */
module_refcount(struct module * mod)958 int module_refcount(struct module *mod)
959 {
960 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
961 }
962 EXPORT_SYMBOL(module_refcount);
963 
964 /* This exists whether we can unload or not */
965 static void free_module(struct module *mod);
966 
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)967 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
968 		unsigned int, flags)
969 {
970 	struct module *mod;
971 	char name[MODULE_NAME_LEN];
972 	int ret, forced = 0;
973 
974 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
975 		return -EPERM;
976 
977 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
978 		return -EFAULT;
979 	name[MODULE_NAME_LEN-1] = '\0';
980 
981 	audit_log_kern_module(name);
982 
983 	if (mutex_lock_interruptible(&module_mutex) != 0)
984 		return -EINTR;
985 
986 	mod = find_module(name);
987 	if (!mod) {
988 		ret = -ENOENT;
989 		goto out;
990 	}
991 
992 	if (!list_empty(&mod->source_list)) {
993 		/* Other modules depend on us: get rid of them first. */
994 		ret = -EWOULDBLOCK;
995 		goto out;
996 	}
997 
998 	/* Doing init or already dying? */
999 	if (mod->state != MODULE_STATE_LIVE) {
1000 		/* FIXME: if (force), slam module count damn the torpedoes */
1001 		pr_debug("%s already dying\n", mod->name);
1002 		ret = -EBUSY;
1003 		goto out;
1004 	}
1005 
1006 	/* If it has an init func, it must have an exit func to unload */
1007 	if (mod->init && !mod->exit) {
1008 		forced = try_force_unload(flags);
1009 		if (!forced) {
1010 			/* This module can't be removed */
1011 			ret = -EBUSY;
1012 			goto out;
1013 		}
1014 	}
1015 
1016 	/* Stop the machine so refcounts can't move and disable module. */
1017 	ret = try_stop_module(mod, flags, &forced);
1018 	if (ret != 0)
1019 		goto out;
1020 
1021 	mutex_unlock(&module_mutex);
1022 	/* Final destruction now no one is using it. */
1023 	if (mod->exit != NULL)
1024 		mod->exit();
1025 	blocking_notifier_call_chain(&module_notify_list,
1026 				     MODULE_STATE_GOING, mod);
1027 	klp_module_going(mod);
1028 	ftrace_release_mod(mod);
1029 
1030 	async_synchronize_full();
1031 
1032 	/* Store the name of the last unloaded module for diagnostic purposes */
1033 	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1034 
1035 	free_module(mod);
1036 	/* someone could wait for the module in add_unformed_module() */
1037 	wake_up_all(&module_wq);
1038 	return 0;
1039 out:
1040 	mutex_unlock(&module_mutex);
1041 	return ret;
1042 }
1043 
print_unload_info(struct seq_file * m,struct module * mod)1044 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1045 {
1046 	struct module_use *use;
1047 	int printed_something = 0;
1048 
1049 	seq_printf(m, " %i ", module_refcount(mod));
1050 
1051 	/*
1052 	 * Always include a trailing , so userspace can differentiate
1053 	 * between this and the old multi-field proc format.
1054 	 */
1055 	list_for_each_entry(use, &mod->source_list, source_list) {
1056 		printed_something = 1;
1057 		seq_printf(m, "%s,", use->source->name);
1058 	}
1059 
1060 	if (mod->init != NULL && mod->exit == NULL) {
1061 		printed_something = 1;
1062 		seq_puts(m, "[permanent],");
1063 	}
1064 
1065 	if (!printed_something)
1066 		seq_puts(m, "-");
1067 }
1068 
__symbol_put(const char * symbol)1069 void __symbol_put(const char *symbol)
1070 {
1071 	struct module *owner;
1072 
1073 	preempt_disable();
1074 	if (!find_symbol(symbol, &owner, NULL, true, false))
1075 		BUG();
1076 	module_put(owner);
1077 	preempt_enable();
1078 }
1079 EXPORT_SYMBOL(__symbol_put);
1080 
1081 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)1082 void symbol_put_addr(void *addr)
1083 {
1084 	struct module *modaddr;
1085 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1086 
1087 	if (core_kernel_text(a))
1088 		return;
1089 
1090 	/*
1091 	 * Even though we hold a reference on the module; we still need to
1092 	 * disable preemption in order to safely traverse the data structure.
1093 	 */
1094 	preempt_disable();
1095 	modaddr = __module_text_address(a);
1096 	BUG_ON(!modaddr);
1097 	module_put(modaddr);
1098 	preempt_enable();
1099 }
1100 EXPORT_SYMBOL_GPL(symbol_put_addr);
1101 
show_refcnt(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1102 static ssize_t show_refcnt(struct module_attribute *mattr,
1103 			   struct module_kobject *mk, char *buffer)
1104 {
1105 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1106 }
1107 
1108 static struct module_attribute modinfo_refcnt =
1109 	__ATTR(refcnt, 0444, show_refcnt, NULL);
1110 
__module_get(struct module * module)1111 void __module_get(struct module *module)
1112 {
1113 	if (module) {
1114 		preempt_disable();
1115 		atomic_inc(&module->refcnt);
1116 		trace_module_get(module, _RET_IP_);
1117 		preempt_enable();
1118 	}
1119 }
1120 EXPORT_SYMBOL(__module_get);
1121 
try_module_get(struct module * module)1122 bool try_module_get(struct module *module)
1123 {
1124 	bool ret = true;
1125 
1126 	if (module) {
1127 		preempt_disable();
1128 		/* Note: here, we can fail to get a reference */
1129 		if (likely(module_is_live(module) &&
1130 			   atomic_inc_not_zero(&module->refcnt) != 0))
1131 			trace_module_get(module, _RET_IP_);
1132 		else
1133 			ret = false;
1134 
1135 		preempt_enable();
1136 	}
1137 	return ret;
1138 }
1139 EXPORT_SYMBOL(try_module_get);
1140 
module_put(struct module * module)1141 void module_put(struct module *module)
1142 {
1143 	int ret;
1144 
1145 	if (module) {
1146 		preempt_disable();
1147 		ret = atomic_dec_if_positive(&module->refcnt);
1148 		WARN_ON(ret < 0);	/* Failed to put refcount */
1149 		trace_module_put(module, _RET_IP_);
1150 		preempt_enable();
1151 	}
1152 }
1153 EXPORT_SYMBOL(module_put);
1154 
1155 #else /* !CONFIG_MODULE_UNLOAD */
print_unload_info(struct seq_file * m,struct module * mod)1156 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1157 {
1158 	/* We don't know the usage count, or what modules are using. */
1159 	seq_puts(m, " - -");
1160 }
1161 
module_unload_free(struct module * mod)1162 static inline void module_unload_free(struct module *mod)
1163 {
1164 }
1165 
ref_module(struct module * a,struct module * b)1166 int ref_module(struct module *a, struct module *b)
1167 {
1168 	return strong_try_module_get(b);
1169 }
1170 EXPORT_SYMBOL_GPL(ref_module);
1171 
module_unload_init(struct module * mod)1172 static inline int module_unload_init(struct module *mod)
1173 {
1174 	return 0;
1175 }
1176 #endif /* CONFIG_MODULE_UNLOAD */
1177 
module_flags_taint(struct module * mod,char * buf)1178 static size_t module_flags_taint(struct module *mod, char *buf)
1179 {
1180 	size_t l = 0;
1181 	int i;
1182 
1183 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1184 		if (taint_flags[i].module && test_bit(i, &mod->taints))
1185 			buf[l++] = taint_flags[i].c_true;
1186 	}
1187 
1188 	return l;
1189 }
1190 
show_initstate(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1191 static ssize_t show_initstate(struct module_attribute *mattr,
1192 			      struct module_kobject *mk, char *buffer)
1193 {
1194 	const char *state = "unknown";
1195 
1196 	switch (mk->mod->state) {
1197 	case MODULE_STATE_LIVE:
1198 		state = "live";
1199 		break;
1200 	case MODULE_STATE_COMING:
1201 		state = "coming";
1202 		break;
1203 	case MODULE_STATE_GOING:
1204 		state = "going";
1205 		break;
1206 	default:
1207 		BUG();
1208 	}
1209 	return sprintf(buffer, "%s\n", state);
1210 }
1211 
1212 static struct module_attribute modinfo_initstate =
1213 	__ATTR(initstate, 0444, show_initstate, NULL);
1214 
store_uevent(struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)1215 static ssize_t store_uevent(struct module_attribute *mattr,
1216 			    struct module_kobject *mk,
1217 			    const char *buffer, size_t count)
1218 {
1219 	int rc;
1220 
1221 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1222 	return rc ? rc : count;
1223 }
1224 
1225 struct module_attribute module_uevent =
1226 	__ATTR(uevent, 0200, NULL, store_uevent);
1227 
show_coresize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1228 static ssize_t show_coresize(struct module_attribute *mattr,
1229 			     struct module_kobject *mk, char *buffer)
1230 {
1231 	return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1232 }
1233 
1234 static struct module_attribute modinfo_coresize =
1235 	__ATTR(coresize, 0444, show_coresize, NULL);
1236 
show_initsize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1237 static ssize_t show_initsize(struct module_attribute *mattr,
1238 			     struct module_kobject *mk, char *buffer)
1239 {
1240 	return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1241 }
1242 
1243 static struct module_attribute modinfo_initsize =
1244 	__ATTR(initsize, 0444, show_initsize, NULL);
1245 
show_taint(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1246 static ssize_t show_taint(struct module_attribute *mattr,
1247 			  struct module_kobject *mk, char *buffer)
1248 {
1249 	size_t l;
1250 
1251 	l = module_flags_taint(mk->mod, buffer);
1252 	buffer[l++] = '\n';
1253 	return l;
1254 }
1255 
1256 static struct module_attribute modinfo_taint =
1257 	__ATTR(taint, 0444, show_taint, NULL);
1258 
1259 static struct module_attribute *modinfo_attrs[] = {
1260 	&module_uevent,
1261 	&modinfo_version,
1262 	&modinfo_srcversion,
1263 	&modinfo_initstate,
1264 	&modinfo_coresize,
1265 	&modinfo_initsize,
1266 	&modinfo_taint,
1267 #ifdef CONFIG_MODULE_UNLOAD
1268 	&modinfo_refcnt,
1269 #endif
1270 	NULL,
1271 };
1272 
1273 static const char vermagic[] = VERMAGIC_STRING;
1274 
try_to_force_load(struct module * mod,const char * reason)1275 static int try_to_force_load(struct module *mod, const char *reason)
1276 {
1277 #ifdef CONFIG_MODULE_FORCE_LOAD
1278 	if (!test_taint(TAINT_FORCED_MODULE))
1279 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1280 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1281 	return 0;
1282 #else
1283 	return -ENOEXEC;
1284 #endif
1285 }
1286 
1287 #ifdef CONFIG_MODVERSIONS
1288 
resolve_rel_crc(const s32 * crc)1289 static u32 resolve_rel_crc(const s32 *crc)
1290 {
1291 	return *(u32 *)((void *)crc + *crc);
1292 }
1293 
check_version(const struct load_info * info,const char * symname,struct module * mod,const s32 * crc)1294 static int check_version(const struct load_info *info,
1295 			 const char *symname,
1296 			 struct module *mod,
1297 			 const s32 *crc)
1298 {
1299 	Elf_Shdr *sechdrs = info->sechdrs;
1300 	unsigned int versindex = info->index.vers;
1301 	unsigned int i, num_versions;
1302 	struct modversion_info *versions;
1303 
1304 	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1305 	if (!crc)
1306 		return 1;
1307 
1308 	/* No versions at all?  modprobe --force does this. */
1309 	if (versindex == 0)
1310 		return try_to_force_load(mod, symname) == 0;
1311 
1312 	versions = (void *) sechdrs[versindex].sh_addr;
1313 	num_versions = sechdrs[versindex].sh_size
1314 		/ sizeof(struct modversion_info);
1315 
1316 	for (i = 0; i < num_versions; i++) {
1317 		u32 crcval;
1318 
1319 		if (strcmp(versions[i].name, symname) != 0)
1320 			continue;
1321 
1322 		if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1323 			crcval = resolve_rel_crc(crc);
1324 		else
1325 			crcval = *crc;
1326 		if (versions[i].crc == crcval)
1327 			return 1;
1328 		pr_debug("Found checksum %X vs module %lX\n",
1329 			 crcval, versions[i].crc);
1330 		goto bad_version;
1331 	}
1332 
1333 	/* Broken toolchain. Warn once, then let it go.. */
1334 	pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1335 	return 1;
1336 
1337 bad_version:
1338 	pr_warn("%s: disagrees about version of symbol %s\n",
1339 	       info->name, symname);
1340 	return 0;
1341 }
1342 
check_modstruct_version(const struct load_info * info,struct module * mod)1343 static inline int check_modstruct_version(const struct load_info *info,
1344 					  struct module *mod)
1345 {
1346 	const s32 *crc;
1347 
1348 	/*
1349 	 * Since this should be found in kernel (which can't be removed), no
1350 	 * locking is necessary -- use preempt_disable() to placate lockdep.
1351 	 */
1352 	preempt_disable();
1353 	if (!find_symbol("module_layout", NULL, &crc, true, false)) {
1354 		preempt_enable();
1355 		BUG();
1356 	}
1357 	preempt_enable();
1358 	return check_version(info, "module_layout", mod, crc);
1359 }
1360 
1361 /* First part is kernel version, which we ignore if module has crcs. */
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1362 static inline int same_magic(const char *amagic, const char *bmagic,
1363 			     bool has_crcs)
1364 {
1365 	if (has_crcs) {
1366 		amagic += strcspn(amagic, " ");
1367 		bmagic += strcspn(bmagic, " ");
1368 	}
1369 	return strcmp(amagic, bmagic) == 0;
1370 }
1371 #else
check_version(const struct load_info * info,const char * symname,struct module * mod,const s32 * crc)1372 static inline int check_version(const struct load_info *info,
1373 				const char *symname,
1374 				struct module *mod,
1375 				const s32 *crc)
1376 {
1377 	return 1;
1378 }
1379 
check_modstruct_version(const struct load_info * info,struct module * mod)1380 static inline int check_modstruct_version(const struct load_info *info,
1381 					  struct module *mod)
1382 {
1383 	return 1;
1384 }
1385 
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1386 static inline int same_magic(const char *amagic, const char *bmagic,
1387 			     bool has_crcs)
1388 {
1389 	return strcmp(amagic, bmagic) == 0;
1390 }
1391 #endif /* CONFIG_MODVERSIONS */
1392 
1393 static char *get_modinfo(const struct load_info *info, const char *tag);
1394 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1395 			      char *prev);
1396 
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1397 static int verify_namespace_is_imported(const struct load_info *info,
1398 					const struct kernel_symbol *sym,
1399 					struct module *mod)
1400 {
1401 	const char *namespace;
1402 	char *imported_namespace;
1403 
1404 	namespace = kernel_symbol_namespace(sym);
1405 	if (namespace) {
1406 		imported_namespace = get_modinfo(info, "import_ns");
1407 		while (imported_namespace) {
1408 			if (strcmp(namespace, imported_namespace) == 0)
1409 				return 0;
1410 			imported_namespace = get_next_modinfo(
1411 				info, "import_ns", imported_namespace);
1412 		}
1413 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1414 		pr_warn(
1415 #else
1416 		pr_err(
1417 #endif
1418 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1419 			mod->name, kernel_symbol_name(sym), namespace);
1420 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1421 		return -EINVAL;
1422 #endif
1423 	}
1424 	return 0;
1425 }
1426 
1427 
1428 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1429 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1430 						  const struct load_info *info,
1431 						  const char *name,
1432 						  char ownername[])
1433 {
1434 	struct module *owner;
1435 	const struct kernel_symbol *sym;
1436 	const s32 *crc;
1437 	int err;
1438 
1439 	/*
1440 	 * The module_mutex should not be a heavily contended lock;
1441 	 * if we get the occasional sleep here, we'll go an extra iteration
1442 	 * in the wait_event_interruptible(), which is harmless.
1443 	 */
1444 	sched_annotate_sleep();
1445 	mutex_lock(&module_mutex);
1446 	sym = find_symbol(name, &owner, &crc,
1447 			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1448 	if (!sym)
1449 		goto unlock;
1450 
1451 	if (!check_version(info, name, mod, crc)) {
1452 		sym = ERR_PTR(-EINVAL);
1453 		goto getname;
1454 	}
1455 
1456 	err = verify_namespace_is_imported(info, sym, mod);
1457 	if (err) {
1458 		sym = ERR_PTR(err);
1459 		goto getname;
1460 	}
1461 
1462 	err = ref_module(mod, owner);
1463 	if (err) {
1464 		sym = ERR_PTR(err);
1465 		goto getname;
1466 	}
1467 
1468 getname:
1469 	/* We must make copy under the lock if we failed to get ref. */
1470 	strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1471 unlock:
1472 	mutex_unlock(&module_mutex);
1473 	return sym;
1474 }
1475 
1476 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1477 resolve_symbol_wait(struct module *mod,
1478 		    const struct load_info *info,
1479 		    const char *name)
1480 {
1481 	const struct kernel_symbol *ksym;
1482 	char owner[MODULE_NAME_LEN];
1483 
1484 	if (wait_event_interruptible_timeout(module_wq,
1485 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1486 			|| PTR_ERR(ksym) != -EBUSY,
1487 					     30 * HZ) <= 0) {
1488 		pr_warn("%s: gave up waiting for init of module %s.\n",
1489 			mod->name, owner);
1490 	}
1491 	return ksym;
1492 }
1493 
1494 /*
1495  * /sys/module/foo/sections stuff
1496  * J. Corbet <corbet@lwn.net>
1497  */
1498 #ifdef CONFIG_SYSFS
1499 
1500 #ifdef CONFIG_KALLSYMS
sect_empty(const Elf_Shdr * sect)1501 static inline bool sect_empty(const Elf_Shdr *sect)
1502 {
1503 	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1504 }
1505 
1506 struct module_sect_attr {
1507 	struct module_attribute mattr;
1508 	char *name;
1509 	unsigned long address;
1510 };
1511 
1512 struct module_sect_attrs {
1513 	struct attribute_group grp;
1514 	unsigned int nsections;
1515 	struct module_sect_attr attrs[0];
1516 };
1517 
module_sect_show(struct module_attribute * mattr,struct module_kobject * mk,char * buf)1518 static ssize_t module_sect_show(struct module_attribute *mattr,
1519 				struct module_kobject *mk, char *buf)
1520 {
1521 	struct module_sect_attr *sattr =
1522 		container_of(mattr, struct module_sect_attr, mattr);
1523 	return sprintf(buf, "0x%px\n", kptr_restrict < 2 ?
1524 		       (void *)sattr->address : NULL);
1525 }
1526 
free_sect_attrs(struct module_sect_attrs * sect_attrs)1527 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1528 {
1529 	unsigned int section;
1530 
1531 	for (section = 0; section < sect_attrs->nsections; section++)
1532 		kfree(sect_attrs->attrs[section].name);
1533 	kfree(sect_attrs);
1534 }
1535 
add_sect_attrs(struct module * mod,const struct load_info * info)1536 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1537 {
1538 	unsigned int nloaded = 0, i, size[2];
1539 	struct module_sect_attrs *sect_attrs;
1540 	struct module_sect_attr *sattr;
1541 	struct attribute **gattr;
1542 
1543 	/* Count loaded sections and allocate structures */
1544 	for (i = 0; i < info->hdr->e_shnum; i++)
1545 		if (!sect_empty(&info->sechdrs[i]))
1546 			nloaded++;
1547 	size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1548 			sizeof(sect_attrs->grp.attrs[0]));
1549 	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1550 	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1551 	if (sect_attrs == NULL)
1552 		return;
1553 
1554 	/* Setup section attributes. */
1555 	sect_attrs->grp.name = "sections";
1556 	sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1557 
1558 	sect_attrs->nsections = 0;
1559 	sattr = &sect_attrs->attrs[0];
1560 	gattr = &sect_attrs->grp.attrs[0];
1561 	for (i = 0; i < info->hdr->e_shnum; i++) {
1562 		Elf_Shdr *sec = &info->sechdrs[i];
1563 		if (sect_empty(sec))
1564 			continue;
1565 		sattr->address = sec->sh_addr;
1566 		sattr->name = kstrdup(info->secstrings + sec->sh_name,
1567 					GFP_KERNEL);
1568 		if (sattr->name == NULL)
1569 			goto out;
1570 		sect_attrs->nsections++;
1571 		sysfs_attr_init(&sattr->mattr.attr);
1572 		sattr->mattr.show = module_sect_show;
1573 		sattr->mattr.store = NULL;
1574 		sattr->mattr.attr.name = sattr->name;
1575 		sattr->mattr.attr.mode = S_IRUSR;
1576 		*(gattr++) = &(sattr++)->mattr.attr;
1577 	}
1578 	*gattr = NULL;
1579 
1580 	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1581 		goto out;
1582 
1583 	mod->sect_attrs = sect_attrs;
1584 	return;
1585   out:
1586 	free_sect_attrs(sect_attrs);
1587 }
1588 
remove_sect_attrs(struct module * mod)1589 static void remove_sect_attrs(struct module *mod)
1590 {
1591 	if (mod->sect_attrs) {
1592 		sysfs_remove_group(&mod->mkobj.kobj,
1593 				   &mod->sect_attrs->grp);
1594 		/* We are positive that no one is using any sect attrs
1595 		 * at this point.  Deallocate immediately. */
1596 		free_sect_attrs(mod->sect_attrs);
1597 		mod->sect_attrs = NULL;
1598 	}
1599 }
1600 
1601 /*
1602  * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1603  */
1604 
1605 struct module_notes_attrs {
1606 	struct kobject *dir;
1607 	unsigned int notes;
1608 	struct bin_attribute attrs[0];
1609 };
1610 
module_notes_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t pos,size_t count)1611 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1612 				 struct bin_attribute *bin_attr,
1613 				 char *buf, loff_t pos, size_t count)
1614 {
1615 	/*
1616 	 * The caller checked the pos and count against our size.
1617 	 */
1618 	memcpy(buf, bin_attr->private + pos, count);
1619 	return count;
1620 }
1621 
free_notes_attrs(struct module_notes_attrs * notes_attrs,unsigned int i)1622 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1623 			     unsigned int i)
1624 {
1625 	if (notes_attrs->dir) {
1626 		while (i-- > 0)
1627 			sysfs_remove_bin_file(notes_attrs->dir,
1628 					      &notes_attrs->attrs[i]);
1629 		kobject_put(notes_attrs->dir);
1630 	}
1631 	kfree(notes_attrs);
1632 }
1633 
add_notes_attrs(struct module * mod,const struct load_info * info)1634 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1635 {
1636 	unsigned int notes, loaded, i;
1637 	struct module_notes_attrs *notes_attrs;
1638 	struct bin_attribute *nattr;
1639 
1640 	/* failed to create section attributes, so can't create notes */
1641 	if (!mod->sect_attrs)
1642 		return;
1643 
1644 	/* Count notes sections and allocate structures.  */
1645 	notes = 0;
1646 	for (i = 0; i < info->hdr->e_shnum; i++)
1647 		if (!sect_empty(&info->sechdrs[i]) &&
1648 		    (info->sechdrs[i].sh_type == SHT_NOTE))
1649 			++notes;
1650 
1651 	if (notes == 0)
1652 		return;
1653 
1654 	notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1655 			      GFP_KERNEL);
1656 	if (notes_attrs == NULL)
1657 		return;
1658 
1659 	notes_attrs->notes = notes;
1660 	nattr = &notes_attrs->attrs[0];
1661 	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1662 		if (sect_empty(&info->sechdrs[i]))
1663 			continue;
1664 		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1665 			sysfs_bin_attr_init(nattr);
1666 			nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1667 			nattr->attr.mode = S_IRUGO;
1668 			nattr->size = info->sechdrs[i].sh_size;
1669 			nattr->private = (void *) info->sechdrs[i].sh_addr;
1670 			nattr->read = module_notes_read;
1671 			++nattr;
1672 		}
1673 		++loaded;
1674 	}
1675 
1676 	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1677 	if (!notes_attrs->dir)
1678 		goto out;
1679 
1680 	for (i = 0; i < notes; ++i)
1681 		if (sysfs_create_bin_file(notes_attrs->dir,
1682 					  &notes_attrs->attrs[i]))
1683 			goto out;
1684 
1685 	mod->notes_attrs = notes_attrs;
1686 	return;
1687 
1688   out:
1689 	free_notes_attrs(notes_attrs, i);
1690 }
1691 
remove_notes_attrs(struct module * mod)1692 static void remove_notes_attrs(struct module *mod)
1693 {
1694 	if (mod->notes_attrs)
1695 		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1696 }
1697 
1698 #else
1699 
add_sect_attrs(struct module * mod,const struct load_info * info)1700 static inline void add_sect_attrs(struct module *mod,
1701 				  const struct load_info *info)
1702 {
1703 }
1704 
remove_sect_attrs(struct module * mod)1705 static inline void remove_sect_attrs(struct module *mod)
1706 {
1707 }
1708 
add_notes_attrs(struct module * mod,const struct load_info * info)1709 static inline void add_notes_attrs(struct module *mod,
1710 				   const struct load_info *info)
1711 {
1712 }
1713 
remove_notes_attrs(struct module * mod)1714 static inline void remove_notes_attrs(struct module *mod)
1715 {
1716 }
1717 #endif /* CONFIG_KALLSYMS */
1718 
del_usage_links(struct module * mod)1719 static void del_usage_links(struct module *mod)
1720 {
1721 #ifdef CONFIG_MODULE_UNLOAD
1722 	struct module_use *use;
1723 
1724 	mutex_lock(&module_mutex);
1725 	list_for_each_entry(use, &mod->target_list, target_list)
1726 		sysfs_remove_link(use->target->holders_dir, mod->name);
1727 	mutex_unlock(&module_mutex);
1728 #endif
1729 }
1730 
add_usage_links(struct module * mod)1731 static int add_usage_links(struct module *mod)
1732 {
1733 	int ret = 0;
1734 #ifdef CONFIG_MODULE_UNLOAD
1735 	struct module_use *use;
1736 
1737 	mutex_lock(&module_mutex);
1738 	list_for_each_entry(use, &mod->target_list, target_list) {
1739 		ret = sysfs_create_link(use->target->holders_dir,
1740 					&mod->mkobj.kobj, mod->name);
1741 		if (ret)
1742 			break;
1743 	}
1744 	mutex_unlock(&module_mutex);
1745 	if (ret)
1746 		del_usage_links(mod);
1747 #endif
1748 	return ret;
1749 }
1750 
1751 static void module_remove_modinfo_attrs(struct module *mod, int end);
1752 
module_add_modinfo_attrs(struct module * mod)1753 static int module_add_modinfo_attrs(struct module *mod)
1754 {
1755 	struct module_attribute *attr;
1756 	struct module_attribute *temp_attr;
1757 	int error = 0;
1758 	int i;
1759 
1760 	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1761 					(ARRAY_SIZE(modinfo_attrs) + 1)),
1762 					GFP_KERNEL);
1763 	if (!mod->modinfo_attrs)
1764 		return -ENOMEM;
1765 
1766 	temp_attr = mod->modinfo_attrs;
1767 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1768 		if (!attr->test || attr->test(mod)) {
1769 			memcpy(temp_attr, attr, sizeof(*temp_attr));
1770 			sysfs_attr_init(&temp_attr->attr);
1771 			error = sysfs_create_file(&mod->mkobj.kobj,
1772 					&temp_attr->attr);
1773 			if (error)
1774 				goto error_out;
1775 			++temp_attr;
1776 		}
1777 	}
1778 
1779 	return 0;
1780 
1781 error_out:
1782 	if (i > 0)
1783 		module_remove_modinfo_attrs(mod, --i);
1784 	return error;
1785 }
1786 
module_remove_modinfo_attrs(struct module * mod,int end)1787 static void module_remove_modinfo_attrs(struct module *mod, int end)
1788 {
1789 	struct module_attribute *attr;
1790 	int i;
1791 
1792 	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1793 		if (end >= 0 && i > end)
1794 			break;
1795 		/* pick a field to test for end of list */
1796 		if (!attr->attr.name)
1797 			break;
1798 		sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1799 		if (attr->free)
1800 			attr->free(mod);
1801 	}
1802 	kfree(mod->modinfo_attrs);
1803 }
1804 
mod_kobject_put(struct module * mod)1805 static void mod_kobject_put(struct module *mod)
1806 {
1807 	DECLARE_COMPLETION_ONSTACK(c);
1808 	mod->mkobj.kobj_completion = &c;
1809 	kobject_put(&mod->mkobj.kobj);
1810 	wait_for_completion(&c);
1811 }
1812 
mod_sysfs_init(struct module * mod)1813 static int mod_sysfs_init(struct module *mod)
1814 {
1815 	int err;
1816 	struct kobject *kobj;
1817 
1818 	if (!module_sysfs_initialized) {
1819 		pr_err("%s: module sysfs not initialized\n", mod->name);
1820 		err = -EINVAL;
1821 		goto out;
1822 	}
1823 
1824 	kobj = kset_find_obj(module_kset, mod->name);
1825 	if (kobj) {
1826 		pr_err("%s: module is already loaded\n", mod->name);
1827 		kobject_put(kobj);
1828 		err = -EINVAL;
1829 		goto out;
1830 	}
1831 
1832 	mod->mkobj.mod = mod;
1833 
1834 	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1835 	mod->mkobj.kobj.kset = module_kset;
1836 	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1837 				   "%s", mod->name);
1838 	if (err)
1839 		mod_kobject_put(mod);
1840 
1841 	/* delay uevent until full sysfs population */
1842 out:
1843 	return err;
1844 }
1845 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1846 static int mod_sysfs_setup(struct module *mod,
1847 			   const struct load_info *info,
1848 			   struct kernel_param *kparam,
1849 			   unsigned int num_params)
1850 {
1851 	int err;
1852 
1853 	err = mod_sysfs_init(mod);
1854 	if (err)
1855 		goto out;
1856 
1857 	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1858 	if (!mod->holders_dir) {
1859 		err = -ENOMEM;
1860 		goto out_unreg;
1861 	}
1862 
1863 	err = module_param_sysfs_setup(mod, kparam, num_params);
1864 	if (err)
1865 		goto out_unreg_holders;
1866 
1867 	err = module_add_modinfo_attrs(mod);
1868 	if (err)
1869 		goto out_unreg_param;
1870 
1871 	err = add_usage_links(mod);
1872 	if (err)
1873 		goto out_unreg_modinfo_attrs;
1874 
1875 	add_sect_attrs(mod, info);
1876 	add_notes_attrs(mod, info);
1877 
1878 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1879 	return 0;
1880 
1881 out_unreg_modinfo_attrs:
1882 	module_remove_modinfo_attrs(mod, -1);
1883 out_unreg_param:
1884 	module_param_sysfs_remove(mod);
1885 out_unreg_holders:
1886 	kobject_put(mod->holders_dir);
1887 out_unreg:
1888 	mod_kobject_put(mod);
1889 out:
1890 	return err;
1891 }
1892 
mod_sysfs_fini(struct module * mod)1893 static void mod_sysfs_fini(struct module *mod)
1894 {
1895 	remove_notes_attrs(mod);
1896 	remove_sect_attrs(mod);
1897 	mod_kobject_put(mod);
1898 }
1899 
init_param_lock(struct module * mod)1900 static void init_param_lock(struct module *mod)
1901 {
1902 	mutex_init(&mod->param_lock);
1903 }
1904 #else /* !CONFIG_SYSFS */
1905 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1906 static int mod_sysfs_setup(struct module *mod,
1907 			   const struct load_info *info,
1908 			   struct kernel_param *kparam,
1909 			   unsigned int num_params)
1910 {
1911 	return 0;
1912 }
1913 
mod_sysfs_fini(struct module * mod)1914 static void mod_sysfs_fini(struct module *mod)
1915 {
1916 }
1917 
module_remove_modinfo_attrs(struct module * mod,int end)1918 static void module_remove_modinfo_attrs(struct module *mod, int end)
1919 {
1920 }
1921 
del_usage_links(struct module * mod)1922 static void del_usage_links(struct module *mod)
1923 {
1924 }
1925 
init_param_lock(struct module * mod)1926 static void init_param_lock(struct module *mod)
1927 {
1928 }
1929 #endif /* CONFIG_SYSFS */
1930 
mod_sysfs_teardown(struct module * mod)1931 static void mod_sysfs_teardown(struct module *mod)
1932 {
1933 	del_usage_links(mod);
1934 	module_remove_modinfo_attrs(mod, -1);
1935 	module_param_sysfs_remove(mod);
1936 	kobject_put(mod->mkobj.drivers_dir);
1937 	kobject_put(mod->holders_dir);
1938 	mod_sysfs_fini(mod);
1939 }
1940 
1941 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
1942 /*
1943  * LKM RO/NX protection: protect module's text/ro-data
1944  * from modification and any data from execution.
1945  *
1946  * General layout of module is:
1947  *          [text] [read-only-data] [ro-after-init] [writable data]
1948  * text_size -----^                ^               ^               ^
1949  * ro_size ------------------------|               |               |
1950  * ro_after_init_size -----------------------------|               |
1951  * size -----------------------------------------------------------|
1952  *
1953  * These values are always page-aligned (as is base)
1954  */
frob_text(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1955 static void frob_text(const struct module_layout *layout,
1956 		      int (*set_memory)(unsigned long start, int num_pages))
1957 {
1958 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1959 	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1960 	set_memory((unsigned long)layout->base,
1961 		   layout->text_size >> PAGE_SHIFT);
1962 }
1963 
1964 #ifdef CONFIG_STRICT_MODULE_RWX
frob_rodata(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1965 static void frob_rodata(const struct module_layout *layout,
1966 			int (*set_memory)(unsigned long start, int num_pages))
1967 {
1968 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1969 	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1970 	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1971 	set_memory((unsigned long)layout->base + layout->text_size,
1972 		   (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1973 }
1974 
frob_ro_after_init(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1975 static void frob_ro_after_init(const struct module_layout *layout,
1976 				int (*set_memory)(unsigned long start, int num_pages))
1977 {
1978 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1979 	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1980 	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1981 	set_memory((unsigned long)layout->base + layout->ro_size,
1982 		   (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1983 }
1984 
frob_writable_data(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1985 static void frob_writable_data(const struct module_layout *layout,
1986 			       int (*set_memory)(unsigned long start, int num_pages))
1987 {
1988 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1989 	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1990 	BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1991 	set_memory((unsigned long)layout->base + layout->ro_after_init_size,
1992 		   (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
1993 }
1994 
1995 /* livepatching wants to disable read-only so it can frob module. */
module_disable_ro(const struct module * mod)1996 void module_disable_ro(const struct module *mod)
1997 {
1998 	if (!rodata_enabled)
1999 		return;
2000 
2001 	frob_text(&mod->core_layout, set_memory_rw);
2002 	frob_rodata(&mod->core_layout, set_memory_rw);
2003 	frob_ro_after_init(&mod->core_layout, set_memory_rw);
2004 	frob_text(&mod->init_layout, set_memory_rw);
2005 	frob_rodata(&mod->init_layout, set_memory_rw);
2006 }
2007 
module_enable_ro(const struct module * mod,bool after_init)2008 void module_enable_ro(const struct module *mod, bool after_init)
2009 {
2010 	if (!rodata_enabled)
2011 		return;
2012 
2013 	set_vm_flush_reset_perms(mod->core_layout.base);
2014 	set_vm_flush_reset_perms(mod->init_layout.base);
2015 	frob_text(&mod->core_layout, set_memory_ro);
2016 
2017 	frob_rodata(&mod->core_layout, set_memory_ro);
2018 	frob_text(&mod->init_layout, set_memory_ro);
2019 	frob_rodata(&mod->init_layout, set_memory_ro);
2020 
2021 	if (after_init)
2022 		frob_ro_after_init(&mod->core_layout, set_memory_ro);
2023 }
2024 
module_enable_nx(const struct module * mod)2025 static void module_enable_nx(const struct module *mod)
2026 {
2027 	frob_rodata(&mod->core_layout, set_memory_nx);
2028 	frob_ro_after_init(&mod->core_layout, set_memory_nx);
2029 	frob_writable_data(&mod->core_layout, set_memory_nx);
2030 	frob_rodata(&mod->init_layout, set_memory_nx);
2031 	frob_writable_data(&mod->init_layout, set_memory_nx);
2032 }
2033 
2034 /* Iterate through all modules and set each module's text as RW */
set_all_modules_text_rw(void)2035 void set_all_modules_text_rw(void)
2036 {
2037 	struct module *mod;
2038 
2039 	if (!rodata_enabled)
2040 		return;
2041 
2042 	mutex_lock(&module_mutex);
2043 	list_for_each_entry_rcu(mod, &modules, list) {
2044 		if (mod->state == MODULE_STATE_UNFORMED)
2045 			continue;
2046 
2047 		frob_text(&mod->core_layout, set_memory_rw);
2048 		frob_text(&mod->init_layout, set_memory_rw);
2049 	}
2050 	mutex_unlock(&module_mutex);
2051 }
2052 
2053 /* Iterate through all modules and set each module's text as RO */
set_all_modules_text_ro(void)2054 void set_all_modules_text_ro(void)
2055 {
2056 	struct module *mod;
2057 
2058 	if (!rodata_enabled)
2059 		return;
2060 
2061 	mutex_lock(&module_mutex);
2062 	list_for_each_entry_rcu(mod, &modules, list) {
2063 		/*
2064 		 * Ignore going modules since it's possible that ro
2065 		 * protection has already been disabled, otherwise we'll
2066 		 * run into protection faults at module deallocation.
2067 		 */
2068 		if (mod->state == MODULE_STATE_UNFORMED ||
2069 			mod->state == MODULE_STATE_GOING)
2070 			continue;
2071 
2072 		frob_text(&mod->core_layout, set_memory_ro);
2073 		frob_text(&mod->init_layout, set_memory_ro);
2074 	}
2075 	mutex_unlock(&module_mutex);
2076 }
2077 #else /* !CONFIG_STRICT_MODULE_RWX */
module_enable_nx(const struct module * mod)2078 static void module_enable_nx(const struct module *mod) { }
2079 #endif /*  CONFIG_STRICT_MODULE_RWX */
module_enable_x(const struct module * mod)2080 static void module_enable_x(const struct module *mod)
2081 {
2082 	frob_text(&mod->core_layout, set_memory_x);
2083 	frob_text(&mod->init_layout, set_memory_x);
2084 }
2085 #else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
module_enable_nx(const struct module * mod)2086 static void module_enable_nx(const struct module *mod) { }
module_enable_x(const struct module * mod)2087 static void module_enable_x(const struct module *mod) { }
2088 #endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
2089 
2090 
2091 #ifdef CONFIG_LIVEPATCH
2092 /*
2093  * Persist Elf information about a module. Copy the Elf header,
2094  * section header table, section string table, and symtab section
2095  * index from info to mod->klp_info.
2096  */
copy_module_elf(struct module * mod,struct load_info * info)2097 static int copy_module_elf(struct module *mod, struct load_info *info)
2098 {
2099 	unsigned int size, symndx;
2100 	int ret;
2101 
2102 	size = sizeof(*mod->klp_info);
2103 	mod->klp_info = kmalloc(size, GFP_KERNEL);
2104 	if (mod->klp_info == NULL)
2105 		return -ENOMEM;
2106 
2107 	/* Elf header */
2108 	size = sizeof(mod->klp_info->hdr);
2109 	memcpy(&mod->klp_info->hdr, info->hdr, size);
2110 
2111 	/* Elf section header table */
2112 	size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2113 	mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2114 	if (mod->klp_info->sechdrs == NULL) {
2115 		ret = -ENOMEM;
2116 		goto free_info;
2117 	}
2118 
2119 	/* Elf section name string table */
2120 	size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2121 	mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2122 	if (mod->klp_info->secstrings == NULL) {
2123 		ret = -ENOMEM;
2124 		goto free_sechdrs;
2125 	}
2126 
2127 	/* Elf symbol section index */
2128 	symndx = info->index.sym;
2129 	mod->klp_info->symndx = symndx;
2130 
2131 	/*
2132 	 * For livepatch modules, core_kallsyms.symtab is a complete
2133 	 * copy of the original symbol table. Adjust sh_addr to point
2134 	 * to core_kallsyms.symtab since the copy of the symtab in module
2135 	 * init memory is freed at the end of do_init_module().
2136 	 */
2137 	mod->klp_info->sechdrs[symndx].sh_addr = \
2138 		(unsigned long) mod->core_kallsyms.symtab;
2139 
2140 	return 0;
2141 
2142 free_sechdrs:
2143 	kfree(mod->klp_info->sechdrs);
2144 free_info:
2145 	kfree(mod->klp_info);
2146 	return ret;
2147 }
2148 
free_module_elf(struct module * mod)2149 static void free_module_elf(struct module *mod)
2150 {
2151 	kfree(mod->klp_info->sechdrs);
2152 	kfree(mod->klp_info->secstrings);
2153 	kfree(mod->klp_info);
2154 }
2155 #else /* !CONFIG_LIVEPATCH */
copy_module_elf(struct module * mod,struct load_info * info)2156 static int copy_module_elf(struct module *mod, struct load_info *info)
2157 {
2158 	return 0;
2159 }
2160 
free_module_elf(struct module * mod)2161 static void free_module_elf(struct module *mod)
2162 {
2163 }
2164 #endif /* CONFIG_LIVEPATCH */
2165 
module_memfree(void * module_region)2166 void __weak module_memfree(void *module_region)
2167 {
2168 	/*
2169 	 * This memory may be RO, and freeing RO memory in an interrupt is not
2170 	 * supported by vmalloc.
2171 	 */
2172 	WARN_ON(in_interrupt());
2173 	vfree(module_region);
2174 }
2175 
module_arch_cleanup(struct module * mod)2176 void __weak module_arch_cleanup(struct module *mod)
2177 {
2178 }
2179 
module_arch_freeing_init(struct module * mod)2180 void __weak module_arch_freeing_init(struct module *mod)
2181 {
2182 }
2183 
2184 static void cfi_cleanup(struct module *mod);
2185 
2186 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)2187 static void free_module(struct module *mod)
2188 {
2189 	trace_module_free(mod);
2190 
2191 	mod_sysfs_teardown(mod);
2192 
2193 	/* We leave it in list to prevent duplicate loads, but make sure
2194 	 * that noone uses it while it's being deconstructed. */
2195 	mutex_lock(&module_mutex);
2196 	mod->state = MODULE_STATE_UNFORMED;
2197 	mutex_unlock(&module_mutex);
2198 
2199 	/* Remove dynamic debug info */
2200 	ddebug_remove_module(mod->name);
2201 
2202 	/* Arch-specific cleanup. */
2203 	module_arch_cleanup(mod);
2204 
2205 	/* Module unload stuff */
2206 	module_unload_free(mod);
2207 
2208 	/* Free any allocated parameters. */
2209 	destroy_params(mod->kp, mod->num_kp);
2210 
2211 	if (is_livepatch_module(mod))
2212 		free_module_elf(mod);
2213 
2214 	/* Now we can delete it from the lists */
2215 	mutex_lock(&module_mutex);
2216 	/* Unlink carefully: kallsyms could be walking list. */
2217 	list_del_rcu(&mod->list);
2218 	mod_tree_remove(mod);
2219 	/* Remove this module from bug list, this uses list_del_rcu */
2220 	module_bug_cleanup(mod);
2221 	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2222 	synchronize_rcu();
2223 	mutex_unlock(&module_mutex);
2224 
2225 	/* Clean up CFI for the module. */
2226 	cfi_cleanup(mod);
2227 
2228 	/* This may be empty, but that's OK */
2229 	module_arch_freeing_init(mod);
2230 	module_memfree(mod->init_layout.base);
2231 	kfree(mod->args);
2232 	percpu_modfree(mod);
2233 
2234 	/* Free lock-classes; relies on the preceding sync_rcu(). */
2235 	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2236 
2237 	/* Finally, free the core (containing the module structure) */
2238 	module_memfree(mod->core_layout.base);
2239 }
2240 
__symbol_get(const char * symbol)2241 void *__symbol_get(const char *symbol)
2242 {
2243 	struct module *owner;
2244 	const struct kernel_symbol *sym;
2245 
2246 	preempt_disable();
2247 	sym = find_symbol(symbol, &owner, NULL, true, true);
2248 	if (sym && strong_try_module_get(owner))
2249 		sym = NULL;
2250 	preempt_enable();
2251 
2252 	return sym ? (void *)kernel_symbol_value(sym) : NULL;
2253 }
2254 EXPORT_SYMBOL_GPL(__symbol_get);
2255 
2256 /*
2257  * Ensure that an exported symbol [global namespace] does not already exist
2258  * in the kernel or in some other module's exported symbol table.
2259  *
2260  * You must hold the module_mutex.
2261  */
verify_exported_symbols(struct module * mod)2262 static int verify_exported_symbols(struct module *mod)
2263 {
2264 	unsigned int i;
2265 	struct module *owner;
2266 	const struct kernel_symbol *s;
2267 	struct {
2268 		const struct kernel_symbol *sym;
2269 		unsigned int num;
2270 	} arr[] = {
2271 		{ mod->syms, mod->num_syms },
2272 		{ mod->gpl_syms, mod->num_gpl_syms },
2273 		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
2274 #ifdef CONFIG_UNUSED_SYMBOLS
2275 		{ mod->unused_syms, mod->num_unused_syms },
2276 		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2277 #endif
2278 	};
2279 
2280 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2281 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2282 			if (find_symbol(kernel_symbol_name(s), &owner, NULL,
2283 					true, false)) {
2284 				pr_err("%s: exports duplicate symbol %s"
2285 				       " (owned by %s)\n",
2286 				       mod->name, kernel_symbol_name(s),
2287 				       module_name(owner));
2288 				return -ENOEXEC;
2289 			}
2290 		}
2291 	}
2292 	return 0;
2293 }
2294 
2295 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)2296 static int simplify_symbols(struct module *mod, const struct load_info *info)
2297 {
2298 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2299 	Elf_Sym *sym = (void *)symsec->sh_addr;
2300 	unsigned long secbase;
2301 	unsigned int i;
2302 	int ret = 0;
2303 	const struct kernel_symbol *ksym;
2304 
2305 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2306 		const char *name = info->strtab + sym[i].st_name;
2307 
2308 		switch (sym[i].st_shndx) {
2309 		case SHN_COMMON:
2310 			/* Ignore common symbols */
2311 			if (!strncmp(name, "__gnu_lto", 9))
2312 				break;
2313 
2314 			/* We compiled with -fno-common.  These are not
2315 			   supposed to happen.  */
2316 			pr_debug("Common symbol: %s\n", name);
2317 			pr_warn("%s: please compile with -fno-common\n",
2318 			       mod->name);
2319 			ret = -ENOEXEC;
2320 			break;
2321 
2322 		case SHN_ABS:
2323 			/* Don't need to do anything */
2324 			pr_debug("Absolute symbol: 0x%08lx\n",
2325 			       (long)sym[i].st_value);
2326 			break;
2327 
2328 		case SHN_LIVEPATCH:
2329 			/* Livepatch symbols are resolved by livepatch */
2330 			break;
2331 
2332 		case SHN_UNDEF:
2333 			ksym = resolve_symbol_wait(mod, info, name);
2334 			/* Ok if resolved.  */
2335 			if (ksym && !IS_ERR(ksym)) {
2336 				sym[i].st_value = kernel_symbol_value(ksym);
2337 				break;
2338 			}
2339 
2340 			/* Ok if weak.  */
2341 			if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2342 				break;
2343 
2344 			ret = PTR_ERR(ksym) ?: -ENOENT;
2345 			pr_warn("%s: Unknown symbol %s (err %d)\n",
2346 				mod->name, name, ret);
2347 			break;
2348 
2349 		default:
2350 			/* Divert to percpu allocation if a percpu var. */
2351 			if (sym[i].st_shndx == info->index.pcpu)
2352 				secbase = (unsigned long)mod_percpu(mod);
2353 			else
2354 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2355 			sym[i].st_value += secbase;
2356 			break;
2357 		}
2358 	}
2359 
2360 	return ret;
2361 }
2362 
apply_relocations(struct module * mod,const struct load_info * info)2363 static int apply_relocations(struct module *mod, const struct load_info *info)
2364 {
2365 	unsigned int i;
2366 	int err = 0;
2367 
2368 	/* Now do relocations. */
2369 	for (i = 1; i < info->hdr->e_shnum; i++) {
2370 		unsigned int infosec = info->sechdrs[i].sh_info;
2371 
2372 		/* Not a valid relocation section? */
2373 		if (infosec >= info->hdr->e_shnum)
2374 			continue;
2375 
2376 		/* Don't bother with non-allocated sections */
2377 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2378 			continue;
2379 
2380 		/* Livepatch relocation sections are applied by livepatch */
2381 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2382 			continue;
2383 
2384 		if (info->sechdrs[i].sh_type == SHT_REL)
2385 			err = apply_relocate(info->sechdrs, info->strtab,
2386 					     info->index.sym, i, mod);
2387 		else if (info->sechdrs[i].sh_type == SHT_RELA)
2388 			err = apply_relocate_add(info->sechdrs, info->strtab,
2389 						 info->index.sym, i, mod);
2390 		if (err < 0)
2391 			break;
2392 	}
2393 	return err;
2394 }
2395 
2396 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)2397 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2398 					     unsigned int section)
2399 {
2400 	/* default implementation just returns zero */
2401 	return 0;
2402 }
2403 
2404 /* Update size with this section: return offset. */
get_offset(struct module * mod,unsigned int * size,Elf_Shdr * sechdr,unsigned int section)2405 static long get_offset(struct module *mod, unsigned int *size,
2406 		       Elf_Shdr *sechdr, unsigned int section)
2407 {
2408 	long ret;
2409 
2410 	*size += arch_mod_section_prepend(mod, section);
2411 	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2412 	*size = ret + sechdr->sh_size;
2413 	return ret;
2414 }
2415 
2416 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2417    might -- code, read-only data, read-write data, small data.  Tally
2418    sizes, and place the offsets into sh_entsize fields: high bit means it
2419    belongs in init. */
layout_sections(struct module * mod,struct load_info * info)2420 static void layout_sections(struct module *mod, struct load_info *info)
2421 {
2422 	static unsigned long const masks[][2] = {
2423 		/* NOTE: all executable code must be the first section
2424 		 * in this array; otherwise modify the text_size
2425 		 * finder in the two loops below */
2426 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2427 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2428 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2429 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2430 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2431 	};
2432 	unsigned int m, i;
2433 
2434 	for (i = 0; i < info->hdr->e_shnum; i++)
2435 		info->sechdrs[i].sh_entsize = ~0UL;
2436 
2437 	pr_debug("Core section allocation order:\n");
2438 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2439 		for (i = 0; i < info->hdr->e_shnum; ++i) {
2440 			Elf_Shdr *s = &info->sechdrs[i];
2441 			const char *sname = info->secstrings + s->sh_name;
2442 
2443 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2444 			    || (s->sh_flags & masks[m][1])
2445 			    || s->sh_entsize != ~0UL
2446 			    || strstarts(sname, ".init"))
2447 				continue;
2448 			s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2449 			pr_debug("\t%s\n", sname);
2450 		}
2451 		switch (m) {
2452 		case 0: /* executable */
2453 			mod->core_layout.size = debug_align(mod->core_layout.size);
2454 			mod->core_layout.text_size = mod->core_layout.size;
2455 			break;
2456 		case 1: /* RO: text and ro-data */
2457 			mod->core_layout.size = debug_align(mod->core_layout.size);
2458 			mod->core_layout.ro_size = mod->core_layout.size;
2459 			break;
2460 		case 2: /* RO after init */
2461 			mod->core_layout.size = debug_align(mod->core_layout.size);
2462 			mod->core_layout.ro_after_init_size = mod->core_layout.size;
2463 			break;
2464 		case 4: /* whole core */
2465 			mod->core_layout.size = debug_align(mod->core_layout.size);
2466 			break;
2467 		}
2468 	}
2469 
2470 	pr_debug("Init section allocation order:\n");
2471 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2472 		for (i = 0; i < info->hdr->e_shnum; ++i) {
2473 			Elf_Shdr *s = &info->sechdrs[i];
2474 			const char *sname = info->secstrings + s->sh_name;
2475 
2476 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2477 			    || (s->sh_flags & masks[m][1])
2478 			    || s->sh_entsize != ~0UL
2479 			    || !strstarts(sname, ".init"))
2480 				continue;
2481 			s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2482 					 | INIT_OFFSET_MASK);
2483 			pr_debug("\t%s\n", sname);
2484 		}
2485 		switch (m) {
2486 		case 0: /* executable */
2487 			mod->init_layout.size = debug_align(mod->init_layout.size);
2488 			mod->init_layout.text_size = mod->init_layout.size;
2489 			break;
2490 		case 1: /* RO: text and ro-data */
2491 			mod->init_layout.size = debug_align(mod->init_layout.size);
2492 			mod->init_layout.ro_size = mod->init_layout.size;
2493 			break;
2494 		case 2:
2495 			/*
2496 			 * RO after init doesn't apply to init_layout (only
2497 			 * core_layout), so it just takes the value of ro_size.
2498 			 */
2499 			mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2500 			break;
2501 		case 4: /* whole init */
2502 			mod->init_layout.size = debug_align(mod->init_layout.size);
2503 			break;
2504 		}
2505 	}
2506 }
2507 
set_license(struct module * mod,const char * license)2508 static void set_license(struct module *mod, const char *license)
2509 {
2510 	if (!license)
2511 		license = "unspecified";
2512 
2513 	if (!license_is_gpl_compatible(license)) {
2514 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2515 			pr_warn("%s: module license '%s' taints kernel.\n",
2516 				mod->name, license);
2517 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2518 				 LOCKDEP_NOW_UNRELIABLE);
2519 	}
2520 }
2521 
2522 /* Parse tag=value strings from .modinfo section */
next_string(char * string,unsigned long * secsize)2523 static char *next_string(char *string, unsigned long *secsize)
2524 {
2525 	/* Skip non-zero chars */
2526 	while (string[0]) {
2527 		string++;
2528 		if ((*secsize)-- <= 1)
2529 			return NULL;
2530 	}
2531 
2532 	/* Skip any zero padding. */
2533 	while (!string[0]) {
2534 		string++;
2535 		if ((*secsize)-- <= 1)
2536 			return NULL;
2537 	}
2538 	return string;
2539 }
2540 
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)2541 static char *get_next_modinfo(const struct load_info *info, const char *tag,
2542 			      char *prev)
2543 {
2544 	char *p;
2545 	unsigned int taglen = strlen(tag);
2546 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2547 	unsigned long size = infosec->sh_size;
2548 
2549 	/*
2550 	 * get_modinfo() calls made before rewrite_section_headers()
2551 	 * must use sh_offset, as sh_addr isn't set!
2552 	 */
2553 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
2554 
2555 	if (prev) {
2556 		size -= prev - modinfo;
2557 		modinfo = next_string(prev, &size);
2558 	}
2559 
2560 	for (p = modinfo; p; p = next_string(p, &size)) {
2561 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2562 			return p + taglen + 1;
2563 	}
2564 	return NULL;
2565 }
2566 
get_modinfo(const struct load_info * info,const char * tag)2567 static char *get_modinfo(const struct load_info *info, const char *tag)
2568 {
2569 	return get_next_modinfo(info, tag, NULL);
2570 }
2571 
setup_modinfo(struct module * mod,struct load_info * info)2572 static void setup_modinfo(struct module *mod, struct load_info *info)
2573 {
2574 	struct module_attribute *attr;
2575 	int i;
2576 
2577 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2578 		if (attr->setup)
2579 			attr->setup(mod, get_modinfo(info, attr->attr.name));
2580 	}
2581 }
2582 
free_modinfo(struct module * mod)2583 static void free_modinfo(struct module *mod)
2584 {
2585 	struct module_attribute *attr;
2586 	int i;
2587 
2588 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2589 		if (attr->free)
2590 			attr->free(mod);
2591 	}
2592 }
2593 
2594 #ifdef CONFIG_KALLSYMS
2595 
2596 /* Lookup exported symbol in given range of kernel_symbols */
lookup_exported_symbol(const char * name,const struct kernel_symbol * start,const struct kernel_symbol * stop)2597 static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2598 							  const struct kernel_symbol *start,
2599 							  const struct kernel_symbol *stop)
2600 {
2601 	return bsearch(name, start, stop - start,
2602 			sizeof(struct kernel_symbol), cmp_name);
2603 }
2604 
is_exported(const char * name,unsigned long value,const struct module * mod)2605 static int is_exported(const char *name, unsigned long value,
2606 		       const struct module *mod)
2607 {
2608 	const struct kernel_symbol *ks;
2609 	if (!mod)
2610 		ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2611 	else
2612 		ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2613 
2614 	return ks != NULL && kernel_symbol_value(ks) == value;
2615 }
2616 
2617 /* As per nm */
elf_type(const Elf_Sym * sym,const struct load_info * info)2618 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2619 {
2620 	const Elf_Shdr *sechdrs = info->sechdrs;
2621 
2622 	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2623 		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2624 			return 'v';
2625 		else
2626 			return 'w';
2627 	}
2628 	if (sym->st_shndx == SHN_UNDEF)
2629 		return 'U';
2630 	if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2631 		return 'a';
2632 	if (sym->st_shndx >= SHN_LORESERVE)
2633 		return '?';
2634 	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2635 		return 't';
2636 	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2637 	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2638 		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2639 			return 'r';
2640 		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2641 			return 'g';
2642 		else
2643 			return 'd';
2644 	}
2645 	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2646 		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2647 			return 's';
2648 		else
2649 			return 'b';
2650 	}
2651 	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2652 		      ".debug")) {
2653 		return 'n';
2654 	}
2655 	return '?';
2656 }
2657 
is_core_symbol(const Elf_Sym * src,const Elf_Shdr * sechdrs,unsigned int shnum,unsigned int pcpundx)2658 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2659 			unsigned int shnum, unsigned int pcpundx)
2660 {
2661 	const Elf_Shdr *sec;
2662 
2663 	if (src->st_shndx == SHN_UNDEF
2664 	    || src->st_shndx >= shnum
2665 	    || !src->st_name)
2666 		return false;
2667 
2668 #ifdef CONFIG_KALLSYMS_ALL
2669 	if (src->st_shndx == pcpundx)
2670 		return true;
2671 #endif
2672 
2673 	sec = sechdrs + src->st_shndx;
2674 	if (!(sec->sh_flags & SHF_ALLOC)
2675 #ifndef CONFIG_KALLSYMS_ALL
2676 	    || !(sec->sh_flags & SHF_EXECINSTR)
2677 #endif
2678 	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2679 		return false;
2680 
2681 	return true;
2682 }
2683 
2684 /*
2685  * We only allocate and copy the strings needed by the parts of symtab
2686  * we keep.  This is simple, but has the effect of making multiple
2687  * copies of duplicates.  We could be more sophisticated, see
2688  * linux-kernel thread starting with
2689  * <73defb5e4bca04a6431392cc341112b1@localhost>.
2690  */
layout_symtab(struct module * mod,struct load_info * info)2691 static void layout_symtab(struct module *mod, struct load_info *info)
2692 {
2693 	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2694 	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2695 	const Elf_Sym *src;
2696 	unsigned int i, nsrc, ndst, strtab_size = 0;
2697 
2698 	/* Put symbol section at end of init part of module. */
2699 	symsect->sh_flags |= SHF_ALLOC;
2700 	symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2701 					 info->index.sym) | INIT_OFFSET_MASK;
2702 	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2703 
2704 	src = (void *)info->hdr + symsect->sh_offset;
2705 	nsrc = symsect->sh_size / sizeof(*src);
2706 
2707 	/* Compute total space required for the core symbols' strtab. */
2708 	for (ndst = i = 0; i < nsrc; i++) {
2709 		if (i == 0 || is_livepatch_module(mod) ||
2710 		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2711 				   info->index.pcpu)) {
2712 			strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2713 			ndst++;
2714 		}
2715 	}
2716 
2717 	/* Append room for core symbols at end of core part. */
2718 	info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2719 	info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2720 	mod->core_layout.size += strtab_size;
2721 	info->core_typeoffs = mod->core_layout.size;
2722 	mod->core_layout.size += ndst * sizeof(char);
2723 	mod->core_layout.size = debug_align(mod->core_layout.size);
2724 
2725 	/* Put string table section at end of init part of module. */
2726 	strsect->sh_flags |= SHF_ALLOC;
2727 	strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2728 					 info->index.str) | INIT_OFFSET_MASK;
2729 	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2730 
2731 	/* We'll tack temporary mod_kallsyms on the end. */
2732 	mod->init_layout.size = ALIGN(mod->init_layout.size,
2733 				      __alignof__(struct mod_kallsyms));
2734 	info->mod_kallsyms_init_off = mod->init_layout.size;
2735 	mod->init_layout.size += sizeof(struct mod_kallsyms);
2736 	info->init_typeoffs = mod->init_layout.size;
2737 	mod->init_layout.size += nsrc * sizeof(char);
2738 	mod->init_layout.size = debug_align(mod->init_layout.size);
2739 }
2740 
2741 /*
2742  * We use the full symtab and strtab which layout_symtab arranged to
2743  * be appended to the init section.  Later we switch to the cut-down
2744  * core-only ones.
2745  */
add_kallsyms(struct module * mod,const struct load_info * info)2746 static void add_kallsyms(struct module *mod, const struct load_info *info)
2747 {
2748 	unsigned int i, ndst;
2749 	const Elf_Sym *src;
2750 	Elf_Sym *dst;
2751 	char *s;
2752 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2753 
2754 	/* Set up to point into init section. */
2755 	mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2756 
2757 	mod->kallsyms->symtab = (void *)symsec->sh_addr;
2758 	mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2759 	/* Make sure we get permanent strtab: don't use info->strtab. */
2760 	mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2761 	mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2762 
2763 	/*
2764 	 * Now populate the cut down core kallsyms for after init
2765 	 * and set types up while we still have access to sections.
2766 	 */
2767 	mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2768 	mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2769 	mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2770 	src = mod->kallsyms->symtab;
2771 	for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2772 		mod->kallsyms->typetab[i] = elf_type(src + i, info);
2773 		if (i == 0 || is_livepatch_module(mod) ||
2774 		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2775 				   info->index.pcpu)) {
2776 			mod->core_kallsyms.typetab[ndst] =
2777 			    mod->kallsyms->typetab[i];
2778 			dst[ndst] = src[i];
2779 			dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2780 			s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2781 				     KSYM_NAME_LEN) + 1;
2782 		}
2783 	}
2784 	mod->core_kallsyms.num_symtab = ndst;
2785 }
2786 #else
layout_symtab(struct module * mod,struct load_info * info)2787 static inline void layout_symtab(struct module *mod, struct load_info *info)
2788 {
2789 }
2790 
add_kallsyms(struct module * mod,const struct load_info * info)2791 static void add_kallsyms(struct module *mod, const struct load_info *info)
2792 {
2793 }
2794 #endif /* CONFIG_KALLSYMS */
2795 
dynamic_debug_setup(struct module * mod,struct _ddebug * debug,unsigned int num)2796 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2797 {
2798 	if (!debug)
2799 		return;
2800 	ddebug_add_module(debug, num, mod->name);
2801 }
2802 
dynamic_debug_remove(struct module * mod,struct _ddebug * debug)2803 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2804 {
2805 	if (debug)
2806 		ddebug_remove_module(mod->name);
2807 }
2808 
module_alloc(unsigned long size)2809 void * __weak module_alloc(unsigned long size)
2810 {
2811 	return vmalloc_exec(size);
2812 }
2813 
module_exit_section(const char * name)2814 bool __weak module_exit_section(const char *name)
2815 {
2816 	return strstarts(name, ".exit");
2817 }
2818 
2819 #ifdef CONFIG_DEBUG_KMEMLEAK
kmemleak_load_module(const struct module * mod,const struct load_info * info)2820 static void kmemleak_load_module(const struct module *mod,
2821 				 const struct load_info *info)
2822 {
2823 	unsigned int i;
2824 
2825 	/* only scan the sections containing data */
2826 	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2827 
2828 	for (i = 1; i < info->hdr->e_shnum; i++) {
2829 		/* Scan all writable sections that's not executable */
2830 		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2831 		    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2832 		    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2833 			continue;
2834 
2835 		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2836 				   info->sechdrs[i].sh_size, GFP_KERNEL);
2837 	}
2838 }
2839 #else
kmemleak_load_module(const struct module * mod,const struct load_info * info)2840 static inline void kmemleak_load_module(const struct module *mod,
2841 					const struct load_info *info)
2842 {
2843 }
2844 #endif
2845 
2846 #ifdef CONFIG_MODULE_SIG
module_sig_check(struct load_info * info,int flags)2847 static int module_sig_check(struct load_info *info, int flags)
2848 {
2849 	int err = -ENODATA;
2850 	const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2851 	const char *reason;
2852 	const void *mod = info->hdr;
2853 
2854 	/*
2855 	 * Require flags == 0, as a module with version information
2856 	 * removed is no longer the module that was signed
2857 	 */
2858 	if (flags == 0 &&
2859 	    info->len > markerlen &&
2860 	    memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2861 		/* We truncate the module to discard the signature */
2862 		info->len -= markerlen;
2863 		err = mod_verify_sig(mod, info);
2864 	}
2865 
2866 	switch (err) {
2867 	case 0:
2868 		info->sig_ok = true;
2869 		return 0;
2870 
2871 		/* We don't permit modules to be loaded into trusted kernels
2872 		 * without a valid signature on them, but if we're not
2873 		 * enforcing, certain errors are non-fatal.
2874 		 */
2875 	case -ENODATA:
2876 		reason = "Loading of unsigned module";
2877 		goto decide;
2878 	case -ENOPKG:
2879 		reason = "Loading of module with unsupported crypto";
2880 		goto decide;
2881 	case -ENOKEY:
2882 		reason = "Loading of module with unavailable key";
2883 	decide:
2884 		if (is_module_sig_enforced()) {
2885 			pr_notice("%s is rejected\n", reason);
2886 			return -EKEYREJECTED;
2887 		}
2888 
2889 		return security_locked_down(LOCKDOWN_MODULE_SIGNATURE);
2890 
2891 		/* All other errors are fatal, including nomem, unparseable
2892 		 * signatures and signature check failures - even if signatures
2893 		 * aren't required.
2894 		 */
2895 	default:
2896 		return err;
2897 	}
2898 }
2899 #else /* !CONFIG_MODULE_SIG */
module_sig_check(struct load_info * info,int flags)2900 static int module_sig_check(struct load_info *info, int flags)
2901 {
2902 	return 0;
2903 }
2904 #endif /* !CONFIG_MODULE_SIG */
2905 
2906 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
elf_header_check(struct load_info * info)2907 static int elf_header_check(struct load_info *info)
2908 {
2909 	if (info->len < sizeof(*(info->hdr)))
2910 		return -ENOEXEC;
2911 
2912 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2913 	    || info->hdr->e_type != ET_REL
2914 	    || !elf_check_arch(info->hdr)
2915 	    || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2916 		return -ENOEXEC;
2917 
2918 	if (info->hdr->e_shoff >= info->len
2919 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2920 		info->len - info->hdr->e_shoff))
2921 		return -ENOEXEC;
2922 
2923 	return 0;
2924 }
2925 
2926 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2927 
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)2928 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2929 {
2930 	do {
2931 		unsigned long n = min(len, COPY_CHUNK_SIZE);
2932 
2933 		if (copy_from_user(dst, usrc, n) != 0)
2934 			return -EFAULT;
2935 		cond_resched();
2936 		dst += n;
2937 		usrc += n;
2938 		len -= n;
2939 	} while (len);
2940 	return 0;
2941 }
2942 
2943 #ifdef CONFIG_LIVEPATCH
check_modinfo_livepatch(struct module * mod,struct load_info * info)2944 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2945 {
2946 	if (get_modinfo(info, "livepatch")) {
2947 		mod->klp = true;
2948 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2949 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2950 			       mod->name);
2951 	}
2952 
2953 	return 0;
2954 }
2955 #else /* !CONFIG_LIVEPATCH */
check_modinfo_livepatch(struct module * mod,struct load_info * info)2956 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2957 {
2958 	if (get_modinfo(info, "livepatch")) {
2959 		pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2960 		       mod->name);
2961 		return -ENOEXEC;
2962 	}
2963 
2964 	return 0;
2965 }
2966 #endif /* CONFIG_LIVEPATCH */
2967 
check_modinfo_retpoline(struct module * mod,struct load_info * info)2968 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2969 {
2970 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2971 		return;
2972 
2973 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2974 		mod->name);
2975 }
2976 
2977 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)2978 static int copy_module_from_user(const void __user *umod, unsigned long len,
2979 				  struct load_info *info)
2980 {
2981 	int err;
2982 
2983 	info->len = len;
2984 	if (info->len < sizeof(*(info->hdr)))
2985 		return -ENOEXEC;
2986 
2987 	err = security_kernel_load_data(LOADING_MODULE);
2988 	if (err)
2989 		return err;
2990 
2991 	/* Suck in entire file: we'll want most of it. */
2992 	info->hdr = __vmalloc(info->len,
2993 			GFP_KERNEL | __GFP_NOWARN, PAGE_KERNEL);
2994 	if (!info->hdr)
2995 		return -ENOMEM;
2996 
2997 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2998 		vfree(info->hdr);
2999 		return -EFAULT;
3000 	}
3001 
3002 	return 0;
3003 }
3004 
free_copy(struct load_info * info)3005 static void free_copy(struct load_info *info)
3006 {
3007 	vfree(info->hdr);
3008 }
3009 
rewrite_section_headers(struct load_info * info,int flags)3010 static int rewrite_section_headers(struct load_info *info, int flags)
3011 {
3012 	unsigned int i;
3013 
3014 	/* This should always be true, but let's be sure. */
3015 	info->sechdrs[0].sh_addr = 0;
3016 
3017 	for (i = 1; i < info->hdr->e_shnum; i++) {
3018 		Elf_Shdr *shdr = &info->sechdrs[i];
3019 		if (shdr->sh_type != SHT_NOBITS
3020 		    && info->len < shdr->sh_offset + shdr->sh_size) {
3021 			pr_err("Module len %lu truncated\n", info->len);
3022 			return -ENOEXEC;
3023 		}
3024 
3025 		/* Mark all sections sh_addr with their address in the
3026 		   temporary image. */
3027 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
3028 
3029 #ifndef CONFIG_MODULE_UNLOAD
3030 		/* Don't load .exit sections */
3031 		if (module_exit_section(info->secstrings+shdr->sh_name))
3032 			shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
3033 #endif
3034 	}
3035 
3036 	/* Track but don't keep modinfo and version sections. */
3037 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
3038 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
3039 
3040 	return 0;
3041 }
3042 
3043 /*
3044  * Set up our basic convenience variables (pointers to section headers,
3045  * search for module section index etc), and do some basic section
3046  * verification.
3047  *
3048  * Set info->mod to the temporary copy of the module in info->hdr. The final one
3049  * will be allocated in move_module().
3050  */
setup_load_info(struct load_info * info,int flags)3051 static int setup_load_info(struct load_info *info, int flags)
3052 {
3053 	unsigned int i;
3054 
3055 	/* Set up the convenience variables */
3056 	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
3057 	info->secstrings = (void *)info->hdr
3058 		+ info->sechdrs[info->hdr->e_shstrndx].sh_offset;
3059 
3060 	/* Try to find a name early so we can log errors with a module name */
3061 	info->index.info = find_sec(info, ".modinfo");
3062 	if (!info->index.info)
3063 		info->name = "(missing .modinfo section)";
3064 	else
3065 		info->name = get_modinfo(info, "name");
3066 
3067 	/* Find internal symbols and strings. */
3068 	for (i = 1; i < info->hdr->e_shnum; i++) {
3069 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3070 			info->index.sym = i;
3071 			info->index.str = info->sechdrs[i].sh_link;
3072 			info->strtab = (char *)info->hdr
3073 				+ info->sechdrs[info->index.str].sh_offset;
3074 			break;
3075 		}
3076 	}
3077 
3078 	if (info->index.sym == 0) {
3079 		pr_warn("%s: module has no symbols (stripped?)\n", info->name);
3080 		return -ENOEXEC;
3081 	}
3082 
3083 	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3084 	if (!info->index.mod) {
3085 		pr_warn("%s: No module found in object\n",
3086 			info->name ?: "(missing .modinfo name field)");
3087 		return -ENOEXEC;
3088 	}
3089 	/* This is temporary: point mod into copy of data. */
3090 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3091 
3092 	/*
3093 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
3094 	 * on-disk struct mod 'name' field.
3095 	 */
3096 	if (!info->name)
3097 		info->name = info->mod->name;
3098 
3099 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3100 		info->index.vers = 0; /* Pretend no __versions section! */
3101 	else
3102 		info->index.vers = find_sec(info, "__versions");
3103 
3104 	info->index.pcpu = find_pcpusec(info);
3105 
3106 	return 0;
3107 }
3108 
check_modinfo(struct module * mod,struct load_info * info,int flags)3109 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3110 {
3111 	const char *modmagic = get_modinfo(info, "vermagic");
3112 	int err;
3113 
3114 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3115 		modmagic = NULL;
3116 
3117 	/* This is allowed: modprobe --force will invalidate it. */
3118 	if (!modmagic) {
3119 		err = try_to_force_load(mod, "bad vermagic");
3120 		if (err)
3121 			return err;
3122 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3123 		pr_err("%s: version magic '%s' should be '%s'\n",
3124 		       info->name, modmagic, vermagic);
3125 		return -ENOEXEC;
3126 	}
3127 
3128 	if (!get_modinfo(info, "intree")) {
3129 		if (!test_taint(TAINT_OOT_MODULE))
3130 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
3131 				mod->name);
3132 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3133 	}
3134 
3135 	check_modinfo_retpoline(mod, info);
3136 
3137 	if (get_modinfo(info, "staging")) {
3138 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3139 		pr_warn("%s: module is from the staging directory, the quality "
3140 			"is unknown, you have been warned.\n", mod->name);
3141 	}
3142 
3143 	err = check_modinfo_livepatch(mod, info);
3144 	if (err)
3145 		return err;
3146 
3147 	/* Set up license info based on the info section */
3148 	set_license(mod, get_modinfo(info, "license"));
3149 
3150 	return 0;
3151 }
3152 
find_module_sections(struct module * mod,struct load_info * info)3153 static int find_module_sections(struct module *mod, struct load_info *info)
3154 {
3155 	mod->kp = section_objs(info, "__param",
3156 			       sizeof(*mod->kp), &mod->num_kp);
3157 	mod->syms = section_objs(info, "__ksymtab",
3158 				 sizeof(*mod->syms), &mod->num_syms);
3159 	mod->crcs = section_addr(info, "__kcrctab");
3160 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3161 				     sizeof(*mod->gpl_syms),
3162 				     &mod->num_gpl_syms);
3163 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3164 	mod->gpl_future_syms = section_objs(info,
3165 					    "__ksymtab_gpl_future",
3166 					    sizeof(*mod->gpl_future_syms),
3167 					    &mod->num_gpl_future_syms);
3168 	mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3169 
3170 #ifdef CONFIG_UNUSED_SYMBOLS
3171 	mod->unused_syms = section_objs(info, "__ksymtab_unused",
3172 					sizeof(*mod->unused_syms),
3173 					&mod->num_unused_syms);
3174 	mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3175 	mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3176 					    sizeof(*mod->unused_gpl_syms),
3177 					    &mod->num_unused_gpl_syms);
3178 	mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3179 #endif
3180 #ifdef CONFIG_CONSTRUCTORS
3181 	mod->ctors = section_objs(info, ".ctors",
3182 				  sizeof(*mod->ctors), &mod->num_ctors);
3183 	if (!mod->ctors)
3184 		mod->ctors = section_objs(info, ".init_array",
3185 				sizeof(*mod->ctors), &mod->num_ctors);
3186 	else if (find_sec(info, ".init_array")) {
3187 		/*
3188 		 * This shouldn't happen with same compiler and binutils
3189 		 * building all parts of the module.
3190 		 */
3191 		pr_warn("%s: has both .ctors and .init_array.\n",
3192 		       mod->name);
3193 		return -EINVAL;
3194 	}
3195 #endif
3196 
3197 #ifdef CONFIG_TRACEPOINTS
3198 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3199 					     sizeof(*mod->tracepoints_ptrs),
3200 					     &mod->num_tracepoints);
3201 #endif
3202 #ifdef CONFIG_TREE_SRCU
3203 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
3204 					     sizeof(*mod->srcu_struct_ptrs),
3205 					     &mod->num_srcu_structs);
3206 #endif
3207 #ifdef CONFIG_BPF_EVENTS
3208 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3209 					   sizeof(*mod->bpf_raw_events),
3210 					   &mod->num_bpf_raw_events);
3211 #endif
3212 #ifdef CONFIG_JUMP_LABEL
3213 	mod->jump_entries = section_objs(info, "__jump_table",
3214 					sizeof(*mod->jump_entries),
3215 					&mod->num_jump_entries);
3216 #endif
3217 #ifdef CONFIG_EVENT_TRACING
3218 	mod->trace_events = section_objs(info, "_ftrace_events",
3219 					 sizeof(*mod->trace_events),
3220 					 &mod->num_trace_events);
3221 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3222 					sizeof(*mod->trace_evals),
3223 					&mod->num_trace_evals);
3224 #endif
3225 #ifdef CONFIG_TRACING
3226 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3227 					 sizeof(*mod->trace_bprintk_fmt_start),
3228 					 &mod->num_trace_bprintk_fmt);
3229 #endif
3230 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3231 	/* sechdrs[0].sh_size is always zero */
3232 	mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3233 					     sizeof(*mod->ftrace_callsites),
3234 					     &mod->num_ftrace_callsites);
3235 #endif
3236 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
3237 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3238 					    sizeof(*mod->ei_funcs),
3239 					    &mod->num_ei_funcs);
3240 #endif
3241 	mod->extable = section_objs(info, "__ex_table",
3242 				    sizeof(*mod->extable), &mod->num_exentries);
3243 
3244 	if (section_addr(info, "__obsparm"))
3245 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3246 
3247 	info->debug = section_objs(info, "__verbose",
3248 				   sizeof(*info->debug), &info->num_debug);
3249 
3250 	return 0;
3251 }
3252 
move_module(struct module * mod,struct load_info * info)3253 static int move_module(struct module *mod, struct load_info *info)
3254 {
3255 	int i;
3256 	void *ptr;
3257 
3258 	/* Do the allocs. */
3259 	ptr = module_alloc(mod->core_layout.size);
3260 	/*
3261 	 * The pointer to this block is stored in the module structure
3262 	 * which is inside the block. Just mark it as not being a
3263 	 * leak.
3264 	 */
3265 	kmemleak_not_leak(ptr);
3266 	if (!ptr)
3267 		return -ENOMEM;
3268 
3269 	memset(ptr, 0, mod->core_layout.size);
3270 	mod->core_layout.base = ptr;
3271 
3272 	if (mod->init_layout.size) {
3273 		ptr = module_alloc(mod->init_layout.size);
3274 		/*
3275 		 * The pointer to this block is stored in the module structure
3276 		 * which is inside the block. This block doesn't need to be
3277 		 * scanned as it contains data and code that will be freed
3278 		 * after the module is initialized.
3279 		 */
3280 		kmemleak_ignore(ptr);
3281 		if (!ptr) {
3282 			module_memfree(mod->core_layout.base);
3283 			return -ENOMEM;
3284 		}
3285 		memset(ptr, 0, mod->init_layout.size);
3286 		mod->init_layout.base = ptr;
3287 	} else
3288 		mod->init_layout.base = NULL;
3289 
3290 	/* Transfer each section which specifies SHF_ALLOC */
3291 	pr_debug("final section addresses:\n");
3292 	for (i = 0; i < info->hdr->e_shnum; i++) {
3293 		void *dest;
3294 		Elf_Shdr *shdr = &info->sechdrs[i];
3295 
3296 		if (!(shdr->sh_flags & SHF_ALLOC))
3297 			continue;
3298 
3299 		if (shdr->sh_entsize & INIT_OFFSET_MASK)
3300 			dest = mod->init_layout.base
3301 				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3302 		else
3303 			dest = mod->core_layout.base + shdr->sh_entsize;
3304 
3305 		if (shdr->sh_type != SHT_NOBITS)
3306 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3307 		/* Update sh_addr to point to copy in image. */
3308 		shdr->sh_addr = (unsigned long)dest;
3309 		pr_debug("\t0x%lx %s\n",
3310 			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3311 	}
3312 
3313 	return 0;
3314 }
3315 
check_module_license_and_versions(struct module * mod)3316 static int check_module_license_and_versions(struct module *mod)
3317 {
3318 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3319 
3320 	/*
3321 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3322 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3323 	 * using GPL-only symbols it needs.
3324 	 */
3325 	if (strcmp(mod->name, "ndiswrapper") == 0)
3326 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3327 
3328 	/* driverloader was caught wrongly pretending to be under GPL */
3329 	if (strcmp(mod->name, "driverloader") == 0)
3330 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3331 				 LOCKDEP_NOW_UNRELIABLE);
3332 
3333 	/* lve claims to be GPL but upstream won't provide source */
3334 	if (strcmp(mod->name, "lve") == 0)
3335 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3336 				 LOCKDEP_NOW_UNRELIABLE);
3337 
3338 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3339 		pr_warn("%s: module license taints kernel.\n", mod->name);
3340 
3341 #ifdef CONFIG_MODVERSIONS
3342 	if ((mod->num_syms && !mod->crcs)
3343 	    || (mod->num_gpl_syms && !mod->gpl_crcs)
3344 	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3345 #ifdef CONFIG_UNUSED_SYMBOLS
3346 	    || (mod->num_unused_syms && !mod->unused_crcs)
3347 	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3348 #endif
3349 		) {
3350 		return try_to_force_load(mod,
3351 					 "no versions for exported symbols");
3352 	}
3353 #endif
3354 	return 0;
3355 }
3356 
flush_module_icache(const struct module * mod)3357 static void flush_module_icache(const struct module *mod)
3358 {
3359 	mm_segment_t old_fs;
3360 
3361 	/* flush the icache in correct context */
3362 	old_fs = get_fs();
3363 	set_fs(KERNEL_DS);
3364 
3365 	/*
3366 	 * Flush the instruction cache, since we've played with text.
3367 	 * Do it before processing of module parameters, so the module
3368 	 * can provide parameter accessor functions of its own.
3369 	 */
3370 	if (mod->init_layout.base)
3371 		flush_icache_range((unsigned long)mod->init_layout.base,
3372 				   (unsigned long)mod->init_layout.base
3373 				   + mod->init_layout.size);
3374 	flush_icache_range((unsigned long)mod->core_layout.base,
3375 			   (unsigned long)mod->core_layout.base + mod->core_layout.size);
3376 
3377 	set_fs(old_fs);
3378 }
3379 
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)3380 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3381 				     Elf_Shdr *sechdrs,
3382 				     char *secstrings,
3383 				     struct module *mod)
3384 {
3385 	return 0;
3386 }
3387 
3388 /* module_blacklist is a comma-separated list of module names */
3389 static char *module_blacklist;
blacklisted(const char * module_name)3390 static bool blacklisted(const char *module_name)
3391 {
3392 	const char *p;
3393 	size_t len;
3394 
3395 	if (!module_blacklist)
3396 		return false;
3397 
3398 	for (p = module_blacklist; *p; p += len) {
3399 		len = strcspn(p, ",");
3400 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
3401 			return true;
3402 		if (p[len] == ',')
3403 			len++;
3404 	}
3405 	return false;
3406 }
3407 core_param(module_blacklist, module_blacklist, charp, 0400);
3408 
layout_and_allocate(struct load_info * info,int flags)3409 static struct module *layout_and_allocate(struct load_info *info, int flags)
3410 {
3411 	struct module *mod;
3412 	unsigned int ndx;
3413 	int err;
3414 
3415 	err = check_modinfo(info->mod, info, flags);
3416 	if (err)
3417 		return ERR_PTR(err);
3418 
3419 	/* Allow arches to frob section contents and sizes.  */
3420 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
3421 					info->secstrings, info->mod);
3422 	if (err < 0)
3423 		return ERR_PTR(err);
3424 
3425 	/* We will do a special allocation for per-cpu sections later. */
3426 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3427 
3428 	/*
3429 	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3430 	 * layout_sections() can put it in the right place.
3431 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3432 	 */
3433 	ndx = find_sec(info, ".data..ro_after_init");
3434 	if (ndx)
3435 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3436 	/*
3437 	 * Mark the __jump_table section as ro_after_init as well: these data
3438 	 * structures are never modified, with the exception of entries that
3439 	 * refer to code in the __init section, which are annotated as such
3440 	 * at module load time.
3441 	 */
3442 	ndx = find_sec(info, "__jump_table");
3443 	if (ndx)
3444 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3445 
3446 	/* Determine total sizes, and put offsets in sh_entsize.  For now
3447 	   this is done generically; there doesn't appear to be any
3448 	   special cases for the architectures. */
3449 	layout_sections(info->mod, info);
3450 	layout_symtab(info->mod, info);
3451 
3452 	/* Allocate and move to the final place */
3453 	err = move_module(info->mod, info);
3454 	if (err)
3455 		return ERR_PTR(err);
3456 
3457 	/* Module has been copied to its final place now: return it. */
3458 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3459 	kmemleak_load_module(mod, info);
3460 	return mod;
3461 }
3462 
3463 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)3464 static void module_deallocate(struct module *mod, struct load_info *info)
3465 {
3466 	percpu_modfree(mod);
3467 	module_arch_freeing_init(mod);
3468 	module_memfree(mod->init_layout.base);
3469 	module_memfree(mod->core_layout.base);
3470 }
3471 
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)3472 int __weak module_finalize(const Elf_Ehdr *hdr,
3473 			   const Elf_Shdr *sechdrs,
3474 			   struct module *me)
3475 {
3476 	return 0;
3477 }
3478 
3479 static void cfi_init(struct module *mod);
3480 
post_relocation(struct module * mod,const struct load_info * info)3481 static int post_relocation(struct module *mod, const struct load_info *info)
3482 {
3483 	/* Sort exception table now relocations are done. */
3484 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
3485 
3486 	/* Copy relocated percpu area over. */
3487 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3488 		       info->sechdrs[info->index.pcpu].sh_size);
3489 
3490 	/* Setup kallsyms-specific fields. */
3491 	add_kallsyms(mod, info);
3492 
3493 	/* Setup CFI for the module. */
3494 	cfi_init(mod);
3495 
3496 	/* Arch-specific module finalizing. */
3497 	return module_finalize(info->hdr, info->sechdrs, mod);
3498 }
3499 
3500 /* Is this module of this name done loading?  No locks held. */
finished_loading(const char * name)3501 static bool finished_loading(const char *name)
3502 {
3503 	struct module *mod;
3504 	bool ret;
3505 
3506 	/*
3507 	 * The module_mutex should not be a heavily contended lock;
3508 	 * if we get the occasional sleep here, we'll go an extra iteration
3509 	 * in the wait_event_interruptible(), which is harmless.
3510 	 */
3511 	sched_annotate_sleep();
3512 	mutex_lock(&module_mutex);
3513 	mod = find_module_all(name, strlen(name), true);
3514 	ret = !mod || mod->state == MODULE_STATE_LIVE;
3515 	mutex_unlock(&module_mutex);
3516 
3517 	return ret;
3518 }
3519 
3520 /* Call module constructors. */
do_mod_ctors(struct module * mod)3521 static void do_mod_ctors(struct module *mod)
3522 {
3523 #ifdef CONFIG_CONSTRUCTORS
3524 	unsigned long i;
3525 
3526 	for (i = 0; i < mod->num_ctors; i++)
3527 		mod->ctors[i]();
3528 #endif
3529 }
3530 
3531 /* For freeing module_init on success, in case kallsyms traversing */
3532 struct mod_initfree {
3533 	struct llist_node node;
3534 	void *module_init;
3535 };
3536 
do_free_init(struct work_struct * w)3537 static void do_free_init(struct work_struct *w)
3538 {
3539 	struct llist_node *pos, *n, *list;
3540 	struct mod_initfree *initfree;
3541 
3542 	list = llist_del_all(&init_free_list);
3543 
3544 	synchronize_rcu();
3545 
3546 	llist_for_each_safe(pos, n, list) {
3547 		initfree = container_of(pos, struct mod_initfree, node);
3548 		module_memfree(initfree->module_init);
3549 		kfree(initfree);
3550 	}
3551 }
3552 
modules_wq_init(void)3553 static int __init modules_wq_init(void)
3554 {
3555 	INIT_WORK(&init_free_wq, do_free_init);
3556 	init_llist_head(&init_free_list);
3557 	return 0;
3558 }
3559 module_init(modules_wq_init);
3560 
3561 /*
3562  * This is where the real work happens.
3563  *
3564  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3565  * helper command 'lx-symbols'.
3566  */
do_init_module(struct module * mod)3567 static noinline int do_init_module(struct module *mod)
3568 {
3569 	int ret = 0;
3570 	struct mod_initfree *freeinit;
3571 
3572 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3573 	if (!freeinit) {
3574 		ret = -ENOMEM;
3575 		goto fail;
3576 	}
3577 	freeinit->module_init = mod->init_layout.base;
3578 
3579 	/*
3580 	 * We want to find out whether @mod uses async during init.  Clear
3581 	 * PF_USED_ASYNC.  async_schedule*() will set it.
3582 	 */
3583 	current->flags &= ~PF_USED_ASYNC;
3584 
3585 	do_mod_ctors(mod);
3586 	/* Start the module */
3587 	if (mod->init != NULL)
3588 		ret = do_one_initcall(mod->init);
3589 	if (ret < 0) {
3590 		goto fail_free_freeinit;
3591 	}
3592 	if (ret > 0) {
3593 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3594 			"follow 0/-E convention\n"
3595 			"%s: loading module anyway...\n",
3596 			__func__, mod->name, ret, __func__);
3597 		dump_stack();
3598 	}
3599 
3600 	/* Now it's a first class citizen! */
3601 	mod->state = MODULE_STATE_LIVE;
3602 	blocking_notifier_call_chain(&module_notify_list,
3603 				     MODULE_STATE_LIVE, mod);
3604 
3605 	/*
3606 	 * We need to finish all async code before the module init sequence
3607 	 * is done.  This has potential to deadlock.  For example, a newly
3608 	 * detected block device can trigger request_module() of the
3609 	 * default iosched from async probing task.  Once userland helper
3610 	 * reaches here, async_synchronize_full() will wait on the async
3611 	 * task waiting on request_module() and deadlock.
3612 	 *
3613 	 * This deadlock is avoided by perfomring async_synchronize_full()
3614 	 * iff module init queued any async jobs.  This isn't a full
3615 	 * solution as it will deadlock the same if module loading from
3616 	 * async jobs nests more than once; however, due to the various
3617 	 * constraints, this hack seems to be the best option for now.
3618 	 * Please refer to the following thread for details.
3619 	 *
3620 	 * http://thread.gmane.org/gmane.linux.kernel/1420814
3621 	 */
3622 	if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3623 		async_synchronize_full();
3624 
3625 	ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3626 			mod->init_layout.size);
3627 	mutex_lock(&module_mutex);
3628 	/* Drop initial reference. */
3629 	module_put(mod);
3630 	trim_init_extable(mod);
3631 #ifdef CONFIG_KALLSYMS
3632 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3633 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3634 #endif
3635 	module_enable_ro(mod, true);
3636 	mod_tree_remove_init(mod);
3637 	module_arch_freeing_init(mod);
3638 	mod->init_layout.base = NULL;
3639 	mod->init_layout.size = 0;
3640 	mod->init_layout.ro_size = 0;
3641 	mod->init_layout.ro_after_init_size = 0;
3642 	mod->init_layout.text_size = 0;
3643 	/*
3644 	 * We want to free module_init, but be aware that kallsyms may be
3645 	 * walking this with preempt disabled.  In all the failure paths, we
3646 	 * call synchronize_rcu(), but we don't want to slow down the success
3647 	 * path. module_memfree() cannot be called in an interrupt, so do the
3648 	 * work and call synchronize_rcu() in a work queue.
3649 	 *
3650 	 * Note that module_alloc() on most architectures creates W+X page
3651 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3652 	 * code such as mark_rodata_ro() which depends on those mappings to
3653 	 * be cleaned up needs to sync with the queued work - ie
3654 	 * rcu_barrier()
3655 	 */
3656 	if (llist_add(&freeinit->node, &init_free_list))
3657 		schedule_work(&init_free_wq);
3658 
3659 	mutex_unlock(&module_mutex);
3660 	wake_up_all(&module_wq);
3661 
3662 	return 0;
3663 
3664 fail_free_freeinit:
3665 	kfree(freeinit);
3666 fail:
3667 	/* Try to protect us from buggy refcounters. */
3668 	mod->state = MODULE_STATE_GOING;
3669 	synchronize_rcu();
3670 	module_put(mod);
3671 	blocking_notifier_call_chain(&module_notify_list,
3672 				     MODULE_STATE_GOING, mod);
3673 	klp_module_going(mod);
3674 	ftrace_release_mod(mod);
3675 	free_module(mod);
3676 	wake_up_all(&module_wq);
3677 	return ret;
3678 }
3679 
may_init_module(void)3680 static int may_init_module(void)
3681 {
3682 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3683 		return -EPERM;
3684 
3685 	return 0;
3686 }
3687 
3688 /*
3689  * We try to place it in the list now to make sure it's unique before
3690  * we dedicate too many resources.  In particular, temporary percpu
3691  * memory exhaustion.
3692  */
add_unformed_module(struct module * mod)3693 static int add_unformed_module(struct module *mod)
3694 {
3695 	int err;
3696 	struct module *old;
3697 
3698 	mod->state = MODULE_STATE_UNFORMED;
3699 
3700 again:
3701 	mutex_lock(&module_mutex);
3702 	old = find_module_all(mod->name, strlen(mod->name), true);
3703 	if (old != NULL) {
3704 		if (old->state != MODULE_STATE_LIVE) {
3705 			/* Wait in case it fails to load. */
3706 			mutex_unlock(&module_mutex);
3707 			err = wait_event_interruptible(module_wq,
3708 					       finished_loading(mod->name));
3709 			if (err)
3710 				goto out_unlocked;
3711 			goto again;
3712 		}
3713 		err = -EEXIST;
3714 		goto out;
3715 	}
3716 	mod_update_bounds(mod);
3717 	list_add_rcu(&mod->list, &modules);
3718 	mod_tree_insert(mod);
3719 	err = 0;
3720 
3721 out:
3722 	mutex_unlock(&module_mutex);
3723 out_unlocked:
3724 	return err;
3725 }
3726 
complete_formation(struct module * mod,struct load_info * info)3727 static int complete_formation(struct module *mod, struct load_info *info)
3728 {
3729 	int err;
3730 
3731 	mutex_lock(&module_mutex);
3732 
3733 	/* Find duplicate symbols (must be called under lock). */
3734 	err = verify_exported_symbols(mod);
3735 	if (err < 0)
3736 		goto out;
3737 
3738 	/* This relies on module_mutex for list integrity. */
3739 	module_bug_finalize(info->hdr, info->sechdrs, mod);
3740 
3741 	module_enable_ro(mod, false);
3742 	module_enable_nx(mod);
3743 	module_enable_x(mod);
3744 
3745 	/* Mark state as coming so strong_try_module_get() ignores us,
3746 	 * but kallsyms etc. can see us. */
3747 	mod->state = MODULE_STATE_COMING;
3748 	mutex_unlock(&module_mutex);
3749 
3750 	return 0;
3751 
3752 out:
3753 	mutex_unlock(&module_mutex);
3754 	return err;
3755 }
3756 
prepare_coming_module(struct module * mod)3757 static int prepare_coming_module(struct module *mod)
3758 {
3759 	int err;
3760 
3761 	ftrace_module_enable(mod);
3762 	err = klp_module_coming(mod);
3763 	if (err)
3764 		return err;
3765 
3766 	blocking_notifier_call_chain(&module_notify_list,
3767 				     MODULE_STATE_COMING, mod);
3768 	return 0;
3769 }
3770 
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3771 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3772 				   void *arg)
3773 {
3774 	struct module *mod = arg;
3775 	int ret;
3776 
3777 	if (strcmp(param, "async_probe") == 0) {
3778 		mod->async_probe_requested = true;
3779 		return 0;
3780 	}
3781 
3782 	/* Check for magic 'dyndbg' arg */
3783 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3784 	if (ret != 0)
3785 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3786 	return 0;
3787 }
3788 
3789 /* Allocate and load the module: note that size of section 0 is always
3790    zero, and we rely on this for optional sections. */
load_module(struct load_info * info,const char __user * uargs,int flags)3791 static int load_module(struct load_info *info, const char __user *uargs,
3792 		       int flags)
3793 {
3794 	struct module *mod;
3795 	long err = 0;
3796 	char *after_dashes;
3797 
3798 	err = elf_header_check(info);
3799 	if (err)
3800 		goto free_copy;
3801 
3802 	err = setup_load_info(info, flags);
3803 	if (err)
3804 		goto free_copy;
3805 
3806 	if (blacklisted(info->name)) {
3807 		err = -EPERM;
3808 		goto free_copy;
3809 	}
3810 
3811 	err = module_sig_check(info, flags);
3812 	if (err)
3813 		goto free_copy;
3814 
3815 	err = rewrite_section_headers(info, flags);
3816 	if (err)
3817 		goto free_copy;
3818 
3819 	/* Check module struct version now, before we try to use module. */
3820 	if (!check_modstruct_version(info, info->mod)) {
3821 		err = -ENOEXEC;
3822 		goto free_copy;
3823 	}
3824 
3825 	/* Figure out module layout, and allocate all the memory. */
3826 	mod = layout_and_allocate(info, flags);
3827 	if (IS_ERR(mod)) {
3828 		err = PTR_ERR(mod);
3829 		goto free_copy;
3830 	}
3831 
3832 	audit_log_kern_module(mod->name);
3833 
3834 	/* Reserve our place in the list. */
3835 	err = add_unformed_module(mod);
3836 	if (err)
3837 		goto free_module;
3838 
3839 #ifdef CONFIG_MODULE_SIG
3840 	mod->sig_ok = info->sig_ok;
3841 	if (!mod->sig_ok) {
3842 		pr_notice_once("%s: module verification failed: signature "
3843 			       "and/or required key missing - tainting "
3844 			       "kernel\n", mod->name);
3845 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3846 	}
3847 #endif
3848 
3849 	/* To avoid stressing percpu allocator, do this once we're unique. */
3850 	err = percpu_modalloc(mod, info);
3851 	if (err)
3852 		goto unlink_mod;
3853 
3854 	/* Now module is in final location, initialize linked lists, etc. */
3855 	err = module_unload_init(mod);
3856 	if (err)
3857 		goto unlink_mod;
3858 
3859 	init_param_lock(mod);
3860 
3861 	/* Now we've got everything in the final locations, we can
3862 	 * find optional sections. */
3863 	err = find_module_sections(mod, info);
3864 	if (err)
3865 		goto free_unload;
3866 
3867 	err = check_module_license_and_versions(mod);
3868 	if (err)
3869 		goto free_unload;
3870 
3871 	/* Set up MODINFO_ATTR fields */
3872 	setup_modinfo(mod, info);
3873 
3874 	/* Fix up syms, so that st_value is a pointer to location. */
3875 	err = simplify_symbols(mod, info);
3876 	if (err < 0)
3877 		goto free_modinfo;
3878 
3879 	err = apply_relocations(mod, info);
3880 	if (err < 0)
3881 		goto free_modinfo;
3882 
3883 	err = post_relocation(mod, info);
3884 	if (err < 0)
3885 		goto free_modinfo;
3886 
3887 	flush_module_icache(mod);
3888 
3889 	/* Now copy in args */
3890 	mod->args = strndup_user(uargs, ~0UL >> 1);
3891 	if (IS_ERR(mod->args)) {
3892 		err = PTR_ERR(mod->args);
3893 		goto free_arch_cleanup;
3894 	}
3895 
3896 	dynamic_debug_setup(mod, info->debug, info->num_debug);
3897 
3898 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3899 	ftrace_module_init(mod);
3900 
3901 	/* Finally it's fully formed, ready to start executing. */
3902 	err = complete_formation(mod, info);
3903 	if (err)
3904 		goto ddebug_cleanup;
3905 
3906 	err = prepare_coming_module(mod);
3907 	if (err)
3908 		goto bug_cleanup;
3909 
3910 	/* Module is ready to execute: parsing args may do that. */
3911 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3912 				  -32768, 32767, mod,
3913 				  unknown_module_param_cb);
3914 	if (IS_ERR(after_dashes)) {
3915 		err = PTR_ERR(after_dashes);
3916 		goto coming_cleanup;
3917 	} else if (after_dashes) {
3918 		pr_warn("%s: parameters '%s' after `--' ignored\n",
3919 		       mod->name, after_dashes);
3920 	}
3921 
3922 	/* Link in to sysfs. */
3923 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3924 	if (err < 0)
3925 		goto coming_cleanup;
3926 
3927 	if (is_livepatch_module(mod)) {
3928 		err = copy_module_elf(mod, info);
3929 		if (err < 0)
3930 			goto sysfs_cleanup;
3931 	}
3932 
3933 	/* Get rid of temporary copy. */
3934 	free_copy(info);
3935 
3936 	/* Done! */
3937 	trace_module_load(mod);
3938 
3939 	return do_init_module(mod);
3940 
3941  sysfs_cleanup:
3942 	mod_sysfs_teardown(mod);
3943  coming_cleanup:
3944 	mod->state = MODULE_STATE_GOING;
3945 	destroy_params(mod->kp, mod->num_kp);
3946 	blocking_notifier_call_chain(&module_notify_list,
3947 				     MODULE_STATE_GOING, mod);
3948 	klp_module_going(mod);
3949  bug_cleanup:
3950 	/* module_bug_cleanup needs module_mutex protection */
3951 	mutex_lock(&module_mutex);
3952 	module_bug_cleanup(mod);
3953 	mutex_unlock(&module_mutex);
3954 
3955  ddebug_cleanup:
3956 	ftrace_release_mod(mod);
3957 	dynamic_debug_remove(mod, info->debug);
3958 	synchronize_rcu();
3959 	kfree(mod->args);
3960  free_arch_cleanup:
3961 	module_arch_cleanup(mod);
3962  free_modinfo:
3963 	free_modinfo(mod);
3964  free_unload:
3965 	module_unload_free(mod);
3966  unlink_mod:
3967 	mutex_lock(&module_mutex);
3968 	/* Unlink carefully: kallsyms could be walking list. */
3969 	list_del_rcu(&mod->list);
3970 	mod_tree_remove(mod);
3971 	wake_up_all(&module_wq);
3972 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3973 	synchronize_rcu();
3974 	mutex_unlock(&module_mutex);
3975  free_module:
3976 	/* Free lock-classes; relies on the preceding sync_rcu() */
3977 	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3978 
3979 	module_deallocate(mod, info);
3980  free_copy:
3981 	free_copy(info);
3982 	return err;
3983 }
3984 
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3985 SYSCALL_DEFINE3(init_module, void __user *, umod,
3986 		unsigned long, len, const char __user *, uargs)
3987 {
3988 	int err;
3989 	struct load_info info = { };
3990 
3991 	err = may_init_module();
3992 	if (err)
3993 		return err;
3994 
3995 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3996 	       umod, len, uargs);
3997 
3998 	err = copy_module_from_user(umod, len, &info);
3999 	if (err)
4000 		return err;
4001 
4002 	return load_module(&info, uargs, 0);
4003 }
4004 
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)4005 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
4006 {
4007 	struct load_info info = { };
4008 	loff_t size;
4009 	void *hdr;
4010 	int err;
4011 
4012 	err = may_init_module();
4013 	if (err)
4014 		return err;
4015 
4016 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
4017 
4018 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
4019 		      |MODULE_INIT_IGNORE_VERMAGIC))
4020 		return -EINVAL;
4021 
4022 	err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
4023 				       READING_MODULE);
4024 	if (err)
4025 		return err;
4026 	info.hdr = hdr;
4027 	info.len = size;
4028 
4029 	return load_module(&info, uargs, flags);
4030 }
4031 
within(unsigned long addr,void * start,unsigned long size)4032 static inline int within(unsigned long addr, void *start, unsigned long size)
4033 {
4034 	return ((void *)addr >= start && (void *)addr < start + size);
4035 }
4036 
4037 #ifdef CONFIG_KALLSYMS
4038 /*
4039  * This ignores the intensely annoying "mapping symbols" found
4040  * in ARM ELF files: $a, $t and $d.
4041  */
is_arm_mapping_symbol(const char * str)4042 static inline int is_arm_mapping_symbol(const char *str)
4043 {
4044 	if (str[0] == '.' && str[1] == 'L')
4045 		return true;
4046 	return str[0] == '$' && strchr("axtd", str[1])
4047 	       && (str[2] == '\0' || str[2] == '.');
4048 }
4049 
kallsyms_symbol_name(struct mod_kallsyms * kallsyms,unsigned int symnum)4050 static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
4051 {
4052 	return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
4053 }
4054 
4055 /*
4056  * Given a module and address, find the corresponding symbol and return its name
4057  * while providing its size and offset if needed.
4058  */
find_kallsyms_symbol(struct module * mod,unsigned long addr,unsigned long * size,unsigned long * offset)4059 static const char *find_kallsyms_symbol(struct module *mod,
4060 					unsigned long addr,
4061 					unsigned long *size,
4062 					unsigned long *offset)
4063 {
4064 	unsigned int i, best = 0;
4065 	unsigned long nextval, bestval;
4066 	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4067 
4068 	/* At worse, next value is at end of module */
4069 	if (within_module_init(addr, mod))
4070 		nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
4071 	else
4072 		nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
4073 
4074 	bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
4075 
4076 	/* Scan for closest preceding symbol, and next symbol. (ELF
4077 	   starts real symbols at 1). */
4078 	for (i = 1; i < kallsyms->num_symtab; i++) {
4079 		const Elf_Sym *sym = &kallsyms->symtab[i];
4080 		unsigned long thisval = kallsyms_symbol_value(sym);
4081 
4082 		if (sym->st_shndx == SHN_UNDEF)
4083 			continue;
4084 
4085 		/* We ignore unnamed symbols: they're uninformative
4086 		 * and inserted at a whim. */
4087 		if (*kallsyms_symbol_name(kallsyms, i) == '\0'
4088 		    || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
4089 			continue;
4090 
4091 		if (thisval <= addr && thisval > bestval) {
4092 			best = i;
4093 			bestval = thisval;
4094 		}
4095 		if (thisval > addr && thisval < nextval)
4096 			nextval = thisval;
4097 	}
4098 
4099 	if (!best)
4100 		return NULL;
4101 
4102 	if (size)
4103 		*size = nextval - bestval;
4104 	if (offset)
4105 		*offset = addr - bestval;
4106 
4107 	return kallsyms_symbol_name(kallsyms, best);
4108 }
4109 
dereference_module_function_descriptor(struct module * mod,void * ptr)4110 void * __weak dereference_module_function_descriptor(struct module *mod,
4111 						     void *ptr)
4112 {
4113 	return ptr;
4114 }
4115 
4116 /* For kallsyms to ask for address resolution.  NULL means not found.  Careful
4117  * not to lock to avoid deadlock on oopses, simply disable preemption. */
module_address_lookup(unsigned long addr,unsigned long * size,unsigned long * offset,char ** modname,char * namebuf)4118 const char *module_address_lookup(unsigned long addr,
4119 			    unsigned long *size,
4120 			    unsigned long *offset,
4121 			    char **modname,
4122 			    char *namebuf)
4123 {
4124 	const char *ret = NULL;
4125 	struct module *mod;
4126 
4127 	preempt_disable();
4128 	mod = __module_address(addr);
4129 	if (mod) {
4130 		if (modname)
4131 			*modname = mod->name;
4132 
4133 		ret = find_kallsyms_symbol(mod, addr, size, offset);
4134 	}
4135 	/* Make a copy in here where it's safe */
4136 	if (ret) {
4137 		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4138 		ret = namebuf;
4139 	}
4140 	preempt_enable();
4141 
4142 	return ret;
4143 }
4144 
lookup_module_symbol_name(unsigned long addr,char * symname)4145 int lookup_module_symbol_name(unsigned long addr, char *symname)
4146 {
4147 	struct module *mod;
4148 
4149 	preempt_disable();
4150 	list_for_each_entry_rcu(mod, &modules, list) {
4151 		if (mod->state == MODULE_STATE_UNFORMED)
4152 			continue;
4153 		if (within_module(addr, mod)) {
4154 			const char *sym;
4155 
4156 			sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4157 			if (!sym)
4158 				goto out;
4159 
4160 			strlcpy(symname, sym, KSYM_NAME_LEN);
4161 			preempt_enable();
4162 			return 0;
4163 		}
4164 	}
4165 out:
4166 	preempt_enable();
4167 	return -ERANGE;
4168 }
4169 
lookup_module_symbol_attrs(unsigned long addr,unsigned long * size,unsigned long * offset,char * modname,char * name)4170 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4171 			unsigned long *offset, char *modname, char *name)
4172 {
4173 	struct module *mod;
4174 
4175 	preempt_disable();
4176 	list_for_each_entry_rcu(mod, &modules, list) {
4177 		if (mod->state == MODULE_STATE_UNFORMED)
4178 			continue;
4179 		if (within_module(addr, mod)) {
4180 			const char *sym;
4181 
4182 			sym = find_kallsyms_symbol(mod, addr, size, offset);
4183 			if (!sym)
4184 				goto out;
4185 			if (modname)
4186 				strlcpy(modname, mod->name, MODULE_NAME_LEN);
4187 			if (name)
4188 				strlcpy(name, sym, KSYM_NAME_LEN);
4189 			preempt_enable();
4190 			return 0;
4191 		}
4192 	}
4193 out:
4194 	preempt_enable();
4195 	return -ERANGE;
4196 }
4197 
module_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * name,char * module_name,int * exported)4198 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4199 			char *name, char *module_name, int *exported)
4200 {
4201 	struct module *mod;
4202 
4203 	preempt_disable();
4204 	list_for_each_entry_rcu(mod, &modules, list) {
4205 		struct mod_kallsyms *kallsyms;
4206 
4207 		if (mod->state == MODULE_STATE_UNFORMED)
4208 			continue;
4209 		kallsyms = rcu_dereference_sched(mod->kallsyms);
4210 		if (symnum < kallsyms->num_symtab) {
4211 			const Elf_Sym *sym = &kallsyms->symtab[symnum];
4212 
4213 			*value = kallsyms_symbol_value(sym);
4214 			*type = kallsyms->typetab[symnum];
4215 			strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4216 			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4217 			*exported = is_exported(name, *value, mod);
4218 			preempt_enable();
4219 			return 0;
4220 		}
4221 		symnum -= kallsyms->num_symtab;
4222 	}
4223 	preempt_enable();
4224 	return -ERANGE;
4225 }
4226 
4227 /* Given a module and name of symbol, find and return the symbol's value */
find_kallsyms_symbol_value(struct module * mod,const char * name)4228 static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4229 {
4230 	unsigned int i;
4231 	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4232 
4233 	for (i = 0; i < kallsyms->num_symtab; i++) {
4234 		const Elf_Sym *sym = &kallsyms->symtab[i];
4235 
4236 		if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4237 		    sym->st_shndx != SHN_UNDEF)
4238 			return kallsyms_symbol_value(sym);
4239 	}
4240 	return 0;
4241 }
4242 
4243 /* Look for this name: can be of form module:name. */
module_kallsyms_lookup_name(const char * name)4244 unsigned long module_kallsyms_lookup_name(const char *name)
4245 {
4246 	struct module *mod;
4247 	char *colon;
4248 	unsigned long ret = 0;
4249 
4250 	/* Don't lock: we're in enough trouble already. */
4251 	preempt_disable();
4252 	if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4253 		if ((mod = find_module_all(name, colon - name, false)) != NULL)
4254 			ret = find_kallsyms_symbol_value(mod, colon+1);
4255 	} else {
4256 		list_for_each_entry_rcu(mod, &modules, list) {
4257 			if (mod->state == MODULE_STATE_UNFORMED)
4258 				continue;
4259 			if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4260 				break;
4261 		}
4262 	}
4263 	preempt_enable();
4264 	return ret;
4265 }
4266 
module_kallsyms_on_each_symbol(int (* fn)(void *,const char *,struct module *,unsigned long),void * data)4267 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4268 					     struct module *, unsigned long),
4269 				   void *data)
4270 {
4271 	struct module *mod;
4272 	unsigned int i;
4273 	int ret;
4274 
4275 	module_assert_mutex();
4276 
4277 	list_for_each_entry(mod, &modules, list) {
4278 		/* We hold module_mutex: no need for rcu_dereference_sched */
4279 		struct mod_kallsyms *kallsyms = mod->kallsyms;
4280 
4281 		if (mod->state == MODULE_STATE_UNFORMED)
4282 			continue;
4283 		for (i = 0; i < kallsyms->num_symtab; i++) {
4284 			const Elf_Sym *sym = &kallsyms->symtab[i];
4285 
4286 			if (sym->st_shndx == SHN_UNDEF)
4287 				continue;
4288 
4289 			ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4290 				 mod, kallsyms_symbol_value(sym));
4291 			if (ret != 0)
4292 				return ret;
4293 		}
4294 	}
4295 	return 0;
4296 }
4297 #endif /* CONFIG_KALLSYMS */
4298 
cfi_init(struct module * mod)4299 static void cfi_init(struct module *mod)
4300 {
4301 #ifdef CONFIG_CFI_CLANG
4302 	rcu_read_lock();
4303 	mod->cfi_check = (cfi_check_fn)find_kallsyms_symbol_value(mod,
4304 						CFI_CHECK_FN_NAME);
4305 	rcu_read_unlock();
4306 	cfi_module_add(mod, module_addr_min, module_addr_max);
4307 #endif
4308 }
4309 
cfi_cleanup(struct module * mod)4310 static void cfi_cleanup(struct module *mod)
4311 {
4312 #ifdef CONFIG_CFI_CLANG
4313 	cfi_module_remove(mod, module_addr_min, module_addr_max);
4314 #endif
4315 }
4316 
4317 /* Maximum number of characters written by module_flags() */
4318 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4319 
4320 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf)4321 static char *module_flags(struct module *mod, char *buf)
4322 {
4323 	int bx = 0;
4324 
4325 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4326 	if (mod->taints ||
4327 	    mod->state == MODULE_STATE_GOING ||
4328 	    mod->state == MODULE_STATE_COMING) {
4329 		buf[bx++] = '(';
4330 		bx += module_flags_taint(mod, buf + bx);
4331 		/* Show a - for module-is-being-unloaded */
4332 		if (mod->state == MODULE_STATE_GOING)
4333 			buf[bx++] = '-';
4334 		/* Show a + for module-is-being-loaded */
4335 		if (mod->state == MODULE_STATE_COMING)
4336 			buf[bx++] = '+';
4337 		buf[bx++] = ')';
4338 	}
4339 	buf[bx] = '\0';
4340 
4341 	return buf;
4342 }
4343 
4344 #ifdef CONFIG_PROC_FS
4345 /* Called by the /proc file system to return a list of modules. */
m_start(struct seq_file * m,loff_t * pos)4346 static void *m_start(struct seq_file *m, loff_t *pos)
4347 {
4348 	mutex_lock(&module_mutex);
4349 	return seq_list_start(&modules, *pos);
4350 }
4351 
m_next(struct seq_file * m,void * p,loff_t * pos)4352 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4353 {
4354 	return seq_list_next(p, &modules, pos);
4355 }
4356 
m_stop(struct seq_file * m,void * p)4357 static void m_stop(struct seq_file *m, void *p)
4358 {
4359 	mutex_unlock(&module_mutex);
4360 }
4361 
m_show(struct seq_file * m,void * p)4362 static int m_show(struct seq_file *m, void *p)
4363 {
4364 	struct module *mod = list_entry(p, struct module, list);
4365 	char buf[MODULE_FLAGS_BUF_SIZE];
4366 	void *value;
4367 
4368 	/* We always ignore unformed modules. */
4369 	if (mod->state == MODULE_STATE_UNFORMED)
4370 		return 0;
4371 
4372 	seq_printf(m, "%s %u",
4373 		   mod->name, mod->init_layout.size + mod->core_layout.size);
4374 	print_unload_info(m, mod);
4375 
4376 	/* Informative for users. */
4377 	seq_printf(m, " %s",
4378 		   mod->state == MODULE_STATE_GOING ? "Unloading" :
4379 		   mod->state == MODULE_STATE_COMING ? "Loading" :
4380 		   "Live");
4381 	/* Used by oprofile and other similar tools. */
4382 	value = m->private ? NULL : mod->core_layout.base;
4383 	seq_printf(m, " 0x%px", value);
4384 
4385 	/* Taints info */
4386 	if (mod->taints)
4387 		seq_printf(m, " %s", module_flags(mod, buf));
4388 
4389 	seq_puts(m, "\n");
4390 	return 0;
4391 }
4392 
4393 /* Format: modulename size refcount deps address
4394 
4395    Where refcount is a number or -, and deps is a comma-separated list
4396    of depends or -.
4397 */
4398 static const struct seq_operations modules_op = {
4399 	.start	= m_start,
4400 	.next	= m_next,
4401 	.stop	= m_stop,
4402 	.show	= m_show
4403 };
4404 
4405 /*
4406  * This also sets the "private" pointer to non-NULL if the
4407  * kernel pointers should be hidden (so you can just test
4408  * "m->private" to see if you should keep the values private).
4409  *
4410  * We use the same logic as for /proc/kallsyms.
4411  */
modules_open(struct inode * inode,struct file * file)4412 static int modules_open(struct inode *inode, struct file *file)
4413 {
4414 	int err = seq_open(file, &modules_op);
4415 
4416 	if (!err) {
4417 		struct seq_file *m = file->private_data;
4418 		m->private = kallsyms_show_value() ? NULL : (void *)8ul;
4419 	}
4420 
4421 	return err;
4422 }
4423 
4424 static const struct file_operations proc_modules_operations = {
4425 	.open		= modules_open,
4426 	.read		= seq_read,
4427 	.llseek		= seq_lseek,
4428 	.release	= seq_release,
4429 };
4430 
proc_modules_init(void)4431 static int __init proc_modules_init(void)
4432 {
4433 	proc_create("modules", 0, NULL, &proc_modules_operations);
4434 	return 0;
4435 }
4436 module_init(proc_modules_init);
4437 #endif
4438 
4439 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)4440 const struct exception_table_entry *search_module_extables(unsigned long addr)
4441 {
4442 	const struct exception_table_entry *e = NULL;
4443 	struct module *mod;
4444 
4445 	preempt_disable();
4446 	mod = __module_address(addr);
4447 	if (!mod)
4448 		goto out;
4449 
4450 	if (!mod->num_exentries)
4451 		goto out;
4452 
4453 	e = search_extable(mod->extable,
4454 			   mod->num_exentries,
4455 			   addr);
4456 out:
4457 	preempt_enable();
4458 
4459 	/*
4460 	 * Now, if we found one, we are running inside it now, hence
4461 	 * we cannot unload the module, hence no refcnt needed.
4462 	 */
4463 	return e;
4464 }
4465 
4466 /*
4467  * is_module_address - is this address inside a module?
4468  * @addr: the address to check.
4469  *
4470  * See is_module_text_address() if you simply want to see if the address
4471  * is code (not data).
4472  */
is_module_address(unsigned long addr)4473 bool is_module_address(unsigned long addr)
4474 {
4475 	bool ret;
4476 
4477 	preempt_disable();
4478 	ret = __module_address(addr) != NULL;
4479 	preempt_enable();
4480 
4481 	return ret;
4482 }
4483 
4484 /*
4485  * __module_address - get the module which contains an address.
4486  * @addr: the address.
4487  *
4488  * Must be called with preempt disabled or module mutex held so that
4489  * module doesn't get freed during this.
4490  */
__module_address(unsigned long addr)4491 struct module *__module_address(unsigned long addr)
4492 {
4493 	struct module *mod;
4494 
4495 	if (addr < module_addr_min || addr > module_addr_max)
4496 		return NULL;
4497 
4498 	module_assert_mutex_or_preempt();
4499 
4500 	mod = mod_find(addr);
4501 	if (mod) {
4502 		BUG_ON(!within_module(addr, mod));
4503 		if (mod->state == MODULE_STATE_UNFORMED)
4504 			mod = NULL;
4505 	}
4506 	return mod;
4507 }
4508 EXPORT_SYMBOL_GPL(__module_address);
4509 
4510 /*
4511  * is_module_text_address - is this address inside module code?
4512  * @addr: the address to check.
4513  *
4514  * See is_module_address() if you simply want to see if the address is
4515  * anywhere in a module.  See kernel_text_address() for testing if an
4516  * address corresponds to kernel or module code.
4517  */
is_module_text_address(unsigned long addr)4518 bool is_module_text_address(unsigned long addr)
4519 {
4520 	bool ret;
4521 
4522 	preempt_disable();
4523 	ret = __module_text_address(addr) != NULL;
4524 	preempt_enable();
4525 
4526 	return ret;
4527 }
4528 
4529 /*
4530  * __module_text_address - get the module whose code contains an address.
4531  * @addr: the address.
4532  *
4533  * Must be called with preempt disabled or module mutex held so that
4534  * module doesn't get freed during this.
4535  */
__module_text_address(unsigned long addr)4536 struct module *__module_text_address(unsigned long addr)
4537 {
4538 	struct module *mod = __module_address(addr);
4539 	if (mod) {
4540 		/* Make sure it's within the text section. */
4541 		if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4542 		    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4543 			mod = NULL;
4544 	}
4545 	return mod;
4546 }
4547 EXPORT_SYMBOL_GPL(__module_text_address);
4548 
4549 /* Don't grab lock, we're oopsing. */
print_modules(void)4550 void print_modules(void)
4551 {
4552 	struct module *mod;
4553 	char buf[MODULE_FLAGS_BUF_SIZE];
4554 
4555 	printk(KERN_DEFAULT "Modules linked in:");
4556 	/* Most callers should already have preempt disabled, but make sure */
4557 	preempt_disable();
4558 	list_for_each_entry_rcu(mod, &modules, list) {
4559 		if (mod->state == MODULE_STATE_UNFORMED)
4560 			continue;
4561 		pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4562 	}
4563 	preempt_enable();
4564 	if (last_unloaded_module[0])
4565 		pr_cont(" [last unloaded: %s]", last_unloaded_module);
4566 	pr_cont("\n");
4567 }
4568 
4569 #ifdef CONFIG_MODVERSIONS
4570 /* Generate the signature for all relevant module structures here.
4571  * If these change, we don't want to try to parse the module. */
module_layout(struct module * mod,struct modversion_info * ver,struct kernel_param * kp,struct kernel_symbol * ks,struct tracepoint * const * tp)4572 void module_layout(struct module *mod,
4573 		   struct modversion_info *ver,
4574 		   struct kernel_param *kp,
4575 		   struct kernel_symbol *ks,
4576 		   struct tracepoint * const *tp)
4577 {
4578 }
4579 EXPORT_SYMBOL(module_layout);
4580 #endif
4581