1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/debug.c
4 *
5 * Print the CFS rbtree and other debugging details
6 *
7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8 */
9 #include "sched.h"
10
11 static DEFINE_SPINLOCK(sched_debug_lock);
12
13 /*
14 * This allows printing both to /proc/sched_debug and
15 * to the console
16 */
17 #define SEQ_printf(m, x...) \
18 do { \
19 if (m) \
20 seq_printf(m, x); \
21 else \
22 pr_cont(x); \
23 } while (0)
24
25 /*
26 * Ease the printing of nsec fields:
27 */
nsec_high(unsigned long long nsec)28 static long long nsec_high(unsigned long long nsec)
29 {
30 if ((long long)nsec < 0) {
31 nsec = -nsec;
32 do_div(nsec, 1000000);
33 return -nsec;
34 }
35 do_div(nsec, 1000000);
36
37 return nsec;
38 }
39
nsec_low(unsigned long long nsec)40 static unsigned long nsec_low(unsigned long long nsec)
41 {
42 if ((long long)nsec < 0)
43 nsec = -nsec;
44
45 return do_div(nsec, 1000000);
46 }
47
48 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
49
50 #define SCHED_FEAT(name, enabled) \
51 #name ,
52
53 static const char * const sched_feat_names[] = {
54 #include "features.h"
55 };
56
57 #undef SCHED_FEAT
58
sched_feat_show(struct seq_file * m,void * v)59 static int sched_feat_show(struct seq_file *m, void *v)
60 {
61 int i;
62
63 for (i = 0; i < __SCHED_FEAT_NR; i++) {
64 if (!(sysctl_sched_features & (1UL << i)))
65 seq_puts(m, "NO_");
66 seq_printf(m, "%s ", sched_feat_names[i]);
67 }
68 seq_puts(m, "\n");
69
70 return 0;
71 }
72
73 #ifdef CONFIG_JUMP_LABEL
74
75 #define jump_label_key__true STATIC_KEY_INIT_TRUE
76 #define jump_label_key__false STATIC_KEY_INIT_FALSE
77
78 #define SCHED_FEAT(name, enabled) \
79 jump_label_key__##enabled ,
80
81 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
82 #include "features.h"
83 };
84
85 #undef SCHED_FEAT
86
sched_feat_disable(int i)87 static void sched_feat_disable(int i)
88 {
89 static_key_disable_cpuslocked(&sched_feat_keys[i]);
90 }
91
sched_feat_enable(int i)92 static void sched_feat_enable(int i)
93 {
94 static_key_enable_cpuslocked(&sched_feat_keys[i]);
95 }
96 #else
sched_feat_disable(int i)97 static void sched_feat_disable(int i) { };
sched_feat_enable(int i)98 static void sched_feat_enable(int i) { };
99 #endif /* CONFIG_JUMP_LABEL */
100
sched_feat_set(char * cmp)101 static int sched_feat_set(char *cmp)
102 {
103 int i;
104 int neg = 0;
105
106 if (strncmp(cmp, "NO_", 3) == 0) {
107 neg = 1;
108 cmp += 3;
109 }
110
111 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
112 if (i < 0)
113 return i;
114
115 if (neg) {
116 sysctl_sched_features &= ~(1UL << i);
117 sched_feat_disable(i);
118 } else {
119 sysctl_sched_features |= (1UL << i);
120 sched_feat_enable(i);
121 }
122
123 return 0;
124 }
125
126 static ssize_t
sched_feat_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)127 sched_feat_write(struct file *filp, const char __user *ubuf,
128 size_t cnt, loff_t *ppos)
129 {
130 char buf[64];
131 char *cmp;
132 int ret;
133 struct inode *inode;
134
135 if (cnt > 63)
136 cnt = 63;
137
138 if (copy_from_user(&buf, ubuf, cnt))
139 return -EFAULT;
140
141 buf[cnt] = 0;
142 cmp = strstrip(buf);
143
144 /* Ensure the static_key remains in a consistent state */
145 inode = file_inode(filp);
146 cpus_read_lock();
147 inode_lock(inode);
148 ret = sched_feat_set(cmp);
149 inode_unlock(inode);
150 cpus_read_unlock();
151 if (ret < 0)
152 return ret;
153
154 *ppos += cnt;
155
156 return cnt;
157 }
158
sched_feat_open(struct inode * inode,struct file * filp)159 static int sched_feat_open(struct inode *inode, struct file *filp)
160 {
161 return single_open(filp, sched_feat_show, NULL);
162 }
163
164 static const struct file_operations sched_feat_fops = {
165 .open = sched_feat_open,
166 .write = sched_feat_write,
167 .read = seq_read,
168 .llseek = seq_lseek,
169 .release = single_release,
170 };
171
172 __read_mostly bool sched_debug_enabled;
173
sched_init_debug(void)174 static __init int sched_init_debug(void)
175 {
176 debugfs_create_file("sched_features", 0644, NULL, NULL,
177 &sched_feat_fops);
178
179 debugfs_create_bool("sched_debug", 0644, NULL,
180 &sched_debug_enabled);
181
182 return 0;
183 }
184 late_initcall(sched_init_debug);
185
186 #ifdef CONFIG_SMP
187
188 #ifdef CONFIG_SYSCTL
189
190 static struct ctl_table sd_ctl_dir[] = {
191 {
192 .procname = "sched_domain",
193 .mode = 0555,
194 },
195 {}
196 };
197
198 static struct ctl_table sd_ctl_root[] = {
199 {
200 .procname = "kernel",
201 .mode = 0555,
202 .child = sd_ctl_dir,
203 },
204 {}
205 };
206
sd_alloc_ctl_entry(int n)207 static struct ctl_table *sd_alloc_ctl_entry(int n)
208 {
209 struct ctl_table *entry =
210 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
211
212 return entry;
213 }
214
sd_free_ctl_entry(struct ctl_table ** tablep)215 static void sd_free_ctl_entry(struct ctl_table **tablep)
216 {
217 struct ctl_table *entry;
218
219 /*
220 * In the intermediate directories, both the child directory and
221 * procname are dynamically allocated and could fail but the mode
222 * will always be set. In the lowest directory the names are
223 * static strings and all have proc handlers.
224 */
225 for (entry = *tablep; entry->mode; entry++) {
226 if (entry->child)
227 sd_free_ctl_entry(&entry->child);
228 if (entry->proc_handler == NULL)
229 kfree(entry->procname);
230 }
231
232 kfree(*tablep);
233 *tablep = NULL;
234 }
235
236 static void
set_table_entry(struct ctl_table * entry,const char * procname,void * data,int maxlen,umode_t mode,proc_handler * proc_handler)237 set_table_entry(struct ctl_table *entry,
238 const char *procname, void *data, int maxlen,
239 umode_t mode, proc_handler *proc_handler)
240 {
241 entry->procname = procname;
242 entry->data = data;
243 entry->maxlen = maxlen;
244 entry->mode = mode;
245 entry->proc_handler = proc_handler;
246 }
247
248 static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain * sd)249 sd_alloc_ctl_domain_table(struct sched_domain *sd)
250 {
251 struct ctl_table *table = sd_alloc_ctl_entry(9);
252
253 if (table == NULL)
254 return NULL;
255
256 set_table_entry(&table[0], "min_interval", &sd->min_interval, sizeof(long), 0644, proc_doulongvec_minmax);
257 set_table_entry(&table[1], "max_interval", &sd->max_interval, sizeof(long), 0644, proc_doulongvec_minmax);
258 set_table_entry(&table[2], "busy_factor", &sd->busy_factor, sizeof(int), 0644, proc_dointvec_minmax);
259 set_table_entry(&table[3], "imbalance_pct", &sd->imbalance_pct, sizeof(int), 0644, proc_dointvec_minmax);
260 set_table_entry(&table[4], "cache_nice_tries", &sd->cache_nice_tries, sizeof(int), 0644, proc_dointvec_minmax);
261 set_table_entry(&table[5], "flags", &sd->flags, sizeof(int), 0644, proc_dointvec_minmax);
262 set_table_entry(&table[6], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax);
263 set_table_entry(&table[7], "name", sd->name, CORENAME_MAX_SIZE, 0444, proc_dostring);
264 /* &table[8] is terminator */
265
266 return table;
267 }
268
sd_alloc_ctl_cpu_table(int cpu)269 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
270 {
271 struct ctl_table *entry, *table;
272 struct sched_domain *sd;
273 int domain_num = 0, i;
274 char buf[32];
275
276 for_each_domain(cpu, sd)
277 domain_num++;
278 entry = table = sd_alloc_ctl_entry(domain_num + 1);
279 if (table == NULL)
280 return NULL;
281
282 i = 0;
283 for_each_domain(cpu, sd) {
284 snprintf(buf, 32, "domain%d", i);
285 entry->procname = kstrdup(buf, GFP_KERNEL);
286 entry->mode = 0555;
287 entry->child = sd_alloc_ctl_domain_table(sd);
288 entry++;
289 i++;
290 }
291 return table;
292 }
293
294 static cpumask_var_t sd_sysctl_cpus;
295 static struct ctl_table_header *sd_sysctl_header;
296
register_sched_domain_sysctl(void)297 void register_sched_domain_sysctl(void)
298 {
299 static struct ctl_table *cpu_entries;
300 static struct ctl_table **cpu_idx;
301 static bool init_done = false;
302 char buf[32];
303 int i;
304
305 if (!cpu_entries) {
306 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
307 if (!cpu_entries)
308 return;
309
310 WARN_ON(sd_ctl_dir[0].child);
311 sd_ctl_dir[0].child = cpu_entries;
312 }
313
314 if (!cpu_idx) {
315 struct ctl_table *e = cpu_entries;
316
317 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
318 if (!cpu_idx)
319 return;
320
321 /* deal with sparse possible map */
322 for_each_possible_cpu(i) {
323 cpu_idx[i] = e;
324 e++;
325 }
326 }
327
328 if (!cpumask_available(sd_sysctl_cpus)) {
329 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
330 return;
331 }
332
333 if (!init_done) {
334 init_done = true;
335 /* init to possible to not have holes in @cpu_entries */
336 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
337 }
338
339 for_each_cpu(i, sd_sysctl_cpus) {
340 struct ctl_table *e = cpu_idx[i];
341
342 if (e->child)
343 sd_free_ctl_entry(&e->child);
344
345 if (!e->procname) {
346 snprintf(buf, 32, "cpu%d", i);
347 e->procname = kstrdup(buf, GFP_KERNEL);
348 }
349 e->mode = 0555;
350 e->child = sd_alloc_ctl_cpu_table(i);
351
352 __cpumask_clear_cpu(i, sd_sysctl_cpus);
353 }
354
355 WARN_ON(sd_sysctl_header);
356 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
357 }
358
dirty_sched_domain_sysctl(int cpu)359 void dirty_sched_domain_sysctl(int cpu)
360 {
361 if (cpumask_available(sd_sysctl_cpus))
362 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
363 }
364
365 /* may be called multiple times per register */
unregister_sched_domain_sysctl(void)366 void unregister_sched_domain_sysctl(void)
367 {
368 unregister_sysctl_table(sd_sysctl_header);
369 sd_sysctl_header = NULL;
370 }
371 #endif /* CONFIG_SYSCTL */
372 #endif /* CONFIG_SMP */
373
374 #ifdef CONFIG_FAIR_GROUP_SCHED
print_cfs_group_stats(struct seq_file * m,int cpu,struct task_group * tg)375 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
376 {
377 struct sched_entity *se = tg->se[cpu];
378
379 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
380 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F))
381 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
382 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
383
384 if (!se)
385 return;
386
387 PN(se->exec_start);
388 PN(se->vruntime);
389 PN(se->sum_exec_runtime);
390
391 if (schedstat_enabled()) {
392 PN_SCHEDSTAT(se->statistics.wait_start);
393 PN_SCHEDSTAT(se->statistics.sleep_start);
394 PN_SCHEDSTAT(se->statistics.block_start);
395 PN_SCHEDSTAT(se->statistics.sleep_max);
396 PN_SCHEDSTAT(se->statistics.block_max);
397 PN_SCHEDSTAT(se->statistics.exec_max);
398 PN_SCHEDSTAT(se->statistics.slice_max);
399 PN_SCHEDSTAT(se->statistics.wait_max);
400 PN_SCHEDSTAT(se->statistics.wait_sum);
401 P_SCHEDSTAT(se->statistics.wait_count);
402 }
403
404 P(se->load.weight);
405 P(se->runnable_weight);
406 #ifdef CONFIG_SMP
407 P(se->avg.load_avg);
408 P(se->avg.util_avg);
409 P(se->avg.runnable_load_avg);
410 #endif
411
412 #undef PN_SCHEDSTAT
413 #undef PN
414 #undef P_SCHEDSTAT
415 #undef P
416 }
417 #endif
418
419 #ifdef CONFIG_CGROUP_SCHED
420 static char group_path[PATH_MAX];
421
task_group_path(struct task_group * tg)422 static char *task_group_path(struct task_group *tg)
423 {
424 if (autogroup_path(tg, group_path, PATH_MAX))
425 return group_path;
426
427 cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
428
429 return group_path;
430 }
431 #endif
432
433 static void
print_task(struct seq_file * m,struct rq * rq,struct task_struct * p)434 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
435 {
436 if (rq->curr == p)
437 SEQ_printf(m, ">R");
438 else
439 SEQ_printf(m, " %c", task_state_to_char(p));
440
441 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
442 p->comm, task_pid_nr(p),
443 SPLIT_NS(p->se.vruntime),
444 (long long)(p->nvcsw + p->nivcsw),
445 p->prio);
446
447 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
448 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
449 SPLIT_NS(p->se.sum_exec_runtime),
450 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
451
452 #ifdef CONFIG_NUMA_BALANCING
453 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
454 #endif
455 #ifdef CONFIG_CGROUP_SCHED
456 SEQ_printf(m, " %s", task_group_path(task_group(p)));
457 #endif
458
459 SEQ_printf(m, "\n");
460 }
461
print_rq(struct seq_file * m,struct rq * rq,int rq_cpu)462 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
463 {
464 struct task_struct *g, *p;
465
466 SEQ_printf(m, "\n");
467 SEQ_printf(m, "runnable tasks:\n");
468 SEQ_printf(m, " S task PID tree-key switches prio"
469 " wait-time sum-exec sum-sleep\n");
470 SEQ_printf(m, "-------------------------------------------------------"
471 "----------------------------------------------------\n");
472
473 rcu_read_lock();
474 for_each_process_thread(g, p) {
475 if (task_cpu(p) != rq_cpu)
476 continue;
477
478 print_task(m, rq, p);
479 }
480 rcu_read_unlock();
481 }
482
print_cfs_rq(struct seq_file * m,int cpu,struct cfs_rq * cfs_rq)483 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
484 {
485 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
486 spread, rq0_min_vruntime, spread0;
487 struct rq *rq = cpu_rq(cpu);
488 struct sched_entity *last;
489 unsigned long flags;
490
491 #ifdef CONFIG_FAIR_GROUP_SCHED
492 SEQ_printf(m, "\n");
493 SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
494 #else
495 SEQ_printf(m, "\n");
496 SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
497 #endif
498 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
499 SPLIT_NS(cfs_rq->exec_clock));
500
501 raw_spin_lock_irqsave(&rq->lock, flags);
502 if (rb_first_cached(&cfs_rq->tasks_timeline))
503 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
504 last = __pick_last_entity(cfs_rq);
505 if (last)
506 max_vruntime = last->vruntime;
507 min_vruntime = cfs_rq->min_vruntime;
508 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
509 raw_spin_unlock_irqrestore(&rq->lock, flags);
510 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
511 SPLIT_NS(MIN_vruntime));
512 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
513 SPLIT_NS(min_vruntime));
514 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
515 SPLIT_NS(max_vruntime));
516 spread = max_vruntime - MIN_vruntime;
517 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
518 SPLIT_NS(spread));
519 spread0 = min_vruntime - rq0_min_vruntime;
520 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
521 SPLIT_NS(spread0));
522 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
523 cfs_rq->nr_spread_over);
524 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
525 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
526 #ifdef CONFIG_SMP
527 SEQ_printf(m, " .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
528 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
529 cfs_rq->avg.load_avg);
530 SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg",
531 cfs_rq->avg.runnable_load_avg);
532 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
533 cfs_rq->avg.util_avg);
534 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued",
535 cfs_rq->avg.util_est.enqueued);
536 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
537 cfs_rq->removed.load_avg);
538 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
539 cfs_rq->removed.util_avg);
540 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_sum",
541 cfs_rq->removed.runnable_sum);
542 #ifdef CONFIG_FAIR_GROUP_SCHED
543 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
544 cfs_rq->tg_load_avg_contrib);
545 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
546 atomic_long_read(&cfs_rq->tg->load_avg));
547 #endif
548 #endif
549 #ifdef CONFIG_CFS_BANDWIDTH
550 SEQ_printf(m, " .%-30s: %d\n", "throttled",
551 cfs_rq->throttled);
552 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
553 cfs_rq->throttle_count);
554 #endif
555
556 #ifdef CONFIG_FAIR_GROUP_SCHED
557 print_cfs_group_stats(m, cpu, cfs_rq->tg);
558 #endif
559 }
560
print_rt_rq(struct seq_file * m,int cpu,struct rt_rq * rt_rq)561 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
562 {
563 #ifdef CONFIG_RT_GROUP_SCHED
564 SEQ_printf(m, "\n");
565 SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
566 #else
567 SEQ_printf(m, "\n");
568 SEQ_printf(m, "rt_rq[%d]:\n", cpu);
569 #endif
570
571 #define P(x) \
572 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
573 #define PU(x) \
574 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
575 #define PN(x) \
576 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
577
578 PU(rt_nr_running);
579 #ifdef CONFIG_SMP
580 PU(rt_nr_migratory);
581 #endif
582 P(rt_throttled);
583 PN(rt_time);
584 PN(rt_runtime);
585
586 #undef PN
587 #undef PU
588 #undef P
589 }
590
print_dl_rq(struct seq_file * m,int cpu,struct dl_rq * dl_rq)591 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
592 {
593 struct dl_bw *dl_bw;
594
595 SEQ_printf(m, "\n");
596 SEQ_printf(m, "dl_rq[%d]:\n", cpu);
597
598 #define PU(x) \
599 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
600
601 PU(dl_nr_running);
602 #ifdef CONFIG_SMP
603 PU(dl_nr_migratory);
604 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
605 #else
606 dl_bw = &dl_rq->dl_bw;
607 #endif
608 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
609 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
610
611 #undef PU
612 }
613
print_cpu(struct seq_file * m,int cpu)614 static void print_cpu(struct seq_file *m, int cpu)
615 {
616 struct rq *rq = cpu_rq(cpu);
617 unsigned long flags;
618
619 #ifdef CONFIG_X86
620 {
621 unsigned int freq = cpu_khz ? : 1;
622
623 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
624 cpu, freq / 1000, (freq % 1000));
625 }
626 #else
627 SEQ_printf(m, "cpu#%d\n", cpu);
628 #endif
629
630 #define P(x) \
631 do { \
632 if (sizeof(rq->x) == 4) \
633 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
634 else \
635 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
636 } while (0)
637
638 #define PN(x) \
639 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
640
641 P(nr_running);
642 P(nr_switches);
643 P(nr_load_updates);
644 P(nr_uninterruptible);
645 PN(next_balance);
646 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
647 PN(clock);
648 PN(clock_task);
649 #undef P
650 #undef PN
651
652 #ifdef CONFIG_SMP
653 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
654 P64(avg_idle);
655 P64(max_idle_balance_cost);
656 #undef P64
657 #endif
658
659 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
660 if (schedstat_enabled()) {
661 P(yld_count);
662 P(sched_count);
663 P(sched_goidle);
664 P(ttwu_count);
665 P(ttwu_local);
666 }
667 #undef P
668
669 spin_lock_irqsave(&sched_debug_lock, flags);
670 print_cfs_stats(m, cpu);
671 print_rt_stats(m, cpu);
672 print_dl_stats(m, cpu);
673
674 print_rq(m, rq, cpu);
675 spin_unlock_irqrestore(&sched_debug_lock, flags);
676 SEQ_printf(m, "\n");
677 }
678
679 static const char *sched_tunable_scaling_names[] = {
680 "none",
681 "logarithmic",
682 "linear"
683 };
684
sched_debug_header(struct seq_file * m)685 static void sched_debug_header(struct seq_file *m)
686 {
687 u64 ktime, sched_clk, cpu_clk;
688 unsigned long flags;
689
690 local_irq_save(flags);
691 ktime = ktime_to_ns(ktime_get());
692 sched_clk = sched_clock();
693 cpu_clk = local_clock();
694 local_irq_restore(flags);
695
696 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
697 init_utsname()->release,
698 (int)strcspn(init_utsname()->version, " "),
699 init_utsname()->version);
700
701 #define P(x) \
702 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
703 #define PN(x) \
704 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
705 PN(ktime);
706 PN(sched_clk);
707 PN(cpu_clk);
708 P(jiffies);
709 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
710 P(sched_clock_stable());
711 #endif
712 #undef PN
713 #undef P
714
715 SEQ_printf(m, "\n");
716 SEQ_printf(m, "sysctl_sched\n");
717
718 #define P(x) \
719 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
720 #define PN(x) \
721 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
722 PN(sysctl_sched_latency);
723 PN(sysctl_sched_min_granularity);
724 PN(sysctl_sched_wakeup_granularity);
725 P(sysctl_sched_child_runs_first);
726 P(sysctl_sched_features);
727 #undef PN
728 #undef P
729
730 SEQ_printf(m, " .%-40s: %d (%s)\n",
731 "sysctl_sched_tunable_scaling",
732 sysctl_sched_tunable_scaling,
733 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
734 SEQ_printf(m, "\n");
735 }
736
sched_debug_show(struct seq_file * m,void * v)737 static int sched_debug_show(struct seq_file *m, void *v)
738 {
739 int cpu = (unsigned long)(v - 2);
740
741 if (cpu != -1)
742 print_cpu(m, cpu);
743 else
744 sched_debug_header(m);
745
746 return 0;
747 }
748
sysrq_sched_debug_show(void)749 void sysrq_sched_debug_show(void)
750 {
751 int cpu;
752
753 sched_debug_header(NULL);
754 for_each_online_cpu(cpu)
755 print_cpu(NULL, cpu);
756
757 }
758
759 /*
760 * This itererator needs some explanation.
761 * It returns 1 for the header position.
762 * This means 2 is CPU 0.
763 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
764 * to use cpumask_* to iterate over the CPUs.
765 */
sched_debug_start(struct seq_file * file,loff_t * offset)766 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
767 {
768 unsigned long n = *offset;
769
770 if (n == 0)
771 return (void *) 1;
772
773 n--;
774
775 if (n > 0)
776 n = cpumask_next(n - 1, cpu_online_mask);
777 else
778 n = cpumask_first(cpu_online_mask);
779
780 *offset = n + 1;
781
782 if (n < nr_cpu_ids)
783 return (void *)(unsigned long)(n + 2);
784
785 return NULL;
786 }
787
sched_debug_next(struct seq_file * file,void * data,loff_t * offset)788 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
789 {
790 (*offset)++;
791 return sched_debug_start(file, offset);
792 }
793
sched_debug_stop(struct seq_file * file,void * data)794 static void sched_debug_stop(struct seq_file *file, void *data)
795 {
796 }
797
798 static const struct seq_operations sched_debug_sops = {
799 .start = sched_debug_start,
800 .next = sched_debug_next,
801 .stop = sched_debug_stop,
802 .show = sched_debug_show,
803 };
804
init_sched_debug_procfs(void)805 static int __init init_sched_debug_procfs(void)
806 {
807 if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops))
808 return -ENOMEM;
809 return 0;
810 }
811
812 __initcall(init_sched_debug_procfs);
813
814 #define __P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
815 #define P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
816 #define __PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
817 #define PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
818
819
820 #ifdef CONFIG_NUMA_BALANCING
print_numa_stats(struct seq_file * m,int node,unsigned long tsf,unsigned long tpf,unsigned long gsf,unsigned long gpf)821 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
822 unsigned long tpf, unsigned long gsf, unsigned long gpf)
823 {
824 SEQ_printf(m, "numa_faults node=%d ", node);
825 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
826 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
827 }
828 #endif
829
830
sched_show_numa(struct task_struct * p,struct seq_file * m)831 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
832 {
833 #ifdef CONFIG_NUMA_BALANCING
834 struct mempolicy *pol;
835
836 if (p->mm)
837 P(mm->numa_scan_seq);
838
839 task_lock(p);
840 pol = p->mempolicy;
841 if (pol && !(pol->flags & MPOL_F_MORON))
842 pol = NULL;
843 mpol_get(pol);
844 task_unlock(p);
845
846 P(numa_pages_migrated);
847 P(numa_preferred_nid);
848 P(total_numa_faults);
849 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
850 task_node(p), task_numa_group_id(p));
851 show_numa_stats(p, m);
852 mpol_put(pol);
853 #endif
854 }
855
proc_sched_show_task(struct task_struct * p,struct pid_namespace * ns,struct seq_file * m)856 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
857 struct seq_file *m)
858 {
859 unsigned long nr_switches;
860
861 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
862 get_nr_threads(p));
863 SEQ_printf(m,
864 "---------------------------------------------------------"
865 "----------\n");
866 #define __P(F) \
867 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
868 #define P(F) \
869 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
870 #define P_SCHEDSTAT(F) \
871 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
872 #define __PN(F) \
873 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
874 #define PN(F) \
875 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
876 #define PN_SCHEDSTAT(F) \
877 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
878
879 PN(se.exec_start);
880 PN(se.vruntime);
881 PN(se.sum_exec_runtime);
882
883 nr_switches = p->nvcsw + p->nivcsw;
884
885 P(se.nr_migrations);
886
887 if (schedstat_enabled()) {
888 u64 avg_atom, avg_per_cpu;
889
890 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
891 PN_SCHEDSTAT(se.statistics.wait_start);
892 PN_SCHEDSTAT(se.statistics.sleep_start);
893 PN_SCHEDSTAT(se.statistics.block_start);
894 PN_SCHEDSTAT(se.statistics.sleep_max);
895 PN_SCHEDSTAT(se.statistics.block_max);
896 PN_SCHEDSTAT(se.statistics.exec_max);
897 PN_SCHEDSTAT(se.statistics.slice_max);
898 PN_SCHEDSTAT(se.statistics.wait_max);
899 PN_SCHEDSTAT(se.statistics.wait_sum);
900 P_SCHEDSTAT(se.statistics.wait_count);
901 PN_SCHEDSTAT(se.statistics.iowait_sum);
902 P_SCHEDSTAT(se.statistics.iowait_count);
903 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
904 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
905 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
906 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
907 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
908 P_SCHEDSTAT(se.statistics.nr_wakeups);
909 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
910 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
911 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
912 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
913 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
914 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
915 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
916 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
917
918 avg_atom = p->se.sum_exec_runtime;
919 if (nr_switches)
920 avg_atom = div64_ul(avg_atom, nr_switches);
921 else
922 avg_atom = -1LL;
923
924 avg_per_cpu = p->se.sum_exec_runtime;
925 if (p->se.nr_migrations) {
926 avg_per_cpu = div64_u64(avg_per_cpu,
927 p->se.nr_migrations);
928 } else {
929 avg_per_cpu = -1LL;
930 }
931
932 __PN(avg_atom);
933 __PN(avg_per_cpu);
934 }
935
936 __P(nr_switches);
937 SEQ_printf(m, "%-45s:%21Ld\n",
938 "nr_voluntary_switches", (long long)p->nvcsw);
939 SEQ_printf(m, "%-45s:%21Ld\n",
940 "nr_involuntary_switches", (long long)p->nivcsw);
941
942 P(se.load.weight);
943 P(se.runnable_weight);
944 #ifdef CONFIG_SMP
945 P(se.avg.load_sum);
946 P(se.avg.runnable_load_sum);
947 P(se.avg.util_sum);
948 P(se.avg.load_avg);
949 P(se.avg.runnable_load_avg);
950 P(se.avg.util_avg);
951 P(se.avg.last_update_time);
952 P(se.avg.util_est.ewma);
953 P(se.avg.util_est.enqueued);
954 #endif
955 P(policy);
956 P(prio);
957 if (task_has_dl_policy(p)) {
958 P(dl.runtime);
959 P(dl.deadline);
960 }
961 #undef PN_SCHEDSTAT
962 #undef PN
963 #undef __PN
964 #undef P_SCHEDSTAT
965 #undef P
966 #undef __P
967
968 {
969 unsigned int this_cpu = raw_smp_processor_id();
970 u64 t0, t1;
971
972 t0 = cpu_clock(this_cpu);
973 t1 = cpu_clock(this_cpu);
974 SEQ_printf(m, "%-45s:%21Ld\n",
975 "clock-delta", (long long)(t1-t0));
976 }
977
978 sched_show_numa(p, m);
979 }
980
proc_sched_set_task(struct task_struct * p)981 void proc_sched_set_task(struct task_struct *p)
982 {
983 #ifdef CONFIG_SCHEDSTATS
984 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
985 #endif
986 }
987