1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * XArray implementation
4 * Copyright (c) 2017-2018 Microsoft Corporation
5 * Copyright (c) 2018-2020 Oracle
6 * Author: Matthew Wilcox <willy@infradead.org>
7 */
8
9 #include <linux/bitmap.h>
10 #include <linux/export.h>
11 #include <linux/list.h>
12 #include <linux/slab.h>
13 #include <linux/xarray.h>
14
15 /*
16 * Coding conventions in this file:
17 *
18 * @xa is used to refer to the entire xarray.
19 * @xas is the 'xarray operation state'. It may be either a pointer to
20 * an xa_state, or an xa_state stored on the stack. This is an unfortunate
21 * ambiguity.
22 * @index is the index of the entry being operated on
23 * @mark is an xa_mark_t; a small number indicating one of the mark bits.
24 * @node refers to an xa_node; usually the primary one being operated on by
25 * this function.
26 * @offset is the index into the slots array inside an xa_node.
27 * @parent refers to the @xa_node closer to the head than @node.
28 * @entry refers to something stored in a slot in the xarray
29 */
30
xa_lock_type(const struct xarray * xa)31 static inline unsigned int xa_lock_type(const struct xarray *xa)
32 {
33 return (__force unsigned int)xa->xa_flags & 3;
34 }
35
xas_lock_type(struct xa_state * xas,unsigned int lock_type)36 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
37 {
38 if (lock_type == XA_LOCK_IRQ)
39 xas_lock_irq(xas);
40 else if (lock_type == XA_LOCK_BH)
41 xas_lock_bh(xas);
42 else
43 xas_lock(xas);
44 }
45
xas_unlock_type(struct xa_state * xas,unsigned int lock_type)46 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
47 {
48 if (lock_type == XA_LOCK_IRQ)
49 xas_unlock_irq(xas);
50 else if (lock_type == XA_LOCK_BH)
51 xas_unlock_bh(xas);
52 else
53 xas_unlock(xas);
54 }
55
xa_track_free(const struct xarray * xa)56 static inline bool xa_track_free(const struct xarray *xa)
57 {
58 return xa->xa_flags & XA_FLAGS_TRACK_FREE;
59 }
60
xa_zero_busy(const struct xarray * xa)61 static inline bool xa_zero_busy(const struct xarray *xa)
62 {
63 return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
64 }
65
xa_mark_set(struct xarray * xa,xa_mark_t mark)66 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
67 {
68 if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
69 xa->xa_flags |= XA_FLAGS_MARK(mark);
70 }
71
xa_mark_clear(struct xarray * xa,xa_mark_t mark)72 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
73 {
74 if (xa->xa_flags & XA_FLAGS_MARK(mark))
75 xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
76 }
77
node_marks(struct xa_node * node,xa_mark_t mark)78 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
79 {
80 return node->marks[(__force unsigned)mark];
81 }
82
node_get_mark(struct xa_node * node,unsigned int offset,xa_mark_t mark)83 static inline bool node_get_mark(struct xa_node *node,
84 unsigned int offset, xa_mark_t mark)
85 {
86 return test_bit(offset, node_marks(node, mark));
87 }
88
89 /* returns true if the bit was set */
node_set_mark(struct xa_node * node,unsigned int offset,xa_mark_t mark)90 static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
91 xa_mark_t mark)
92 {
93 return __test_and_set_bit(offset, node_marks(node, mark));
94 }
95
96 /* returns true if the bit was set */
node_clear_mark(struct xa_node * node,unsigned int offset,xa_mark_t mark)97 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
98 xa_mark_t mark)
99 {
100 return __test_and_clear_bit(offset, node_marks(node, mark));
101 }
102
node_any_mark(struct xa_node * node,xa_mark_t mark)103 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
104 {
105 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
106 }
107
node_mark_all(struct xa_node * node,xa_mark_t mark)108 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
109 {
110 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
111 }
112
113 #define mark_inc(mark) do { \
114 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
115 } while (0)
116
117 /*
118 * xas_squash_marks() - Merge all marks to the first entry
119 * @xas: Array operation state.
120 *
121 * Set a mark on the first entry if any entry has it set. Clear marks on
122 * all sibling entries.
123 */
xas_squash_marks(const struct xa_state * xas)124 static void xas_squash_marks(const struct xa_state *xas)
125 {
126 unsigned int mark = 0;
127 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
128
129 if (!xas->xa_sibs)
130 return;
131
132 do {
133 unsigned long *marks = xas->xa_node->marks[mark];
134 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
135 continue;
136 __set_bit(xas->xa_offset, marks);
137 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
138 } while (mark++ != (__force unsigned)XA_MARK_MAX);
139 }
140
141 /* extracts the offset within this node from the index */
get_offset(unsigned long index,struct xa_node * node)142 static unsigned int get_offset(unsigned long index, struct xa_node *node)
143 {
144 return (index >> node->shift) & XA_CHUNK_MASK;
145 }
146
xas_set_offset(struct xa_state * xas)147 static void xas_set_offset(struct xa_state *xas)
148 {
149 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
150 }
151
152 /* move the index either forwards (find) or backwards (sibling slot) */
xas_move_index(struct xa_state * xas,unsigned long offset)153 static void xas_move_index(struct xa_state *xas, unsigned long offset)
154 {
155 unsigned int shift = xas->xa_node->shift;
156 xas->xa_index &= ~XA_CHUNK_MASK << shift;
157 xas->xa_index += offset << shift;
158 }
159
xas_advance(struct xa_state * xas)160 static void xas_advance(struct xa_state *xas)
161 {
162 xas->xa_offset++;
163 xas_move_index(xas, xas->xa_offset);
164 }
165
set_bounds(struct xa_state * xas)166 static void *set_bounds(struct xa_state *xas)
167 {
168 xas->xa_node = XAS_BOUNDS;
169 return NULL;
170 }
171
172 /*
173 * Starts a walk. If the @xas is already valid, we assume that it's on
174 * the right path and just return where we've got to. If we're in an
175 * error state, return NULL. If the index is outside the current scope
176 * of the xarray, return NULL without changing @xas->xa_node. Otherwise
177 * set @xas->xa_node to NULL and return the current head of the array.
178 */
xas_start(struct xa_state * xas)179 static void *xas_start(struct xa_state *xas)
180 {
181 void *entry;
182
183 if (xas_valid(xas))
184 return xas_reload(xas);
185 if (xas_error(xas))
186 return NULL;
187
188 entry = xa_head(xas->xa);
189 if (!xa_is_node(entry)) {
190 if (xas->xa_index)
191 return set_bounds(xas);
192 } else {
193 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
194 return set_bounds(xas);
195 }
196
197 xas->xa_node = NULL;
198 return entry;
199 }
200
xas_descend(struct xa_state * xas,struct xa_node * node)201 static void *xas_descend(struct xa_state *xas, struct xa_node *node)
202 {
203 unsigned int offset = get_offset(xas->xa_index, node);
204 void *entry = xa_entry(xas->xa, node, offset);
205
206 xas->xa_node = node;
207 if (xa_is_sibling(entry)) {
208 offset = xa_to_sibling(entry);
209 entry = xa_entry(xas->xa, node, offset);
210 }
211
212 xas->xa_offset = offset;
213 return entry;
214 }
215
216 /**
217 * xas_load() - Load an entry from the XArray (advanced).
218 * @xas: XArray operation state.
219 *
220 * Usually walks the @xas to the appropriate state to load the entry
221 * stored at xa_index. However, it will do nothing and return %NULL if
222 * @xas is in an error state. xas_load() will never expand the tree.
223 *
224 * If the xa_state is set up to operate on a multi-index entry, xas_load()
225 * may return %NULL or an internal entry, even if there are entries
226 * present within the range specified by @xas.
227 *
228 * Context: Any context. The caller should hold the xa_lock or the RCU lock.
229 * Return: Usually an entry in the XArray, but see description for exceptions.
230 */
xas_load(struct xa_state * xas)231 void *xas_load(struct xa_state *xas)
232 {
233 void *entry = xas_start(xas);
234
235 while (xa_is_node(entry)) {
236 struct xa_node *node = xa_to_node(entry);
237
238 if (xas->xa_shift > node->shift)
239 break;
240 entry = xas_descend(xas, node);
241 if (node->shift == 0)
242 break;
243 }
244 return entry;
245 }
246 EXPORT_SYMBOL_GPL(xas_load);
247
248 /* Move the radix tree node cache here */
249 extern struct kmem_cache *radix_tree_node_cachep;
250 extern void radix_tree_node_rcu_free(struct rcu_head *head);
251
252 #define XA_RCU_FREE ((struct xarray *)1)
253
xa_node_free(struct xa_node * node)254 static void xa_node_free(struct xa_node *node)
255 {
256 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
257 node->array = XA_RCU_FREE;
258 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
259 }
260
261 /*
262 * xas_destroy() - Free any resources allocated during the XArray operation.
263 * @xas: XArray operation state.
264 *
265 * This function is now internal-only.
266 */
xas_destroy(struct xa_state * xas)267 static void xas_destroy(struct xa_state *xas)
268 {
269 struct xa_node *node = xas->xa_alloc;
270
271 if (!node)
272 return;
273 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
274 kmem_cache_free(radix_tree_node_cachep, node);
275 xas->xa_alloc = NULL;
276 }
277
278 /**
279 * xas_nomem() - Allocate memory if needed.
280 * @xas: XArray operation state.
281 * @gfp: Memory allocation flags.
282 *
283 * If we need to add new nodes to the XArray, we try to allocate memory
284 * with GFP_NOWAIT while holding the lock, which will usually succeed.
285 * If it fails, @xas is flagged as needing memory to continue. The caller
286 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds,
287 * the caller should retry the operation.
288 *
289 * Forward progress is guaranteed as one node is allocated here and
290 * stored in the xa_state where it will be found by xas_alloc(). More
291 * nodes will likely be found in the slab allocator, but we do not tie
292 * them up here.
293 *
294 * Return: true if memory was needed, and was successfully allocated.
295 */
xas_nomem(struct xa_state * xas,gfp_t gfp)296 bool xas_nomem(struct xa_state *xas, gfp_t gfp)
297 {
298 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
299 xas_destroy(xas);
300 return false;
301 }
302 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
303 gfp |= __GFP_ACCOUNT;
304 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
305 if (!xas->xa_alloc)
306 return false;
307 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
308 xas->xa_node = XAS_RESTART;
309 return true;
310 }
311 EXPORT_SYMBOL_GPL(xas_nomem);
312
313 /*
314 * __xas_nomem() - Drop locks and allocate memory if needed.
315 * @xas: XArray operation state.
316 * @gfp: Memory allocation flags.
317 *
318 * Internal variant of xas_nomem().
319 *
320 * Return: true if memory was needed, and was successfully allocated.
321 */
__xas_nomem(struct xa_state * xas,gfp_t gfp)322 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
323 __must_hold(xas->xa->xa_lock)
324 {
325 unsigned int lock_type = xa_lock_type(xas->xa);
326
327 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
328 xas_destroy(xas);
329 return false;
330 }
331 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
332 gfp |= __GFP_ACCOUNT;
333 if (gfpflags_allow_blocking(gfp)) {
334 xas_unlock_type(xas, lock_type);
335 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
336 xas_lock_type(xas, lock_type);
337 } else {
338 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
339 }
340 if (!xas->xa_alloc)
341 return false;
342 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
343 xas->xa_node = XAS_RESTART;
344 return true;
345 }
346
xas_update(struct xa_state * xas,struct xa_node * node)347 static void xas_update(struct xa_state *xas, struct xa_node *node)
348 {
349 if (xas->xa_update)
350 xas->xa_update(node);
351 else
352 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
353 }
354
xas_alloc(struct xa_state * xas,unsigned int shift)355 static void *xas_alloc(struct xa_state *xas, unsigned int shift)
356 {
357 struct xa_node *parent = xas->xa_node;
358 struct xa_node *node = xas->xa_alloc;
359
360 if (xas_invalid(xas))
361 return NULL;
362
363 if (node) {
364 xas->xa_alloc = NULL;
365 } else {
366 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
367
368 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
369 gfp |= __GFP_ACCOUNT;
370
371 node = kmem_cache_alloc(radix_tree_node_cachep, gfp);
372 if (!node) {
373 xas_set_err(xas, -ENOMEM);
374 return NULL;
375 }
376 }
377
378 if (parent) {
379 node->offset = xas->xa_offset;
380 parent->count++;
381 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
382 xas_update(xas, parent);
383 }
384 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
385 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
386 node->shift = shift;
387 node->count = 0;
388 node->nr_values = 0;
389 RCU_INIT_POINTER(node->parent, xas->xa_node);
390 node->array = xas->xa;
391
392 return node;
393 }
394
395 #ifdef CONFIG_XARRAY_MULTI
396 /* Returns the number of indices covered by a given xa_state */
xas_size(const struct xa_state * xas)397 static unsigned long xas_size(const struct xa_state *xas)
398 {
399 return (xas->xa_sibs + 1UL) << xas->xa_shift;
400 }
401 #endif
402
403 /*
404 * Use this to calculate the maximum index that will need to be created
405 * in order to add the entry described by @xas. Because we cannot store a
406 * multiple-index entry at index 0, the calculation is a little more complex
407 * than you might expect.
408 */
xas_max(struct xa_state * xas)409 static unsigned long xas_max(struct xa_state *xas)
410 {
411 unsigned long max = xas->xa_index;
412
413 #ifdef CONFIG_XARRAY_MULTI
414 if (xas->xa_shift || xas->xa_sibs) {
415 unsigned long mask = xas_size(xas) - 1;
416 max |= mask;
417 if (mask == max)
418 max++;
419 }
420 #endif
421
422 return max;
423 }
424
425 /* The maximum index that can be contained in the array without expanding it */
max_index(void * entry)426 static unsigned long max_index(void *entry)
427 {
428 if (!xa_is_node(entry))
429 return 0;
430 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
431 }
432
xas_shrink(struct xa_state * xas)433 static void xas_shrink(struct xa_state *xas)
434 {
435 struct xarray *xa = xas->xa;
436 struct xa_node *node = xas->xa_node;
437
438 for (;;) {
439 void *entry;
440
441 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
442 if (node->count != 1)
443 break;
444 entry = xa_entry_locked(xa, node, 0);
445 if (!entry)
446 break;
447 if (!xa_is_node(entry) && node->shift)
448 break;
449 if (xa_is_zero(entry) && xa_zero_busy(xa))
450 entry = NULL;
451 xas->xa_node = XAS_BOUNDS;
452
453 RCU_INIT_POINTER(xa->xa_head, entry);
454 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
455 xa_mark_clear(xa, XA_FREE_MARK);
456
457 node->count = 0;
458 node->nr_values = 0;
459 if (!xa_is_node(entry))
460 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
461 xas_update(xas, node);
462 xa_node_free(node);
463 if (!xa_is_node(entry))
464 break;
465 node = xa_to_node(entry);
466 node->parent = NULL;
467 }
468 }
469
470 /*
471 * xas_delete_node() - Attempt to delete an xa_node
472 * @xas: Array operation state.
473 *
474 * Attempts to delete the @xas->xa_node. This will fail if xa->node has
475 * a non-zero reference count.
476 */
xas_delete_node(struct xa_state * xas)477 static void xas_delete_node(struct xa_state *xas)
478 {
479 struct xa_node *node = xas->xa_node;
480
481 for (;;) {
482 struct xa_node *parent;
483
484 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
485 if (node->count)
486 break;
487
488 parent = xa_parent_locked(xas->xa, node);
489 xas->xa_node = parent;
490 xas->xa_offset = node->offset;
491 xa_node_free(node);
492
493 if (!parent) {
494 xas->xa->xa_head = NULL;
495 xas->xa_node = XAS_BOUNDS;
496 return;
497 }
498
499 parent->slots[xas->xa_offset] = NULL;
500 parent->count--;
501 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
502 node = parent;
503 xas_update(xas, node);
504 }
505
506 if (!node->parent)
507 xas_shrink(xas);
508 }
509
510 /**
511 * xas_free_nodes() - Free this node and all nodes that it references
512 * @xas: Array operation state.
513 * @top: Node to free
514 *
515 * This node has been removed from the tree. We must now free it and all
516 * of its subnodes. There may be RCU walkers with references into the tree,
517 * so we must replace all entries with retry markers.
518 */
xas_free_nodes(struct xa_state * xas,struct xa_node * top)519 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
520 {
521 unsigned int offset = 0;
522 struct xa_node *node = top;
523
524 for (;;) {
525 void *entry = xa_entry_locked(xas->xa, node, offset);
526
527 if (node->shift && xa_is_node(entry)) {
528 node = xa_to_node(entry);
529 offset = 0;
530 continue;
531 }
532 if (entry)
533 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
534 offset++;
535 while (offset == XA_CHUNK_SIZE) {
536 struct xa_node *parent;
537
538 parent = xa_parent_locked(xas->xa, node);
539 offset = node->offset + 1;
540 node->count = 0;
541 node->nr_values = 0;
542 xas_update(xas, node);
543 xa_node_free(node);
544 if (node == top)
545 return;
546 node = parent;
547 }
548 }
549 }
550
551 /*
552 * xas_expand adds nodes to the head of the tree until it has reached
553 * sufficient height to be able to contain @xas->xa_index
554 */
xas_expand(struct xa_state * xas,void * head)555 static int xas_expand(struct xa_state *xas, void *head)
556 {
557 struct xarray *xa = xas->xa;
558 struct xa_node *node = NULL;
559 unsigned int shift = 0;
560 unsigned long max = xas_max(xas);
561
562 if (!head) {
563 if (max == 0)
564 return 0;
565 while ((max >> shift) >= XA_CHUNK_SIZE)
566 shift += XA_CHUNK_SHIFT;
567 return shift + XA_CHUNK_SHIFT;
568 } else if (xa_is_node(head)) {
569 node = xa_to_node(head);
570 shift = node->shift + XA_CHUNK_SHIFT;
571 }
572 xas->xa_node = NULL;
573
574 while (max > max_index(head)) {
575 xa_mark_t mark = 0;
576
577 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
578 node = xas_alloc(xas, shift);
579 if (!node)
580 return -ENOMEM;
581
582 node->count = 1;
583 if (xa_is_value(head))
584 node->nr_values = 1;
585 RCU_INIT_POINTER(node->slots[0], head);
586
587 /* Propagate the aggregated mark info to the new child */
588 for (;;) {
589 if (xa_track_free(xa) && mark == XA_FREE_MARK) {
590 node_mark_all(node, XA_FREE_MARK);
591 if (!xa_marked(xa, XA_FREE_MARK)) {
592 node_clear_mark(node, 0, XA_FREE_MARK);
593 xa_mark_set(xa, XA_FREE_MARK);
594 }
595 } else if (xa_marked(xa, mark)) {
596 node_set_mark(node, 0, mark);
597 }
598 if (mark == XA_MARK_MAX)
599 break;
600 mark_inc(mark);
601 }
602
603 /*
604 * Now that the new node is fully initialised, we can add
605 * it to the tree
606 */
607 if (xa_is_node(head)) {
608 xa_to_node(head)->offset = 0;
609 rcu_assign_pointer(xa_to_node(head)->parent, node);
610 }
611 head = xa_mk_node(node);
612 rcu_assign_pointer(xa->xa_head, head);
613 xas_update(xas, node);
614
615 shift += XA_CHUNK_SHIFT;
616 }
617
618 xas->xa_node = node;
619 return shift;
620 }
621
622 /*
623 * xas_create() - Create a slot to store an entry in.
624 * @xas: XArray operation state.
625 * @allow_root: %true if we can store the entry in the root directly
626 *
627 * Most users will not need to call this function directly, as it is called
628 * by xas_store(). It is useful for doing conditional store operations
629 * (see the xa_cmpxchg() implementation for an example).
630 *
631 * Return: If the slot already existed, returns the contents of this slot.
632 * If the slot was newly created, returns %NULL. If it failed to create the
633 * slot, returns %NULL and indicates the error in @xas.
634 */
xas_create(struct xa_state * xas,bool allow_root)635 static void *xas_create(struct xa_state *xas, bool allow_root)
636 {
637 struct xarray *xa = xas->xa;
638 void *entry;
639 void __rcu **slot;
640 struct xa_node *node = xas->xa_node;
641 int shift;
642 unsigned int order = xas->xa_shift;
643
644 if (xas_top(node)) {
645 entry = xa_head_locked(xa);
646 xas->xa_node = NULL;
647 if (!entry && xa_zero_busy(xa))
648 entry = XA_ZERO_ENTRY;
649 shift = xas_expand(xas, entry);
650 if (shift < 0)
651 return NULL;
652 if (!shift && !allow_root)
653 shift = XA_CHUNK_SHIFT;
654 entry = xa_head_locked(xa);
655 slot = &xa->xa_head;
656 } else if (xas_error(xas)) {
657 return NULL;
658 } else if (node) {
659 unsigned int offset = xas->xa_offset;
660
661 shift = node->shift;
662 entry = xa_entry_locked(xa, node, offset);
663 slot = &node->slots[offset];
664 } else {
665 shift = 0;
666 entry = xa_head_locked(xa);
667 slot = &xa->xa_head;
668 }
669
670 while (shift > order) {
671 shift -= XA_CHUNK_SHIFT;
672 if (!entry) {
673 node = xas_alloc(xas, shift);
674 if (!node)
675 break;
676 if (xa_track_free(xa))
677 node_mark_all(node, XA_FREE_MARK);
678 rcu_assign_pointer(*slot, xa_mk_node(node));
679 } else if (xa_is_node(entry)) {
680 node = xa_to_node(entry);
681 } else {
682 break;
683 }
684 entry = xas_descend(xas, node);
685 slot = &node->slots[xas->xa_offset];
686 }
687
688 return entry;
689 }
690
691 /**
692 * xas_create_range() - Ensure that stores to this range will succeed
693 * @xas: XArray operation state.
694 *
695 * Creates all of the slots in the range covered by @xas. Sets @xas to
696 * create single-index entries and positions it at the beginning of the
697 * range. This is for the benefit of users which have not yet been
698 * converted to use multi-index entries.
699 */
xas_create_range(struct xa_state * xas)700 void xas_create_range(struct xa_state *xas)
701 {
702 unsigned long index = xas->xa_index;
703 unsigned char shift = xas->xa_shift;
704 unsigned char sibs = xas->xa_sibs;
705
706 xas->xa_index |= ((sibs + 1) << shift) - 1;
707 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
708 xas->xa_offset |= sibs;
709 xas->xa_shift = 0;
710 xas->xa_sibs = 0;
711
712 for (;;) {
713 xas_create(xas, true);
714 if (xas_error(xas))
715 goto restore;
716 if (xas->xa_index <= (index | XA_CHUNK_MASK))
717 goto success;
718 xas->xa_index -= XA_CHUNK_SIZE;
719
720 for (;;) {
721 struct xa_node *node = xas->xa_node;
722 xas->xa_node = xa_parent_locked(xas->xa, node);
723 xas->xa_offset = node->offset - 1;
724 if (node->offset != 0)
725 break;
726 }
727 }
728
729 restore:
730 xas->xa_shift = shift;
731 xas->xa_sibs = sibs;
732 xas->xa_index = index;
733 return;
734 success:
735 xas->xa_index = index;
736 if (xas->xa_node)
737 xas_set_offset(xas);
738 }
739 EXPORT_SYMBOL_GPL(xas_create_range);
740
update_node(struct xa_state * xas,struct xa_node * node,int count,int values)741 static void update_node(struct xa_state *xas, struct xa_node *node,
742 int count, int values)
743 {
744 if (!node || (!count && !values))
745 return;
746
747 node->count += count;
748 node->nr_values += values;
749 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
750 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
751 xas_update(xas, node);
752 if (count < 0)
753 xas_delete_node(xas);
754 }
755
756 /**
757 * xas_store() - Store this entry in the XArray.
758 * @xas: XArray operation state.
759 * @entry: New entry.
760 *
761 * If @xas is operating on a multi-index entry, the entry returned by this
762 * function is essentially meaningless (it may be an internal entry or it
763 * may be %NULL, even if there are non-NULL entries at some of the indices
764 * covered by the range). This is not a problem for any current users,
765 * and can be changed if needed.
766 *
767 * Return: The old entry at this index.
768 */
xas_store(struct xa_state * xas,void * entry)769 void *xas_store(struct xa_state *xas, void *entry)
770 {
771 struct xa_node *node;
772 void __rcu **slot = &xas->xa->xa_head;
773 unsigned int offset, max;
774 int count = 0;
775 int values = 0;
776 void *first, *next;
777 bool value = xa_is_value(entry);
778
779 if (entry) {
780 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
781 first = xas_create(xas, allow_root);
782 } else {
783 first = xas_load(xas);
784 }
785
786 if (xas_invalid(xas))
787 return first;
788 node = xas->xa_node;
789 if (node && (xas->xa_shift < node->shift))
790 xas->xa_sibs = 0;
791 if ((first == entry) && !xas->xa_sibs)
792 return first;
793
794 next = first;
795 offset = xas->xa_offset;
796 max = xas->xa_offset + xas->xa_sibs;
797 if (node) {
798 slot = &node->slots[offset];
799 if (xas->xa_sibs)
800 xas_squash_marks(xas);
801 }
802 if (!entry)
803 xas_init_marks(xas);
804
805 for (;;) {
806 /*
807 * Must clear the marks before setting the entry to NULL,
808 * otherwise xas_for_each_marked may find a NULL entry and
809 * stop early. rcu_assign_pointer contains a release barrier
810 * so the mark clearing will appear to happen before the
811 * entry is set to NULL.
812 */
813 rcu_assign_pointer(*slot, entry);
814 if (xa_is_node(next) && (!node || node->shift))
815 xas_free_nodes(xas, xa_to_node(next));
816 if (!node)
817 break;
818 count += !next - !entry;
819 values += !xa_is_value(first) - !value;
820 if (entry) {
821 if (offset == max)
822 break;
823 if (!xa_is_sibling(entry))
824 entry = xa_mk_sibling(xas->xa_offset);
825 } else {
826 if (offset == XA_CHUNK_MASK)
827 break;
828 }
829 next = xa_entry_locked(xas->xa, node, ++offset);
830 if (!xa_is_sibling(next)) {
831 if (!entry && (offset > max))
832 break;
833 first = next;
834 }
835 slot++;
836 }
837
838 update_node(xas, node, count, values);
839 return first;
840 }
841 EXPORT_SYMBOL_GPL(xas_store);
842
843 /**
844 * xas_get_mark() - Returns the state of this mark.
845 * @xas: XArray operation state.
846 * @mark: Mark number.
847 *
848 * Return: true if the mark is set, false if the mark is clear or @xas
849 * is in an error state.
850 */
xas_get_mark(const struct xa_state * xas,xa_mark_t mark)851 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
852 {
853 if (xas_invalid(xas))
854 return false;
855 if (!xas->xa_node)
856 return xa_marked(xas->xa, mark);
857 return node_get_mark(xas->xa_node, xas->xa_offset, mark);
858 }
859 EXPORT_SYMBOL_GPL(xas_get_mark);
860
861 /**
862 * xas_set_mark() - Sets the mark on this entry and its parents.
863 * @xas: XArray operation state.
864 * @mark: Mark number.
865 *
866 * Sets the specified mark on this entry, and walks up the tree setting it
867 * on all the ancestor entries. Does nothing if @xas has not been walked to
868 * an entry, or is in an error state.
869 */
xas_set_mark(const struct xa_state * xas,xa_mark_t mark)870 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
871 {
872 struct xa_node *node = xas->xa_node;
873 unsigned int offset = xas->xa_offset;
874
875 if (xas_invalid(xas))
876 return;
877
878 while (node) {
879 if (node_set_mark(node, offset, mark))
880 return;
881 offset = node->offset;
882 node = xa_parent_locked(xas->xa, node);
883 }
884
885 if (!xa_marked(xas->xa, mark))
886 xa_mark_set(xas->xa, mark);
887 }
888 EXPORT_SYMBOL_GPL(xas_set_mark);
889
890 /**
891 * xas_clear_mark() - Clears the mark on this entry and its parents.
892 * @xas: XArray operation state.
893 * @mark: Mark number.
894 *
895 * Clears the specified mark on this entry, and walks back to the head
896 * attempting to clear it on all the ancestor entries. Does nothing if
897 * @xas has not been walked to an entry, or is in an error state.
898 */
xas_clear_mark(const struct xa_state * xas,xa_mark_t mark)899 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
900 {
901 struct xa_node *node = xas->xa_node;
902 unsigned int offset = xas->xa_offset;
903
904 if (xas_invalid(xas))
905 return;
906
907 while (node) {
908 if (!node_clear_mark(node, offset, mark))
909 return;
910 if (node_any_mark(node, mark))
911 return;
912
913 offset = node->offset;
914 node = xa_parent_locked(xas->xa, node);
915 }
916
917 if (xa_marked(xas->xa, mark))
918 xa_mark_clear(xas->xa, mark);
919 }
920 EXPORT_SYMBOL_GPL(xas_clear_mark);
921
922 /**
923 * xas_init_marks() - Initialise all marks for the entry
924 * @xas: Array operations state.
925 *
926 * Initialise all marks for the entry specified by @xas. If we're tracking
927 * free entries with a mark, we need to set it on all entries. All other
928 * marks are cleared.
929 *
930 * This implementation is not as efficient as it could be; we may walk
931 * up the tree multiple times.
932 */
xas_init_marks(const struct xa_state * xas)933 void xas_init_marks(const struct xa_state *xas)
934 {
935 xa_mark_t mark = 0;
936
937 for (;;) {
938 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
939 xas_set_mark(xas, mark);
940 else
941 xas_clear_mark(xas, mark);
942 if (mark == XA_MARK_MAX)
943 break;
944 mark_inc(mark);
945 }
946 }
947 EXPORT_SYMBOL_GPL(xas_init_marks);
948
949 /**
950 * xas_pause() - Pause a walk to drop a lock.
951 * @xas: XArray operation state.
952 *
953 * Some users need to pause a walk and drop the lock they're holding in
954 * order to yield to a higher priority thread or carry out an operation
955 * on an entry. Those users should call this function before they drop
956 * the lock. It resets the @xas to be suitable for the next iteration
957 * of the loop after the user has reacquired the lock. If most entries
958 * found during a walk require you to call xas_pause(), the xa_for_each()
959 * iterator may be more appropriate.
960 *
961 * Note that xas_pause() only works for forward iteration. If a user needs
962 * to pause a reverse iteration, we will need a xas_pause_rev().
963 */
xas_pause(struct xa_state * xas)964 void xas_pause(struct xa_state *xas)
965 {
966 struct xa_node *node = xas->xa_node;
967
968 if (xas_invalid(xas))
969 return;
970
971 if (node) {
972 unsigned int offset = xas->xa_offset;
973 while (++offset < XA_CHUNK_SIZE) {
974 if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
975 break;
976 }
977 xas->xa_index += (offset - xas->xa_offset) << node->shift;
978 } else {
979 xas->xa_index++;
980 }
981 xas->xa_node = XAS_RESTART;
982 }
983 EXPORT_SYMBOL_GPL(xas_pause);
984
985 /*
986 * __xas_prev() - Find the previous entry in the XArray.
987 * @xas: XArray operation state.
988 *
989 * Helper function for xas_prev() which handles all the complex cases
990 * out of line.
991 */
__xas_prev(struct xa_state * xas)992 void *__xas_prev(struct xa_state *xas)
993 {
994 void *entry;
995
996 if (!xas_frozen(xas->xa_node))
997 xas->xa_index--;
998 if (!xas->xa_node)
999 return set_bounds(xas);
1000 if (xas_not_node(xas->xa_node))
1001 return xas_load(xas);
1002
1003 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1004 xas->xa_offset--;
1005
1006 while (xas->xa_offset == 255) {
1007 xas->xa_offset = xas->xa_node->offset - 1;
1008 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1009 if (!xas->xa_node)
1010 return set_bounds(xas);
1011 }
1012
1013 for (;;) {
1014 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1015 if (!xa_is_node(entry))
1016 return entry;
1017
1018 xas->xa_node = xa_to_node(entry);
1019 xas_set_offset(xas);
1020 }
1021 }
1022 EXPORT_SYMBOL_GPL(__xas_prev);
1023
1024 /*
1025 * __xas_next() - Find the next entry in the XArray.
1026 * @xas: XArray operation state.
1027 *
1028 * Helper function for xas_next() which handles all the complex cases
1029 * out of line.
1030 */
__xas_next(struct xa_state * xas)1031 void *__xas_next(struct xa_state *xas)
1032 {
1033 void *entry;
1034
1035 if (!xas_frozen(xas->xa_node))
1036 xas->xa_index++;
1037 if (!xas->xa_node)
1038 return set_bounds(xas);
1039 if (xas_not_node(xas->xa_node))
1040 return xas_load(xas);
1041
1042 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1043 xas->xa_offset++;
1044
1045 while (xas->xa_offset == XA_CHUNK_SIZE) {
1046 xas->xa_offset = xas->xa_node->offset + 1;
1047 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1048 if (!xas->xa_node)
1049 return set_bounds(xas);
1050 }
1051
1052 for (;;) {
1053 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1054 if (!xa_is_node(entry))
1055 return entry;
1056
1057 xas->xa_node = xa_to_node(entry);
1058 xas_set_offset(xas);
1059 }
1060 }
1061 EXPORT_SYMBOL_GPL(__xas_next);
1062
1063 /**
1064 * xas_find() - Find the next present entry in the XArray.
1065 * @xas: XArray operation state.
1066 * @max: Highest index to return.
1067 *
1068 * If the @xas has not yet been walked to an entry, return the entry
1069 * which has an index >= xas.xa_index. If it has been walked, the entry
1070 * currently being pointed at has been processed, and so we move to the
1071 * next entry.
1072 *
1073 * If no entry is found and the array is smaller than @max, the iterator
1074 * is set to the smallest index not yet in the array. This allows @xas
1075 * to be immediately passed to xas_store().
1076 *
1077 * Return: The entry, if found, otherwise %NULL.
1078 */
xas_find(struct xa_state * xas,unsigned long max)1079 void *xas_find(struct xa_state *xas, unsigned long max)
1080 {
1081 void *entry;
1082
1083 if (xas_error(xas))
1084 return NULL;
1085 if (xas->xa_index > max)
1086 return set_bounds(xas);
1087
1088 if (!xas->xa_node) {
1089 xas->xa_index = 1;
1090 return set_bounds(xas);
1091 } else if (xas_top(xas->xa_node)) {
1092 entry = xas_load(xas);
1093 if (entry || xas_not_node(xas->xa_node))
1094 return entry;
1095 } else if (!xas->xa_node->shift &&
1096 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1097 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1098 }
1099
1100 xas_advance(xas);
1101
1102 while (xas->xa_node && (xas->xa_index <= max)) {
1103 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1104 xas->xa_offset = xas->xa_node->offset + 1;
1105 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1106 continue;
1107 }
1108
1109 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1110 if (xa_is_node(entry)) {
1111 xas->xa_node = xa_to_node(entry);
1112 xas->xa_offset = 0;
1113 continue;
1114 }
1115 if (entry && !xa_is_sibling(entry))
1116 return entry;
1117
1118 xas_advance(xas);
1119 }
1120
1121 if (!xas->xa_node)
1122 xas->xa_node = XAS_BOUNDS;
1123 return NULL;
1124 }
1125 EXPORT_SYMBOL_GPL(xas_find);
1126
1127 /**
1128 * xas_find_marked() - Find the next marked entry in the XArray.
1129 * @xas: XArray operation state.
1130 * @max: Highest index to return.
1131 * @mark: Mark number to search for.
1132 *
1133 * If the @xas has not yet been walked to an entry, return the marked entry
1134 * which has an index >= xas.xa_index. If it has been walked, the entry
1135 * currently being pointed at has been processed, and so we return the
1136 * first marked entry with an index > xas.xa_index.
1137 *
1138 * If no marked entry is found and the array is smaller than @max, @xas is
1139 * set to the bounds state and xas->xa_index is set to the smallest index
1140 * not yet in the array. This allows @xas to be immediately passed to
1141 * xas_store().
1142 *
1143 * If no entry is found before @max is reached, @xas is set to the restart
1144 * state.
1145 *
1146 * Return: The entry, if found, otherwise %NULL.
1147 */
xas_find_marked(struct xa_state * xas,unsigned long max,xa_mark_t mark)1148 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1149 {
1150 bool advance = true;
1151 unsigned int offset;
1152 void *entry;
1153
1154 if (xas_error(xas))
1155 return NULL;
1156 if (xas->xa_index > max)
1157 goto max;
1158
1159 if (!xas->xa_node) {
1160 xas->xa_index = 1;
1161 goto out;
1162 } else if (xas_top(xas->xa_node)) {
1163 advance = false;
1164 entry = xa_head(xas->xa);
1165 xas->xa_node = NULL;
1166 if (xas->xa_index > max_index(entry))
1167 goto out;
1168 if (!xa_is_node(entry)) {
1169 if (xa_marked(xas->xa, mark))
1170 return entry;
1171 xas->xa_index = 1;
1172 goto out;
1173 }
1174 xas->xa_node = xa_to_node(entry);
1175 xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1176 }
1177
1178 while (xas->xa_index <= max) {
1179 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1180 xas->xa_offset = xas->xa_node->offset + 1;
1181 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1182 if (!xas->xa_node)
1183 break;
1184 advance = false;
1185 continue;
1186 }
1187
1188 if (!advance) {
1189 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1190 if (xa_is_sibling(entry)) {
1191 xas->xa_offset = xa_to_sibling(entry);
1192 xas_move_index(xas, xas->xa_offset);
1193 }
1194 }
1195
1196 offset = xas_find_chunk(xas, advance, mark);
1197 if (offset > xas->xa_offset) {
1198 advance = false;
1199 xas_move_index(xas, offset);
1200 /* Mind the wrap */
1201 if ((xas->xa_index - 1) >= max)
1202 goto max;
1203 xas->xa_offset = offset;
1204 if (offset == XA_CHUNK_SIZE)
1205 continue;
1206 }
1207
1208 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1209 if (!xa_is_node(entry))
1210 return entry;
1211 xas->xa_node = xa_to_node(entry);
1212 xas_set_offset(xas);
1213 }
1214
1215 out:
1216 if (xas->xa_index > max)
1217 goto max;
1218 return set_bounds(xas);
1219 max:
1220 xas->xa_node = XAS_RESTART;
1221 return NULL;
1222 }
1223 EXPORT_SYMBOL_GPL(xas_find_marked);
1224
1225 /**
1226 * xas_find_conflict() - Find the next present entry in a range.
1227 * @xas: XArray operation state.
1228 *
1229 * The @xas describes both a range and a position within that range.
1230 *
1231 * Context: Any context. Expects xa_lock to be held.
1232 * Return: The next entry in the range covered by @xas or %NULL.
1233 */
xas_find_conflict(struct xa_state * xas)1234 void *xas_find_conflict(struct xa_state *xas)
1235 {
1236 void *curr;
1237
1238 if (xas_error(xas))
1239 return NULL;
1240
1241 if (!xas->xa_node)
1242 return NULL;
1243
1244 if (xas_top(xas->xa_node)) {
1245 curr = xas_start(xas);
1246 if (!curr)
1247 return NULL;
1248 while (xa_is_node(curr)) {
1249 struct xa_node *node = xa_to_node(curr);
1250 curr = xas_descend(xas, node);
1251 }
1252 if (curr)
1253 return curr;
1254 }
1255
1256 if (xas->xa_node->shift > xas->xa_shift)
1257 return NULL;
1258
1259 for (;;) {
1260 if (xas->xa_node->shift == xas->xa_shift) {
1261 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1262 break;
1263 } else if (xas->xa_offset == XA_CHUNK_MASK) {
1264 xas->xa_offset = xas->xa_node->offset;
1265 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1266 if (!xas->xa_node)
1267 break;
1268 continue;
1269 }
1270 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1271 if (xa_is_sibling(curr))
1272 continue;
1273 while (xa_is_node(curr)) {
1274 xas->xa_node = xa_to_node(curr);
1275 xas->xa_offset = 0;
1276 curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1277 }
1278 if (curr)
1279 return curr;
1280 }
1281 xas->xa_offset -= xas->xa_sibs;
1282 return NULL;
1283 }
1284 EXPORT_SYMBOL_GPL(xas_find_conflict);
1285
1286 /**
1287 * xa_load() - Load an entry from an XArray.
1288 * @xa: XArray.
1289 * @index: index into array.
1290 *
1291 * Context: Any context. Takes and releases the RCU lock.
1292 * Return: The entry at @index in @xa.
1293 */
xa_load(struct xarray * xa,unsigned long index)1294 void *xa_load(struct xarray *xa, unsigned long index)
1295 {
1296 XA_STATE(xas, xa, index);
1297 void *entry;
1298
1299 rcu_read_lock();
1300 do {
1301 entry = xas_load(&xas);
1302 if (xa_is_zero(entry))
1303 entry = NULL;
1304 } while (xas_retry(&xas, entry));
1305 rcu_read_unlock();
1306
1307 return entry;
1308 }
1309 EXPORT_SYMBOL(xa_load);
1310
xas_result(struct xa_state * xas,void * curr)1311 static void *xas_result(struct xa_state *xas, void *curr)
1312 {
1313 if (xa_is_zero(curr))
1314 return NULL;
1315 if (xas_error(xas))
1316 curr = xas->xa_node;
1317 return curr;
1318 }
1319
1320 /**
1321 * __xa_erase() - Erase this entry from the XArray while locked.
1322 * @xa: XArray.
1323 * @index: Index into array.
1324 *
1325 * After this function returns, loading from @index will return %NULL.
1326 * If the index is part of a multi-index entry, all indices will be erased
1327 * and none of the entries will be part of a multi-index entry.
1328 *
1329 * Context: Any context. Expects xa_lock to be held on entry.
1330 * Return: The entry which used to be at this index.
1331 */
__xa_erase(struct xarray * xa,unsigned long index)1332 void *__xa_erase(struct xarray *xa, unsigned long index)
1333 {
1334 XA_STATE(xas, xa, index);
1335 return xas_result(&xas, xas_store(&xas, NULL));
1336 }
1337 EXPORT_SYMBOL(__xa_erase);
1338
1339 /**
1340 * xa_erase() - Erase this entry from the XArray.
1341 * @xa: XArray.
1342 * @index: Index of entry.
1343 *
1344 * After this function returns, loading from @index will return %NULL.
1345 * If the index is part of a multi-index entry, all indices will be erased
1346 * and none of the entries will be part of a multi-index entry.
1347 *
1348 * Context: Any context. Takes and releases the xa_lock.
1349 * Return: The entry which used to be at this index.
1350 */
xa_erase(struct xarray * xa,unsigned long index)1351 void *xa_erase(struct xarray *xa, unsigned long index)
1352 {
1353 void *entry;
1354
1355 xa_lock(xa);
1356 entry = __xa_erase(xa, index);
1357 xa_unlock(xa);
1358
1359 return entry;
1360 }
1361 EXPORT_SYMBOL(xa_erase);
1362
1363 /**
1364 * __xa_store() - Store this entry in the XArray.
1365 * @xa: XArray.
1366 * @index: Index into array.
1367 * @entry: New entry.
1368 * @gfp: Memory allocation flags.
1369 *
1370 * You must already be holding the xa_lock when calling this function.
1371 * It will drop the lock if needed to allocate memory, and then reacquire
1372 * it afterwards.
1373 *
1374 * Context: Any context. Expects xa_lock to be held on entry. May
1375 * release and reacquire xa_lock if @gfp flags permit.
1376 * Return: The old entry at this index or xa_err() if an error happened.
1377 */
__xa_store(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)1378 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1379 {
1380 XA_STATE(xas, xa, index);
1381 void *curr;
1382
1383 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1384 return XA_ERROR(-EINVAL);
1385 if (xa_track_free(xa) && !entry)
1386 entry = XA_ZERO_ENTRY;
1387
1388 do {
1389 curr = xas_store(&xas, entry);
1390 if (xa_track_free(xa))
1391 xas_clear_mark(&xas, XA_FREE_MARK);
1392 } while (__xas_nomem(&xas, gfp));
1393
1394 return xas_result(&xas, curr);
1395 }
1396 EXPORT_SYMBOL(__xa_store);
1397
1398 /**
1399 * xa_store() - Store this entry in the XArray.
1400 * @xa: XArray.
1401 * @index: Index into array.
1402 * @entry: New entry.
1403 * @gfp: Memory allocation flags.
1404 *
1405 * After this function returns, loads from this index will return @entry.
1406 * Storing into an existing multislot entry updates the entry of every index.
1407 * The marks associated with @index are unaffected unless @entry is %NULL.
1408 *
1409 * Context: Any context. Takes and releases the xa_lock.
1410 * May sleep if the @gfp flags permit.
1411 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1412 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1413 * failed.
1414 */
xa_store(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)1415 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1416 {
1417 void *curr;
1418
1419 xa_lock(xa);
1420 curr = __xa_store(xa, index, entry, gfp);
1421 xa_unlock(xa);
1422
1423 return curr;
1424 }
1425 EXPORT_SYMBOL(xa_store);
1426
1427 /**
1428 * __xa_cmpxchg() - Store this entry in the XArray.
1429 * @xa: XArray.
1430 * @index: Index into array.
1431 * @old: Old value to test against.
1432 * @entry: New entry.
1433 * @gfp: Memory allocation flags.
1434 *
1435 * You must already be holding the xa_lock when calling this function.
1436 * It will drop the lock if needed to allocate memory, and then reacquire
1437 * it afterwards.
1438 *
1439 * Context: Any context. Expects xa_lock to be held on entry. May
1440 * release and reacquire xa_lock if @gfp flags permit.
1441 * Return: The old entry at this index or xa_err() if an error happened.
1442 */
__xa_cmpxchg(struct xarray * xa,unsigned long index,void * old,void * entry,gfp_t gfp)1443 void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1444 void *old, void *entry, gfp_t gfp)
1445 {
1446 XA_STATE(xas, xa, index);
1447 void *curr;
1448
1449 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1450 return XA_ERROR(-EINVAL);
1451
1452 do {
1453 curr = xas_load(&xas);
1454 if (curr == old) {
1455 xas_store(&xas, entry);
1456 if (xa_track_free(xa) && entry && !curr)
1457 xas_clear_mark(&xas, XA_FREE_MARK);
1458 }
1459 } while (__xas_nomem(&xas, gfp));
1460
1461 return xas_result(&xas, curr);
1462 }
1463 EXPORT_SYMBOL(__xa_cmpxchg);
1464
1465 /**
1466 * __xa_insert() - Store this entry in the XArray if no entry is present.
1467 * @xa: XArray.
1468 * @index: Index into array.
1469 * @entry: New entry.
1470 * @gfp: Memory allocation flags.
1471 *
1472 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1473 * if no entry is present. Inserting will fail if a reserved entry is
1474 * present, even though loading from this index will return NULL.
1475 *
1476 * Context: Any context. Expects xa_lock to be held on entry. May
1477 * release and reacquire xa_lock if @gfp flags permit.
1478 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
1479 * -ENOMEM if memory could not be allocated.
1480 */
__xa_insert(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)1481 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1482 {
1483 XA_STATE(xas, xa, index);
1484 void *curr;
1485
1486 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1487 return -EINVAL;
1488 if (!entry)
1489 entry = XA_ZERO_ENTRY;
1490
1491 do {
1492 curr = xas_load(&xas);
1493 if (!curr) {
1494 xas_store(&xas, entry);
1495 if (xa_track_free(xa))
1496 xas_clear_mark(&xas, XA_FREE_MARK);
1497 } else {
1498 xas_set_err(&xas, -EBUSY);
1499 }
1500 } while (__xas_nomem(&xas, gfp));
1501
1502 return xas_error(&xas);
1503 }
1504 EXPORT_SYMBOL(__xa_insert);
1505
1506 #ifdef CONFIG_XARRAY_MULTI
xas_set_range(struct xa_state * xas,unsigned long first,unsigned long last)1507 static void xas_set_range(struct xa_state *xas, unsigned long first,
1508 unsigned long last)
1509 {
1510 unsigned int shift = 0;
1511 unsigned long sibs = last - first;
1512 unsigned int offset = XA_CHUNK_MASK;
1513
1514 xas_set(xas, first);
1515
1516 while ((first & XA_CHUNK_MASK) == 0) {
1517 if (sibs < XA_CHUNK_MASK)
1518 break;
1519 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1520 break;
1521 shift += XA_CHUNK_SHIFT;
1522 if (offset == XA_CHUNK_MASK)
1523 offset = sibs & XA_CHUNK_MASK;
1524 sibs >>= XA_CHUNK_SHIFT;
1525 first >>= XA_CHUNK_SHIFT;
1526 }
1527
1528 offset = first & XA_CHUNK_MASK;
1529 if (offset + sibs > XA_CHUNK_MASK)
1530 sibs = XA_CHUNK_MASK - offset;
1531 if ((((first + sibs + 1) << shift) - 1) > last)
1532 sibs -= 1;
1533
1534 xas->xa_shift = shift;
1535 xas->xa_sibs = sibs;
1536 }
1537
1538 /**
1539 * xa_store_range() - Store this entry at a range of indices in the XArray.
1540 * @xa: XArray.
1541 * @first: First index to affect.
1542 * @last: Last index to affect.
1543 * @entry: New entry.
1544 * @gfp: Memory allocation flags.
1545 *
1546 * After this function returns, loads from any index between @first and @last,
1547 * inclusive will return @entry.
1548 * Storing into an existing multislot entry updates the entry of every index.
1549 * The marks associated with @index are unaffected unless @entry is %NULL.
1550 *
1551 * Context: Process context. Takes and releases the xa_lock. May sleep
1552 * if the @gfp flags permit.
1553 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1554 * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1555 */
xa_store_range(struct xarray * xa,unsigned long first,unsigned long last,void * entry,gfp_t gfp)1556 void *xa_store_range(struct xarray *xa, unsigned long first,
1557 unsigned long last, void *entry, gfp_t gfp)
1558 {
1559 XA_STATE(xas, xa, 0);
1560
1561 if (WARN_ON_ONCE(xa_is_internal(entry)))
1562 return XA_ERROR(-EINVAL);
1563 if (last < first)
1564 return XA_ERROR(-EINVAL);
1565
1566 do {
1567 xas_lock(&xas);
1568 if (entry) {
1569 unsigned int order = BITS_PER_LONG;
1570 if (last + 1)
1571 order = __ffs(last + 1);
1572 xas_set_order(&xas, last, order);
1573 xas_create(&xas, true);
1574 if (xas_error(&xas))
1575 goto unlock;
1576 }
1577 do {
1578 xas_set_range(&xas, first, last);
1579 xas_store(&xas, entry);
1580 if (xas_error(&xas))
1581 goto unlock;
1582 first += xas_size(&xas);
1583 } while (first <= last);
1584 unlock:
1585 xas_unlock(&xas);
1586 } while (xas_nomem(&xas, gfp));
1587
1588 return xas_result(&xas, NULL);
1589 }
1590 EXPORT_SYMBOL(xa_store_range);
1591 #endif /* CONFIG_XARRAY_MULTI */
1592
1593 /**
1594 * __xa_alloc() - Find somewhere to store this entry in the XArray.
1595 * @xa: XArray.
1596 * @id: Pointer to ID.
1597 * @limit: Range for allocated ID.
1598 * @entry: New entry.
1599 * @gfp: Memory allocation flags.
1600 *
1601 * Finds an empty entry in @xa between @limit.min and @limit.max,
1602 * stores the index into the @id pointer, then stores the entry at
1603 * that index. A concurrent lookup will not see an uninitialised @id.
1604 *
1605 * Context: Any context. Expects xa_lock to be held on entry. May
1606 * release and reacquire xa_lock if @gfp flags permit.
1607 * Return: 0 on success, -ENOMEM if memory could not be allocated or
1608 * -EBUSY if there are no free entries in @limit.
1609 */
__xa_alloc(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,gfp_t gfp)1610 int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
1611 struct xa_limit limit, gfp_t gfp)
1612 {
1613 XA_STATE(xas, xa, 0);
1614
1615 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1616 return -EINVAL;
1617 if (WARN_ON_ONCE(!xa_track_free(xa)))
1618 return -EINVAL;
1619
1620 if (!entry)
1621 entry = XA_ZERO_ENTRY;
1622
1623 do {
1624 xas.xa_index = limit.min;
1625 xas_find_marked(&xas, limit.max, XA_FREE_MARK);
1626 if (xas.xa_node == XAS_RESTART)
1627 xas_set_err(&xas, -EBUSY);
1628 else
1629 *id = xas.xa_index;
1630 xas_store(&xas, entry);
1631 xas_clear_mark(&xas, XA_FREE_MARK);
1632 } while (__xas_nomem(&xas, gfp));
1633
1634 return xas_error(&xas);
1635 }
1636 EXPORT_SYMBOL(__xa_alloc);
1637
1638 /**
1639 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1640 * @xa: XArray.
1641 * @id: Pointer to ID.
1642 * @entry: New entry.
1643 * @limit: Range of allocated ID.
1644 * @next: Pointer to next ID to allocate.
1645 * @gfp: Memory allocation flags.
1646 *
1647 * Finds an empty entry in @xa between @limit.min and @limit.max,
1648 * stores the index into the @id pointer, then stores the entry at
1649 * that index. A concurrent lookup will not see an uninitialised @id.
1650 * The search for an empty entry will start at @next and will wrap
1651 * around if necessary.
1652 *
1653 * Context: Any context. Expects xa_lock to be held on entry. May
1654 * release and reacquire xa_lock if @gfp flags permit.
1655 * Return: 0 if the allocation succeeded without wrapping. 1 if the
1656 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1657 * allocated or -EBUSY if there are no free entries in @limit.
1658 */
__xa_alloc_cyclic(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,u32 * next,gfp_t gfp)1659 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
1660 struct xa_limit limit, u32 *next, gfp_t gfp)
1661 {
1662 u32 min = limit.min;
1663 int ret;
1664
1665 limit.min = max(min, *next);
1666 ret = __xa_alloc(xa, id, entry, limit, gfp);
1667 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
1668 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
1669 ret = 1;
1670 }
1671
1672 if (ret < 0 && limit.min > min) {
1673 limit.min = min;
1674 ret = __xa_alloc(xa, id, entry, limit, gfp);
1675 if (ret == 0)
1676 ret = 1;
1677 }
1678
1679 if (ret >= 0) {
1680 *next = *id + 1;
1681 if (*next == 0)
1682 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
1683 }
1684 return ret;
1685 }
1686 EXPORT_SYMBOL(__xa_alloc_cyclic);
1687
1688 /**
1689 * __xa_set_mark() - Set this mark on this entry while locked.
1690 * @xa: XArray.
1691 * @index: Index of entry.
1692 * @mark: Mark number.
1693 *
1694 * Attempting to set a mark on a %NULL entry does not succeed.
1695 *
1696 * Context: Any context. Expects xa_lock to be held on entry.
1697 */
__xa_set_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1698 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1699 {
1700 XA_STATE(xas, xa, index);
1701 void *entry = xas_load(&xas);
1702
1703 if (entry)
1704 xas_set_mark(&xas, mark);
1705 }
1706 EXPORT_SYMBOL(__xa_set_mark);
1707
1708 /**
1709 * __xa_clear_mark() - Clear this mark on this entry while locked.
1710 * @xa: XArray.
1711 * @index: Index of entry.
1712 * @mark: Mark number.
1713 *
1714 * Context: Any context. Expects xa_lock to be held on entry.
1715 */
__xa_clear_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1716 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1717 {
1718 XA_STATE(xas, xa, index);
1719 void *entry = xas_load(&xas);
1720
1721 if (entry)
1722 xas_clear_mark(&xas, mark);
1723 }
1724 EXPORT_SYMBOL(__xa_clear_mark);
1725
1726 /**
1727 * xa_get_mark() - Inquire whether this mark is set on this entry.
1728 * @xa: XArray.
1729 * @index: Index of entry.
1730 * @mark: Mark number.
1731 *
1732 * This function uses the RCU read lock, so the result may be out of date
1733 * by the time it returns. If you need the result to be stable, use a lock.
1734 *
1735 * Context: Any context. Takes and releases the RCU lock.
1736 * Return: True if the entry at @index has this mark set, false if it doesn't.
1737 */
xa_get_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1738 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1739 {
1740 XA_STATE(xas, xa, index);
1741 void *entry;
1742
1743 rcu_read_lock();
1744 entry = xas_start(&xas);
1745 while (xas_get_mark(&xas, mark)) {
1746 if (!xa_is_node(entry))
1747 goto found;
1748 entry = xas_descend(&xas, xa_to_node(entry));
1749 }
1750 rcu_read_unlock();
1751 return false;
1752 found:
1753 rcu_read_unlock();
1754 return true;
1755 }
1756 EXPORT_SYMBOL(xa_get_mark);
1757
1758 /**
1759 * xa_set_mark() - Set this mark on this entry.
1760 * @xa: XArray.
1761 * @index: Index of entry.
1762 * @mark: Mark number.
1763 *
1764 * Attempting to set a mark on a %NULL entry does not succeed.
1765 *
1766 * Context: Process context. Takes and releases the xa_lock.
1767 */
xa_set_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1768 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1769 {
1770 xa_lock(xa);
1771 __xa_set_mark(xa, index, mark);
1772 xa_unlock(xa);
1773 }
1774 EXPORT_SYMBOL(xa_set_mark);
1775
1776 /**
1777 * xa_clear_mark() - Clear this mark on this entry.
1778 * @xa: XArray.
1779 * @index: Index of entry.
1780 * @mark: Mark number.
1781 *
1782 * Clearing a mark always succeeds.
1783 *
1784 * Context: Process context. Takes and releases the xa_lock.
1785 */
xa_clear_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1786 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1787 {
1788 xa_lock(xa);
1789 __xa_clear_mark(xa, index, mark);
1790 xa_unlock(xa);
1791 }
1792 EXPORT_SYMBOL(xa_clear_mark);
1793
1794 /**
1795 * xa_find() - Search the XArray for an entry.
1796 * @xa: XArray.
1797 * @indexp: Pointer to an index.
1798 * @max: Maximum index to search to.
1799 * @filter: Selection criterion.
1800 *
1801 * Finds the entry in @xa which matches the @filter, and has the lowest
1802 * index that is at least @indexp and no more than @max.
1803 * If an entry is found, @indexp is updated to be the index of the entry.
1804 * This function is protected by the RCU read lock, so it may not find
1805 * entries which are being simultaneously added. It will not return an
1806 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1807 *
1808 * Context: Any context. Takes and releases the RCU lock.
1809 * Return: The entry, if found, otherwise %NULL.
1810 */
xa_find(struct xarray * xa,unsigned long * indexp,unsigned long max,xa_mark_t filter)1811 void *xa_find(struct xarray *xa, unsigned long *indexp,
1812 unsigned long max, xa_mark_t filter)
1813 {
1814 XA_STATE(xas, xa, *indexp);
1815 void *entry;
1816
1817 rcu_read_lock();
1818 do {
1819 if ((__force unsigned int)filter < XA_MAX_MARKS)
1820 entry = xas_find_marked(&xas, max, filter);
1821 else
1822 entry = xas_find(&xas, max);
1823 } while (xas_retry(&xas, entry));
1824 rcu_read_unlock();
1825
1826 if (entry)
1827 *indexp = xas.xa_index;
1828 return entry;
1829 }
1830 EXPORT_SYMBOL(xa_find);
1831
xas_sibling(struct xa_state * xas)1832 static bool xas_sibling(struct xa_state *xas)
1833 {
1834 struct xa_node *node = xas->xa_node;
1835 unsigned long mask;
1836
1837 if (!node)
1838 return false;
1839 mask = (XA_CHUNK_SIZE << node->shift) - 1;
1840 return (xas->xa_index & mask) > (xas->xa_offset << node->shift);
1841 }
1842
1843 /**
1844 * xa_find_after() - Search the XArray for a present entry.
1845 * @xa: XArray.
1846 * @indexp: Pointer to an index.
1847 * @max: Maximum index to search to.
1848 * @filter: Selection criterion.
1849 *
1850 * Finds the entry in @xa which matches the @filter and has the lowest
1851 * index that is above @indexp and no more than @max.
1852 * If an entry is found, @indexp is updated to be the index of the entry.
1853 * This function is protected by the RCU read lock, so it may miss entries
1854 * which are being simultaneously added. It will not return an
1855 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1856 *
1857 * Context: Any context. Takes and releases the RCU lock.
1858 * Return: The pointer, if found, otherwise %NULL.
1859 */
xa_find_after(struct xarray * xa,unsigned long * indexp,unsigned long max,xa_mark_t filter)1860 void *xa_find_after(struct xarray *xa, unsigned long *indexp,
1861 unsigned long max, xa_mark_t filter)
1862 {
1863 XA_STATE(xas, xa, *indexp + 1);
1864 void *entry;
1865
1866 if (xas.xa_index == 0)
1867 return NULL;
1868
1869 rcu_read_lock();
1870 for (;;) {
1871 if ((__force unsigned int)filter < XA_MAX_MARKS)
1872 entry = xas_find_marked(&xas, max, filter);
1873 else
1874 entry = xas_find(&xas, max);
1875
1876 if (xas_invalid(&xas))
1877 break;
1878 if (xas_sibling(&xas))
1879 continue;
1880 if (!xas_retry(&xas, entry))
1881 break;
1882 }
1883 rcu_read_unlock();
1884
1885 if (entry)
1886 *indexp = xas.xa_index;
1887 return entry;
1888 }
1889 EXPORT_SYMBOL(xa_find_after);
1890
xas_extract_present(struct xa_state * xas,void ** dst,unsigned long max,unsigned int n)1891 static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
1892 unsigned long max, unsigned int n)
1893 {
1894 void *entry;
1895 unsigned int i = 0;
1896
1897 rcu_read_lock();
1898 xas_for_each(xas, entry, max) {
1899 if (xas_retry(xas, entry))
1900 continue;
1901 dst[i++] = entry;
1902 if (i == n)
1903 break;
1904 }
1905 rcu_read_unlock();
1906
1907 return i;
1908 }
1909
xas_extract_marked(struct xa_state * xas,void ** dst,unsigned long max,unsigned int n,xa_mark_t mark)1910 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
1911 unsigned long max, unsigned int n, xa_mark_t mark)
1912 {
1913 void *entry;
1914 unsigned int i = 0;
1915
1916 rcu_read_lock();
1917 xas_for_each_marked(xas, entry, max, mark) {
1918 if (xas_retry(xas, entry))
1919 continue;
1920 dst[i++] = entry;
1921 if (i == n)
1922 break;
1923 }
1924 rcu_read_unlock();
1925
1926 return i;
1927 }
1928
1929 /**
1930 * xa_extract() - Copy selected entries from the XArray into a normal array.
1931 * @xa: The source XArray to copy from.
1932 * @dst: The buffer to copy entries into.
1933 * @start: The first index in the XArray eligible to be selected.
1934 * @max: The last index in the XArray eligible to be selected.
1935 * @n: The maximum number of entries to copy.
1936 * @filter: Selection criterion.
1937 *
1938 * Copies up to @n entries that match @filter from the XArray. The
1939 * copied entries will have indices between @start and @max, inclusive.
1940 *
1941 * The @filter may be an XArray mark value, in which case entries which are
1942 * marked with that mark will be copied. It may also be %XA_PRESENT, in
1943 * which case all entries which are not %NULL will be copied.
1944 *
1945 * The entries returned may not represent a snapshot of the XArray at a
1946 * moment in time. For example, if another thread stores to index 5, then
1947 * index 10, calling xa_extract() may return the old contents of index 5
1948 * and the new contents of index 10. Indices not modified while this
1949 * function is running will not be skipped.
1950 *
1951 * If you need stronger guarantees, holding the xa_lock across calls to this
1952 * function will prevent concurrent modification.
1953 *
1954 * Context: Any context. Takes and releases the RCU lock.
1955 * Return: The number of entries copied.
1956 */
xa_extract(struct xarray * xa,void ** dst,unsigned long start,unsigned long max,unsigned int n,xa_mark_t filter)1957 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
1958 unsigned long max, unsigned int n, xa_mark_t filter)
1959 {
1960 XA_STATE(xas, xa, start);
1961
1962 if (!n)
1963 return 0;
1964
1965 if ((__force unsigned int)filter < XA_MAX_MARKS)
1966 return xas_extract_marked(&xas, dst, max, n, filter);
1967 return xas_extract_present(&xas, dst, max, n);
1968 }
1969 EXPORT_SYMBOL(xa_extract);
1970
1971 /**
1972 * xa_destroy() - Free all internal data structures.
1973 * @xa: XArray.
1974 *
1975 * After calling this function, the XArray is empty and has freed all memory
1976 * allocated for its internal data structures. You are responsible for
1977 * freeing the objects referenced by the XArray.
1978 *
1979 * Context: Any context. Takes and releases the xa_lock, interrupt-safe.
1980 */
xa_destroy(struct xarray * xa)1981 void xa_destroy(struct xarray *xa)
1982 {
1983 XA_STATE(xas, xa, 0);
1984 unsigned long flags;
1985 void *entry;
1986
1987 xas.xa_node = NULL;
1988 xas_lock_irqsave(&xas, flags);
1989 entry = xa_head_locked(xa);
1990 RCU_INIT_POINTER(xa->xa_head, NULL);
1991 xas_init_marks(&xas);
1992 if (xa_zero_busy(xa))
1993 xa_mark_clear(xa, XA_FREE_MARK);
1994 /* lockdep checks we're still holding the lock in xas_free_nodes() */
1995 if (xa_is_node(entry))
1996 xas_free_nodes(&xas, xa_to_node(entry));
1997 xas_unlock_irqrestore(&xas, flags);
1998 }
1999 EXPORT_SYMBOL(xa_destroy);
2000
2001 #ifdef XA_DEBUG
xa_dump_node(const struct xa_node * node)2002 void xa_dump_node(const struct xa_node *node)
2003 {
2004 unsigned i, j;
2005
2006 if (!node)
2007 return;
2008 if ((unsigned long)node & 3) {
2009 pr_cont("node %px\n", node);
2010 return;
2011 }
2012
2013 pr_cont("node %px %s %d parent %px shift %d count %d values %d "
2014 "array %px list %px %px marks",
2015 node, node->parent ? "offset" : "max", node->offset,
2016 node->parent, node->shift, node->count, node->nr_values,
2017 node->array, node->private_list.prev, node->private_list.next);
2018 for (i = 0; i < XA_MAX_MARKS; i++)
2019 for (j = 0; j < XA_MARK_LONGS; j++)
2020 pr_cont(" %lx", node->marks[i][j]);
2021 pr_cont("\n");
2022 }
2023
xa_dump_index(unsigned long index,unsigned int shift)2024 void xa_dump_index(unsigned long index, unsigned int shift)
2025 {
2026 if (!shift)
2027 pr_info("%lu: ", index);
2028 else if (shift >= BITS_PER_LONG)
2029 pr_info("0-%lu: ", ~0UL);
2030 else
2031 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
2032 }
2033
xa_dump_entry(const void * entry,unsigned long index,unsigned long shift)2034 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
2035 {
2036 if (!entry)
2037 return;
2038
2039 xa_dump_index(index, shift);
2040
2041 if (xa_is_node(entry)) {
2042 if (shift == 0) {
2043 pr_cont("%px\n", entry);
2044 } else {
2045 unsigned long i;
2046 struct xa_node *node = xa_to_node(entry);
2047 xa_dump_node(node);
2048 for (i = 0; i < XA_CHUNK_SIZE; i++)
2049 xa_dump_entry(node->slots[i],
2050 index + (i << node->shift), node->shift);
2051 }
2052 } else if (xa_is_value(entry))
2053 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2054 xa_to_value(entry), entry);
2055 else if (!xa_is_internal(entry))
2056 pr_cont("%px\n", entry);
2057 else if (xa_is_retry(entry))
2058 pr_cont("retry (%ld)\n", xa_to_internal(entry));
2059 else if (xa_is_sibling(entry))
2060 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
2061 else if (xa_is_zero(entry))
2062 pr_cont("zero (%ld)\n", xa_to_internal(entry));
2063 else
2064 pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2065 }
2066
xa_dump(const struct xarray * xa)2067 void xa_dump(const struct xarray *xa)
2068 {
2069 void *entry = xa->xa_head;
2070 unsigned int shift = 0;
2071
2072 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2073 xa->xa_flags, xa_marked(xa, XA_MARK_0),
2074 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2075 if (xa_is_node(entry))
2076 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2077 xa_dump_entry(entry, 0, shift);
2078 }
2079 #endif
2080