• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/fcntl.h>
24 #include <linux/socket.h>
25 #include <linux/sock_diag.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/netdevice.h>
29 #include <linux/if_packet.h>
30 #include <linux/if_arp.h>
31 #include <linux/gfp.h>
32 #include <net/inet_common.h>
33 #include <net/ip.h>
34 #include <net/protocol.h>
35 #include <net/netlink.h>
36 #include <linux/skbuff.h>
37 #include <linux/skmsg.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <linux/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <asm/cmpxchg.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <net/sch_generic.h>
51 #include <net/cls_cgroup.h>
52 #include <net/dst_metadata.h>
53 #include <net/dst.h>
54 #include <net/sock_reuseport.h>
55 #include <net/busy_poll.h>
56 #include <net/tcp.h>
57 #include <net/xfrm.h>
58 #include <net/udp.h>
59 #include <linux/bpf_trace.h>
60 #include <net/xdp_sock.h>
61 #include <linux/inetdevice.h>
62 #include <net/inet_hashtables.h>
63 #include <net/inet6_hashtables.h>
64 #include <net/ip_fib.h>
65 #include <net/nexthop.h>
66 #include <net/flow.h>
67 #include <net/arp.h>
68 #include <net/ipv6.h>
69 #include <net/net_namespace.h>
70 #include <linux/seg6_local.h>
71 #include <net/seg6.h>
72 #include <net/seg6_local.h>
73 #include <net/lwtunnel.h>
74 #include <net/ipv6_stubs.h>
75 #include <net/bpf_sk_storage.h>
76 
77 /**
78  *	sk_filter_trim_cap - run a packet through a socket filter
79  *	@sk: sock associated with &sk_buff
80  *	@skb: buffer to filter
81  *	@cap: limit on how short the eBPF program may trim the packet
82  *
83  * Run the eBPF program and then cut skb->data to correct size returned by
84  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
85  * than pkt_len we keep whole skb->data. This is the socket level
86  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
87  * be accepted or -EPERM if the packet should be tossed.
88  *
89  */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)90 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
91 {
92 	int err;
93 	struct sk_filter *filter;
94 
95 	/*
96 	 * If the skb was allocated from pfmemalloc reserves, only
97 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
98 	 * helping free memory
99 	 */
100 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
101 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
102 		return -ENOMEM;
103 	}
104 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
105 	if (err)
106 		return err;
107 
108 	err = security_sock_rcv_skb(sk, skb);
109 	if (err)
110 		return err;
111 
112 	rcu_read_lock();
113 	filter = rcu_dereference(sk->sk_filter);
114 	if (filter) {
115 		struct sock *save_sk = skb->sk;
116 		unsigned int pkt_len;
117 
118 		skb->sk = sk;
119 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
120 		skb->sk = save_sk;
121 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
122 	}
123 	rcu_read_unlock();
124 
125 	return err;
126 }
127 EXPORT_SYMBOL(sk_filter_trim_cap);
128 
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)129 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
130 {
131 	return skb_get_poff(skb);
132 }
133 
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)134 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
135 {
136 	struct nlattr *nla;
137 
138 	if (skb_is_nonlinear(skb))
139 		return 0;
140 
141 	if (skb->len < sizeof(struct nlattr))
142 		return 0;
143 
144 	if (a > skb->len - sizeof(struct nlattr))
145 		return 0;
146 
147 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
148 	if (nla)
149 		return (void *) nla - (void *) skb->data;
150 
151 	return 0;
152 }
153 
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)154 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
155 {
156 	struct nlattr *nla;
157 
158 	if (skb_is_nonlinear(skb))
159 		return 0;
160 
161 	if (skb->len < sizeof(struct nlattr))
162 		return 0;
163 
164 	if (a > skb->len - sizeof(struct nlattr))
165 		return 0;
166 
167 	nla = (struct nlattr *) &skb->data[a];
168 	if (nla->nla_len > skb->len - a)
169 		return 0;
170 
171 	nla = nla_find_nested(nla, x);
172 	if (nla)
173 		return (void *) nla - (void *) skb->data;
174 
175 	return 0;
176 }
177 
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)178 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
179 	   data, int, headlen, int, offset)
180 {
181 	u8 tmp, *ptr;
182 	const int len = sizeof(tmp);
183 
184 	if (offset >= 0) {
185 		if (headlen - offset >= len)
186 			return *(u8 *)(data + offset);
187 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
188 			return tmp;
189 	} else {
190 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
191 		if (likely(ptr))
192 			return *(u8 *)ptr;
193 	}
194 
195 	return -EFAULT;
196 }
197 
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)198 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
199 	   int, offset)
200 {
201 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
202 					 offset);
203 }
204 
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)205 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
206 	   data, int, headlen, int, offset)
207 {
208 	u16 tmp, *ptr;
209 	const int len = sizeof(tmp);
210 
211 	if (offset >= 0) {
212 		if (headlen - offset >= len)
213 			return get_unaligned_be16(data + offset);
214 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
215 			return be16_to_cpu(tmp);
216 	} else {
217 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
218 		if (likely(ptr))
219 			return get_unaligned_be16(ptr);
220 	}
221 
222 	return -EFAULT;
223 }
224 
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)225 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
226 	   int, offset)
227 {
228 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
229 					  offset);
230 }
231 
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)232 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
233 	   data, int, headlen, int, offset)
234 {
235 	u32 tmp, *ptr;
236 	const int len = sizeof(tmp);
237 
238 	if (likely(offset >= 0)) {
239 		if (headlen - offset >= len)
240 			return get_unaligned_be32(data + offset);
241 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
242 			return be32_to_cpu(tmp);
243 	} else {
244 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
245 		if (likely(ptr))
246 			return get_unaligned_be32(ptr);
247 	}
248 
249 	return -EFAULT;
250 }
251 
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)252 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
253 	   int, offset)
254 {
255 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
256 					  offset);
257 }
258 
BPF_CALL_0(bpf_get_raw_cpu_id)259 BPF_CALL_0(bpf_get_raw_cpu_id)
260 {
261 	return raw_smp_processor_id();
262 }
263 
264 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
265 	.func		= bpf_get_raw_cpu_id,
266 	.gpl_only	= false,
267 	.ret_type	= RET_INTEGER,
268 };
269 
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)270 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
271 			      struct bpf_insn *insn_buf)
272 {
273 	struct bpf_insn *insn = insn_buf;
274 
275 	switch (skb_field) {
276 	case SKF_AD_MARK:
277 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
278 
279 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
280 				      offsetof(struct sk_buff, mark));
281 		break;
282 
283 	case SKF_AD_PKTTYPE:
284 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
285 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
286 #ifdef __BIG_ENDIAN_BITFIELD
287 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
288 #endif
289 		break;
290 
291 	case SKF_AD_QUEUE:
292 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
293 
294 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
295 				      offsetof(struct sk_buff, queue_mapping));
296 		break;
297 
298 	case SKF_AD_VLAN_TAG:
299 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
300 
301 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
302 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
303 				      offsetof(struct sk_buff, vlan_tci));
304 		break;
305 	case SKF_AD_VLAN_TAG_PRESENT:
306 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
307 		if (PKT_VLAN_PRESENT_BIT)
308 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
309 		if (PKT_VLAN_PRESENT_BIT < 7)
310 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
311 		break;
312 	}
313 
314 	return insn - insn_buf;
315 }
316 
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)317 static bool convert_bpf_extensions(struct sock_filter *fp,
318 				   struct bpf_insn **insnp)
319 {
320 	struct bpf_insn *insn = *insnp;
321 	u32 cnt;
322 
323 	switch (fp->k) {
324 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
325 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
326 
327 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
328 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
329 				      offsetof(struct sk_buff, protocol));
330 		/* A = ntohs(A) [emitting a nop or swap16] */
331 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
332 		break;
333 
334 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
335 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
336 		insn += cnt - 1;
337 		break;
338 
339 	case SKF_AD_OFF + SKF_AD_IFINDEX:
340 	case SKF_AD_OFF + SKF_AD_HATYPE:
341 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
342 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
343 
344 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
345 				      BPF_REG_TMP, BPF_REG_CTX,
346 				      offsetof(struct sk_buff, dev));
347 		/* if (tmp != 0) goto pc + 1 */
348 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
349 		*insn++ = BPF_EXIT_INSN();
350 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
351 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
352 					    offsetof(struct net_device, ifindex));
353 		else
354 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
355 					    offsetof(struct net_device, type));
356 		break;
357 
358 	case SKF_AD_OFF + SKF_AD_MARK:
359 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
360 		insn += cnt - 1;
361 		break;
362 
363 	case SKF_AD_OFF + SKF_AD_RXHASH:
364 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
365 
366 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
367 				    offsetof(struct sk_buff, hash));
368 		break;
369 
370 	case SKF_AD_OFF + SKF_AD_QUEUE:
371 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
372 		insn += cnt - 1;
373 		break;
374 
375 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
376 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
377 					 BPF_REG_A, BPF_REG_CTX, insn);
378 		insn += cnt - 1;
379 		break;
380 
381 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
382 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
383 					 BPF_REG_A, BPF_REG_CTX, insn);
384 		insn += cnt - 1;
385 		break;
386 
387 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
388 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
389 
390 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
391 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
392 				      offsetof(struct sk_buff, vlan_proto));
393 		/* A = ntohs(A) [emitting a nop or swap16] */
394 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
395 		break;
396 
397 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
398 	case SKF_AD_OFF + SKF_AD_NLATTR:
399 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
400 	case SKF_AD_OFF + SKF_AD_CPU:
401 	case SKF_AD_OFF + SKF_AD_RANDOM:
402 		/* arg1 = CTX */
403 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
404 		/* arg2 = A */
405 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
406 		/* arg3 = X */
407 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
408 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
409 		switch (fp->k) {
410 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
411 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
412 			break;
413 		case SKF_AD_OFF + SKF_AD_NLATTR:
414 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
415 			break;
416 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
417 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
418 			break;
419 		case SKF_AD_OFF + SKF_AD_CPU:
420 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
421 			break;
422 		case SKF_AD_OFF + SKF_AD_RANDOM:
423 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
424 			bpf_user_rnd_init_once();
425 			break;
426 		}
427 		break;
428 
429 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
430 		/* A ^= X */
431 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
432 		break;
433 
434 	default:
435 		/* This is just a dummy call to avoid letting the compiler
436 		 * evict __bpf_call_base() as an optimization. Placed here
437 		 * where no-one bothers.
438 		 */
439 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
440 		return false;
441 	}
442 
443 	*insnp = insn;
444 	return true;
445 }
446 
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)447 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
448 {
449 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
450 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
451 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
452 		      BPF_SIZE(fp->code) == BPF_W;
453 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
454 	const int ip_align = NET_IP_ALIGN;
455 	struct bpf_insn *insn = *insnp;
456 	int offset = fp->k;
457 
458 	if (!indirect &&
459 	    ((unaligned_ok && offset >= 0) ||
460 	     (!unaligned_ok && offset >= 0 &&
461 	      offset + ip_align >= 0 &&
462 	      offset + ip_align % size == 0))) {
463 		bool ldx_off_ok = offset <= S16_MAX;
464 
465 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
466 		if (offset)
467 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
468 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
469 				      size, 2 + endian + (!ldx_off_ok * 2));
470 		if (ldx_off_ok) {
471 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
472 					      BPF_REG_D, offset);
473 		} else {
474 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
475 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
476 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
477 					      BPF_REG_TMP, 0);
478 		}
479 		if (endian)
480 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
481 		*insn++ = BPF_JMP_A(8);
482 	}
483 
484 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
485 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
486 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
487 	if (!indirect) {
488 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
489 	} else {
490 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
491 		if (fp->k)
492 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
493 	}
494 
495 	switch (BPF_SIZE(fp->code)) {
496 	case BPF_B:
497 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
498 		break;
499 	case BPF_H:
500 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
501 		break;
502 	case BPF_W:
503 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
504 		break;
505 	default:
506 		return false;
507 	}
508 
509 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
510 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
511 	*insn   = BPF_EXIT_INSN();
512 
513 	*insnp = insn;
514 	return true;
515 }
516 
517 /**
518  *	bpf_convert_filter - convert filter program
519  *	@prog: the user passed filter program
520  *	@len: the length of the user passed filter program
521  *	@new_prog: allocated 'struct bpf_prog' or NULL
522  *	@new_len: pointer to store length of converted program
523  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
524  *
525  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
526  * style extended BPF (eBPF).
527  * Conversion workflow:
528  *
529  * 1) First pass for calculating the new program length:
530  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
531  *
532  * 2) 2nd pass to remap in two passes: 1st pass finds new
533  *    jump offsets, 2nd pass remapping:
534  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
535  */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)536 static int bpf_convert_filter(struct sock_filter *prog, int len,
537 			      struct bpf_prog *new_prog, int *new_len,
538 			      bool *seen_ld_abs)
539 {
540 	int new_flen = 0, pass = 0, target, i, stack_off;
541 	struct bpf_insn *new_insn, *first_insn = NULL;
542 	struct sock_filter *fp;
543 	int *addrs = NULL;
544 	u8 bpf_src;
545 
546 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
547 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
548 
549 	if (len <= 0 || len > BPF_MAXINSNS)
550 		return -EINVAL;
551 
552 	if (new_prog) {
553 		first_insn = new_prog->insnsi;
554 		addrs = kcalloc(len, sizeof(*addrs),
555 				GFP_KERNEL | __GFP_NOWARN);
556 		if (!addrs)
557 			return -ENOMEM;
558 	}
559 
560 do_pass:
561 	new_insn = first_insn;
562 	fp = prog;
563 
564 	/* Classic BPF related prologue emission. */
565 	if (new_prog) {
566 		/* Classic BPF expects A and X to be reset first. These need
567 		 * to be guaranteed to be the first two instructions.
568 		 */
569 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
570 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
571 
572 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
573 		 * In eBPF case it's done by the compiler, here we need to
574 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
575 		 */
576 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
577 		if (*seen_ld_abs) {
578 			/* For packet access in classic BPF, cache skb->data
579 			 * in callee-saved BPF R8 and skb->len - skb->data_len
580 			 * (headlen) in BPF R9. Since classic BPF is read-only
581 			 * on CTX, we only need to cache it once.
582 			 */
583 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
584 						  BPF_REG_D, BPF_REG_CTX,
585 						  offsetof(struct sk_buff, data));
586 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
587 						  offsetof(struct sk_buff, len));
588 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
589 						  offsetof(struct sk_buff, data_len));
590 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
591 		}
592 	} else {
593 		new_insn += 3;
594 	}
595 
596 	for (i = 0; i < len; fp++, i++) {
597 		struct bpf_insn tmp_insns[32] = { };
598 		struct bpf_insn *insn = tmp_insns;
599 
600 		if (addrs)
601 			addrs[i] = new_insn - first_insn;
602 
603 		switch (fp->code) {
604 		/* All arithmetic insns and skb loads map as-is. */
605 		case BPF_ALU | BPF_ADD | BPF_X:
606 		case BPF_ALU | BPF_ADD | BPF_K:
607 		case BPF_ALU | BPF_SUB | BPF_X:
608 		case BPF_ALU | BPF_SUB | BPF_K:
609 		case BPF_ALU | BPF_AND | BPF_X:
610 		case BPF_ALU | BPF_AND | BPF_K:
611 		case BPF_ALU | BPF_OR | BPF_X:
612 		case BPF_ALU | BPF_OR | BPF_K:
613 		case BPF_ALU | BPF_LSH | BPF_X:
614 		case BPF_ALU | BPF_LSH | BPF_K:
615 		case BPF_ALU | BPF_RSH | BPF_X:
616 		case BPF_ALU | BPF_RSH | BPF_K:
617 		case BPF_ALU | BPF_XOR | BPF_X:
618 		case BPF_ALU | BPF_XOR | BPF_K:
619 		case BPF_ALU | BPF_MUL | BPF_X:
620 		case BPF_ALU | BPF_MUL | BPF_K:
621 		case BPF_ALU | BPF_DIV | BPF_X:
622 		case BPF_ALU | BPF_DIV | BPF_K:
623 		case BPF_ALU | BPF_MOD | BPF_X:
624 		case BPF_ALU | BPF_MOD | BPF_K:
625 		case BPF_ALU | BPF_NEG:
626 		case BPF_LD | BPF_ABS | BPF_W:
627 		case BPF_LD | BPF_ABS | BPF_H:
628 		case BPF_LD | BPF_ABS | BPF_B:
629 		case BPF_LD | BPF_IND | BPF_W:
630 		case BPF_LD | BPF_IND | BPF_H:
631 		case BPF_LD | BPF_IND | BPF_B:
632 			/* Check for overloaded BPF extension and
633 			 * directly convert it if found, otherwise
634 			 * just move on with mapping.
635 			 */
636 			if (BPF_CLASS(fp->code) == BPF_LD &&
637 			    BPF_MODE(fp->code) == BPF_ABS &&
638 			    convert_bpf_extensions(fp, &insn))
639 				break;
640 			if (BPF_CLASS(fp->code) == BPF_LD &&
641 			    convert_bpf_ld_abs(fp, &insn)) {
642 				*seen_ld_abs = true;
643 				break;
644 			}
645 
646 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
647 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
648 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
649 				/* Error with exception code on div/mod by 0.
650 				 * For cBPF programs, this was always return 0.
651 				 */
652 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
653 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
654 				*insn++ = BPF_EXIT_INSN();
655 			}
656 
657 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
658 			break;
659 
660 		/* Jump transformation cannot use BPF block macros
661 		 * everywhere as offset calculation and target updates
662 		 * require a bit more work than the rest, i.e. jump
663 		 * opcodes map as-is, but offsets need adjustment.
664 		 */
665 
666 #define BPF_EMIT_JMP							\
667 	do {								\
668 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
669 		s32 off;						\
670 									\
671 		if (target >= len || target < 0)			\
672 			goto err;					\
673 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
674 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
675 		off -= insn - tmp_insns;				\
676 		/* Reject anything not fitting into insn->off. */	\
677 		if (off < off_min || off > off_max)			\
678 			goto err;					\
679 		insn->off = off;					\
680 	} while (0)
681 
682 		case BPF_JMP | BPF_JA:
683 			target = i + fp->k + 1;
684 			insn->code = fp->code;
685 			BPF_EMIT_JMP;
686 			break;
687 
688 		case BPF_JMP | BPF_JEQ | BPF_K:
689 		case BPF_JMP | BPF_JEQ | BPF_X:
690 		case BPF_JMP | BPF_JSET | BPF_K:
691 		case BPF_JMP | BPF_JSET | BPF_X:
692 		case BPF_JMP | BPF_JGT | BPF_K:
693 		case BPF_JMP | BPF_JGT | BPF_X:
694 		case BPF_JMP | BPF_JGE | BPF_K:
695 		case BPF_JMP | BPF_JGE | BPF_X:
696 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
697 				/* BPF immediates are signed, zero extend
698 				 * immediate into tmp register and use it
699 				 * in compare insn.
700 				 */
701 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
702 
703 				insn->dst_reg = BPF_REG_A;
704 				insn->src_reg = BPF_REG_TMP;
705 				bpf_src = BPF_X;
706 			} else {
707 				insn->dst_reg = BPF_REG_A;
708 				insn->imm = fp->k;
709 				bpf_src = BPF_SRC(fp->code);
710 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
711 			}
712 
713 			/* Common case where 'jump_false' is next insn. */
714 			if (fp->jf == 0) {
715 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
716 				target = i + fp->jt + 1;
717 				BPF_EMIT_JMP;
718 				break;
719 			}
720 
721 			/* Convert some jumps when 'jump_true' is next insn. */
722 			if (fp->jt == 0) {
723 				switch (BPF_OP(fp->code)) {
724 				case BPF_JEQ:
725 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
726 					break;
727 				case BPF_JGT:
728 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
729 					break;
730 				case BPF_JGE:
731 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
732 					break;
733 				default:
734 					goto jmp_rest;
735 				}
736 
737 				target = i + fp->jf + 1;
738 				BPF_EMIT_JMP;
739 				break;
740 			}
741 jmp_rest:
742 			/* Other jumps are mapped into two insns: Jxx and JA. */
743 			target = i + fp->jt + 1;
744 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
745 			BPF_EMIT_JMP;
746 			insn++;
747 
748 			insn->code = BPF_JMP | BPF_JA;
749 			target = i + fp->jf + 1;
750 			BPF_EMIT_JMP;
751 			break;
752 
753 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
754 		case BPF_LDX | BPF_MSH | BPF_B: {
755 			struct sock_filter tmp = {
756 				.code	= BPF_LD | BPF_ABS | BPF_B,
757 				.k	= fp->k,
758 			};
759 
760 			*seen_ld_abs = true;
761 
762 			/* X = A */
763 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
764 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
765 			convert_bpf_ld_abs(&tmp, &insn);
766 			insn++;
767 			/* A &= 0xf */
768 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
769 			/* A <<= 2 */
770 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
771 			/* tmp = X */
772 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
773 			/* X = A */
774 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
775 			/* A = tmp */
776 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
777 			break;
778 		}
779 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
780 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
781 		 */
782 		case BPF_RET | BPF_A:
783 		case BPF_RET | BPF_K:
784 			if (BPF_RVAL(fp->code) == BPF_K)
785 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
786 							0, fp->k);
787 			*insn = BPF_EXIT_INSN();
788 			break;
789 
790 		/* Store to stack. */
791 		case BPF_ST:
792 		case BPF_STX:
793 			stack_off = fp->k * 4  + 4;
794 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
795 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
796 					    -stack_off);
797 			/* check_load_and_stores() verifies that classic BPF can
798 			 * load from stack only after write, so tracking
799 			 * stack_depth for ST|STX insns is enough
800 			 */
801 			if (new_prog && new_prog->aux->stack_depth < stack_off)
802 				new_prog->aux->stack_depth = stack_off;
803 			break;
804 
805 		/* Load from stack. */
806 		case BPF_LD | BPF_MEM:
807 		case BPF_LDX | BPF_MEM:
808 			stack_off = fp->k * 4  + 4;
809 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
810 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
811 					    -stack_off);
812 			break;
813 
814 		/* A = K or X = K */
815 		case BPF_LD | BPF_IMM:
816 		case BPF_LDX | BPF_IMM:
817 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
818 					      BPF_REG_A : BPF_REG_X, fp->k);
819 			break;
820 
821 		/* X = A */
822 		case BPF_MISC | BPF_TAX:
823 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
824 			break;
825 
826 		/* A = X */
827 		case BPF_MISC | BPF_TXA:
828 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
829 			break;
830 
831 		/* A = skb->len or X = skb->len */
832 		case BPF_LD | BPF_W | BPF_LEN:
833 		case BPF_LDX | BPF_W | BPF_LEN:
834 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
835 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
836 					    offsetof(struct sk_buff, len));
837 			break;
838 
839 		/* Access seccomp_data fields. */
840 		case BPF_LDX | BPF_ABS | BPF_W:
841 			/* A = *(u32 *) (ctx + K) */
842 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
843 			break;
844 
845 		/* Unknown instruction. */
846 		default:
847 			goto err;
848 		}
849 
850 		insn++;
851 		if (new_prog)
852 			memcpy(new_insn, tmp_insns,
853 			       sizeof(*insn) * (insn - tmp_insns));
854 		new_insn += insn - tmp_insns;
855 	}
856 
857 	if (!new_prog) {
858 		/* Only calculating new length. */
859 		*new_len = new_insn - first_insn;
860 		if (*seen_ld_abs)
861 			*new_len += 4; /* Prologue bits. */
862 		return 0;
863 	}
864 
865 	pass++;
866 	if (new_flen != new_insn - first_insn) {
867 		new_flen = new_insn - first_insn;
868 		if (pass > 2)
869 			goto err;
870 		goto do_pass;
871 	}
872 
873 	kfree(addrs);
874 	BUG_ON(*new_len != new_flen);
875 	return 0;
876 err:
877 	kfree(addrs);
878 	return -EINVAL;
879 }
880 
881 /* Security:
882  *
883  * As we dont want to clear mem[] array for each packet going through
884  * __bpf_prog_run(), we check that filter loaded by user never try to read
885  * a cell if not previously written, and we check all branches to be sure
886  * a malicious user doesn't try to abuse us.
887  */
check_load_and_stores(const struct sock_filter * filter,int flen)888 static int check_load_and_stores(const struct sock_filter *filter, int flen)
889 {
890 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
891 	int pc, ret = 0;
892 
893 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
894 
895 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
896 	if (!masks)
897 		return -ENOMEM;
898 
899 	memset(masks, 0xff, flen * sizeof(*masks));
900 
901 	for (pc = 0; pc < flen; pc++) {
902 		memvalid &= masks[pc];
903 
904 		switch (filter[pc].code) {
905 		case BPF_ST:
906 		case BPF_STX:
907 			memvalid |= (1 << filter[pc].k);
908 			break;
909 		case BPF_LD | BPF_MEM:
910 		case BPF_LDX | BPF_MEM:
911 			if (!(memvalid & (1 << filter[pc].k))) {
912 				ret = -EINVAL;
913 				goto error;
914 			}
915 			break;
916 		case BPF_JMP | BPF_JA:
917 			/* A jump must set masks on target */
918 			masks[pc + 1 + filter[pc].k] &= memvalid;
919 			memvalid = ~0;
920 			break;
921 		case BPF_JMP | BPF_JEQ | BPF_K:
922 		case BPF_JMP | BPF_JEQ | BPF_X:
923 		case BPF_JMP | BPF_JGE | BPF_K:
924 		case BPF_JMP | BPF_JGE | BPF_X:
925 		case BPF_JMP | BPF_JGT | BPF_K:
926 		case BPF_JMP | BPF_JGT | BPF_X:
927 		case BPF_JMP | BPF_JSET | BPF_K:
928 		case BPF_JMP | BPF_JSET | BPF_X:
929 			/* A jump must set masks on targets */
930 			masks[pc + 1 + filter[pc].jt] &= memvalid;
931 			masks[pc + 1 + filter[pc].jf] &= memvalid;
932 			memvalid = ~0;
933 			break;
934 		}
935 	}
936 error:
937 	kfree(masks);
938 	return ret;
939 }
940 
chk_code_allowed(u16 code_to_probe)941 static bool chk_code_allowed(u16 code_to_probe)
942 {
943 	static const bool codes[] = {
944 		/* 32 bit ALU operations */
945 		[BPF_ALU | BPF_ADD | BPF_K] = true,
946 		[BPF_ALU | BPF_ADD | BPF_X] = true,
947 		[BPF_ALU | BPF_SUB | BPF_K] = true,
948 		[BPF_ALU | BPF_SUB | BPF_X] = true,
949 		[BPF_ALU | BPF_MUL | BPF_K] = true,
950 		[BPF_ALU | BPF_MUL | BPF_X] = true,
951 		[BPF_ALU | BPF_DIV | BPF_K] = true,
952 		[BPF_ALU | BPF_DIV | BPF_X] = true,
953 		[BPF_ALU | BPF_MOD | BPF_K] = true,
954 		[BPF_ALU | BPF_MOD | BPF_X] = true,
955 		[BPF_ALU | BPF_AND | BPF_K] = true,
956 		[BPF_ALU | BPF_AND | BPF_X] = true,
957 		[BPF_ALU | BPF_OR | BPF_K] = true,
958 		[BPF_ALU | BPF_OR | BPF_X] = true,
959 		[BPF_ALU | BPF_XOR | BPF_K] = true,
960 		[BPF_ALU | BPF_XOR | BPF_X] = true,
961 		[BPF_ALU | BPF_LSH | BPF_K] = true,
962 		[BPF_ALU | BPF_LSH | BPF_X] = true,
963 		[BPF_ALU | BPF_RSH | BPF_K] = true,
964 		[BPF_ALU | BPF_RSH | BPF_X] = true,
965 		[BPF_ALU | BPF_NEG] = true,
966 		/* Load instructions */
967 		[BPF_LD | BPF_W | BPF_ABS] = true,
968 		[BPF_LD | BPF_H | BPF_ABS] = true,
969 		[BPF_LD | BPF_B | BPF_ABS] = true,
970 		[BPF_LD | BPF_W | BPF_LEN] = true,
971 		[BPF_LD | BPF_W | BPF_IND] = true,
972 		[BPF_LD | BPF_H | BPF_IND] = true,
973 		[BPF_LD | BPF_B | BPF_IND] = true,
974 		[BPF_LD | BPF_IMM] = true,
975 		[BPF_LD | BPF_MEM] = true,
976 		[BPF_LDX | BPF_W | BPF_LEN] = true,
977 		[BPF_LDX | BPF_B | BPF_MSH] = true,
978 		[BPF_LDX | BPF_IMM] = true,
979 		[BPF_LDX | BPF_MEM] = true,
980 		/* Store instructions */
981 		[BPF_ST] = true,
982 		[BPF_STX] = true,
983 		/* Misc instructions */
984 		[BPF_MISC | BPF_TAX] = true,
985 		[BPF_MISC | BPF_TXA] = true,
986 		/* Return instructions */
987 		[BPF_RET | BPF_K] = true,
988 		[BPF_RET | BPF_A] = true,
989 		/* Jump instructions */
990 		[BPF_JMP | BPF_JA] = true,
991 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
992 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
993 		[BPF_JMP | BPF_JGE | BPF_K] = true,
994 		[BPF_JMP | BPF_JGE | BPF_X] = true,
995 		[BPF_JMP | BPF_JGT | BPF_K] = true,
996 		[BPF_JMP | BPF_JGT | BPF_X] = true,
997 		[BPF_JMP | BPF_JSET | BPF_K] = true,
998 		[BPF_JMP | BPF_JSET | BPF_X] = true,
999 	};
1000 
1001 	if (code_to_probe >= ARRAY_SIZE(codes))
1002 		return false;
1003 
1004 	return codes[code_to_probe];
1005 }
1006 
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1007 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1008 				unsigned int flen)
1009 {
1010 	if (filter == NULL)
1011 		return false;
1012 	if (flen == 0 || flen > BPF_MAXINSNS)
1013 		return false;
1014 
1015 	return true;
1016 }
1017 
1018 /**
1019  *	bpf_check_classic - verify socket filter code
1020  *	@filter: filter to verify
1021  *	@flen: length of filter
1022  *
1023  * Check the user's filter code. If we let some ugly
1024  * filter code slip through kaboom! The filter must contain
1025  * no references or jumps that are out of range, no illegal
1026  * instructions, and must end with a RET instruction.
1027  *
1028  * All jumps are forward as they are not signed.
1029  *
1030  * Returns 0 if the rule set is legal or -EINVAL if not.
1031  */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1032 static int bpf_check_classic(const struct sock_filter *filter,
1033 			     unsigned int flen)
1034 {
1035 	bool anc_found;
1036 	int pc;
1037 
1038 	/* Check the filter code now */
1039 	for (pc = 0; pc < flen; pc++) {
1040 		const struct sock_filter *ftest = &filter[pc];
1041 
1042 		/* May we actually operate on this code? */
1043 		if (!chk_code_allowed(ftest->code))
1044 			return -EINVAL;
1045 
1046 		/* Some instructions need special checks */
1047 		switch (ftest->code) {
1048 		case BPF_ALU | BPF_DIV | BPF_K:
1049 		case BPF_ALU | BPF_MOD | BPF_K:
1050 			/* Check for division by zero */
1051 			if (ftest->k == 0)
1052 				return -EINVAL;
1053 			break;
1054 		case BPF_ALU | BPF_LSH | BPF_K:
1055 		case BPF_ALU | BPF_RSH | BPF_K:
1056 			if (ftest->k >= 32)
1057 				return -EINVAL;
1058 			break;
1059 		case BPF_LD | BPF_MEM:
1060 		case BPF_LDX | BPF_MEM:
1061 		case BPF_ST:
1062 		case BPF_STX:
1063 			/* Check for invalid memory addresses */
1064 			if (ftest->k >= BPF_MEMWORDS)
1065 				return -EINVAL;
1066 			break;
1067 		case BPF_JMP | BPF_JA:
1068 			/* Note, the large ftest->k might cause loops.
1069 			 * Compare this with conditional jumps below,
1070 			 * where offsets are limited. --ANK (981016)
1071 			 */
1072 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1073 				return -EINVAL;
1074 			break;
1075 		case BPF_JMP | BPF_JEQ | BPF_K:
1076 		case BPF_JMP | BPF_JEQ | BPF_X:
1077 		case BPF_JMP | BPF_JGE | BPF_K:
1078 		case BPF_JMP | BPF_JGE | BPF_X:
1079 		case BPF_JMP | BPF_JGT | BPF_K:
1080 		case BPF_JMP | BPF_JGT | BPF_X:
1081 		case BPF_JMP | BPF_JSET | BPF_K:
1082 		case BPF_JMP | BPF_JSET | BPF_X:
1083 			/* Both conditionals must be safe */
1084 			if (pc + ftest->jt + 1 >= flen ||
1085 			    pc + ftest->jf + 1 >= flen)
1086 				return -EINVAL;
1087 			break;
1088 		case BPF_LD | BPF_W | BPF_ABS:
1089 		case BPF_LD | BPF_H | BPF_ABS:
1090 		case BPF_LD | BPF_B | BPF_ABS:
1091 			anc_found = false;
1092 			if (bpf_anc_helper(ftest) & BPF_ANC)
1093 				anc_found = true;
1094 			/* Ancillary operation unknown or unsupported */
1095 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1096 				return -EINVAL;
1097 		}
1098 	}
1099 
1100 	/* Last instruction must be a RET code */
1101 	switch (filter[flen - 1].code) {
1102 	case BPF_RET | BPF_K:
1103 	case BPF_RET | BPF_A:
1104 		return check_load_and_stores(filter, flen);
1105 	}
1106 
1107 	return -EINVAL;
1108 }
1109 
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1110 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1111 				      const struct sock_fprog *fprog)
1112 {
1113 	unsigned int fsize = bpf_classic_proglen(fprog);
1114 	struct sock_fprog_kern *fkprog;
1115 
1116 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1117 	if (!fp->orig_prog)
1118 		return -ENOMEM;
1119 
1120 	fkprog = fp->orig_prog;
1121 	fkprog->len = fprog->len;
1122 
1123 	fkprog->filter = kmemdup(fp->insns, fsize,
1124 				 GFP_KERNEL | __GFP_NOWARN);
1125 	if (!fkprog->filter) {
1126 		kfree(fp->orig_prog);
1127 		return -ENOMEM;
1128 	}
1129 
1130 	return 0;
1131 }
1132 
bpf_release_orig_filter(struct bpf_prog * fp)1133 static void bpf_release_orig_filter(struct bpf_prog *fp)
1134 {
1135 	struct sock_fprog_kern *fprog = fp->orig_prog;
1136 
1137 	if (fprog) {
1138 		kfree(fprog->filter);
1139 		kfree(fprog);
1140 	}
1141 }
1142 
__bpf_prog_release(struct bpf_prog * prog)1143 static void __bpf_prog_release(struct bpf_prog *prog)
1144 {
1145 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1146 		bpf_prog_put(prog);
1147 	} else {
1148 		bpf_release_orig_filter(prog);
1149 		bpf_prog_free(prog);
1150 	}
1151 }
1152 
__sk_filter_release(struct sk_filter * fp)1153 static void __sk_filter_release(struct sk_filter *fp)
1154 {
1155 	__bpf_prog_release(fp->prog);
1156 	kfree(fp);
1157 }
1158 
1159 /**
1160  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1161  *	@rcu: rcu_head that contains the sk_filter to free
1162  */
sk_filter_release_rcu(struct rcu_head * rcu)1163 static void sk_filter_release_rcu(struct rcu_head *rcu)
1164 {
1165 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1166 
1167 	__sk_filter_release(fp);
1168 }
1169 
1170 /**
1171  *	sk_filter_release - release a socket filter
1172  *	@fp: filter to remove
1173  *
1174  *	Remove a filter from a socket and release its resources.
1175  */
sk_filter_release(struct sk_filter * fp)1176 static void sk_filter_release(struct sk_filter *fp)
1177 {
1178 	if (refcount_dec_and_test(&fp->refcnt))
1179 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1180 }
1181 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1182 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1183 {
1184 	u32 filter_size = bpf_prog_size(fp->prog->len);
1185 
1186 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1187 	sk_filter_release(fp);
1188 }
1189 
1190 /* try to charge the socket memory if there is space available
1191  * return true on success
1192  */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1193 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1194 {
1195 	u32 filter_size = bpf_prog_size(fp->prog->len);
1196 
1197 	/* same check as in sock_kmalloc() */
1198 	if (filter_size <= sysctl_optmem_max &&
1199 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1200 		atomic_add(filter_size, &sk->sk_omem_alloc);
1201 		return true;
1202 	}
1203 	return false;
1204 }
1205 
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1206 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1207 {
1208 	if (!refcount_inc_not_zero(&fp->refcnt))
1209 		return false;
1210 
1211 	if (!__sk_filter_charge(sk, fp)) {
1212 		sk_filter_release(fp);
1213 		return false;
1214 	}
1215 	return true;
1216 }
1217 
bpf_migrate_filter(struct bpf_prog * fp)1218 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1219 {
1220 	struct sock_filter *old_prog;
1221 	struct bpf_prog *old_fp;
1222 	int err, new_len, old_len = fp->len;
1223 	bool seen_ld_abs = false;
1224 
1225 	/* We are free to overwrite insns et al right here as it
1226 	 * won't be used at this point in time anymore internally
1227 	 * after the migration to the internal BPF instruction
1228 	 * representation.
1229 	 */
1230 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1231 		     sizeof(struct bpf_insn));
1232 
1233 	/* Conversion cannot happen on overlapping memory areas,
1234 	 * so we need to keep the user BPF around until the 2nd
1235 	 * pass. At this time, the user BPF is stored in fp->insns.
1236 	 */
1237 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1238 			   GFP_KERNEL | __GFP_NOWARN);
1239 	if (!old_prog) {
1240 		err = -ENOMEM;
1241 		goto out_err;
1242 	}
1243 
1244 	/* 1st pass: calculate the new program length. */
1245 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1246 				 &seen_ld_abs);
1247 	if (err)
1248 		goto out_err_free;
1249 
1250 	/* Expand fp for appending the new filter representation. */
1251 	old_fp = fp;
1252 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1253 	if (!fp) {
1254 		/* The old_fp is still around in case we couldn't
1255 		 * allocate new memory, so uncharge on that one.
1256 		 */
1257 		fp = old_fp;
1258 		err = -ENOMEM;
1259 		goto out_err_free;
1260 	}
1261 
1262 	fp->len = new_len;
1263 
1264 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1265 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1266 				 &seen_ld_abs);
1267 	if (err)
1268 		/* 2nd bpf_convert_filter() can fail only if it fails
1269 		 * to allocate memory, remapping must succeed. Note,
1270 		 * that at this time old_fp has already been released
1271 		 * by krealloc().
1272 		 */
1273 		goto out_err_free;
1274 
1275 	fp = bpf_prog_select_runtime(fp, &err);
1276 	if (err)
1277 		goto out_err_free;
1278 
1279 	kfree(old_prog);
1280 	return fp;
1281 
1282 out_err_free:
1283 	kfree(old_prog);
1284 out_err:
1285 	__bpf_prog_release(fp);
1286 	return ERR_PTR(err);
1287 }
1288 
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1289 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1290 					   bpf_aux_classic_check_t trans)
1291 {
1292 	int err;
1293 
1294 	fp->bpf_func = NULL;
1295 	fp->jited = 0;
1296 
1297 	err = bpf_check_classic(fp->insns, fp->len);
1298 	if (err) {
1299 		__bpf_prog_release(fp);
1300 		return ERR_PTR(err);
1301 	}
1302 
1303 	/* There might be additional checks and transformations
1304 	 * needed on classic filters, f.e. in case of seccomp.
1305 	 */
1306 	if (trans) {
1307 		err = trans(fp->insns, fp->len);
1308 		if (err) {
1309 			__bpf_prog_release(fp);
1310 			return ERR_PTR(err);
1311 		}
1312 	}
1313 
1314 	/* Probe if we can JIT compile the filter and if so, do
1315 	 * the compilation of the filter.
1316 	 */
1317 	bpf_jit_compile(fp);
1318 
1319 	/* JIT compiler couldn't process this filter, so do the
1320 	 * internal BPF translation for the optimized interpreter.
1321 	 */
1322 	if (!fp->jited)
1323 		fp = bpf_migrate_filter(fp);
1324 
1325 	return fp;
1326 }
1327 
1328 /**
1329  *	bpf_prog_create - create an unattached filter
1330  *	@pfp: the unattached filter that is created
1331  *	@fprog: the filter program
1332  *
1333  * Create a filter independent of any socket. We first run some
1334  * sanity checks on it to make sure it does not explode on us later.
1335  * If an error occurs or there is insufficient memory for the filter
1336  * a negative errno code is returned. On success the return is zero.
1337  */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1338 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1339 {
1340 	unsigned int fsize = bpf_classic_proglen(fprog);
1341 	struct bpf_prog *fp;
1342 
1343 	/* Make sure new filter is there and in the right amounts. */
1344 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1345 		return -EINVAL;
1346 
1347 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1348 	if (!fp)
1349 		return -ENOMEM;
1350 
1351 	memcpy(fp->insns, fprog->filter, fsize);
1352 
1353 	fp->len = fprog->len;
1354 	/* Since unattached filters are not copied back to user
1355 	 * space through sk_get_filter(), we do not need to hold
1356 	 * a copy here, and can spare us the work.
1357 	 */
1358 	fp->orig_prog = NULL;
1359 
1360 	/* bpf_prepare_filter() already takes care of freeing
1361 	 * memory in case something goes wrong.
1362 	 */
1363 	fp = bpf_prepare_filter(fp, NULL);
1364 	if (IS_ERR(fp))
1365 		return PTR_ERR(fp);
1366 
1367 	*pfp = fp;
1368 	return 0;
1369 }
1370 EXPORT_SYMBOL_GPL(bpf_prog_create);
1371 
1372 /**
1373  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1374  *	@pfp: the unattached filter that is created
1375  *	@fprog: the filter program
1376  *	@trans: post-classic verifier transformation handler
1377  *	@save_orig: save classic BPF program
1378  *
1379  * This function effectively does the same as bpf_prog_create(), only
1380  * that it builds up its insns buffer from user space provided buffer.
1381  * It also allows for passing a bpf_aux_classic_check_t handler.
1382  */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1383 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1384 			      bpf_aux_classic_check_t trans, bool save_orig)
1385 {
1386 	unsigned int fsize = bpf_classic_proglen(fprog);
1387 	struct bpf_prog *fp;
1388 	int err;
1389 
1390 	/* Make sure new filter is there and in the right amounts. */
1391 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1392 		return -EINVAL;
1393 
1394 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1395 	if (!fp)
1396 		return -ENOMEM;
1397 
1398 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1399 		__bpf_prog_free(fp);
1400 		return -EFAULT;
1401 	}
1402 
1403 	fp->len = fprog->len;
1404 	fp->orig_prog = NULL;
1405 
1406 	if (save_orig) {
1407 		err = bpf_prog_store_orig_filter(fp, fprog);
1408 		if (err) {
1409 			__bpf_prog_free(fp);
1410 			return -ENOMEM;
1411 		}
1412 	}
1413 
1414 	/* bpf_prepare_filter() already takes care of freeing
1415 	 * memory in case something goes wrong.
1416 	 */
1417 	fp = bpf_prepare_filter(fp, trans);
1418 	if (IS_ERR(fp))
1419 		return PTR_ERR(fp);
1420 
1421 	*pfp = fp;
1422 	return 0;
1423 }
1424 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1425 
bpf_prog_destroy(struct bpf_prog * fp)1426 void bpf_prog_destroy(struct bpf_prog *fp)
1427 {
1428 	__bpf_prog_release(fp);
1429 }
1430 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1431 
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1432 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1433 {
1434 	struct sk_filter *fp, *old_fp;
1435 
1436 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1437 	if (!fp)
1438 		return -ENOMEM;
1439 
1440 	fp->prog = prog;
1441 
1442 	if (!__sk_filter_charge(sk, fp)) {
1443 		kfree(fp);
1444 		return -ENOMEM;
1445 	}
1446 	refcount_set(&fp->refcnt, 1);
1447 
1448 	old_fp = rcu_dereference_protected(sk->sk_filter,
1449 					   lockdep_sock_is_held(sk));
1450 	rcu_assign_pointer(sk->sk_filter, fp);
1451 
1452 	if (old_fp)
1453 		sk_filter_uncharge(sk, old_fp);
1454 
1455 	return 0;
1456 }
1457 
1458 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1459 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1460 {
1461 	unsigned int fsize = bpf_classic_proglen(fprog);
1462 	struct bpf_prog *prog;
1463 	int err;
1464 
1465 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1466 		return ERR_PTR(-EPERM);
1467 
1468 	/* Make sure new filter is there and in the right amounts. */
1469 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1470 		return ERR_PTR(-EINVAL);
1471 
1472 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1473 	if (!prog)
1474 		return ERR_PTR(-ENOMEM);
1475 
1476 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1477 		__bpf_prog_free(prog);
1478 		return ERR_PTR(-EFAULT);
1479 	}
1480 
1481 	prog->len = fprog->len;
1482 
1483 	err = bpf_prog_store_orig_filter(prog, fprog);
1484 	if (err) {
1485 		__bpf_prog_free(prog);
1486 		return ERR_PTR(-ENOMEM);
1487 	}
1488 
1489 	/* bpf_prepare_filter() already takes care of freeing
1490 	 * memory in case something goes wrong.
1491 	 */
1492 	return bpf_prepare_filter(prog, NULL);
1493 }
1494 
1495 /**
1496  *	sk_attach_filter - attach a socket filter
1497  *	@fprog: the filter program
1498  *	@sk: the socket to use
1499  *
1500  * Attach the user's filter code. We first run some sanity checks on
1501  * it to make sure it does not explode on us later. If an error
1502  * occurs or there is insufficient memory for the filter a negative
1503  * errno code is returned. On success the return is zero.
1504  */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1505 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1506 {
1507 	struct bpf_prog *prog = __get_filter(fprog, sk);
1508 	int err;
1509 
1510 	if (IS_ERR(prog))
1511 		return PTR_ERR(prog);
1512 
1513 	err = __sk_attach_prog(prog, sk);
1514 	if (err < 0) {
1515 		__bpf_prog_release(prog);
1516 		return err;
1517 	}
1518 
1519 	return 0;
1520 }
1521 EXPORT_SYMBOL_GPL(sk_attach_filter);
1522 
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1523 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1524 {
1525 	struct bpf_prog *prog = __get_filter(fprog, sk);
1526 	int err;
1527 
1528 	if (IS_ERR(prog))
1529 		return PTR_ERR(prog);
1530 
1531 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1532 		err = -ENOMEM;
1533 	else
1534 		err = reuseport_attach_prog(sk, prog);
1535 
1536 	if (err)
1537 		__bpf_prog_release(prog);
1538 
1539 	return err;
1540 }
1541 
__get_bpf(u32 ufd,struct sock * sk)1542 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1543 {
1544 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1545 		return ERR_PTR(-EPERM);
1546 
1547 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1548 }
1549 
sk_attach_bpf(u32 ufd,struct sock * sk)1550 int sk_attach_bpf(u32 ufd, struct sock *sk)
1551 {
1552 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1553 	int err;
1554 
1555 	if (IS_ERR(prog))
1556 		return PTR_ERR(prog);
1557 
1558 	err = __sk_attach_prog(prog, sk);
1559 	if (err < 0) {
1560 		bpf_prog_put(prog);
1561 		return err;
1562 	}
1563 
1564 	return 0;
1565 }
1566 
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1567 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1568 {
1569 	struct bpf_prog *prog;
1570 	int err;
1571 
1572 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1573 		return -EPERM;
1574 
1575 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1576 	if (IS_ERR(prog) && PTR_ERR(prog) == -EINVAL)
1577 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1578 	if (IS_ERR(prog))
1579 		return PTR_ERR(prog);
1580 
1581 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1582 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1583 		 * bpf prog (e.g. sockmap).  It depends on the
1584 		 * limitation imposed by bpf_prog_load().
1585 		 * Hence, sysctl_optmem_max is not checked.
1586 		 */
1587 		if ((sk->sk_type != SOCK_STREAM &&
1588 		     sk->sk_type != SOCK_DGRAM) ||
1589 		    (sk->sk_protocol != IPPROTO_UDP &&
1590 		     sk->sk_protocol != IPPROTO_TCP) ||
1591 		    (sk->sk_family != AF_INET &&
1592 		     sk->sk_family != AF_INET6)) {
1593 			err = -ENOTSUPP;
1594 			goto err_prog_put;
1595 		}
1596 	} else {
1597 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1598 		if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1599 			err = -ENOMEM;
1600 			goto err_prog_put;
1601 		}
1602 	}
1603 
1604 	err = reuseport_attach_prog(sk, prog);
1605 err_prog_put:
1606 	if (err)
1607 		bpf_prog_put(prog);
1608 
1609 	return err;
1610 }
1611 
sk_reuseport_prog_free(struct bpf_prog * prog)1612 void sk_reuseport_prog_free(struct bpf_prog *prog)
1613 {
1614 	if (!prog)
1615 		return;
1616 
1617 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1618 		bpf_prog_put(prog);
1619 	else
1620 		bpf_prog_destroy(prog);
1621 }
1622 
1623 struct bpf_scratchpad {
1624 	union {
1625 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1626 		u8     buff[MAX_BPF_STACK];
1627 	};
1628 };
1629 
1630 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1631 
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1632 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1633 					  unsigned int write_len)
1634 {
1635 	return skb_ensure_writable(skb, write_len);
1636 }
1637 
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1638 static inline int bpf_try_make_writable(struct sk_buff *skb,
1639 					unsigned int write_len)
1640 {
1641 	int err = __bpf_try_make_writable(skb, write_len);
1642 
1643 	bpf_compute_data_pointers(skb);
1644 	return err;
1645 }
1646 
bpf_try_make_head_writable(struct sk_buff * skb)1647 static int bpf_try_make_head_writable(struct sk_buff *skb)
1648 {
1649 	return bpf_try_make_writable(skb, skb_headlen(skb));
1650 }
1651 
bpf_push_mac_rcsum(struct sk_buff * skb)1652 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1653 {
1654 	if (skb_at_tc_ingress(skb))
1655 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1656 }
1657 
bpf_pull_mac_rcsum(struct sk_buff * skb)1658 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1659 {
1660 	if (skb_at_tc_ingress(skb))
1661 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1662 }
1663 
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1664 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1665 	   const void *, from, u32, len, u64, flags)
1666 {
1667 	void *ptr;
1668 
1669 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1670 		return -EINVAL;
1671 	if (unlikely(offset > 0xffff))
1672 		return -EFAULT;
1673 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1674 		return -EFAULT;
1675 
1676 	ptr = skb->data + offset;
1677 	if (flags & BPF_F_RECOMPUTE_CSUM)
1678 		__skb_postpull_rcsum(skb, ptr, len, offset);
1679 
1680 	memcpy(ptr, from, len);
1681 
1682 	if (flags & BPF_F_RECOMPUTE_CSUM)
1683 		__skb_postpush_rcsum(skb, ptr, len, offset);
1684 	if (flags & BPF_F_INVALIDATE_HASH)
1685 		skb_clear_hash(skb);
1686 
1687 	return 0;
1688 }
1689 
1690 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1691 	.func		= bpf_skb_store_bytes,
1692 	.gpl_only	= false,
1693 	.ret_type	= RET_INTEGER,
1694 	.arg1_type	= ARG_PTR_TO_CTX,
1695 	.arg2_type	= ARG_ANYTHING,
1696 	.arg3_type	= ARG_PTR_TO_MEM,
1697 	.arg4_type	= ARG_CONST_SIZE,
1698 	.arg5_type	= ARG_ANYTHING,
1699 };
1700 
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1701 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1702 	   void *, to, u32, len)
1703 {
1704 	void *ptr;
1705 
1706 	if (unlikely(offset > 0xffff))
1707 		goto err_clear;
1708 
1709 	ptr = skb_header_pointer(skb, offset, len, to);
1710 	if (unlikely(!ptr))
1711 		goto err_clear;
1712 	if (ptr != to)
1713 		memcpy(to, ptr, len);
1714 
1715 	return 0;
1716 err_clear:
1717 	memset(to, 0, len);
1718 	return -EFAULT;
1719 }
1720 
1721 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1722 	.func		= bpf_skb_load_bytes,
1723 	.gpl_only	= false,
1724 	.ret_type	= RET_INTEGER,
1725 	.arg1_type	= ARG_PTR_TO_CTX,
1726 	.arg2_type	= ARG_ANYTHING,
1727 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1728 	.arg4_type	= ARG_CONST_SIZE,
1729 };
1730 
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1731 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1732 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1733 	   void *, to, u32, len)
1734 {
1735 	void *ptr;
1736 
1737 	if (unlikely(offset > 0xffff))
1738 		goto err_clear;
1739 
1740 	if (unlikely(!ctx->skb))
1741 		goto err_clear;
1742 
1743 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1744 	if (unlikely(!ptr))
1745 		goto err_clear;
1746 	if (ptr != to)
1747 		memcpy(to, ptr, len);
1748 
1749 	return 0;
1750 err_clear:
1751 	memset(to, 0, len);
1752 	return -EFAULT;
1753 }
1754 
1755 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1756 	.func		= bpf_flow_dissector_load_bytes,
1757 	.gpl_only	= false,
1758 	.ret_type	= RET_INTEGER,
1759 	.arg1_type	= ARG_PTR_TO_CTX,
1760 	.arg2_type	= ARG_ANYTHING,
1761 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1762 	.arg4_type	= ARG_CONST_SIZE,
1763 };
1764 
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1765 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1766 	   u32, offset, void *, to, u32, len, u32, start_header)
1767 {
1768 	u8 *end = skb_tail_pointer(skb);
1769 	u8 *net = skb_network_header(skb);
1770 	u8 *mac = skb_mac_header(skb);
1771 	u8 *ptr;
1772 
1773 	if (unlikely(offset > 0xffff || len > (end - mac)))
1774 		goto err_clear;
1775 
1776 	switch (start_header) {
1777 	case BPF_HDR_START_MAC:
1778 		ptr = mac + offset;
1779 		break;
1780 	case BPF_HDR_START_NET:
1781 		ptr = net + offset;
1782 		break;
1783 	default:
1784 		goto err_clear;
1785 	}
1786 
1787 	if (likely(ptr >= mac && ptr + len <= end)) {
1788 		memcpy(to, ptr, len);
1789 		return 0;
1790 	}
1791 
1792 err_clear:
1793 	memset(to, 0, len);
1794 	return -EFAULT;
1795 }
1796 
1797 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1798 	.func		= bpf_skb_load_bytes_relative,
1799 	.gpl_only	= false,
1800 	.ret_type	= RET_INTEGER,
1801 	.arg1_type	= ARG_PTR_TO_CTX,
1802 	.arg2_type	= ARG_ANYTHING,
1803 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1804 	.arg4_type	= ARG_CONST_SIZE,
1805 	.arg5_type	= ARG_ANYTHING,
1806 };
1807 
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1808 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1809 {
1810 	/* Idea is the following: should the needed direct read/write
1811 	 * test fail during runtime, we can pull in more data and redo
1812 	 * again, since implicitly, we invalidate previous checks here.
1813 	 *
1814 	 * Or, since we know how much we need to make read/writeable,
1815 	 * this can be done once at the program beginning for direct
1816 	 * access case. By this we overcome limitations of only current
1817 	 * headroom being accessible.
1818 	 */
1819 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1820 }
1821 
1822 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1823 	.func		= bpf_skb_pull_data,
1824 	.gpl_only	= false,
1825 	.ret_type	= RET_INTEGER,
1826 	.arg1_type	= ARG_PTR_TO_CTX,
1827 	.arg2_type	= ARG_ANYTHING,
1828 };
1829 
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1830 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1831 {
1832 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1833 }
1834 
1835 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1836 	.func		= bpf_sk_fullsock,
1837 	.gpl_only	= false,
1838 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1839 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1840 };
1841 
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1842 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1843 					   unsigned int write_len)
1844 {
1845 	int err = __bpf_try_make_writable(skb, write_len);
1846 
1847 	bpf_compute_data_end_sk_skb(skb);
1848 	return err;
1849 }
1850 
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1851 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1852 {
1853 	/* Idea is the following: should the needed direct read/write
1854 	 * test fail during runtime, we can pull in more data and redo
1855 	 * again, since implicitly, we invalidate previous checks here.
1856 	 *
1857 	 * Or, since we know how much we need to make read/writeable,
1858 	 * this can be done once at the program beginning for direct
1859 	 * access case. By this we overcome limitations of only current
1860 	 * headroom being accessible.
1861 	 */
1862 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1863 }
1864 
1865 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1866 	.func		= sk_skb_pull_data,
1867 	.gpl_only	= false,
1868 	.ret_type	= RET_INTEGER,
1869 	.arg1_type	= ARG_PTR_TO_CTX,
1870 	.arg2_type	= ARG_ANYTHING,
1871 };
1872 
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1873 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1874 	   u64, from, u64, to, u64, flags)
1875 {
1876 	__sum16 *ptr;
1877 
1878 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1879 		return -EINVAL;
1880 	if (unlikely(offset > 0xffff || offset & 1))
1881 		return -EFAULT;
1882 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1883 		return -EFAULT;
1884 
1885 	ptr = (__sum16 *)(skb->data + offset);
1886 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1887 	case 0:
1888 		if (unlikely(from != 0))
1889 			return -EINVAL;
1890 
1891 		csum_replace_by_diff(ptr, to);
1892 		break;
1893 	case 2:
1894 		csum_replace2(ptr, from, to);
1895 		break;
1896 	case 4:
1897 		csum_replace4(ptr, from, to);
1898 		break;
1899 	default:
1900 		return -EINVAL;
1901 	}
1902 
1903 	return 0;
1904 }
1905 
1906 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1907 	.func		= bpf_l3_csum_replace,
1908 	.gpl_only	= false,
1909 	.ret_type	= RET_INTEGER,
1910 	.arg1_type	= ARG_PTR_TO_CTX,
1911 	.arg2_type	= ARG_ANYTHING,
1912 	.arg3_type	= ARG_ANYTHING,
1913 	.arg4_type	= ARG_ANYTHING,
1914 	.arg5_type	= ARG_ANYTHING,
1915 };
1916 
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1917 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1918 	   u64, from, u64, to, u64, flags)
1919 {
1920 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1921 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1922 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1923 	__sum16 *ptr;
1924 
1925 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1926 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1927 		return -EINVAL;
1928 	if (unlikely(offset > 0xffff || offset & 1))
1929 		return -EFAULT;
1930 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1931 		return -EFAULT;
1932 
1933 	ptr = (__sum16 *)(skb->data + offset);
1934 	if (is_mmzero && !do_mforce && !*ptr)
1935 		return 0;
1936 
1937 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1938 	case 0:
1939 		if (unlikely(from != 0))
1940 			return -EINVAL;
1941 
1942 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1943 		break;
1944 	case 2:
1945 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1946 		break;
1947 	case 4:
1948 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1949 		break;
1950 	default:
1951 		return -EINVAL;
1952 	}
1953 
1954 	if (is_mmzero && !*ptr)
1955 		*ptr = CSUM_MANGLED_0;
1956 	return 0;
1957 }
1958 
1959 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1960 	.func		= bpf_l4_csum_replace,
1961 	.gpl_only	= false,
1962 	.ret_type	= RET_INTEGER,
1963 	.arg1_type	= ARG_PTR_TO_CTX,
1964 	.arg2_type	= ARG_ANYTHING,
1965 	.arg3_type	= ARG_ANYTHING,
1966 	.arg4_type	= ARG_ANYTHING,
1967 	.arg5_type	= ARG_ANYTHING,
1968 };
1969 
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)1970 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1971 	   __be32 *, to, u32, to_size, __wsum, seed)
1972 {
1973 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1974 	u32 diff_size = from_size + to_size;
1975 	int i, j = 0;
1976 
1977 	/* This is quite flexible, some examples:
1978 	 *
1979 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
1980 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
1981 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1982 	 *
1983 	 * Even for diffing, from_size and to_size don't need to be equal.
1984 	 */
1985 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1986 		     diff_size > sizeof(sp->diff)))
1987 		return -EINVAL;
1988 
1989 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1990 		sp->diff[j] = ~from[i];
1991 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1992 		sp->diff[j] = to[i];
1993 
1994 	return csum_partial(sp->diff, diff_size, seed);
1995 }
1996 
1997 static const struct bpf_func_proto bpf_csum_diff_proto = {
1998 	.func		= bpf_csum_diff,
1999 	.gpl_only	= false,
2000 	.pkt_access	= true,
2001 	.ret_type	= RET_INTEGER,
2002 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
2003 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2004 	.arg3_type	= ARG_PTR_TO_MEM_OR_NULL,
2005 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2006 	.arg5_type	= ARG_ANYTHING,
2007 };
2008 
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2009 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2010 {
2011 	/* The interface is to be used in combination with bpf_csum_diff()
2012 	 * for direct packet writes. csum rotation for alignment as well
2013 	 * as emulating csum_sub() can be done from the eBPF program.
2014 	 */
2015 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2016 		return (skb->csum = csum_add(skb->csum, csum));
2017 
2018 	return -ENOTSUPP;
2019 }
2020 
2021 static const struct bpf_func_proto bpf_csum_update_proto = {
2022 	.func		= bpf_csum_update,
2023 	.gpl_only	= false,
2024 	.ret_type	= RET_INTEGER,
2025 	.arg1_type	= ARG_PTR_TO_CTX,
2026 	.arg2_type	= ARG_ANYTHING,
2027 };
2028 
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2029 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2030 {
2031 	return dev_forward_skb(dev, skb);
2032 }
2033 
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2034 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2035 				      struct sk_buff *skb)
2036 {
2037 	int ret = ____dev_forward_skb(dev, skb);
2038 
2039 	if (likely(!ret)) {
2040 		skb->dev = dev;
2041 		ret = netif_rx(skb);
2042 	}
2043 
2044 	return ret;
2045 }
2046 
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2047 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2048 {
2049 	int ret;
2050 
2051 	if (dev_xmit_recursion()) {
2052 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2053 		kfree_skb(skb);
2054 		return -ENETDOWN;
2055 	}
2056 
2057 	skb->dev = dev;
2058 	skb->tstamp = 0;
2059 
2060 	dev_xmit_recursion_inc();
2061 	ret = dev_queue_xmit(skb);
2062 	dev_xmit_recursion_dec();
2063 
2064 	return ret;
2065 }
2066 
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2067 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2068 				 u32 flags)
2069 {
2070 	unsigned int mlen = skb_network_offset(skb);
2071 
2072 	if (mlen) {
2073 		__skb_pull(skb, mlen);
2074 
2075 		/* At ingress, the mac header has already been pulled once.
2076 		 * At egress, skb_pospull_rcsum has to be done in case that
2077 		 * the skb is originated from ingress (i.e. a forwarded skb)
2078 		 * to ensure that rcsum starts at net header.
2079 		 */
2080 		if (!skb_at_tc_ingress(skb))
2081 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2082 	}
2083 	skb_pop_mac_header(skb);
2084 	skb_reset_mac_len(skb);
2085 	return flags & BPF_F_INGRESS ?
2086 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2087 }
2088 
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2089 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2090 				 u32 flags)
2091 {
2092 	/* Verify that a link layer header is carried */
2093 	if (unlikely(skb->mac_header >= skb->network_header)) {
2094 		kfree_skb(skb);
2095 		return -ERANGE;
2096 	}
2097 
2098 	bpf_push_mac_rcsum(skb);
2099 	return flags & BPF_F_INGRESS ?
2100 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2101 }
2102 
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2103 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2104 			  u32 flags)
2105 {
2106 	if (dev_is_mac_header_xmit(dev))
2107 		return __bpf_redirect_common(skb, dev, flags);
2108 	else
2109 		return __bpf_redirect_no_mac(skb, dev, flags);
2110 }
2111 
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2112 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2113 {
2114 	struct net_device *dev;
2115 	struct sk_buff *clone;
2116 	int ret;
2117 
2118 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2119 		return -EINVAL;
2120 
2121 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2122 	if (unlikely(!dev))
2123 		return -EINVAL;
2124 
2125 	clone = skb_clone(skb, GFP_ATOMIC);
2126 	if (unlikely(!clone))
2127 		return -ENOMEM;
2128 
2129 	/* For direct write, we need to keep the invariant that the skbs
2130 	 * we're dealing with need to be uncloned. Should uncloning fail
2131 	 * here, we need to free the just generated clone to unclone once
2132 	 * again.
2133 	 */
2134 	ret = bpf_try_make_head_writable(skb);
2135 	if (unlikely(ret)) {
2136 		kfree_skb(clone);
2137 		return -ENOMEM;
2138 	}
2139 
2140 	return __bpf_redirect(clone, dev, flags);
2141 }
2142 
2143 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2144 	.func           = bpf_clone_redirect,
2145 	.gpl_only       = false,
2146 	.ret_type       = RET_INTEGER,
2147 	.arg1_type      = ARG_PTR_TO_CTX,
2148 	.arg2_type      = ARG_ANYTHING,
2149 	.arg3_type      = ARG_ANYTHING,
2150 };
2151 
2152 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2153 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2154 
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2155 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2156 {
2157 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2158 
2159 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2160 		return TC_ACT_SHOT;
2161 
2162 	ri->flags = flags;
2163 	ri->tgt_index = ifindex;
2164 
2165 	return TC_ACT_REDIRECT;
2166 }
2167 
skb_do_redirect(struct sk_buff * skb)2168 int skb_do_redirect(struct sk_buff *skb)
2169 {
2170 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2171 	struct net_device *dev;
2172 
2173 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->tgt_index);
2174 	ri->tgt_index = 0;
2175 	if (unlikely(!dev)) {
2176 		kfree_skb(skb);
2177 		return -EINVAL;
2178 	}
2179 
2180 	return __bpf_redirect(skb, dev, ri->flags);
2181 }
2182 
2183 static const struct bpf_func_proto bpf_redirect_proto = {
2184 	.func           = bpf_redirect,
2185 	.gpl_only       = false,
2186 	.ret_type       = RET_INTEGER,
2187 	.arg1_type      = ARG_ANYTHING,
2188 	.arg2_type      = ARG_ANYTHING,
2189 };
2190 
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2191 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2192 {
2193 	msg->apply_bytes = bytes;
2194 	return 0;
2195 }
2196 
2197 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2198 	.func           = bpf_msg_apply_bytes,
2199 	.gpl_only       = false,
2200 	.ret_type       = RET_INTEGER,
2201 	.arg1_type	= ARG_PTR_TO_CTX,
2202 	.arg2_type      = ARG_ANYTHING,
2203 };
2204 
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2205 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2206 {
2207 	msg->cork_bytes = bytes;
2208 	return 0;
2209 }
2210 
2211 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2212 	.func           = bpf_msg_cork_bytes,
2213 	.gpl_only       = false,
2214 	.ret_type       = RET_INTEGER,
2215 	.arg1_type	= ARG_PTR_TO_CTX,
2216 	.arg2_type      = ARG_ANYTHING,
2217 };
2218 
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2219 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2220 	   u32, end, u64, flags)
2221 {
2222 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2223 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2224 	struct scatterlist *sge;
2225 	u8 *raw, *to, *from;
2226 	struct page *page;
2227 
2228 	if (unlikely(flags || end <= start))
2229 		return -EINVAL;
2230 
2231 	/* First find the starting scatterlist element */
2232 	i = msg->sg.start;
2233 	do {
2234 		offset += len;
2235 		len = sk_msg_elem(msg, i)->length;
2236 		if (start < offset + len)
2237 			break;
2238 		sk_msg_iter_var_next(i);
2239 	} while (i != msg->sg.end);
2240 
2241 	if (unlikely(start >= offset + len))
2242 		return -EINVAL;
2243 
2244 	first_sge = i;
2245 	/* The start may point into the sg element so we need to also
2246 	 * account for the headroom.
2247 	 */
2248 	bytes_sg_total = start - offset + bytes;
2249 	if (!msg->sg.copy[i] && bytes_sg_total <= len)
2250 		goto out;
2251 
2252 	/* At this point we need to linearize multiple scatterlist
2253 	 * elements or a single shared page. Either way we need to
2254 	 * copy into a linear buffer exclusively owned by BPF. Then
2255 	 * place the buffer in the scatterlist and fixup the original
2256 	 * entries by removing the entries now in the linear buffer
2257 	 * and shifting the remaining entries. For now we do not try
2258 	 * to copy partial entries to avoid complexity of running out
2259 	 * of sg_entry slots. The downside is reading a single byte
2260 	 * will copy the entire sg entry.
2261 	 */
2262 	do {
2263 		copy += sk_msg_elem(msg, i)->length;
2264 		sk_msg_iter_var_next(i);
2265 		if (bytes_sg_total <= copy)
2266 			break;
2267 	} while (i != msg->sg.end);
2268 	last_sge = i;
2269 
2270 	if (unlikely(bytes_sg_total > copy))
2271 		return -EINVAL;
2272 
2273 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2274 			   get_order(copy));
2275 	if (unlikely(!page))
2276 		return -ENOMEM;
2277 
2278 	raw = page_address(page);
2279 	i = first_sge;
2280 	do {
2281 		sge = sk_msg_elem(msg, i);
2282 		from = sg_virt(sge);
2283 		len = sge->length;
2284 		to = raw + poffset;
2285 
2286 		memcpy(to, from, len);
2287 		poffset += len;
2288 		sge->length = 0;
2289 		put_page(sg_page(sge));
2290 
2291 		sk_msg_iter_var_next(i);
2292 	} while (i != last_sge);
2293 
2294 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2295 
2296 	/* To repair sg ring we need to shift entries. If we only
2297 	 * had a single entry though we can just replace it and
2298 	 * be done. Otherwise walk the ring and shift the entries.
2299 	 */
2300 	WARN_ON_ONCE(last_sge == first_sge);
2301 	shift = last_sge > first_sge ?
2302 		last_sge - first_sge - 1 :
2303 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2304 	if (!shift)
2305 		goto out;
2306 
2307 	i = first_sge;
2308 	sk_msg_iter_var_next(i);
2309 	do {
2310 		u32 move_from;
2311 
2312 		if (i + shift >= NR_MSG_FRAG_IDS)
2313 			move_from = i + shift - NR_MSG_FRAG_IDS;
2314 		else
2315 			move_from = i + shift;
2316 		if (move_from == msg->sg.end)
2317 			break;
2318 
2319 		msg->sg.data[i] = msg->sg.data[move_from];
2320 		msg->sg.data[move_from].length = 0;
2321 		msg->sg.data[move_from].page_link = 0;
2322 		msg->sg.data[move_from].offset = 0;
2323 		sk_msg_iter_var_next(i);
2324 	} while (1);
2325 
2326 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2327 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2328 		      msg->sg.end - shift;
2329 out:
2330 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2331 	msg->data_end = msg->data + bytes;
2332 	return 0;
2333 }
2334 
2335 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2336 	.func		= bpf_msg_pull_data,
2337 	.gpl_only	= false,
2338 	.ret_type	= RET_INTEGER,
2339 	.arg1_type	= ARG_PTR_TO_CTX,
2340 	.arg2_type	= ARG_ANYTHING,
2341 	.arg3_type	= ARG_ANYTHING,
2342 	.arg4_type	= ARG_ANYTHING,
2343 };
2344 
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2345 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2346 	   u32, len, u64, flags)
2347 {
2348 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2349 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2350 	u8 *raw, *to, *from;
2351 	struct page *page;
2352 
2353 	if (unlikely(flags))
2354 		return -EINVAL;
2355 
2356 	/* First find the starting scatterlist element */
2357 	i = msg->sg.start;
2358 	do {
2359 		offset += l;
2360 		l = sk_msg_elem(msg, i)->length;
2361 
2362 		if (start < offset + l)
2363 			break;
2364 		sk_msg_iter_var_next(i);
2365 	} while (i != msg->sg.end);
2366 
2367 	if (start >= offset + l)
2368 		return -EINVAL;
2369 
2370 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2371 
2372 	/* If no space available will fallback to copy, we need at
2373 	 * least one scatterlist elem available to push data into
2374 	 * when start aligns to the beginning of an element or two
2375 	 * when it falls inside an element. We handle the start equals
2376 	 * offset case because its the common case for inserting a
2377 	 * header.
2378 	 */
2379 	if (!space || (space == 1 && start != offset))
2380 		copy = msg->sg.data[i].length;
2381 
2382 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2383 			   get_order(copy + len));
2384 	if (unlikely(!page))
2385 		return -ENOMEM;
2386 
2387 	if (copy) {
2388 		int front, back;
2389 
2390 		raw = page_address(page);
2391 
2392 		psge = sk_msg_elem(msg, i);
2393 		front = start - offset;
2394 		back = psge->length - front;
2395 		from = sg_virt(psge);
2396 
2397 		if (front)
2398 			memcpy(raw, from, front);
2399 
2400 		if (back) {
2401 			from += front;
2402 			to = raw + front + len;
2403 
2404 			memcpy(to, from, back);
2405 		}
2406 
2407 		put_page(sg_page(psge));
2408 	} else if (start - offset) {
2409 		psge = sk_msg_elem(msg, i);
2410 		rsge = sk_msg_elem_cpy(msg, i);
2411 
2412 		psge->length = start - offset;
2413 		rsge.length -= psge->length;
2414 		rsge.offset += start;
2415 
2416 		sk_msg_iter_var_next(i);
2417 		sg_unmark_end(psge);
2418 		sg_unmark_end(&rsge);
2419 		sk_msg_iter_next(msg, end);
2420 	}
2421 
2422 	/* Slot(s) to place newly allocated data */
2423 	new = i;
2424 
2425 	/* Shift one or two slots as needed */
2426 	if (!copy) {
2427 		sge = sk_msg_elem_cpy(msg, i);
2428 
2429 		sk_msg_iter_var_next(i);
2430 		sg_unmark_end(&sge);
2431 		sk_msg_iter_next(msg, end);
2432 
2433 		nsge = sk_msg_elem_cpy(msg, i);
2434 		if (rsge.length) {
2435 			sk_msg_iter_var_next(i);
2436 			nnsge = sk_msg_elem_cpy(msg, i);
2437 		}
2438 
2439 		while (i != msg->sg.end) {
2440 			msg->sg.data[i] = sge;
2441 			sge = nsge;
2442 			sk_msg_iter_var_next(i);
2443 			if (rsge.length) {
2444 				nsge = nnsge;
2445 				nnsge = sk_msg_elem_cpy(msg, i);
2446 			} else {
2447 				nsge = sk_msg_elem_cpy(msg, i);
2448 			}
2449 		}
2450 	}
2451 
2452 	/* Place newly allocated data buffer */
2453 	sk_mem_charge(msg->sk, len);
2454 	msg->sg.size += len;
2455 	msg->sg.copy[new] = false;
2456 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2457 	if (rsge.length) {
2458 		get_page(sg_page(&rsge));
2459 		sk_msg_iter_var_next(new);
2460 		msg->sg.data[new] = rsge;
2461 	}
2462 
2463 	sk_msg_compute_data_pointers(msg);
2464 	return 0;
2465 }
2466 
2467 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2468 	.func		= bpf_msg_push_data,
2469 	.gpl_only	= false,
2470 	.ret_type	= RET_INTEGER,
2471 	.arg1_type	= ARG_PTR_TO_CTX,
2472 	.arg2_type	= ARG_ANYTHING,
2473 	.arg3_type	= ARG_ANYTHING,
2474 	.arg4_type	= ARG_ANYTHING,
2475 };
2476 
sk_msg_shift_left(struct sk_msg * msg,int i)2477 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2478 {
2479 	int prev;
2480 
2481 	do {
2482 		prev = i;
2483 		sk_msg_iter_var_next(i);
2484 		msg->sg.data[prev] = msg->sg.data[i];
2485 	} while (i != msg->sg.end);
2486 
2487 	sk_msg_iter_prev(msg, end);
2488 }
2489 
sk_msg_shift_right(struct sk_msg * msg,int i)2490 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2491 {
2492 	struct scatterlist tmp, sge;
2493 
2494 	sk_msg_iter_next(msg, end);
2495 	sge = sk_msg_elem_cpy(msg, i);
2496 	sk_msg_iter_var_next(i);
2497 	tmp = sk_msg_elem_cpy(msg, i);
2498 
2499 	while (i != msg->sg.end) {
2500 		msg->sg.data[i] = sge;
2501 		sk_msg_iter_var_next(i);
2502 		sge = tmp;
2503 		tmp = sk_msg_elem_cpy(msg, i);
2504 	}
2505 }
2506 
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2507 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2508 	   u32, len, u64, flags)
2509 {
2510 	u32 i = 0, l = 0, space, offset = 0;
2511 	u64 last = start + len;
2512 	int pop;
2513 
2514 	if (unlikely(flags))
2515 		return -EINVAL;
2516 
2517 	/* First find the starting scatterlist element */
2518 	i = msg->sg.start;
2519 	do {
2520 		offset += l;
2521 		l = sk_msg_elem(msg, i)->length;
2522 
2523 		if (start < offset + l)
2524 			break;
2525 		sk_msg_iter_var_next(i);
2526 	} while (i != msg->sg.end);
2527 
2528 	/* Bounds checks: start and pop must be inside message */
2529 	if (start >= offset + l || last >= msg->sg.size)
2530 		return -EINVAL;
2531 
2532 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2533 
2534 	pop = len;
2535 	/* --------------| offset
2536 	 * -| start      |-------- len -------|
2537 	 *
2538 	 *  |----- a ----|-------- pop -------|----- b ----|
2539 	 *  |______________________________________________| length
2540 	 *
2541 	 *
2542 	 * a:   region at front of scatter element to save
2543 	 * b:   region at back of scatter element to save when length > A + pop
2544 	 * pop: region to pop from element, same as input 'pop' here will be
2545 	 *      decremented below per iteration.
2546 	 *
2547 	 * Two top-level cases to handle when start != offset, first B is non
2548 	 * zero and second B is zero corresponding to when a pop includes more
2549 	 * than one element.
2550 	 *
2551 	 * Then if B is non-zero AND there is no space allocate space and
2552 	 * compact A, B regions into page. If there is space shift ring to
2553 	 * the rigth free'ing the next element in ring to place B, leaving
2554 	 * A untouched except to reduce length.
2555 	 */
2556 	if (start != offset) {
2557 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2558 		int a = start;
2559 		int b = sge->length - pop - a;
2560 
2561 		sk_msg_iter_var_next(i);
2562 
2563 		if (pop < sge->length - a) {
2564 			if (space) {
2565 				sge->length = a;
2566 				sk_msg_shift_right(msg, i);
2567 				nsge = sk_msg_elem(msg, i);
2568 				get_page(sg_page(sge));
2569 				sg_set_page(nsge,
2570 					    sg_page(sge),
2571 					    b, sge->offset + pop + a);
2572 			} else {
2573 				struct page *page, *orig;
2574 				u8 *to, *from;
2575 
2576 				page = alloc_pages(__GFP_NOWARN |
2577 						   __GFP_COMP   | GFP_ATOMIC,
2578 						   get_order(a + b));
2579 				if (unlikely(!page))
2580 					return -ENOMEM;
2581 
2582 				sge->length = a;
2583 				orig = sg_page(sge);
2584 				from = sg_virt(sge);
2585 				to = page_address(page);
2586 				memcpy(to, from, a);
2587 				memcpy(to + a, from + a + pop, b);
2588 				sg_set_page(sge, page, a + b, 0);
2589 				put_page(orig);
2590 			}
2591 			pop = 0;
2592 		} else if (pop >= sge->length - a) {
2593 			sge->length = a;
2594 			pop -= (sge->length - a);
2595 		}
2596 	}
2597 
2598 	/* From above the current layout _must_ be as follows,
2599 	 *
2600 	 * -| offset
2601 	 * -| start
2602 	 *
2603 	 *  |---- pop ---|---------------- b ------------|
2604 	 *  |____________________________________________| length
2605 	 *
2606 	 * Offset and start of the current msg elem are equal because in the
2607 	 * previous case we handled offset != start and either consumed the
2608 	 * entire element and advanced to the next element OR pop == 0.
2609 	 *
2610 	 * Two cases to handle here are first pop is less than the length
2611 	 * leaving some remainder b above. Simply adjust the element's layout
2612 	 * in this case. Or pop >= length of the element so that b = 0. In this
2613 	 * case advance to next element decrementing pop.
2614 	 */
2615 	while (pop) {
2616 		struct scatterlist *sge = sk_msg_elem(msg, i);
2617 
2618 		if (pop < sge->length) {
2619 			sge->length -= pop;
2620 			sge->offset += pop;
2621 			pop = 0;
2622 		} else {
2623 			pop -= sge->length;
2624 			sk_msg_shift_left(msg, i);
2625 		}
2626 		sk_msg_iter_var_next(i);
2627 	}
2628 
2629 	sk_mem_uncharge(msg->sk, len - pop);
2630 	msg->sg.size -= (len - pop);
2631 	sk_msg_compute_data_pointers(msg);
2632 	return 0;
2633 }
2634 
2635 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2636 	.func		= bpf_msg_pop_data,
2637 	.gpl_only	= false,
2638 	.ret_type	= RET_INTEGER,
2639 	.arg1_type	= ARG_PTR_TO_CTX,
2640 	.arg2_type	= ARG_ANYTHING,
2641 	.arg3_type	= ARG_ANYTHING,
2642 	.arg4_type	= ARG_ANYTHING,
2643 };
2644 
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)2645 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2646 {
2647 	return task_get_classid(skb);
2648 }
2649 
2650 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2651 	.func           = bpf_get_cgroup_classid,
2652 	.gpl_only       = false,
2653 	.ret_type       = RET_INTEGER,
2654 	.arg1_type      = ARG_PTR_TO_CTX,
2655 };
2656 
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)2657 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2658 {
2659 	return dst_tclassid(skb);
2660 }
2661 
2662 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2663 	.func           = bpf_get_route_realm,
2664 	.gpl_only       = false,
2665 	.ret_type       = RET_INTEGER,
2666 	.arg1_type      = ARG_PTR_TO_CTX,
2667 };
2668 
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)2669 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2670 {
2671 	/* If skb_clear_hash() was called due to mangling, we can
2672 	 * trigger SW recalculation here. Later access to hash
2673 	 * can then use the inline skb->hash via context directly
2674 	 * instead of calling this helper again.
2675 	 */
2676 	return skb_get_hash(skb);
2677 }
2678 
2679 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2680 	.func		= bpf_get_hash_recalc,
2681 	.gpl_only	= false,
2682 	.ret_type	= RET_INTEGER,
2683 	.arg1_type	= ARG_PTR_TO_CTX,
2684 };
2685 
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)2686 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2687 {
2688 	/* After all direct packet write, this can be used once for
2689 	 * triggering a lazy recalc on next skb_get_hash() invocation.
2690 	 */
2691 	skb_clear_hash(skb);
2692 	return 0;
2693 }
2694 
2695 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2696 	.func		= bpf_set_hash_invalid,
2697 	.gpl_only	= false,
2698 	.ret_type	= RET_INTEGER,
2699 	.arg1_type	= ARG_PTR_TO_CTX,
2700 };
2701 
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)2702 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2703 {
2704 	/* Set user specified hash as L4(+), so that it gets returned
2705 	 * on skb_get_hash() call unless BPF prog later on triggers a
2706 	 * skb_clear_hash().
2707 	 */
2708 	__skb_set_sw_hash(skb, hash, true);
2709 	return 0;
2710 }
2711 
2712 static const struct bpf_func_proto bpf_set_hash_proto = {
2713 	.func		= bpf_set_hash,
2714 	.gpl_only	= false,
2715 	.ret_type	= RET_INTEGER,
2716 	.arg1_type	= ARG_PTR_TO_CTX,
2717 	.arg2_type	= ARG_ANYTHING,
2718 };
2719 
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)2720 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2721 	   u16, vlan_tci)
2722 {
2723 	int ret;
2724 
2725 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2726 		     vlan_proto != htons(ETH_P_8021AD)))
2727 		vlan_proto = htons(ETH_P_8021Q);
2728 
2729 	bpf_push_mac_rcsum(skb);
2730 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2731 	bpf_pull_mac_rcsum(skb);
2732 
2733 	bpf_compute_data_pointers(skb);
2734 	return ret;
2735 }
2736 
2737 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2738 	.func           = bpf_skb_vlan_push,
2739 	.gpl_only       = false,
2740 	.ret_type       = RET_INTEGER,
2741 	.arg1_type      = ARG_PTR_TO_CTX,
2742 	.arg2_type      = ARG_ANYTHING,
2743 	.arg3_type      = ARG_ANYTHING,
2744 };
2745 
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)2746 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2747 {
2748 	int ret;
2749 
2750 	bpf_push_mac_rcsum(skb);
2751 	ret = skb_vlan_pop(skb);
2752 	bpf_pull_mac_rcsum(skb);
2753 
2754 	bpf_compute_data_pointers(skb);
2755 	return ret;
2756 }
2757 
2758 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2759 	.func           = bpf_skb_vlan_pop,
2760 	.gpl_only       = false,
2761 	.ret_type       = RET_INTEGER,
2762 	.arg1_type      = ARG_PTR_TO_CTX,
2763 };
2764 
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)2765 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2766 {
2767 	/* Caller already did skb_cow() with len as headroom,
2768 	 * so no need to do it here.
2769 	 */
2770 	skb_push(skb, len);
2771 	memmove(skb->data, skb->data + len, off);
2772 	memset(skb->data + off, 0, len);
2773 
2774 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
2775 	 * needed here as it does not change the skb->csum
2776 	 * result for checksum complete when summing over
2777 	 * zeroed blocks.
2778 	 */
2779 	return 0;
2780 }
2781 
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)2782 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2783 {
2784 	/* skb_ensure_writable() is not needed here, as we're
2785 	 * already working on an uncloned skb.
2786 	 */
2787 	if (unlikely(!pskb_may_pull(skb, off + len)))
2788 		return -ENOMEM;
2789 
2790 	skb_postpull_rcsum(skb, skb->data + off, len);
2791 	memmove(skb->data + len, skb->data, off);
2792 	__skb_pull(skb, len);
2793 
2794 	return 0;
2795 }
2796 
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)2797 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2798 {
2799 	bool trans_same = skb->transport_header == skb->network_header;
2800 	int ret;
2801 
2802 	/* There's no need for __skb_push()/__skb_pull() pair to
2803 	 * get to the start of the mac header as we're guaranteed
2804 	 * to always start from here under eBPF.
2805 	 */
2806 	ret = bpf_skb_generic_push(skb, off, len);
2807 	if (likely(!ret)) {
2808 		skb->mac_header -= len;
2809 		skb->network_header -= len;
2810 		if (trans_same)
2811 			skb->transport_header = skb->network_header;
2812 	}
2813 
2814 	return ret;
2815 }
2816 
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)2817 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2818 {
2819 	bool trans_same = skb->transport_header == skb->network_header;
2820 	int ret;
2821 
2822 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
2823 	ret = bpf_skb_generic_pop(skb, off, len);
2824 	if (likely(!ret)) {
2825 		skb->mac_header += len;
2826 		skb->network_header += len;
2827 		if (trans_same)
2828 			skb->transport_header = skb->network_header;
2829 	}
2830 
2831 	return ret;
2832 }
2833 
bpf_skb_proto_4_to_6(struct sk_buff * skb)2834 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2835 {
2836 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2837 	u32 off = skb_mac_header_len(skb);
2838 	int ret;
2839 
2840 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2841 		return -ENOTSUPP;
2842 
2843 	ret = skb_cow(skb, len_diff);
2844 	if (unlikely(ret < 0))
2845 		return ret;
2846 
2847 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2848 	if (unlikely(ret < 0))
2849 		return ret;
2850 
2851 	if (skb_is_gso(skb)) {
2852 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2853 
2854 		/* SKB_GSO_TCPV4 needs to be changed into
2855 		 * SKB_GSO_TCPV6.
2856 		 */
2857 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
2858 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
2859 			shinfo->gso_type |=  SKB_GSO_TCPV6;
2860 		}
2861 
2862 		/* Due to IPv6 header, MSS needs to be downgraded. */
2863 		skb_decrease_gso_size(shinfo, len_diff);
2864 		/* Header must be checked, and gso_segs recomputed. */
2865 		shinfo->gso_type |= SKB_GSO_DODGY;
2866 		shinfo->gso_segs = 0;
2867 	}
2868 
2869 	skb->protocol = htons(ETH_P_IPV6);
2870 	skb_clear_hash(skb);
2871 
2872 	return 0;
2873 }
2874 
bpf_skb_proto_6_to_4(struct sk_buff * skb)2875 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2876 {
2877 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2878 	u32 off = skb_mac_header_len(skb);
2879 	int ret;
2880 
2881 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2882 		return -ENOTSUPP;
2883 
2884 	ret = skb_unclone(skb, GFP_ATOMIC);
2885 	if (unlikely(ret < 0))
2886 		return ret;
2887 
2888 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2889 	if (unlikely(ret < 0))
2890 		return ret;
2891 
2892 	if (skb_is_gso(skb)) {
2893 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2894 
2895 		/* SKB_GSO_TCPV6 needs to be changed into
2896 		 * SKB_GSO_TCPV4.
2897 		 */
2898 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
2899 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
2900 			shinfo->gso_type |=  SKB_GSO_TCPV4;
2901 		}
2902 
2903 		/* Due to IPv4 header, MSS can be upgraded. */
2904 		skb_increase_gso_size(shinfo, len_diff);
2905 		/* Header must be checked, and gso_segs recomputed. */
2906 		shinfo->gso_type |= SKB_GSO_DODGY;
2907 		shinfo->gso_segs = 0;
2908 	}
2909 
2910 	skb->protocol = htons(ETH_P_IP);
2911 	skb_clear_hash(skb);
2912 
2913 	return 0;
2914 }
2915 
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)2916 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2917 {
2918 	__be16 from_proto = skb->protocol;
2919 
2920 	if (from_proto == htons(ETH_P_IP) &&
2921 	      to_proto == htons(ETH_P_IPV6))
2922 		return bpf_skb_proto_4_to_6(skb);
2923 
2924 	if (from_proto == htons(ETH_P_IPV6) &&
2925 	      to_proto == htons(ETH_P_IP))
2926 		return bpf_skb_proto_6_to_4(skb);
2927 
2928 	return -ENOTSUPP;
2929 }
2930 
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)2931 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2932 	   u64, flags)
2933 {
2934 	int ret;
2935 
2936 	if (unlikely(flags))
2937 		return -EINVAL;
2938 
2939 	/* General idea is that this helper does the basic groundwork
2940 	 * needed for changing the protocol, and eBPF program fills the
2941 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2942 	 * and other helpers, rather than passing a raw buffer here.
2943 	 *
2944 	 * The rationale is to keep this minimal and without a need to
2945 	 * deal with raw packet data. F.e. even if we would pass buffers
2946 	 * here, the program still needs to call the bpf_lX_csum_replace()
2947 	 * helpers anyway. Plus, this way we keep also separation of
2948 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
2949 	 * care of stores.
2950 	 *
2951 	 * Currently, additional options and extension header space are
2952 	 * not supported, but flags register is reserved so we can adapt
2953 	 * that. For offloads, we mark packet as dodgy, so that headers
2954 	 * need to be verified first.
2955 	 */
2956 	ret = bpf_skb_proto_xlat(skb, proto);
2957 	bpf_compute_data_pointers(skb);
2958 	return ret;
2959 }
2960 
2961 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2962 	.func		= bpf_skb_change_proto,
2963 	.gpl_only	= false,
2964 	.ret_type	= RET_INTEGER,
2965 	.arg1_type	= ARG_PTR_TO_CTX,
2966 	.arg2_type	= ARG_ANYTHING,
2967 	.arg3_type	= ARG_ANYTHING,
2968 };
2969 
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)2970 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2971 {
2972 	/* We only allow a restricted subset to be changed for now. */
2973 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2974 		     !skb_pkt_type_ok(pkt_type)))
2975 		return -EINVAL;
2976 
2977 	skb->pkt_type = pkt_type;
2978 	return 0;
2979 }
2980 
2981 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2982 	.func		= bpf_skb_change_type,
2983 	.gpl_only	= false,
2984 	.ret_type	= RET_INTEGER,
2985 	.arg1_type	= ARG_PTR_TO_CTX,
2986 	.arg2_type	= ARG_ANYTHING,
2987 };
2988 
bpf_skb_net_base_len(const struct sk_buff * skb)2989 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2990 {
2991 	switch (skb->protocol) {
2992 	case htons(ETH_P_IP):
2993 		return sizeof(struct iphdr);
2994 	case htons(ETH_P_IPV6):
2995 		return sizeof(struct ipv6hdr);
2996 	default:
2997 		return ~0U;
2998 	}
2999 }
3000 
3001 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3002 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3003 
3004 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3005 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3006 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3007 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3008 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3009 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3010 
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3011 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3012 			    u64 flags)
3013 {
3014 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3015 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3016 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3017 	unsigned int gso_type = SKB_GSO_DODGY;
3018 	int ret;
3019 
3020 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3021 		/* udp gso_size delineates datagrams, only allow if fixed */
3022 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3023 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3024 			return -ENOTSUPP;
3025 	}
3026 
3027 	ret = skb_cow_head(skb, len_diff);
3028 	if (unlikely(ret < 0))
3029 		return ret;
3030 
3031 	if (encap) {
3032 		if (skb->protocol != htons(ETH_P_IP) &&
3033 		    skb->protocol != htons(ETH_P_IPV6))
3034 			return -ENOTSUPP;
3035 
3036 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3037 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3038 			return -EINVAL;
3039 
3040 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3041 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3042 			return -EINVAL;
3043 
3044 		if (skb->encapsulation)
3045 			return -EALREADY;
3046 
3047 		mac_len = skb->network_header - skb->mac_header;
3048 		inner_net = skb->network_header;
3049 		if (inner_mac_len > len_diff)
3050 			return -EINVAL;
3051 		inner_trans = skb->transport_header;
3052 	}
3053 
3054 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3055 	if (unlikely(ret < 0))
3056 		return ret;
3057 
3058 	if (encap) {
3059 		skb->inner_mac_header = inner_net - inner_mac_len;
3060 		skb->inner_network_header = inner_net;
3061 		skb->inner_transport_header = inner_trans;
3062 		skb_set_inner_protocol(skb, skb->protocol);
3063 
3064 		skb->encapsulation = 1;
3065 		skb_set_network_header(skb, mac_len);
3066 
3067 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3068 			gso_type |= SKB_GSO_UDP_TUNNEL;
3069 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3070 			gso_type |= SKB_GSO_GRE;
3071 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3072 			gso_type |= SKB_GSO_IPXIP6;
3073 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3074 			gso_type |= SKB_GSO_IPXIP4;
3075 
3076 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3077 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3078 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3079 					sizeof(struct ipv6hdr) :
3080 					sizeof(struct iphdr);
3081 
3082 			skb_set_transport_header(skb, mac_len + nh_len);
3083 		}
3084 
3085 		/* Match skb->protocol to new outer l3 protocol */
3086 		if (skb->protocol == htons(ETH_P_IP) &&
3087 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3088 			skb->protocol = htons(ETH_P_IPV6);
3089 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3090 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3091 			skb->protocol = htons(ETH_P_IP);
3092 	}
3093 
3094 	if (skb_is_gso(skb)) {
3095 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3096 
3097 		/* Due to header grow, MSS needs to be downgraded. */
3098 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3099 			skb_decrease_gso_size(shinfo, len_diff);
3100 
3101 		/* Header must be checked, and gso_segs recomputed. */
3102 		shinfo->gso_type |= gso_type;
3103 		shinfo->gso_segs = 0;
3104 	}
3105 
3106 	return 0;
3107 }
3108 
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3109 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3110 			      u64 flags)
3111 {
3112 	int ret;
3113 
3114 	if (flags & ~BPF_F_ADJ_ROOM_FIXED_GSO)
3115 		return -EINVAL;
3116 
3117 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3118 		/* udp gso_size delineates datagrams, only allow if fixed */
3119 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3120 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3121 			return -ENOTSUPP;
3122 	}
3123 
3124 	ret = skb_unclone(skb, GFP_ATOMIC);
3125 	if (unlikely(ret < 0))
3126 		return ret;
3127 
3128 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3129 	if (unlikely(ret < 0))
3130 		return ret;
3131 
3132 	if (skb_is_gso(skb)) {
3133 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3134 
3135 		/* Due to header shrink, MSS can be upgraded. */
3136 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3137 			skb_increase_gso_size(shinfo, len_diff);
3138 
3139 		/* Header must be checked, and gso_segs recomputed. */
3140 		shinfo->gso_type |= SKB_GSO_DODGY;
3141 		shinfo->gso_segs = 0;
3142 	}
3143 
3144 	return 0;
3145 }
3146 
__bpf_skb_max_len(const struct sk_buff * skb)3147 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
3148 {
3149 	return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
3150 			  SKB_MAX_ALLOC;
3151 }
3152 
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3153 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3154 	   u32, mode, u64, flags)
3155 {
3156 	u32 len_cur, len_diff_abs = abs(len_diff);
3157 	u32 len_min = bpf_skb_net_base_len(skb);
3158 	u32 len_max = __bpf_skb_max_len(skb);
3159 	__be16 proto = skb->protocol;
3160 	bool shrink = len_diff < 0;
3161 	u32 off;
3162 	int ret;
3163 
3164 	if (unlikely(flags & ~BPF_F_ADJ_ROOM_MASK))
3165 		return -EINVAL;
3166 	if (unlikely(len_diff_abs > 0xfffU))
3167 		return -EFAULT;
3168 	if (unlikely(proto != htons(ETH_P_IP) &&
3169 		     proto != htons(ETH_P_IPV6)))
3170 		return -ENOTSUPP;
3171 
3172 	off = skb_mac_header_len(skb);
3173 	switch (mode) {
3174 	case BPF_ADJ_ROOM_NET:
3175 		off += bpf_skb_net_base_len(skb);
3176 		break;
3177 	case BPF_ADJ_ROOM_MAC:
3178 		break;
3179 	default:
3180 		return -ENOTSUPP;
3181 	}
3182 
3183 	len_cur = skb->len - skb_network_offset(skb);
3184 	if ((shrink && (len_diff_abs >= len_cur ||
3185 			len_cur - len_diff_abs < len_min)) ||
3186 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3187 			 !skb_is_gso(skb))))
3188 		return -ENOTSUPP;
3189 
3190 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3191 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3192 
3193 	bpf_compute_data_pointers(skb);
3194 	return ret;
3195 }
3196 
3197 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3198 	.func		= bpf_skb_adjust_room,
3199 	.gpl_only	= false,
3200 	.ret_type	= RET_INTEGER,
3201 	.arg1_type	= ARG_PTR_TO_CTX,
3202 	.arg2_type	= ARG_ANYTHING,
3203 	.arg3_type	= ARG_ANYTHING,
3204 	.arg4_type	= ARG_ANYTHING,
3205 };
3206 
__bpf_skb_min_len(const struct sk_buff * skb)3207 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3208 {
3209 	u32 min_len = skb_network_offset(skb);
3210 
3211 	if (skb_transport_header_was_set(skb))
3212 		min_len = skb_transport_offset(skb);
3213 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3214 		min_len = skb_checksum_start_offset(skb) +
3215 			  skb->csum_offset + sizeof(__sum16);
3216 	return min_len;
3217 }
3218 
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3219 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3220 {
3221 	unsigned int old_len = skb->len;
3222 	int ret;
3223 
3224 	ret = __skb_grow_rcsum(skb, new_len);
3225 	if (!ret)
3226 		memset(skb->data + old_len, 0, new_len - old_len);
3227 	return ret;
3228 }
3229 
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3230 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3231 {
3232 	return __skb_trim_rcsum(skb, new_len);
3233 }
3234 
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3235 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3236 					u64 flags)
3237 {
3238 	u32 max_len = __bpf_skb_max_len(skb);
3239 	u32 min_len = __bpf_skb_min_len(skb);
3240 	int ret;
3241 
3242 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3243 		return -EINVAL;
3244 	if (skb->encapsulation)
3245 		return -ENOTSUPP;
3246 
3247 	/* The basic idea of this helper is that it's performing the
3248 	 * needed work to either grow or trim an skb, and eBPF program
3249 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3250 	 * bpf_lX_csum_replace() and others rather than passing a raw
3251 	 * buffer here. This one is a slow path helper and intended
3252 	 * for replies with control messages.
3253 	 *
3254 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3255 	 * minimal and without protocol specifics so that we are able
3256 	 * to separate concerns as in bpf_skb_store_bytes() should only
3257 	 * be the one responsible for writing buffers.
3258 	 *
3259 	 * It's really expected to be a slow path operation here for
3260 	 * control message replies, so we're implicitly linearizing,
3261 	 * uncloning and drop offloads from the skb by this.
3262 	 */
3263 	ret = __bpf_try_make_writable(skb, skb->len);
3264 	if (!ret) {
3265 		if (new_len > skb->len)
3266 			ret = bpf_skb_grow_rcsum(skb, new_len);
3267 		else if (new_len < skb->len)
3268 			ret = bpf_skb_trim_rcsum(skb, new_len);
3269 		if (!ret && skb_is_gso(skb))
3270 			skb_gso_reset(skb);
3271 	}
3272 	return ret;
3273 }
3274 
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3275 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3276 	   u64, flags)
3277 {
3278 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3279 
3280 	bpf_compute_data_pointers(skb);
3281 	return ret;
3282 }
3283 
3284 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3285 	.func		= bpf_skb_change_tail,
3286 	.gpl_only	= false,
3287 	.ret_type	= RET_INTEGER,
3288 	.arg1_type	= ARG_PTR_TO_CTX,
3289 	.arg2_type	= ARG_ANYTHING,
3290 	.arg3_type	= ARG_ANYTHING,
3291 };
3292 
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3293 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3294 	   u64, flags)
3295 {
3296 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3297 
3298 	bpf_compute_data_end_sk_skb(skb);
3299 	return ret;
3300 }
3301 
3302 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3303 	.func		= sk_skb_change_tail,
3304 	.gpl_only	= false,
3305 	.ret_type	= RET_INTEGER,
3306 	.arg1_type	= ARG_PTR_TO_CTX,
3307 	.arg2_type	= ARG_ANYTHING,
3308 	.arg3_type	= ARG_ANYTHING,
3309 };
3310 
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3311 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3312 					u64 flags)
3313 {
3314 	u32 max_len = __bpf_skb_max_len(skb);
3315 	u32 new_len = skb->len + head_room;
3316 	int ret;
3317 
3318 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3319 		     new_len < skb->len))
3320 		return -EINVAL;
3321 
3322 	ret = skb_cow(skb, head_room);
3323 	if (likely(!ret)) {
3324 		/* Idea for this helper is that we currently only
3325 		 * allow to expand on mac header. This means that
3326 		 * skb->protocol network header, etc, stay as is.
3327 		 * Compared to bpf_skb_change_tail(), we're more
3328 		 * flexible due to not needing to linearize or
3329 		 * reset GSO. Intention for this helper is to be
3330 		 * used by an L3 skb that needs to push mac header
3331 		 * for redirection into L2 device.
3332 		 */
3333 		__skb_push(skb, head_room);
3334 		memset(skb->data, 0, head_room);
3335 		skb_reset_mac_header(skb);
3336 	}
3337 
3338 	return ret;
3339 }
3340 
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3341 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3342 	   u64, flags)
3343 {
3344 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3345 
3346 	bpf_compute_data_pointers(skb);
3347 	return ret;
3348 }
3349 
3350 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3351 	.func		= bpf_skb_change_head,
3352 	.gpl_only	= false,
3353 	.ret_type	= RET_INTEGER,
3354 	.arg1_type	= ARG_PTR_TO_CTX,
3355 	.arg2_type	= ARG_ANYTHING,
3356 	.arg3_type	= ARG_ANYTHING,
3357 };
3358 
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3359 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3360 	   u64, flags)
3361 {
3362 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3363 
3364 	bpf_compute_data_end_sk_skb(skb);
3365 	return ret;
3366 }
3367 
3368 static const struct bpf_func_proto sk_skb_change_head_proto = {
3369 	.func		= sk_skb_change_head,
3370 	.gpl_only	= false,
3371 	.ret_type	= RET_INTEGER,
3372 	.arg1_type	= ARG_PTR_TO_CTX,
3373 	.arg2_type	= ARG_ANYTHING,
3374 	.arg3_type	= ARG_ANYTHING,
3375 };
xdp_get_metalen(const struct xdp_buff * xdp)3376 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3377 {
3378 	return xdp_data_meta_unsupported(xdp) ? 0 :
3379 	       xdp->data - xdp->data_meta;
3380 }
3381 
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3382 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3383 {
3384 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3385 	unsigned long metalen = xdp_get_metalen(xdp);
3386 	void *data_start = xdp_frame_end + metalen;
3387 	void *data = xdp->data + offset;
3388 
3389 	if (unlikely(data < data_start ||
3390 		     data > xdp->data_end - ETH_HLEN))
3391 		return -EINVAL;
3392 
3393 	if (metalen)
3394 		memmove(xdp->data_meta + offset,
3395 			xdp->data_meta, metalen);
3396 	xdp->data_meta += offset;
3397 	xdp->data = data;
3398 
3399 	return 0;
3400 }
3401 
3402 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3403 	.func		= bpf_xdp_adjust_head,
3404 	.gpl_only	= false,
3405 	.ret_type	= RET_INTEGER,
3406 	.arg1_type	= ARG_PTR_TO_CTX,
3407 	.arg2_type	= ARG_ANYTHING,
3408 };
3409 
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)3410 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3411 {
3412 	void *data_end = xdp->data_end + offset;
3413 
3414 	/* only shrinking is allowed for now. */
3415 	if (unlikely(offset >= 0))
3416 		return -EINVAL;
3417 
3418 	if (unlikely(data_end < xdp->data + ETH_HLEN))
3419 		return -EINVAL;
3420 
3421 	xdp->data_end = data_end;
3422 
3423 	return 0;
3424 }
3425 
3426 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3427 	.func		= bpf_xdp_adjust_tail,
3428 	.gpl_only	= false,
3429 	.ret_type	= RET_INTEGER,
3430 	.arg1_type	= ARG_PTR_TO_CTX,
3431 	.arg2_type	= ARG_ANYTHING,
3432 };
3433 
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)3434 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3435 {
3436 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3437 	void *meta = xdp->data_meta + offset;
3438 	unsigned long metalen = xdp->data - meta;
3439 
3440 	if (xdp_data_meta_unsupported(xdp))
3441 		return -ENOTSUPP;
3442 	if (unlikely(meta < xdp_frame_end ||
3443 		     meta > xdp->data))
3444 		return -EINVAL;
3445 	if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3446 		     (metalen > 32)))
3447 		return -EACCES;
3448 
3449 	xdp->data_meta = meta;
3450 
3451 	return 0;
3452 }
3453 
3454 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3455 	.func		= bpf_xdp_adjust_meta,
3456 	.gpl_only	= false,
3457 	.ret_type	= RET_INTEGER,
3458 	.arg1_type	= ARG_PTR_TO_CTX,
3459 	.arg2_type	= ARG_ANYTHING,
3460 };
3461 
__bpf_tx_xdp(struct net_device * dev,struct bpf_map * map,struct xdp_buff * xdp,u32 index)3462 static int __bpf_tx_xdp(struct net_device *dev,
3463 			struct bpf_map *map,
3464 			struct xdp_buff *xdp,
3465 			u32 index)
3466 {
3467 	struct xdp_frame *xdpf;
3468 	int err, sent;
3469 
3470 	if (!dev->netdev_ops->ndo_xdp_xmit) {
3471 		return -EOPNOTSUPP;
3472 	}
3473 
3474 	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
3475 	if (unlikely(err))
3476 		return err;
3477 
3478 	xdpf = convert_to_xdp_frame(xdp);
3479 	if (unlikely(!xdpf))
3480 		return -EOVERFLOW;
3481 
3482 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, 1, &xdpf, XDP_XMIT_FLUSH);
3483 	if (sent <= 0)
3484 		return sent;
3485 	return 0;
3486 }
3487 
3488 static noinline int
xdp_do_redirect_slow(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,struct bpf_redirect_info * ri)3489 xdp_do_redirect_slow(struct net_device *dev, struct xdp_buff *xdp,
3490 		     struct bpf_prog *xdp_prog, struct bpf_redirect_info *ri)
3491 {
3492 	struct net_device *fwd;
3493 	u32 index = ri->tgt_index;
3494 	int err;
3495 
3496 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
3497 	ri->tgt_index = 0;
3498 	if (unlikely(!fwd)) {
3499 		err = -EINVAL;
3500 		goto err;
3501 	}
3502 
3503 	err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
3504 	if (unlikely(err))
3505 		goto err;
3506 
3507 	_trace_xdp_redirect(dev, xdp_prog, index);
3508 	return 0;
3509 err:
3510 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
3511 	return err;
3512 }
3513 
__bpf_tx_xdp_map(struct net_device * dev_rx,void * fwd,struct bpf_map * map,struct xdp_buff * xdp,u32 index)3514 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3515 			    struct bpf_map *map,
3516 			    struct xdp_buff *xdp,
3517 			    u32 index)
3518 {
3519 	int err;
3520 
3521 	switch (map->map_type) {
3522 	case BPF_MAP_TYPE_DEVMAP:
3523 	case BPF_MAP_TYPE_DEVMAP_HASH: {
3524 		struct bpf_dtab_netdev *dst = fwd;
3525 
3526 		err = dev_map_enqueue(dst, xdp, dev_rx);
3527 		if (unlikely(err))
3528 			return err;
3529 		break;
3530 	}
3531 	case BPF_MAP_TYPE_CPUMAP: {
3532 		struct bpf_cpu_map_entry *rcpu = fwd;
3533 
3534 		err = cpu_map_enqueue(rcpu, xdp, dev_rx);
3535 		if (unlikely(err))
3536 			return err;
3537 		break;
3538 	}
3539 	case BPF_MAP_TYPE_XSKMAP: {
3540 		struct xdp_sock *xs = fwd;
3541 
3542 		err = __xsk_map_redirect(map, xdp, xs);
3543 		return err;
3544 	}
3545 	default:
3546 		break;
3547 	}
3548 	return 0;
3549 }
3550 
xdp_do_flush_map(void)3551 void xdp_do_flush_map(void)
3552 {
3553 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3554 	struct bpf_map *map = ri->map_to_flush;
3555 
3556 	ri->map_to_flush = NULL;
3557 	if (map) {
3558 		switch (map->map_type) {
3559 		case BPF_MAP_TYPE_DEVMAP:
3560 		case BPF_MAP_TYPE_DEVMAP_HASH:
3561 			__dev_map_flush(map);
3562 			break;
3563 		case BPF_MAP_TYPE_CPUMAP:
3564 			__cpu_map_flush(map);
3565 			break;
3566 		case BPF_MAP_TYPE_XSKMAP:
3567 			__xsk_map_flush(map);
3568 			break;
3569 		default:
3570 			break;
3571 		}
3572 	}
3573 }
3574 EXPORT_SYMBOL_GPL(xdp_do_flush_map);
3575 
__xdp_map_lookup_elem(struct bpf_map * map,u32 index)3576 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3577 {
3578 	switch (map->map_type) {
3579 	case BPF_MAP_TYPE_DEVMAP:
3580 		return __dev_map_lookup_elem(map, index);
3581 	case BPF_MAP_TYPE_DEVMAP_HASH:
3582 		return __dev_map_hash_lookup_elem(map, index);
3583 	case BPF_MAP_TYPE_CPUMAP:
3584 		return __cpu_map_lookup_elem(map, index);
3585 	case BPF_MAP_TYPE_XSKMAP:
3586 		return __xsk_map_lookup_elem(map, index);
3587 	default:
3588 		return NULL;
3589 	}
3590 }
3591 
bpf_clear_redirect_map(struct bpf_map * map)3592 void bpf_clear_redirect_map(struct bpf_map *map)
3593 {
3594 	struct bpf_redirect_info *ri;
3595 	int cpu;
3596 
3597 	for_each_possible_cpu(cpu) {
3598 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3599 		/* Avoid polluting remote cacheline due to writes if
3600 		 * not needed. Once we pass this test, we need the
3601 		 * cmpxchg() to make sure it hasn't been changed in
3602 		 * the meantime by remote CPU.
3603 		 */
3604 		if (unlikely(READ_ONCE(ri->map) == map))
3605 			cmpxchg(&ri->map, map, NULL);
3606 	}
3607 }
3608 
xdp_do_redirect_map(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,struct bpf_map * map,struct bpf_redirect_info * ri)3609 static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
3610 			       struct bpf_prog *xdp_prog, struct bpf_map *map,
3611 			       struct bpf_redirect_info *ri)
3612 {
3613 	u32 index = ri->tgt_index;
3614 	void *fwd = ri->tgt_value;
3615 	int err;
3616 
3617 	ri->tgt_index = 0;
3618 	ri->tgt_value = NULL;
3619 	WRITE_ONCE(ri->map, NULL);
3620 
3621 	if (ri->map_to_flush && unlikely(ri->map_to_flush != map))
3622 		xdp_do_flush_map();
3623 
3624 	err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
3625 	if (unlikely(err))
3626 		goto err;
3627 
3628 	ri->map_to_flush = map;
3629 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3630 	return 0;
3631 err:
3632 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3633 	return err;
3634 }
3635 
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)3636 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3637 		    struct bpf_prog *xdp_prog)
3638 {
3639 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3640 	struct bpf_map *map = READ_ONCE(ri->map);
3641 
3642 	if (likely(map))
3643 		return xdp_do_redirect_map(dev, xdp, xdp_prog, map, ri);
3644 
3645 	return xdp_do_redirect_slow(dev, xdp, xdp_prog, ri);
3646 }
3647 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3648 
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,struct bpf_map * map)3649 static int xdp_do_generic_redirect_map(struct net_device *dev,
3650 				       struct sk_buff *skb,
3651 				       struct xdp_buff *xdp,
3652 				       struct bpf_prog *xdp_prog,
3653 				       struct bpf_map *map)
3654 {
3655 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3656 	u32 index = ri->tgt_index;
3657 	void *fwd = ri->tgt_value;
3658 	int err = 0;
3659 
3660 	ri->tgt_index = 0;
3661 	ri->tgt_value = NULL;
3662 	WRITE_ONCE(ri->map, NULL);
3663 
3664 	if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
3665 	    map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
3666 		struct bpf_dtab_netdev *dst = fwd;
3667 
3668 		err = dev_map_generic_redirect(dst, skb, xdp_prog);
3669 		if (unlikely(err))
3670 			goto err;
3671 	} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3672 		struct xdp_sock *xs = fwd;
3673 
3674 		err = xsk_generic_rcv(xs, xdp);
3675 		if (err)
3676 			goto err;
3677 		consume_skb(skb);
3678 	} else {
3679 		/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3680 		err = -EBADRQC;
3681 		goto err;
3682 	}
3683 
3684 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3685 	return 0;
3686 err:
3687 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3688 	return err;
3689 }
3690 
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)3691 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3692 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3693 {
3694 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3695 	struct bpf_map *map = READ_ONCE(ri->map);
3696 	u32 index = ri->tgt_index;
3697 	struct net_device *fwd;
3698 	int err = 0;
3699 
3700 	if (map)
3701 		return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
3702 						   map);
3703 	ri->tgt_index = 0;
3704 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
3705 	if (unlikely(!fwd)) {
3706 		err = -EINVAL;
3707 		goto err;
3708 	}
3709 
3710 	err = xdp_ok_fwd_dev(fwd, skb->len);
3711 	if (unlikely(err))
3712 		goto err;
3713 
3714 	skb->dev = fwd;
3715 	_trace_xdp_redirect(dev, xdp_prog, index);
3716 	generic_xdp_tx(skb, xdp_prog);
3717 	return 0;
3718 err:
3719 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
3720 	return err;
3721 }
3722 EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
3723 
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)3724 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3725 {
3726 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3727 
3728 	if (unlikely(flags))
3729 		return XDP_ABORTED;
3730 
3731 	ri->flags = flags;
3732 	ri->tgt_index = ifindex;
3733 	ri->tgt_value = NULL;
3734 	WRITE_ONCE(ri->map, NULL);
3735 
3736 	return XDP_REDIRECT;
3737 }
3738 
3739 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3740 	.func           = bpf_xdp_redirect,
3741 	.gpl_only       = false,
3742 	.ret_type       = RET_INTEGER,
3743 	.arg1_type      = ARG_ANYTHING,
3744 	.arg2_type      = ARG_ANYTHING,
3745 };
3746 
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u32,ifindex,u64,flags)3747 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
3748 	   u64, flags)
3749 {
3750 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3751 
3752 	/* Lower bits of the flags are used as return code on lookup failure */
3753 	if (unlikely(flags > XDP_TX))
3754 		return XDP_ABORTED;
3755 
3756 	ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
3757 	if (unlikely(!ri->tgt_value)) {
3758 		/* If the lookup fails we want to clear out the state in the
3759 		 * redirect_info struct completely, so that if an eBPF program
3760 		 * performs multiple lookups, the last one always takes
3761 		 * precedence.
3762 		 */
3763 		WRITE_ONCE(ri->map, NULL);
3764 		return flags;
3765 	}
3766 
3767 	ri->flags = flags;
3768 	ri->tgt_index = ifindex;
3769 	WRITE_ONCE(ri->map, map);
3770 
3771 	return XDP_REDIRECT;
3772 }
3773 
3774 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3775 	.func           = bpf_xdp_redirect_map,
3776 	.gpl_only       = false,
3777 	.ret_type       = RET_INTEGER,
3778 	.arg1_type      = ARG_CONST_MAP_PTR,
3779 	.arg2_type      = ARG_ANYTHING,
3780 	.arg3_type      = ARG_ANYTHING,
3781 };
3782 
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)3783 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3784 				  unsigned long off, unsigned long len)
3785 {
3786 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3787 
3788 	if (unlikely(!ptr))
3789 		return len;
3790 	if (ptr != dst_buff)
3791 		memcpy(dst_buff, ptr, len);
3792 
3793 	return 0;
3794 }
3795 
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)3796 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3797 	   u64, flags, void *, meta, u64, meta_size)
3798 {
3799 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3800 
3801 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3802 		return -EINVAL;
3803 	if (unlikely(skb_size > skb->len))
3804 		return -EFAULT;
3805 
3806 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3807 				bpf_skb_copy);
3808 }
3809 
3810 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3811 	.func		= bpf_skb_event_output,
3812 	.gpl_only	= true,
3813 	.ret_type	= RET_INTEGER,
3814 	.arg1_type	= ARG_PTR_TO_CTX,
3815 	.arg2_type	= ARG_CONST_MAP_PTR,
3816 	.arg3_type	= ARG_ANYTHING,
3817 	.arg4_type	= ARG_PTR_TO_MEM,
3818 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3819 };
3820 
bpf_tunnel_key_af(u64 flags)3821 static unsigned short bpf_tunnel_key_af(u64 flags)
3822 {
3823 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3824 }
3825 
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)3826 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3827 	   u32, size, u64, flags)
3828 {
3829 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3830 	u8 compat[sizeof(struct bpf_tunnel_key)];
3831 	void *to_orig = to;
3832 	int err;
3833 
3834 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3835 		err = -EINVAL;
3836 		goto err_clear;
3837 	}
3838 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3839 		err = -EPROTO;
3840 		goto err_clear;
3841 	}
3842 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3843 		err = -EINVAL;
3844 		switch (size) {
3845 		case offsetof(struct bpf_tunnel_key, tunnel_label):
3846 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3847 			goto set_compat;
3848 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3849 			/* Fixup deprecated structure layouts here, so we have
3850 			 * a common path later on.
3851 			 */
3852 			if (ip_tunnel_info_af(info) != AF_INET)
3853 				goto err_clear;
3854 set_compat:
3855 			to = (struct bpf_tunnel_key *)compat;
3856 			break;
3857 		default:
3858 			goto err_clear;
3859 		}
3860 	}
3861 
3862 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
3863 	to->tunnel_tos = info->key.tos;
3864 	to->tunnel_ttl = info->key.ttl;
3865 	to->tunnel_ext = 0;
3866 
3867 	if (flags & BPF_F_TUNINFO_IPV6) {
3868 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3869 		       sizeof(to->remote_ipv6));
3870 		to->tunnel_label = be32_to_cpu(info->key.label);
3871 	} else {
3872 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3873 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3874 		to->tunnel_label = 0;
3875 	}
3876 
3877 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3878 		memcpy(to_orig, to, size);
3879 
3880 	return 0;
3881 err_clear:
3882 	memset(to_orig, 0, size);
3883 	return err;
3884 }
3885 
3886 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3887 	.func		= bpf_skb_get_tunnel_key,
3888 	.gpl_only	= false,
3889 	.ret_type	= RET_INTEGER,
3890 	.arg1_type	= ARG_PTR_TO_CTX,
3891 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
3892 	.arg3_type	= ARG_CONST_SIZE,
3893 	.arg4_type	= ARG_ANYTHING,
3894 };
3895 
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)3896 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3897 {
3898 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3899 	int err;
3900 
3901 	if (unlikely(!info ||
3902 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3903 		err = -ENOENT;
3904 		goto err_clear;
3905 	}
3906 	if (unlikely(size < info->options_len)) {
3907 		err = -ENOMEM;
3908 		goto err_clear;
3909 	}
3910 
3911 	ip_tunnel_info_opts_get(to, info);
3912 	if (size > info->options_len)
3913 		memset(to + info->options_len, 0, size - info->options_len);
3914 
3915 	return info->options_len;
3916 err_clear:
3917 	memset(to, 0, size);
3918 	return err;
3919 }
3920 
3921 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3922 	.func		= bpf_skb_get_tunnel_opt,
3923 	.gpl_only	= false,
3924 	.ret_type	= RET_INTEGER,
3925 	.arg1_type	= ARG_PTR_TO_CTX,
3926 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
3927 	.arg3_type	= ARG_CONST_SIZE,
3928 };
3929 
3930 static struct metadata_dst __percpu *md_dst;
3931 
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)3932 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3933 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3934 {
3935 	struct metadata_dst *md = this_cpu_ptr(md_dst);
3936 	u8 compat[sizeof(struct bpf_tunnel_key)];
3937 	struct ip_tunnel_info *info;
3938 
3939 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3940 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3941 		return -EINVAL;
3942 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3943 		switch (size) {
3944 		case offsetof(struct bpf_tunnel_key, tunnel_label):
3945 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3946 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3947 			/* Fixup deprecated structure layouts here, so we have
3948 			 * a common path later on.
3949 			 */
3950 			memcpy(compat, from, size);
3951 			memset(compat + size, 0, sizeof(compat) - size);
3952 			from = (const struct bpf_tunnel_key *) compat;
3953 			break;
3954 		default:
3955 			return -EINVAL;
3956 		}
3957 	}
3958 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3959 		     from->tunnel_ext))
3960 		return -EINVAL;
3961 
3962 	skb_dst_drop(skb);
3963 	dst_hold((struct dst_entry *) md);
3964 	skb_dst_set(skb, (struct dst_entry *) md);
3965 
3966 	info = &md->u.tun_info;
3967 	memset(info, 0, sizeof(*info));
3968 	info->mode = IP_TUNNEL_INFO_TX;
3969 
3970 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3971 	if (flags & BPF_F_DONT_FRAGMENT)
3972 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3973 	if (flags & BPF_F_ZERO_CSUM_TX)
3974 		info->key.tun_flags &= ~TUNNEL_CSUM;
3975 	if (flags & BPF_F_SEQ_NUMBER)
3976 		info->key.tun_flags |= TUNNEL_SEQ;
3977 
3978 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
3979 	info->key.tos = from->tunnel_tos;
3980 	info->key.ttl = from->tunnel_ttl;
3981 
3982 	if (flags & BPF_F_TUNINFO_IPV6) {
3983 		info->mode |= IP_TUNNEL_INFO_IPV6;
3984 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3985 		       sizeof(from->remote_ipv6));
3986 		info->key.label = cpu_to_be32(from->tunnel_label) &
3987 				  IPV6_FLOWLABEL_MASK;
3988 	} else {
3989 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3990 	}
3991 
3992 	return 0;
3993 }
3994 
3995 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3996 	.func		= bpf_skb_set_tunnel_key,
3997 	.gpl_only	= false,
3998 	.ret_type	= RET_INTEGER,
3999 	.arg1_type	= ARG_PTR_TO_CTX,
4000 	.arg2_type	= ARG_PTR_TO_MEM,
4001 	.arg3_type	= ARG_CONST_SIZE,
4002 	.arg4_type	= ARG_ANYTHING,
4003 };
4004 
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4005 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4006 	   const u8 *, from, u32, size)
4007 {
4008 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4009 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4010 
4011 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4012 		return -EINVAL;
4013 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4014 		return -ENOMEM;
4015 
4016 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4017 
4018 	return 0;
4019 }
4020 
4021 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4022 	.func		= bpf_skb_set_tunnel_opt,
4023 	.gpl_only	= false,
4024 	.ret_type	= RET_INTEGER,
4025 	.arg1_type	= ARG_PTR_TO_CTX,
4026 	.arg2_type	= ARG_PTR_TO_MEM,
4027 	.arg3_type	= ARG_CONST_SIZE,
4028 };
4029 
4030 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4031 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4032 {
4033 	if (!md_dst) {
4034 		struct metadata_dst __percpu *tmp;
4035 
4036 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4037 						METADATA_IP_TUNNEL,
4038 						GFP_KERNEL);
4039 		if (!tmp)
4040 			return NULL;
4041 		if (cmpxchg(&md_dst, NULL, tmp))
4042 			metadata_dst_free_percpu(tmp);
4043 	}
4044 
4045 	switch (which) {
4046 	case BPF_FUNC_skb_set_tunnel_key:
4047 		return &bpf_skb_set_tunnel_key_proto;
4048 	case BPF_FUNC_skb_set_tunnel_opt:
4049 		return &bpf_skb_set_tunnel_opt_proto;
4050 	default:
4051 		return NULL;
4052 	}
4053 }
4054 
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4055 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4056 	   u32, idx)
4057 {
4058 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4059 	struct cgroup *cgrp;
4060 	struct sock *sk;
4061 
4062 	sk = skb_to_full_sk(skb);
4063 	if (!sk || !sk_fullsock(sk))
4064 		return -ENOENT;
4065 	if (unlikely(idx >= array->map.max_entries))
4066 		return -E2BIG;
4067 
4068 	cgrp = READ_ONCE(array->ptrs[idx]);
4069 	if (unlikely(!cgrp))
4070 		return -EAGAIN;
4071 
4072 	return sk_under_cgroup_hierarchy(sk, cgrp);
4073 }
4074 
4075 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4076 	.func		= bpf_skb_under_cgroup,
4077 	.gpl_only	= false,
4078 	.ret_type	= RET_INTEGER,
4079 	.arg1_type	= ARG_PTR_TO_CTX,
4080 	.arg2_type	= ARG_CONST_MAP_PTR,
4081 	.arg3_type	= ARG_ANYTHING,
4082 };
4083 
4084 #ifdef CONFIG_SOCK_CGROUP_DATA
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4085 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4086 {
4087 	struct sock *sk = skb_to_full_sk(skb);
4088 	struct cgroup *cgrp;
4089 
4090 	if (!sk || !sk_fullsock(sk))
4091 		return 0;
4092 
4093 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4094 	return cgrp->kn->id.id;
4095 }
4096 
4097 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4098 	.func           = bpf_skb_cgroup_id,
4099 	.gpl_only       = false,
4100 	.ret_type       = RET_INTEGER,
4101 	.arg1_type      = ARG_PTR_TO_CTX,
4102 };
4103 
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)4104 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4105 	   ancestor_level)
4106 {
4107 	struct sock *sk = skb_to_full_sk(skb);
4108 	struct cgroup *ancestor;
4109 	struct cgroup *cgrp;
4110 
4111 	if (!sk || !sk_fullsock(sk))
4112 		return 0;
4113 
4114 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4115 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4116 	if (!ancestor)
4117 		return 0;
4118 
4119 	return ancestor->kn->id.id;
4120 }
4121 
4122 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4123 	.func           = bpf_skb_ancestor_cgroup_id,
4124 	.gpl_only       = false,
4125 	.ret_type       = RET_INTEGER,
4126 	.arg1_type      = ARG_PTR_TO_CTX,
4127 	.arg2_type      = ARG_ANYTHING,
4128 };
4129 #endif
4130 
bpf_xdp_copy(void * dst_buff,const void * src_buff,unsigned long off,unsigned long len)4131 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4132 				  unsigned long off, unsigned long len)
4133 {
4134 	memcpy(dst_buff, src_buff + off, len);
4135 	return 0;
4136 }
4137 
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4138 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4139 	   u64, flags, void *, meta, u64, meta_size)
4140 {
4141 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4142 
4143 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4144 		return -EINVAL;
4145 	if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4146 		return -EFAULT;
4147 
4148 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4149 				xdp_size, bpf_xdp_copy);
4150 }
4151 
4152 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4153 	.func		= bpf_xdp_event_output,
4154 	.gpl_only	= true,
4155 	.ret_type	= RET_INTEGER,
4156 	.arg1_type	= ARG_PTR_TO_CTX,
4157 	.arg2_type	= ARG_CONST_MAP_PTR,
4158 	.arg3_type	= ARG_ANYTHING,
4159 	.arg4_type	= ARG_PTR_TO_MEM,
4160 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4161 };
4162 
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)4163 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4164 {
4165 	return skb->sk ? sock_gen_cookie(skb->sk) : 0;
4166 }
4167 
4168 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4169 	.func           = bpf_get_socket_cookie,
4170 	.gpl_only       = false,
4171 	.ret_type       = RET_INTEGER,
4172 	.arg1_type      = ARG_PTR_TO_CTX,
4173 };
4174 
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)4175 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4176 {
4177 	return sock_gen_cookie(ctx->sk);
4178 }
4179 
4180 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4181 	.func		= bpf_get_socket_cookie_sock_addr,
4182 	.gpl_only	= false,
4183 	.ret_type	= RET_INTEGER,
4184 	.arg1_type	= ARG_PTR_TO_CTX,
4185 };
4186 
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)4187 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4188 {
4189 	return sock_gen_cookie(ctx->sk);
4190 }
4191 
4192 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4193 	.func		= bpf_get_socket_cookie_sock_ops,
4194 	.gpl_only	= false,
4195 	.ret_type	= RET_INTEGER,
4196 	.arg1_type	= ARG_PTR_TO_CTX,
4197 };
4198 
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)4199 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4200 {
4201 	struct sock *sk = sk_to_full_sk(skb->sk);
4202 	kuid_t kuid;
4203 
4204 	if (!sk || !sk_fullsock(sk))
4205 		return overflowuid;
4206 	kuid = sock_net_uid(sock_net(sk), sk);
4207 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4208 }
4209 
4210 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4211 	.func           = bpf_get_socket_uid,
4212 	.gpl_only       = false,
4213 	.ret_type       = RET_INTEGER,
4214 	.arg1_type      = ARG_PTR_TO_CTX,
4215 };
4216 
BPF_CALL_5(bpf_sockopt_event_output,struct bpf_sock_ops_kern *,bpf_sock,struct bpf_map *,map,u64,flags,void *,data,u64,size)4217 BPF_CALL_5(bpf_sockopt_event_output, struct bpf_sock_ops_kern *, bpf_sock,
4218 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
4219 {
4220 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
4221 		return -EINVAL;
4222 
4223 	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
4224 }
4225 
4226 static const struct bpf_func_proto bpf_sockopt_event_output_proto =  {
4227 	.func		= bpf_sockopt_event_output,
4228 	.gpl_only       = true,
4229 	.ret_type       = RET_INTEGER,
4230 	.arg1_type      = ARG_PTR_TO_CTX,
4231 	.arg2_type      = ARG_CONST_MAP_PTR,
4232 	.arg3_type      = ARG_ANYTHING,
4233 	.arg4_type      = ARG_PTR_TO_MEM,
4234 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4235 };
4236 
BPF_CALL_5(bpf_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)4237 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4238 	   int, level, int, optname, char *, optval, int, optlen)
4239 {
4240 	struct sock *sk = bpf_sock->sk;
4241 	int ret = 0;
4242 	int val;
4243 
4244 	if (!sk_fullsock(sk))
4245 		return -EINVAL;
4246 
4247 	if (level == SOL_SOCKET) {
4248 		if (optlen != sizeof(int))
4249 			return -EINVAL;
4250 		val = *((int *)optval);
4251 
4252 		/* Only some socketops are supported */
4253 		switch (optname) {
4254 		case SO_RCVBUF:
4255 			val = min_t(u32, val, sysctl_rmem_max);
4256 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4257 			WRITE_ONCE(sk->sk_rcvbuf,
4258 				   max_t(int, val * 2, SOCK_MIN_RCVBUF));
4259 			break;
4260 		case SO_SNDBUF:
4261 			val = min_t(u32, val, sysctl_wmem_max);
4262 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4263 			WRITE_ONCE(sk->sk_sndbuf,
4264 				   max_t(int, val * 2, SOCK_MIN_SNDBUF));
4265 			break;
4266 		case SO_MAX_PACING_RATE: /* 32bit version */
4267 			if (val != ~0U)
4268 				cmpxchg(&sk->sk_pacing_status,
4269 					SK_PACING_NONE,
4270 					SK_PACING_NEEDED);
4271 			sk->sk_max_pacing_rate = (val == ~0U) ? ~0UL : val;
4272 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4273 						 sk->sk_max_pacing_rate);
4274 			break;
4275 		case SO_PRIORITY:
4276 			sk->sk_priority = val;
4277 			break;
4278 		case SO_RCVLOWAT:
4279 			if (val < 0)
4280 				val = INT_MAX;
4281 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4282 			break;
4283 		case SO_MARK:
4284 			if (sk->sk_mark != val) {
4285 				sk->sk_mark = val;
4286 				sk_dst_reset(sk);
4287 			}
4288 			break;
4289 		default:
4290 			ret = -EINVAL;
4291 		}
4292 #ifdef CONFIG_INET
4293 	} else if (level == SOL_IP) {
4294 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4295 			return -EINVAL;
4296 
4297 		val = *((int *)optval);
4298 		/* Only some options are supported */
4299 		switch (optname) {
4300 		case IP_TOS:
4301 			if (val < -1 || val > 0xff) {
4302 				ret = -EINVAL;
4303 			} else {
4304 				struct inet_sock *inet = inet_sk(sk);
4305 
4306 				if (val == -1)
4307 					val = 0;
4308 				inet->tos = val;
4309 			}
4310 			break;
4311 		default:
4312 			ret = -EINVAL;
4313 		}
4314 #if IS_ENABLED(CONFIG_IPV6)
4315 	} else if (level == SOL_IPV6) {
4316 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4317 			return -EINVAL;
4318 
4319 		val = *((int *)optval);
4320 		/* Only some options are supported */
4321 		switch (optname) {
4322 		case IPV6_TCLASS:
4323 			if (val < -1 || val > 0xff) {
4324 				ret = -EINVAL;
4325 			} else {
4326 				struct ipv6_pinfo *np = inet6_sk(sk);
4327 
4328 				if (val == -1)
4329 					val = 0;
4330 				np->tclass = val;
4331 			}
4332 			break;
4333 		default:
4334 			ret = -EINVAL;
4335 		}
4336 #endif
4337 	} else if (level == SOL_TCP &&
4338 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
4339 		if (optname == TCP_CONGESTION) {
4340 			char name[TCP_CA_NAME_MAX];
4341 			bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
4342 
4343 			strncpy(name, optval, min_t(long, optlen,
4344 						    TCP_CA_NAME_MAX-1));
4345 			name[TCP_CA_NAME_MAX-1] = 0;
4346 			ret = tcp_set_congestion_control(sk, name, false,
4347 							 reinit, true);
4348 		} else {
4349 			struct tcp_sock *tp = tcp_sk(sk);
4350 
4351 			if (optlen != sizeof(int))
4352 				return -EINVAL;
4353 
4354 			val = *((int *)optval);
4355 			/* Only some options are supported */
4356 			switch (optname) {
4357 			case TCP_BPF_IW:
4358 				if (val <= 0 || tp->data_segs_out > tp->syn_data)
4359 					ret = -EINVAL;
4360 				else
4361 					tp->snd_cwnd = val;
4362 				break;
4363 			case TCP_BPF_SNDCWND_CLAMP:
4364 				if (val <= 0) {
4365 					ret = -EINVAL;
4366 				} else {
4367 					tp->snd_cwnd_clamp = val;
4368 					tp->snd_ssthresh = val;
4369 				}
4370 				break;
4371 			case TCP_SAVE_SYN:
4372 				if (val < 0 || val > 1)
4373 					ret = -EINVAL;
4374 				else
4375 					tp->save_syn = val;
4376 				break;
4377 			default:
4378 				ret = -EINVAL;
4379 			}
4380 		}
4381 #endif
4382 	} else {
4383 		ret = -EINVAL;
4384 	}
4385 	return ret;
4386 }
4387 
4388 static const struct bpf_func_proto bpf_setsockopt_proto = {
4389 	.func		= bpf_setsockopt,
4390 	.gpl_only	= false,
4391 	.ret_type	= RET_INTEGER,
4392 	.arg1_type	= ARG_PTR_TO_CTX,
4393 	.arg2_type	= ARG_ANYTHING,
4394 	.arg3_type	= ARG_ANYTHING,
4395 	.arg4_type	= ARG_PTR_TO_MEM,
4396 	.arg5_type	= ARG_CONST_SIZE,
4397 };
4398 
BPF_CALL_5(bpf_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)4399 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4400 	   int, level, int, optname, char *, optval, int, optlen)
4401 {
4402 	struct sock *sk = bpf_sock->sk;
4403 
4404 	if (!sk_fullsock(sk))
4405 		goto err_clear;
4406 #ifdef CONFIG_INET
4407 	if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4408 		struct inet_connection_sock *icsk;
4409 		struct tcp_sock *tp;
4410 
4411 		switch (optname) {
4412 		case TCP_CONGESTION:
4413 			icsk = inet_csk(sk);
4414 
4415 			if (!icsk->icsk_ca_ops || optlen <= 1)
4416 				goto err_clear;
4417 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4418 			optval[optlen - 1] = 0;
4419 			break;
4420 		case TCP_SAVED_SYN:
4421 			tp = tcp_sk(sk);
4422 
4423 			if (optlen <= 0 || !tp->saved_syn ||
4424 			    optlen > tp->saved_syn[0])
4425 				goto err_clear;
4426 			memcpy(optval, tp->saved_syn + 1, optlen);
4427 			break;
4428 		default:
4429 			goto err_clear;
4430 		}
4431 	} else if (level == SOL_IP) {
4432 		struct inet_sock *inet = inet_sk(sk);
4433 
4434 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4435 			goto err_clear;
4436 
4437 		/* Only some options are supported */
4438 		switch (optname) {
4439 		case IP_TOS:
4440 			*((int *)optval) = (int)inet->tos;
4441 			break;
4442 		default:
4443 			goto err_clear;
4444 		}
4445 #if IS_ENABLED(CONFIG_IPV6)
4446 	} else if (level == SOL_IPV6) {
4447 		struct ipv6_pinfo *np = inet6_sk(sk);
4448 
4449 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4450 			goto err_clear;
4451 
4452 		/* Only some options are supported */
4453 		switch (optname) {
4454 		case IPV6_TCLASS:
4455 			*((int *)optval) = (int)np->tclass;
4456 			break;
4457 		default:
4458 			goto err_clear;
4459 		}
4460 #endif
4461 	} else {
4462 		goto err_clear;
4463 	}
4464 	return 0;
4465 #endif
4466 err_clear:
4467 	memset(optval, 0, optlen);
4468 	return -EINVAL;
4469 }
4470 
4471 static const struct bpf_func_proto bpf_getsockopt_proto = {
4472 	.func		= bpf_getsockopt,
4473 	.gpl_only	= false,
4474 	.ret_type	= RET_INTEGER,
4475 	.arg1_type	= ARG_PTR_TO_CTX,
4476 	.arg2_type	= ARG_ANYTHING,
4477 	.arg3_type	= ARG_ANYTHING,
4478 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
4479 	.arg5_type	= ARG_CONST_SIZE,
4480 };
4481 
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)4482 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
4483 	   int, argval)
4484 {
4485 	struct sock *sk = bpf_sock->sk;
4486 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
4487 
4488 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4489 		return -EINVAL;
4490 
4491 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
4492 
4493 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
4494 }
4495 
4496 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
4497 	.func		= bpf_sock_ops_cb_flags_set,
4498 	.gpl_only	= false,
4499 	.ret_type	= RET_INTEGER,
4500 	.arg1_type	= ARG_PTR_TO_CTX,
4501 	.arg2_type	= ARG_ANYTHING,
4502 };
4503 
4504 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
4505 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
4506 
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)4507 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
4508 	   int, addr_len)
4509 {
4510 #ifdef CONFIG_INET
4511 	struct sock *sk = ctx->sk;
4512 	int err;
4513 
4514 	/* Binding to port can be expensive so it's prohibited in the helper.
4515 	 * Only binding to IP is supported.
4516 	 */
4517 	err = -EINVAL;
4518 	if (addr_len < offsetofend(struct sockaddr, sa_family))
4519 		return err;
4520 	if (addr->sa_family == AF_INET) {
4521 		if (addr_len < sizeof(struct sockaddr_in))
4522 			return err;
4523 		if (((struct sockaddr_in *)addr)->sin_port != htons(0))
4524 			return err;
4525 		return __inet_bind(sk, addr, addr_len, true, false);
4526 #if IS_ENABLED(CONFIG_IPV6)
4527 	} else if (addr->sa_family == AF_INET6) {
4528 		if (addr_len < SIN6_LEN_RFC2133)
4529 			return err;
4530 		if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
4531 			return err;
4532 		/* ipv6_bpf_stub cannot be NULL, since it's called from
4533 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4534 		 */
4535 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
4536 #endif /* CONFIG_IPV6 */
4537 	}
4538 #endif /* CONFIG_INET */
4539 
4540 	return -EAFNOSUPPORT;
4541 }
4542 
4543 static const struct bpf_func_proto bpf_bind_proto = {
4544 	.func		= bpf_bind,
4545 	.gpl_only	= false,
4546 	.ret_type	= RET_INTEGER,
4547 	.arg1_type	= ARG_PTR_TO_CTX,
4548 	.arg2_type	= ARG_PTR_TO_MEM,
4549 	.arg3_type	= ARG_CONST_SIZE,
4550 };
4551 
4552 #ifdef CONFIG_XFRM
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)4553 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4554 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
4555 {
4556 	const struct sec_path *sp = skb_sec_path(skb);
4557 	const struct xfrm_state *x;
4558 
4559 	if (!sp || unlikely(index >= sp->len || flags))
4560 		goto err_clear;
4561 
4562 	x = sp->xvec[index];
4563 
4564 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4565 		goto err_clear;
4566 
4567 	to->reqid = x->props.reqid;
4568 	to->spi = x->id.spi;
4569 	to->family = x->props.family;
4570 	to->ext = 0;
4571 
4572 	if (to->family == AF_INET6) {
4573 		memcpy(to->remote_ipv6, x->props.saddr.a6,
4574 		       sizeof(to->remote_ipv6));
4575 	} else {
4576 		to->remote_ipv4 = x->props.saddr.a4;
4577 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4578 	}
4579 
4580 	return 0;
4581 err_clear:
4582 	memset(to, 0, size);
4583 	return -EINVAL;
4584 }
4585 
4586 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4587 	.func		= bpf_skb_get_xfrm_state,
4588 	.gpl_only	= false,
4589 	.ret_type	= RET_INTEGER,
4590 	.arg1_type	= ARG_PTR_TO_CTX,
4591 	.arg2_type	= ARG_ANYTHING,
4592 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4593 	.arg4_type	= ARG_CONST_SIZE,
4594 	.arg5_type	= ARG_ANYTHING,
4595 };
4596 #endif
4597 
4598 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,const struct neighbour * neigh,const struct net_device * dev)4599 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4600 				  const struct neighbour *neigh,
4601 				  const struct net_device *dev)
4602 {
4603 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
4604 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4605 	params->h_vlan_TCI = 0;
4606 	params->h_vlan_proto = 0;
4607 	params->ifindex = dev->ifindex;
4608 
4609 	return 0;
4610 }
4611 #endif
4612 
4613 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)4614 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4615 			       u32 flags, bool check_mtu)
4616 {
4617 	struct fib_nh_common *nhc;
4618 	struct in_device *in_dev;
4619 	struct neighbour *neigh;
4620 	struct net_device *dev;
4621 	struct fib_result res;
4622 	struct flowi4 fl4;
4623 	int err;
4624 	u32 mtu;
4625 
4626 	dev = dev_get_by_index_rcu(net, params->ifindex);
4627 	if (unlikely(!dev))
4628 		return -ENODEV;
4629 
4630 	/* verify forwarding is enabled on this interface */
4631 	in_dev = __in_dev_get_rcu(dev);
4632 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4633 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
4634 
4635 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4636 		fl4.flowi4_iif = 1;
4637 		fl4.flowi4_oif = params->ifindex;
4638 	} else {
4639 		fl4.flowi4_iif = params->ifindex;
4640 		fl4.flowi4_oif = 0;
4641 	}
4642 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4643 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4644 	fl4.flowi4_flags = 0;
4645 
4646 	fl4.flowi4_proto = params->l4_protocol;
4647 	fl4.daddr = params->ipv4_dst;
4648 	fl4.saddr = params->ipv4_src;
4649 	fl4.fl4_sport = params->sport;
4650 	fl4.fl4_dport = params->dport;
4651 
4652 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
4653 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4654 		struct fib_table *tb;
4655 
4656 		tb = fib_get_table(net, tbid);
4657 		if (unlikely(!tb))
4658 			return BPF_FIB_LKUP_RET_NOT_FWDED;
4659 
4660 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4661 	} else {
4662 		fl4.flowi4_mark = 0;
4663 		fl4.flowi4_secid = 0;
4664 		fl4.flowi4_tun_key.tun_id = 0;
4665 		fl4.flowi4_uid = sock_net_uid(net, NULL);
4666 
4667 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4668 	}
4669 
4670 	if (err) {
4671 		/* map fib lookup errors to RTN_ type */
4672 		if (err == -EINVAL)
4673 			return BPF_FIB_LKUP_RET_BLACKHOLE;
4674 		if (err == -EHOSTUNREACH)
4675 			return BPF_FIB_LKUP_RET_UNREACHABLE;
4676 		if (err == -EACCES)
4677 			return BPF_FIB_LKUP_RET_PROHIBIT;
4678 
4679 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4680 	}
4681 
4682 	if (res.type != RTN_UNICAST)
4683 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4684 
4685 	if (fib_info_num_path(res.fi) > 1)
4686 		fib_select_path(net, &res, &fl4, NULL);
4687 
4688 	if (check_mtu) {
4689 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4690 		if (params->tot_len > mtu)
4691 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4692 	}
4693 
4694 	nhc = res.nhc;
4695 
4696 	/* do not handle lwt encaps right now */
4697 	if (nhc->nhc_lwtstate)
4698 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4699 
4700 	dev = nhc->nhc_dev;
4701 
4702 	params->rt_metric = res.fi->fib_priority;
4703 
4704 	/* xdp and cls_bpf programs are run in RCU-bh so
4705 	 * rcu_read_lock_bh is not needed here
4706 	 */
4707 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
4708 		if (nhc->nhc_gw_family)
4709 			params->ipv4_dst = nhc->nhc_gw.ipv4;
4710 
4711 		neigh = __ipv4_neigh_lookup_noref(dev,
4712 						 (__force u32)params->ipv4_dst);
4713 	} else {
4714 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
4715 
4716 		params->family = AF_INET6;
4717 		*dst = nhc->nhc_gw.ipv6;
4718 		neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4719 	}
4720 
4721 	if (!neigh)
4722 		return BPF_FIB_LKUP_RET_NO_NEIGH;
4723 
4724 	return bpf_fib_set_fwd_params(params, neigh, dev);
4725 }
4726 #endif
4727 
4728 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)4729 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4730 			       u32 flags, bool check_mtu)
4731 {
4732 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4733 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4734 	struct fib6_result res = {};
4735 	struct neighbour *neigh;
4736 	struct net_device *dev;
4737 	struct inet6_dev *idev;
4738 	struct flowi6 fl6;
4739 	int strict = 0;
4740 	int oif, err;
4741 	u32 mtu;
4742 
4743 	/* link local addresses are never forwarded */
4744 	if (rt6_need_strict(dst) || rt6_need_strict(src))
4745 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4746 
4747 	dev = dev_get_by_index_rcu(net, params->ifindex);
4748 	if (unlikely(!dev))
4749 		return -ENODEV;
4750 
4751 	idev = __in6_dev_get_safely(dev);
4752 	if (unlikely(!idev || !idev->cnf.forwarding))
4753 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
4754 
4755 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4756 		fl6.flowi6_iif = 1;
4757 		oif = fl6.flowi6_oif = params->ifindex;
4758 	} else {
4759 		oif = fl6.flowi6_iif = params->ifindex;
4760 		fl6.flowi6_oif = 0;
4761 		strict = RT6_LOOKUP_F_HAS_SADDR;
4762 	}
4763 	fl6.flowlabel = params->flowinfo;
4764 	fl6.flowi6_scope = 0;
4765 	fl6.flowi6_flags = 0;
4766 	fl6.mp_hash = 0;
4767 
4768 	fl6.flowi6_proto = params->l4_protocol;
4769 	fl6.daddr = *dst;
4770 	fl6.saddr = *src;
4771 	fl6.fl6_sport = params->sport;
4772 	fl6.fl6_dport = params->dport;
4773 
4774 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
4775 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4776 		struct fib6_table *tb;
4777 
4778 		tb = ipv6_stub->fib6_get_table(net, tbid);
4779 		if (unlikely(!tb))
4780 			return BPF_FIB_LKUP_RET_NOT_FWDED;
4781 
4782 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
4783 						   strict);
4784 	} else {
4785 		fl6.flowi6_mark = 0;
4786 		fl6.flowi6_secid = 0;
4787 		fl6.flowi6_tun_key.tun_id = 0;
4788 		fl6.flowi6_uid = sock_net_uid(net, NULL);
4789 
4790 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
4791 	}
4792 
4793 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
4794 		     res.f6i == net->ipv6.fib6_null_entry))
4795 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4796 
4797 	switch (res.fib6_type) {
4798 	/* only unicast is forwarded */
4799 	case RTN_UNICAST:
4800 		break;
4801 	case RTN_BLACKHOLE:
4802 		return BPF_FIB_LKUP_RET_BLACKHOLE;
4803 	case RTN_UNREACHABLE:
4804 		return BPF_FIB_LKUP_RET_UNREACHABLE;
4805 	case RTN_PROHIBIT:
4806 		return BPF_FIB_LKUP_RET_PROHIBIT;
4807 	default:
4808 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4809 	}
4810 
4811 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
4812 				    fl6.flowi6_oif != 0, NULL, strict);
4813 
4814 	if (check_mtu) {
4815 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
4816 		if (params->tot_len > mtu)
4817 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4818 	}
4819 
4820 	if (res.nh->fib_nh_lws)
4821 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4822 
4823 	if (res.nh->fib_nh_gw_family)
4824 		*dst = res.nh->fib_nh_gw6;
4825 
4826 	dev = res.nh->fib_nh_dev;
4827 	params->rt_metric = res.f6i->fib6_metric;
4828 
4829 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
4830 	 * not needed here.
4831 	 */
4832 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4833 	if (!neigh)
4834 		return BPF_FIB_LKUP_RET_NO_NEIGH;
4835 
4836 	return bpf_fib_set_fwd_params(params, neigh, dev);
4837 }
4838 #endif
4839 
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)4840 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
4841 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
4842 {
4843 	if (plen < sizeof(*params))
4844 		return -EINVAL;
4845 
4846 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4847 		return -EINVAL;
4848 
4849 	switch (params->family) {
4850 #if IS_ENABLED(CONFIG_INET)
4851 	case AF_INET:
4852 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4853 					   flags, true);
4854 #endif
4855 #if IS_ENABLED(CONFIG_IPV6)
4856 	case AF_INET6:
4857 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4858 					   flags, true);
4859 #endif
4860 	}
4861 	return -EAFNOSUPPORT;
4862 }
4863 
4864 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
4865 	.func		= bpf_xdp_fib_lookup,
4866 	.gpl_only	= true,
4867 	.ret_type	= RET_INTEGER,
4868 	.arg1_type      = ARG_PTR_TO_CTX,
4869 	.arg2_type      = ARG_PTR_TO_MEM,
4870 	.arg3_type      = ARG_CONST_SIZE,
4871 	.arg4_type	= ARG_ANYTHING,
4872 };
4873 
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)4874 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
4875 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
4876 {
4877 	struct net *net = dev_net(skb->dev);
4878 	int rc = -EAFNOSUPPORT;
4879 
4880 	if (plen < sizeof(*params))
4881 		return -EINVAL;
4882 
4883 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4884 		return -EINVAL;
4885 
4886 	switch (params->family) {
4887 #if IS_ENABLED(CONFIG_INET)
4888 	case AF_INET:
4889 		rc = bpf_ipv4_fib_lookup(net, params, flags, false);
4890 		break;
4891 #endif
4892 #if IS_ENABLED(CONFIG_IPV6)
4893 	case AF_INET6:
4894 		rc = bpf_ipv6_fib_lookup(net, params, flags, false);
4895 		break;
4896 #endif
4897 	}
4898 
4899 	if (!rc) {
4900 		struct net_device *dev;
4901 
4902 		dev = dev_get_by_index_rcu(net, params->ifindex);
4903 		if (!is_skb_forwardable(dev, skb))
4904 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
4905 	}
4906 
4907 	return rc;
4908 }
4909 
4910 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
4911 	.func		= bpf_skb_fib_lookup,
4912 	.gpl_only	= true,
4913 	.ret_type	= RET_INTEGER,
4914 	.arg1_type      = ARG_PTR_TO_CTX,
4915 	.arg2_type      = ARG_PTR_TO_MEM,
4916 	.arg3_type      = ARG_CONST_SIZE,
4917 	.arg4_type	= ARG_ANYTHING,
4918 };
4919 
4920 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)4921 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
4922 {
4923 	int err;
4924 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
4925 
4926 	if (!seg6_validate_srh(srh, len))
4927 		return -EINVAL;
4928 
4929 	switch (type) {
4930 	case BPF_LWT_ENCAP_SEG6_INLINE:
4931 		if (skb->protocol != htons(ETH_P_IPV6))
4932 			return -EBADMSG;
4933 
4934 		err = seg6_do_srh_inline(skb, srh);
4935 		break;
4936 	case BPF_LWT_ENCAP_SEG6:
4937 		skb_reset_inner_headers(skb);
4938 		skb->encapsulation = 1;
4939 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
4940 		break;
4941 	default:
4942 		return -EINVAL;
4943 	}
4944 
4945 	bpf_compute_data_pointers(skb);
4946 	if (err)
4947 		return err;
4948 
4949 	ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4950 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
4951 
4952 	return seg6_lookup_nexthop(skb, NULL, 0);
4953 }
4954 #endif /* CONFIG_IPV6_SEG6_BPF */
4955 
4956 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)4957 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
4958 			     bool ingress)
4959 {
4960 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
4961 }
4962 #endif
4963 
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)4964 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
4965 	   u32, len)
4966 {
4967 	switch (type) {
4968 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4969 	case BPF_LWT_ENCAP_SEG6:
4970 	case BPF_LWT_ENCAP_SEG6_INLINE:
4971 		return bpf_push_seg6_encap(skb, type, hdr, len);
4972 #endif
4973 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4974 	case BPF_LWT_ENCAP_IP:
4975 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
4976 #endif
4977 	default:
4978 		return -EINVAL;
4979 	}
4980 }
4981 
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)4982 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
4983 	   void *, hdr, u32, len)
4984 {
4985 	switch (type) {
4986 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4987 	case BPF_LWT_ENCAP_IP:
4988 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
4989 #endif
4990 	default:
4991 		return -EINVAL;
4992 	}
4993 }
4994 
4995 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
4996 	.func		= bpf_lwt_in_push_encap,
4997 	.gpl_only	= false,
4998 	.ret_type	= RET_INTEGER,
4999 	.arg1_type	= ARG_PTR_TO_CTX,
5000 	.arg2_type	= ARG_ANYTHING,
5001 	.arg3_type	= ARG_PTR_TO_MEM,
5002 	.arg4_type	= ARG_CONST_SIZE
5003 };
5004 
5005 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5006 	.func		= bpf_lwt_xmit_push_encap,
5007 	.gpl_only	= false,
5008 	.ret_type	= RET_INTEGER,
5009 	.arg1_type	= ARG_PTR_TO_CTX,
5010 	.arg2_type	= ARG_ANYTHING,
5011 	.arg3_type	= ARG_PTR_TO_MEM,
5012 	.arg4_type	= ARG_CONST_SIZE
5013 };
5014 
5015 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)5016 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5017 	   const void *, from, u32, len)
5018 {
5019 	struct seg6_bpf_srh_state *srh_state =
5020 		this_cpu_ptr(&seg6_bpf_srh_states);
5021 	struct ipv6_sr_hdr *srh = srh_state->srh;
5022 	void *srh_tlvs, *srh_end, *ptr;
5023 	int srhoff = 0;
5024 
5025 	if (srh == NULL)
5026 		return -EINVAL;
5027 
5028 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5029 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5030 
5031 	ptr = skb->data + offset;
5032 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
5033 		srh_state->valid = false;
5034 	else if (ptr < (void *)&srh->flags ||
5035 		 ptr + len > (void *)&srh->segments)
5036 		return -EFAULT;
5037 
5038 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
5039 		return -EFAULT;
5040 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5041 		return -EINVAL;
5042 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5043 
5044 	memcpy(skb->data + offset, from, len);
5045 	return 0;
5046 }
5047 
5048 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5049 	.func		= bpf_lwt_seg6_store_bytes,
5050 	.gpl_only	= false,
5051 	.ret_type	= RET_INTEGER,
5052 	.arg1_type	= ARG_PTR_TO_CTX,
5053 	.arg2_type	= ARG_ANYTHING,
5054 	.arg3_type	= ARG_PTR_TO_MEM,
5055 	.arg4_type	= ARG_CONST_SIZE
5056 };
5057 
bpf_update_srh_state(struct sk_buff * skb)5058 static void bpf_update_srh_state(struct sk_buff *skb)
5059 {
5060 	struct seg6_bpf_srh_state *srh_state =
5061 		this_cpu_ptr(&seg6_bpf_srh_states);
5062 	int srhoff = 0;
5063 
5064 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5065 		srh_state->srh = NULL;
5066 	} else {
5067 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5068 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5069 		srh_state->valid = true;
5070 	}
5071 }
5072 
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)5073 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5074 	   u32, action, void *, param, u32, param_len)
5075 {
5076 	struct seg6_bpf_srh_state *srh_state =
5077 		this_cpu_ptr(&seg6_bpf_srh_states);
5078 	int hdroff = 0;
5079 	int err;
5080 
5081 	switch (action) {
5082 	case SEG6_LOCAL_ACTION_END_X:
5083 		if (!seg6_bpf_has_valid_srh(skb))
5084 			return -EBADMSG;
5085 		if (param_len != sizeof(struct in6_addr))
5086 			return -EINVAL;
5087 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5088 	case SEG6_LOCAL_ACTION_END_T:
5089 		if (!seg6_bpf_has_valid_srh(skb))
5090 			return -EBADMSG;
5091 		if (param_len != sizeof(int))
5092 			return -EINVAL;
5093 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5094 	case SEG6_LOCAL_ACTION_END_DT6:
5095 		if (!seg6_bpf_has_valid_srh(skb))
5096 			return -EBADMSG;
5097 		if (param_len != sizeof(int))
5098 			return -EINVAL;
5099 
5100 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5101 			return -EBADMSG;
5102 		if (!pskb_pull(skb, hdroff))
5103 			return -EBADMSG;
5104 
5105 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5106 		skb_reset_network_header(skb);
5107 		skb_reset_transport_header(skb);
5108 		skb->encapsulation = 0;
5109 
5110 		bpf_compute_data_pointers(skb);
5111 		bpf_update_srh_state(skb);
5112 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5113 	case SEG6_LOCAL_ACTION_END_B6:
5114 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5115 			return -EBADMSG;
5116 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5117 					  param, param_len);
5118 		if (!err)
5119 			bpf_update_srh_state(skb);
5120 
5121 		return err;
5122 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5123 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5124 			return -EBADMSG;
5125 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5126 					  param, param_len);
5127 		if (!err)
5128 			bpf_update_srh_state(skb);
5129 
5130 		return err;
5131 	default:
5132 		return -EINVAL;
5133 	}
5134 }
5135 
5136 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5137 	.func		= bpf_lwt_seg6_action,
5138 	.gpl_only	= false,
5139 	.ret_type	= RET_INTEGER,
5140 	.arg1_type	= ARG_PTR_TO_CTX,
5141 	.arg2_type	= ARG_ANYTHING,
5142 	.arg3_type	= ARG_PTR_TO_MEM,
5143 	.arg4_type	= ARG_CONST_SIZE
5144 };
5145 
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)5146 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5147 	   s32, len)
5148 {
5149 	struct seg6_bpf_srh_state *srh_state =
5150 		this_cpu_ptr(&seg6_bpf_srh_states);
5151 	struct ipv6_sr_hdr *srh = srh_state->srh;
5152 	void *srh_end, *srh_tlvs, *ptr;
5153 	struct ipv6hdr *hdr;
5154 	int srhoff = 0;
5155 	int ret;
5156 
5157 	if (unlikely(srh == NULL))
5158 		return -EINVAL;
5159 
5160 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5161 			((srh->first_segment + 1) << 4));
5162 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5163 			srh_state->hdrlen);
5164 	ptr = skb->data + offset;
5165 
5166 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5167 		return -EFAULT;
5168 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5169 		return -EFAULT;
5170 
5171 	if (len > 0) {
5172 		ret = skb_cow_head(skb, len);
5173 		if (unlikely(ret < 0))
5174 			return ret;
5175 
5176 		ret = bpf_skb_net_hdr_push(skb, offset, len);
5177 	} else {
5178 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5179 	}
5180 
5181 	bpf_compute_data_pointers(skb);
5182 	if (unlikely(ret < 0))
5183 		return ret;
5184 
5185 	hdr = (struct ipv6hdr *)skb->data;
5186 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5187 
5188 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5189 		return -EINVAL;
5190 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5191 	srh_state->hdrlen += len;
5192 	srh_state->valid = false;
5193 	return 0;
5194 }
5195 
5196 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5197 	.func		= bpf_lwt_seg6_adjust_srh,
5198 	.gpl_only	= false,
5199 	.ret_type	= RET_INTEGER,
5200 	.arg1_type	= ARG_PTR_TO_CTX,
5201 	.arg2_type	= ARG_ANYTHING,
5202 	.arg3_type	= ARG_ANYTHING,
5203 };
5204 #endif /* CONFIG_IPV6_SEG6_BPF */
5205 
5206 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)5207 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5208 			      int dif, int sdif, u8 family, u8 proto)
5209 {
5210 	bool refcounted = false;
5211 	struct sock *sk = NULL;
5212 
5213 	if (family == AF_INET) {
5214 		__be32 src4 = tuple->ipv4.saddr;
5215 		__be32 dst4 = tuple->ipv4.daddr;
5216 
5217 		if (proto == IPPROTO_TCP)
5218 			sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5219 					   src4, tuple->ipv4.sport,
5220 					   dst4, tuple->ipv4.dport,
5221 					   dif, sdif, &refcounted);
5222 		else
5223 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5224 					       dst4, tuple->ipv4.dport,
5225 					       dif, sdif, &udp_table, NULL);
5226 #if IS_ENABLED(CONFIG_IPV6)
5227 	} else {
5228 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5229 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5230 
5231 		if (proto == IPPROTO_TCP)
5232 			sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5233 					    src6, tuple->ipv6.sport,
5234 					    dst6, ntohs(tuple->ipv6.dport),
5235 					    dif, sdif, &refcounted);
5236 		else if (likely(ipv6_bpf_stub))
5237 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5238 							    src6, tuple->ipv6.sport,
5239 							    dst6, tuple->ipv6.dport,
5240 							    dif, sdif,
5241 							    &udp_table, NULL);
5242 #endif
5243 	}
5244 
5245 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5246 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5247 		sk = NULL;
5248 	}
5249 	return sk;
5250 }
5251 
5252 /* bpf_skc_lookup performs the core lookup for different types of sockets,
5253  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5254  * Returns the socket as an 'unsigned long' to simplify the casting in the
5255  * callers to satisfy BPF_CALL declarations.
5256  */
5257 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags)5258 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5259 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5260 		 u64 flags)
5261 {
5262 	struct sock *sk = NULL;
5263 	u8 family = AF_UNSPEC;
5264 	struct net *net;
5265 	int sdif;
5266 
5267 	if (len == sizeof(tuple->ipv4))
5268 		family = AF_INET;
5269 	else if (len == sizeof(tuple->ipv6))
5270 		family = AF_INET6;
5271 	else
5272 		return NULL;
5273 
5274 	if (unlikely(family == AF_UNSPEC || flags ||
5275 		     !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5276 		goto out;
5277 
5278 	if (family == AF_INET)
5279 		sdif = inet_sdif(skb);
5280 	else
5281 		sdif = inet6_sdif(skb);
5282 
5283 	if ((s32)netns_id < 0) {
5284 		net = caller_net;
5285 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5286 	} else {
5287 		net = get_net_ns_by_id(caller_net, netns_id);
5288 		if (unlikely(!net))
5289 			goto out;
5290 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5291 		put_net(net);
5292 	}
5293 
5294 out:
5295 	return sk;
5296 }
5297 
5298 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags)5299 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5300 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5301 		u64 flags)
5302 {
5303 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5304 					   ifindex, proto, netns_id, flags);
5305 
5306 	if (sk) {
5307 		sk = sk_to_full_sk(sk);
5308 		if (!sk_fullsock(sk)) {
5309 			sock_gen_put(sk);
5310 			return NULL;
5311 		}
5312 	}
5313 
5314 	return sk;
5315 }
5316 
5317 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)5318 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5319 	       u8 proto, u64 netns_id, u64 flags)
5320 {
5321 	struct net *caller_net;
5322 	int ifindex;
5323 
5324 	if (skb->dev) {
5325 		caller_net = dev_net(skb->dev);
5326 		ifindex = skb->dev->ifindex;
5327 	} else {
5328 		caller_net = sock_net(skb->sk);
5329 		ifindex = 0;
5330 	}
5331 
5332 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
5333 				netns_id, flags);
5334 }
5335 
5336 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)5337 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5338 	      u8 proto, u64 netns_id, u64 flags)
5339 {
5340 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
5341 					 flags);
5342 
5343 	if (sk) {
5344 		sk = sk_to_full_sk(sk);
5345 		if (!sk_fullsock(sk)) {
5346 			sock_gen_put(sk);
5347 			return NULL;
5348 		}
5349 	}
5350 
5351 	return sk;
5352 }
5353 
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)5354 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
5355 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5356 {
5357 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
5358 					     netns_id, flags);
5359 }
5360 
5361 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
5362 	.func		= bpf_skc_lookup_tcp,
5363 	.gpl_only	= false,
5364 	.pkt_access	= true,
5365 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
5366 	.arg1_type	= ARG_PTR_TO_CTX,
5367 	.arg2_type	= ARG_PTR_TO_MEM,
5368 	.arg3_type	= ARG_CONST_SIZE,
5369 	.arg4_type	= ARG_ANYTHING,
5370 	.arg5_type	= ARG_ANYTHING,
5371 };
5372 
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)5373 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
5374 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5375 {
5376 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
5377 					    netns_id, flags);
5378 }
5379 
5380 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
5381 	.func		= bpf_sk_lookup_tcp,
5382 	.gpl_only	= false,
5383 	.pkt_access	= true,
5384 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5385 	.arg1_type	= ARG_PTR_TO_CTX,
5386 	.arg2_type	= ARG_PTR_TO_MEM,
5387 	.arg3_type	= ARG_CONST_SIZE,
5388 	.arg4_type	= ARG_ANYTHING,
5389 	.arg5_type	= ARG_ANYTHING,
5390 };
5391 
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)5392 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
5393 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5394 {
5395 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
5396 					    netns_id, flags);
5397 }
5398 
5399 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
5400 	.func		= bpf_sk_lookup_udp,
5401 	.gpl_only	= false,
5402 	.pkt_access	= true,
5403 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5404 	.arg1_type	= ARG_PTR_TO_CTX,
5405 	.arg2_type	= ARG_PTR_TO_MEM,
5406 	.arg3_type	= ARG_CONST_SIZE,
5407 	.arg4_type	= ARG_ANYTHING,
5408 	.arg5_type	= ARG_ANYTHING,
5409 };
5410 
BPF_CALL_1(bpf_sk_release,struct sock *,sk)5411 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
5412 {
5413 	/* Only full sockets have sk->sk_flags. */
5414 	if (!sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE))
5415 		sock_gen_put(sk);
5416 	return 0;
5417 }
5418 
5419 static const struct bpf_func_proto bpf_sk_release_proto = {
5420 	.func		= bpf_sk_release,
5421 	.gpl_only	= false,
5422 	.ret_type	= RET_INTEGER,
5423 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5424 };
5425 
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)5426 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
5427 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5428 {
5429 	struct net *caller_net = dev_net(ctx->rxq->dev);
5430 	int ifindex = ctx->rxq->dev->ifindex;
5431 
5432 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5433 					      ifindex, IPPROTO_UDP, netns_id,
5434 					      flags);
5435 }
5436 
5437 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
5438 	.func           = bpf_xdp_sk_lookup_udp,
5439 	.gpl_only       = false,
5440 	.pkt_access     = true,
5441 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5442 	.arg1_type      = ARG_PTR_TO_CTX,
5443 	.arg2_type      = ARG_PTR_TO_MEM,
5444 	.arg3_type      = ARG_CONST_SIZE,
5445 	.arg4_type      = ARG_ANYTHING,
5446 	.arg5_type      = ARG_ANYTHING,
5447 };
5448 
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)5449 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
5450 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5451 {
5452 	struct net *caller_net = dev_net(ctx->rxq->dev);
5453 	int ifindex = ctx->rxq->dev->ifindex;
5454 
5455 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
5456 					       ifindex, IPPROTO_TCP, netns_id,
5457 					       flags);
5458 }
5459 
5460 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
5461 	.func           = bpf_xdp_skc_lookup_tcp,
5462 	.gpl_only       = false,
5463 	.pkt_access     = true,
5464 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5465 	.arg1_type      = ARG_PTR_TO_CTX,
5466 	.arg2_type      = ARG_PTR_TO_MEM,
5467 	.arg3_type      = ARG_CONST_SIZE,
5468 	.arg4_type      = ARG_ANYTHING,
5469 	.arg5_type      = ARG_ANYTHING,
5470 };
5471 
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)5472 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
5473 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5474 {
5475 	struct net *caller_net = dev_net(ctx->rxq->dev);
5476 	int ifindex = ctx->rxq->dev->ifindex;
5477 
5478 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5479 					      ifindex, IPPROTO_TCP, netns_id,
5480 					      flags);
5481 }
5482 
5483 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
5484 	.func           = bpf_xdp_sk_lookup_tcp,
5485 	.gpl_only       = false,
5486 	.pkt_access     = true,
5487 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5488 	.arg1_type      = ARG_PTR_TO_CTX,
5489 	.arg2_type      = ARG_PTR_TO_MEM,
5490 	.arg3_type      = ARG_CONST_SIZE,
5491 	.arg4_type      = ARG_ANYTHING,
5492 	.arg5_type      = ARG_ANYTHING,
5493 };
5494 
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)5495 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5496 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5497 {
5498 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
5499 					       sock_net(ctx->sk), 0,
5500 					       IPPROTO_TCP, netns_id, flags);
5501 }
5502 
5503 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
5504 	.func		= bpf_sock_addr_skc_lookup_tcp,
5505 	.gpl_only	= false,
5506 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
5507 	.arg1_type	= ARG_PTR_TO_CTX,
5508 	.arg2_type	= ARG_PTR_TO_MEM,
5509 	.arg3_type	= ARG_CONST_SIZE,
5510 	.arg4_type	= ARG_ANYTHING,
5511 	.arg5_type	= ARG_ANYTHING,
5512 };
5513 
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)5514 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5515 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5516 {
5517 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5518 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
5519 					      netns_id, flags);
5520 }
5521 
5522 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
5523 	.func		= bpf_sock_addr_sk_lookup_tcp,
5524 	.gpl_only	= false,
5525 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5526 	.arg1_type	= ARG_PTR_TO_CTX,
5527 	.arg2_type	= ARG_PTR_TO_MEM,
5528 	.arg3_type	= ARG_CONST_SIZE,
5529 	.arg4_type	= ARG_ANYTHING,
5530 	.arg5_type	= ARG_ANYTHING,
5531 };
5532 
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)5533 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
5534 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5535 {
5536 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5537 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
5538 					      netns_id, flags);
5539 }
5540 
5541 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
5542 	.func		= bpf_sock_addr_sk_lookup_udp,
5543 	.gpl_only	= false,
5544 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5545 	.arg1_type	= ARG_PTR_TO_CTX,
5546 	.arg2_type	= ARG_PTR_TO_MEM,
5547 	.arg3_type	= ARG_CONST_SIZE,
5548 	.arg4_type	= ARG_ANYTHING,
5549 	.arg5_type	= ARG_ANYTHING,
5550 };
5551 
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)5552 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5553 				  struct bpf_insn_access_aux *info)
5554 {
5555 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
5556 					  icsk_retransmits))
5557 		return false;
5558 
5559 	if (off % size != 0)
5560 		return false;
5561 
5562 	switch (off) {
5563 	case offsetof(struct bpf_tcp_sock, bytes_received):
5564 	case offsetof(struct bpf_tcp_sock, bytes_acked):
5565 		return size == sizeof(__u64);
5566 	default:
5567 		return size == sizeof(__u32);
5568 	}
5569 }
5570 
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)5571 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
5572 				    const struct bpf_insn *si,
5573 				    struct bpf_insn *insn_buf,
5574 				    struct bpf_prog *prog, u32 *target_size)
5575 {
5576 	struct bpf_insn *insn = insn_buf;
5577 
5578 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
5579 	do {								\
5580 		BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, FIELD) >	\
5581 			     FIELD_SIZEOF(struct bpf_tcp_sock, FIELD));	\
5582 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
5583 				      si->dst_reg, si->src_reg,		\
5584 				      offsetof(struct tcp_sock, FIELD)); \
5585 	} while (0)
5586 
5587 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
5588 	do {								\
5589 		BUILD_BUG_ON(FIELD_SIZEOF(struct inet_connection_sock,	\
5590 					  FIELD) >			\
5591 			     FIELD_SIZEOF(struct bpf_tcp_sock, FIELD));	\
5592 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
5593 					struct inet_connection_sock,	\
5594 					FIELD),				\
5595 				      si->dst_reg, si->src_reg,		\
5596 				      offsetof(				\
5597 					struct inet_connection_sock,	\
5598 					FIELD));			\
5599 	} while (0)
5600 
5601 	if (insn > insn_buf)
5602 		return insn - insn_buf;
5603 
5604 	switch (si->off) {
5605 	case offsetof(struct bpf_tcp_sock, rtt_min):
5606 		BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
5607 			     sizeof(struct minmax));
5608 		BUILD_BUG_ON(sizeof(struct minmax) <
5609 			     sizeof(struct minmax_sample));
5610 
5611 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5612 				      offsetof(struct tcp_sock, rtt_min) +
5613 				      offsetof(struct minmax_sample, v));
5614 		break;
5615 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
5616 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
5617 		break;
5618 	case offsetof(struct bpf_tcp_sock, srtt_us):
5619 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
5620 		break;
5621 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
5622 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
5623 		break;
5624 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
5625 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
5626 		break;
5627 	case offsetof(struct bpf_tcp_sock, snd_nxt):
5628 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
5629 		break;
5630 	case offsetof(struct bpf_tcp_sock, snd_una):
5631 		BPF_TCP_SOCK_GET_COMMON(snd_una);
5632 		break;
5633 	case offsetof(struct bpf_tcp_sock, mss_cache):
5634 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
5635 		break;
5636 	case offsetof(struct bpf_tcp_sock, ecn_flags):
5637 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
5638 		break;
5639 	case offsetof(struct bpf_tcp_sock, rate_delivered):
5640 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
5641 		break;
5642 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
5643 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
5644 		break;
5645 	case offsetof(struct bpf_tcp_sock, packets_out):
5646 		BPF_TCP_SOCK_GET_COMMON(packets_out);
5647 		break;
5648 	case offsetof(struct bpf_tcp_sock, retrans_out):
5649 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
5650 		break;
5651 	case offsetof(struct bpf_tcp_sock, total_retrans):
5652 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
5653 		break;
5654 	case offsetof(struct bpf_tcp_sock, segs_in):
5655 		BPF_TCP_SOCK_GET_COMMON(segs_in);
5656 		break;
5657 	case offsetof(struct bpf_tcp_sock, data_segs_in):
5658 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
5659 		break;
5660 	case offsetof(struct bpf_tcp_sock, segs_out):
5661 		BPF_TCP_SOCK_GET_COMMON(segs_out);
5662 		break;
5663 	case offsetof(struct bpf_tcp_sock, data_segs_out):
5664 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
5665 		break;
5666 	case offsetof(struct bpf_tcp_sock, lost_out):
5667 		BPF_TCP_SOCK_GET_COMMON(lost_out);
5668 		break;
5669 	case offsetof(struct bpf_tcp_sock, sacked_out):
5670 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
5671 		break;
5672 	case offsetof(struct bpf_tcp_sock, bytes_received):
5673 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
5674 		break;
5675 	case offsetof(struct bpf_tcp_sock, bytes_acked):
5676 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
5677 		break;
5678 	case offsetof(struct bpf_tcp_sock, dsack_dups):
5679 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
5680 		break;
5681 	case offsetof(struct bpf_tcp_sock, delivered):
5682 		BPF_TCP_SOCK_GET_COMMON(delivered);
5683 		break;
5684 	case offsetof(struct bpf_tcp_sock, delivered_ce):
5685 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
5686 		break;
5687 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
5688 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
5689 		break;
5690 	}
5691 
5692 	return insn - insn_buf;
5693 }
5694 
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)5695 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
5696 {
5697 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
5698 		return (unsigned long)sk;
5699 
5700 	return (unsigned long)NULL;
5701 }
5702 
5703 const struct bpf_func_proto bpf_tcp_sock_proto = {
5704 	.func		= bpf_tcp_sock,
5705 	.gpl_only	= false,
5706 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
5707 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5708 };
5709 
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)5710 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
5711 {
5712 	sk = sk_to_full_sk(sk);
5713 
5714 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
5715 		return (unsigned long)sk;
5716 
5717 	return (unsigned long)NULL;
5718 }
5719 
5720 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
5721 	.func		= bpf_get_listener_sock,
5722 	.gpl_only	= false,
5723 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5724 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5725 };
5726 
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)5727 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
5728 {
5729 	unsigned int iphdr_len;
5730 
5731 	if (skb->protocol == cpu_to_be16(ETH_P_IP))
5732 		iphdr_len = sizeof(struct iphdr);
5733 	else if (skb->protocol == cpu_to_be16(ETH_P_IPV6))
5734 		iphdr_len = sizeof(struct ipv6hdr);
5735 	else
5736 		return 0;
5737 
5738 	if (skb_headlen(skb) < iphdr_len)
5739 		return 0;
5740 
5741 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
5742 		return 0;
5743 
5744 	return INET_ECN_set_ce(skb);
5745 }
5746 
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)5747 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5748 				  struct bpf_insn_access_aux *info)
5749 {
5750 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
5751 		return false;
5752 
5753 	if (off % size != 0)
5754 		return false;
5755 
5756 	switch (off) {
5757 	default:
5758 		return size == sizeof(__u32);
5759 	}
5760 }
5761 
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)5762 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
5763 				    const struct bpf_insn *si,
5764 				    struct bpf_insn *insn_buf,
5765 				    struct bpf_prog *prog, u32 *target_size)
5766 {
5767 	struct bpf_insn *insn = insn_buf;
5768 
5769 #define BPF_XDP_SOCK_GET(FIELD)						\
5770 	do {								\
5771 		BUILD_BUG_ON(FIELD_SIZEOF(struct xdp_sock, FIELD) >	\
5772 			     FIELD_SIZEOF(struct bpf_xdp_sock, FIELD));	\
5773 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
5774 				      si->dst_reg, si->src_reg,		\
5775 				      offsetof(struct xdp_sock, FIELD)); \
5776 	} while (0)
5777 
5778 	switch (si->off) {
5779 	case offsetof(struct bpf_xdp_sock, queue_id):
5780 		BPF_XDP_SOCK_GET(queue_id);
5781 		break;
5782 	}
5783 
5784 	return insn - insn_buf;
5785 }
5786 
5787 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
5788 	.func           = bpf_skb_ecn_set_ce,
5789 	.gpl_only       = false,
5790 	.ret_type       = RET_INTEGER,
5791 	.arg1_type      = ARG_PTR_TO_CTX,
5792 };
5793 
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)5794 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5795 	   struct tcphdr *, th, u32, th_len)
5796 {
5797 #ifdef CONFIG_SYN_COOKIES
5798 	u32 cookie;
5799 	int ret;
5800 
5801 	if (unlikely(th_len < sizeof(*th)))
5802 		return -EINVAL;
5803 
5804 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
5805 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
5806 		return -EINVAL;
5807 
5808 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
5809 		return -EINVAL;
5810 
5811 	if (!th->ack || th->rst || th->syn)
5812 		return -ENOENT;
5813 
5814 	if (tcp_synq_no_recent_overflow(sk))
5815 		return -ENOENT;
5816 
5817 	cookie = ntohl(th->ack_seq) - 1;
5818 
5819 	switch (sk->sk_family) {
5820 	case AF_INET:
5821 		if (unlikely(iph_len < sizeof(struct iphdr)))
5822 			return -EINVAL;
5823 
5824 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
5825 		break;
5826 
5827 #if IS_BUILTIN(CONFIG_IPV6)
5828 	case AF_INET6:
5829 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
5830 			return -EINVAL;
5831 
5832 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
5833 		break;
5834 #endif /* CONFIG_IPV6 */
5835 
5836 	default:
5837 		return -EPROTONOSUPPORT;
5838 	}
5839 
5840 	if (ret > 0)
5841 		return 0;
5842 
5843 	return -ENOENT;
5844 #else
5845 	return -ENOTSUPP;
5846 #endif
5847 }
5848 
5849 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
5850 	.func		= bpf_tcp_check_syncookie,
5851 	.gpl_only	= true,
5852 	.pkt_access	= true,
5853 	.ret_type	= RET_INTEGER,
5854 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5855 	.arg2_type	= ARG_PTR_TO_MEM,
5856 	.arg3_type	= ARG_CONST_SIZE,
5857 	.arg4_type	= ARG_PTR_TO_MEM,
5858 	.arg5_type	= ARG_CONST_SIZE,
5859 };
5860 
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)5861 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5862 	   struct tcphdr *, th, u32, th_len)
5863 {
5864 #ifdef CONFIG_SYN_COOKIES
5865 	u32 cookie;
5866 	u16 mss;
5867 
5868 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
5869 		return -EINVAL;
5870 
5871 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
5872 		return -EINVAL;
5873 
5874 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
5875 		return -ENOENT;
5876 
5877 	if (!th->syn || th->ack || th->fin || th->rst)
5878 		return -EINVAL;
5879 
5880 	if (unlikely(iph_len < sizeof(struct iphdr)))
5881 		return -EINVAL;
5882 
5883 	/* Both struct iphdr and struct ipv6hdr have the version field at the
5884 	 * same offset so we can cast to the shorter header (struct iphdr).
5885 	 */
5886 	switch (((struct iphdr *)iph)->version) {
5887 	case 4:
5888 		if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
5889 			return -EINVAL;
5890 
5891 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
5892 		break;
5893 
5894 #if IS_BUILTIN(CONFIG_IPV6)
5895 	case 6:
5896 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
5897 			return -EINVAL;
5898 
5899 		if (sk->sk_family != AF_INET6)
5900 			return -EINVAL;
5901 
5902 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
5903 		break;
5904 #endif /* CONFIG_IPV6 */
5905 
5906 	default:
5907 		return -EPROTONOSUPPORT;
5908 	}
5909 	if (mss == 0)
5910 		return -ENOENT;
5911 
5912 	return cookie | ((u64)mss << 32);
5913 #else
5914 	return -EOPNOTSUPP;
5915 #endif /* CONFIG_SYN_COOKIES */
5916 }
5917 
5918 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
5919 	.func		= bpf_tcp_gen_syncookie,
5920 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
5921 	.pkt_access	= true,
5922 	.ret_type	= RET_INTEGER,
5923 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5924 	.arg2_type	= ARG_PTR_TO_MEM,
5925 	.arg3_type	= ARG_CONST_SIZE,
5926 	.arg4_type	= ARG_PTR_TO_MEM,
5927 	.arg5_type	= ARG_CONST_SIZE,
5928 };
5929 
5930 #endif /* CONFIG_INET */
5931 
bpf_helper_changes_pkt_data(void * func)5932 bool bpf_helper_changes_pkt_data(void *func)
5933 {
5934 	if (func == bpf_skb_vlan_push ||
5935 	    func == bpf_skb_vlan_pop ||
5936 	    func == bpf_skb_store_bytes ||
5937 	    func == bpf_skb_change_proto ||
5938 	    func == bpf_skb_change_head ||
5939 	    func == sk_skb_change_head ||
5940 	    func == bpf_skb_change_tail ||
5941 	    func == sk_skb_change_tail ||
5942 	    func == bpf_skb_adjust_room ||
5943 	    func == bpf_skb_pull_data ||
5944 	    func == sk_skb_pull_data ||
5945 	    func == bpf_clone_redirect ||
5946 	    func == bpf_l3_csum_replace ||
5947 	    func == bpf_l4_csum_replace ||
5948 	    func == bpf_xdp_adjust_head ||
5949 	    func == bpf_xdp_adjust_meta ||
5950 	    func == bpf_msg_pull_data ||
5951 	    func == bpf_msg_push_data ||
5952 	    func == bpf_msg_pop_data ||
5953 	    func == bpf_xdp_adjust_tail ||
5954 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5955 	    func == bpf_lwt_seg6_store_bytes ||
5956 	    func == bpf_lwt_seg6_adjust_srh ||
5957 	    func == bpf_lwt_seg6_action ||
5958 #endif
5959 	    func == bpf_lwt_in_push_encap ||
5960 	    func == bpf_lwt_xmit_push_encap)
5961 		return true;
5962 
5963 	return false;
5964 }
5965 
5966 static const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id)5967 bpf_base_func_proto(enum bpf_func_id func_id)
5968 {
5969 	switch (func_id) {
5970 	case BPF_FUNC_map_lookup_elem:
5971 		return &bpf_map_lookup_elem_proto;
5972 	case BPF_FUNC_map_update_elem:
5973 		return &bpf_map_update_elem_proto;
5974 	case BPF_FUNC_map_delete_elem:
5975 		return &bpf_map_delete_elem_proto;
5976 	case BPF_FUNC_map_push_elem:
5977 		return &bpf_map_push_elem_proto;
5978 	case BPF_FUNC_map_pop_elem:
5979 		return &bpf_map_pop_elem_proto;
5980 	case BPF_FUNC_map_peek_elem:
5981 		return &bpf_map_peek_elem_proto;
5982 	case BPF_FUNC_get_prandom_u32:
5983 		return &bpf_get_prandom_u32_proto;
5984 	case BPF_FUNC_get_smp_processor_id:
5985 		return &bpf_get_raw_smp_processor_id_proto;
5986 	case BPF_FUNC_get_numa_node_id:
5987 		return &bpf_get_numa_node_id_proto;
5988 	case BPF_FUNC_tail_call:
5989 		return &bpf_tail_call_proto;
5990 	case BPF_FUNC_ktime_get_ns:
5991 		return &bpf_ktime_get_ns_proto;
5992 	default:
5993 		break;
5994 	}
5995 
5996 	if (!capable(CAP_SYS_ADMIN))
5997 		return NULL;
5998 
5999 	switch (func_id) {
6000 	case BPF_FUNC_spin_lock:
6001 		return &bpf_spin_lock_proto;
6002 	case BPF_FUNC_spin_unlock:
6003 		return &bpf_spin_unlock_proto;
6004 	case BPF_FUNC_trace_printk:
6005 		return bpf_get_trace_printk_proto();
6006 	default:
6007 		return NULL;
6008 	}
6009 }
6010 
6011 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6012 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6013 {
6014 	switch (func_id) {
6015 	/* inet and inet6 sockets are created in a process
6016 	 * context so there is always a valid uid/gid
6017 	 */
6018 	case BPF_FUNC_get_current_uid_gid:
6019 		return &bpf_get_current_uid_gid_proto;
6020 	case BPF_FUNC_get_local_storage:
6021 		return &bpf_get_local_storage_proto;
6022 	default:
6023 		return bpf_base_func_proto(func_id);
6024 	}
6025 }
6026 
6027 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6028 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6029 {
6030 	switch (func_id) {
6031 	/* inet and inet6 sockets are created in a process
6032 	 * context so there is always a valid uid/gid
6033 	 */
6034 	case BPF_FUNC_get_current_uid_gid:
6035 		return &bpf_get_current_uid_gid_proto;
6036 	case BPF_FUNC_bind:
6037 		switch (prog->expected_attach_type) {
6038 		case BPF_CGROUP_INET4_CONNECT:
6039 		case BPF_CGROUP_INET6_CONNECT:
6040 			return &bpf_bind_proto;
6041 		default:
6042 			return NULL;
6043 		}
6044 	case BPF_FUNC_get_socket_cookie:
6045 		return &bpf_get_socket_cookie_sock_addr_proto;
6046 	case BPF_FUNC_get_local_storage:
6047 		return &bpf_get_local_storage_proto;
6048 #ifdef CONFIG_INET
6049 	case BPF_FUNC_sk_lookup_tcp:
6050 		return &bpf_sock_addr_sk_lookup_tcp_proto;
6051 	case BPF_FUNC_sk_lookup_udp:
6052 		return &bpf_sock_addr_sk_lookup_udp_proto;
6053 	case BPF_FUNC_sk_release:
6054 		return &bpf_sk_release_proto;
6055 	case BPF_FUNC_skc_lookup_tcp:
6056 		return &bpf_sock_addr_skc_lookup_tcp_proto;
6057 #endif /* CONFIG_INET */
6058 	case BPF_FUNC_sk_storage_get:
6059 		return &bpf_sk_storage_get_proto;
6060 	case BPF_FUNC_sk_storage_delete:
6061 		return &bpf_sk_storage_delete_proto;
6062 	default:
6063 		return bpf_base_func_proto(func_id);
6064 	}
6065 }
6066 
6067 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6068 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6069 {
6070 	switch (func_id) {
6071 	case BPF_FUNC_skb_load_bytes:
6072 		return &bpf_skb_load_bytes_proto;
6073 	case BPF_FUNC_skb_load_bytes_relative:
6074 		return &bpf_skb_load_bytes_relative_proto;
6075 	case BPF_FUNC_get_socket_cookie:
6076 		return &bpf_get_socket_cookie_proto;
6077 	case BPF_FUNC_get_socket_uid:
6078 		return &bpf_get_socket_uid_proto;
6079 	case BPF_FUNC_perf_event_output:
6080 		return &bpf_skb_event_output_proto;
6081 	default:
6082 		return bpf_base_func_proto(func_id);
6083 	}
6084 }
6085 
6086 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
6087 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
6088 
6089 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6090 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6091 {
6092 	switch (func_id) {
6093 	case BPF_FUNC_get_local_storage:
6094 		return &bpf_get_local_storage_proto;
6095 	case BPF_FUNC_sk_fullsock:
6096 		return &bpf_sk_fullsock_proto;
6097 	case BPF_FUNC_sk_storage_get:
6098 		return &bpf_sk_storage_get_proto;
6099 	case BPF_FUNC_sk_storage_delete:
6100 		return &bpf_sk_storage_delete_proto;
6101 	case BPF_FUNC_perf_event_output:
6102 		return &bpf_skb_event_output_proto;
6103 #ifdef CONFIG_SOCK_CGROUP_DATA
6104 	case BPF_FUNC_skb_cgroup_id:
6105 		return &bpf_skb_cgroup_id_proto;
6106 #endif
6107 #ifdef CONFIG_INET
6108 	case BPF_FUNC_tcp_sock:
6109 		return &bpf_tcp_sock_proto;
6110 	case BPF_FUNC_get_listener_sock:
6111 		return &bpf_get_listener_sock_proto;
6112 	case BPF_FUNC_skb_ecn_set_ce:
6113 		return &bpf_skb_ecn_set_ce_proto;
6114 #endif
6115 	default:
6116 		return sk_filter_func_proto(func_id, prog);
6117 	}
6118 }
6119 
6120 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6121 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6122 {
6123 	switch (func_id) {
6124 	case BPF_FUNC_skb_store_bytes:
6125 		return &bpf_skb_store_bytes_proto;
6126 	case BPF_FUNC_skb_load_bytes:
6127 		return &bpf_skb_load_bytes_proto;
6128 	case BPF_FUNC_skb_load_bytes_relative:
6129 		return &bpf_skb_load_bytes_relative_proto;
6130 	case BPF_FUNC_skb_pull_data:
6131 		return &bpf_skb_pull_data_proto;
6132 	case BPF_FUNC_csum_diff:
6133 		return &bpf_csum_diff_proto;
6134 	case BPF_FUNC_csum_update:
6135 		return &bpf_csum_update_proto;
6136 	case BPF_FUNC_l3_csum_replace:
6137 		return &bpf_l3_csum_replace_proto;
6138 	case BPF_FUNC_l4_csum_replace:
6139 		return &bpf_l4_csum_replace_proto;
6140 	case BPF_FUNC_clone_redirect:
6141 		return &bpf_clone_redirect_proto;
6142 	case BPF_FUNC_get_cgroup_classid:
6143 		return &bpf_get_cgroup_classid_proto;
6144 	case BPF_FUNC_skb_vlan_push:
6145 		return &bpf_skb_vlan_push_proto;
6146 	case BPF_FUNC_skb_vlan_pop:
6147 		return &bpf_skb_vlan_pop_proto;
6148 	case BPF_FUNC_skb_change_proto:
6149 		return &bpf_skb_change_proto_proto;
6150 	case BPF_FUNC_skb_change_type:
6151 		return &bpf_skb_change_type_proto;
6152 	case BPF_FUNC_skb_adjust_room:
6153 		return &bpf_skb_adjust_room_proto;
6154 	case BPF_FUNC_skb_change_tail:
6155 		return &bpf_skb_change_tail_proto;
6156 	case BPF_FUNC_skb_get_tunnel_key:
6157 		return &bpf_skb_get_tunnel_key_proto;
6158 	case BPF_FUNC_skb_set_tunnel_key:
6159 		return bpf_get_skb_set_tunnel_proto(func_id);
6160 	case BPF_FUNC_skb_get_tunnel_opt:
6161 		return &bpf_skb_get_tunnel_opt_proto;
6162 	case BPF_FUNC_skb_set_tunnel_opt:
6163 		return bpf_get_skb_set_tunnel_proto(func_id);
6164 	case BPF_FUNC_redirect:
6165 		return &bpf_redirect_proto;
6166 	case BPF_FUNC_get_route_realm:
6167 		return &bpf_get_route_realm_proto;
6168 	case BPF_FUNC_get_hash_recalc:
6169 		return &bpf_get_hash_recalc_proto;
6170 	case BPF_FUNC_set_hash_invalid:
6171 		return &bpf_set_hash_invalid_proto;
6172 	case BPF_FUNC_set_hash:
6173 		return &bpf_set_hash_proto;
6174 	case BPF_FUNC_perf_event_output:
6175 		return &bpf_skb_event_output_proto;
6176 	case BPF_FUNC_get_smp_processor_id:
6177 		return &bpf_get_smp_processor_id_proto;
6178 	case BPF_FUNC_skb_under_cgroup:
6179 		return &bpf_skb_under_cgroup_proto;
6180 	case BPF_FUNC_get_socket_cookie:
6181 		return &bpf_get_socket_cookie_proto;
6182 	case BPF_FUNC_get_socket_uid:
6183 		return &bpf_get_socket_uid_proto;
6184 	case BPF_FUNC_fib_lookup:
6185 		return &bpf_skb_fib_lookup_proto;
6186 	case BPF_FUNC_sk_fullsock:
6187 		return &bpf_sk_fullsock_proto;
6188 	case BPF_FUNC_sk_storage_get:
6189 		return &bpf_sk_storage_get_proto;
6190 	case BPF_FUNC_sk_storage_delete:
6191 		return &bpf_sk_storage_delete_proto;
6192 #ifdef CONFIG_XFRM
6193 	case BPF_FUNC_skb_get_xfrm_state:
6194 		return &bpf_skb_get_xfrm_state_proto;
6195 #endif
6196 #ifdef CONFIG_SOCK_CGROUP_DATA
6197 	case BPF_FUNC_skb_cgroup_id:
6198 		return &bpf_skb_cgroup_id_proto;
6199 	case BPF_FUNC_skb_ancestor_cgroup_id:
6200 		return &bpf_skb_ancestor_cgroup_id_proto;
6201 #endif
6202 #ifdef CONFIG_INET
6203 	case BPF_FUNC_sk_lookup_tcp:
6204 		return &bpf_sk_lookup_tcp_proto;
6205 	case BPF_FUNC_sk_lookup_udp:
6206 		return &bpf_sk_lookup_udp_proto;
6207 	case BPF_FUNC_sk_release:
6208 		return &bpf_sk_release_proto;
6209 	case BPF_FUNC_tcp_sock:
6210 		return &bpf_tcp_sock_proto;
6211 	case BPF_FUNC_get_listener_sock:
6212 		return &bpf_get_listener_sock_proto;
6213 	case BPF_FUNC_skc_lookup_tcp:
6214 		return &bpf_skc_lookup_tcp_proto;
6215 	case BPF_FUNC_tcp_check_syncookie:
6216 		return &bpf_tcp_check_syncookie_proto;
6217 	case BPF_FUNC_skb_ecn_set_ce:
6218 		return &bpf_skb_ecn_set_ce_proto;
6219 	case BPF_FUNC_tcp_gen_syncookie:
6220 		return &bpf_tcp_gen_syncookie_proto;
6221 #endif
6222 	default:
6223 		return bpf_base_func_proto(func_id);
6224 	}
6225 }
6226 
6227 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6228 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6229 {
6230 	switch (func_id) {
6231 	case BPF_FUNC_perf_event_output:
6232 		return &bpf_xdp_event_output_proto;
6233 	case BPF_FUNC_get_smp_processor_id:
6234 		return &bpf_get_smp_processor_id_proto;
6235 	case BPF_FUNC_csum_diff:
6236 		return &bpf_csum_diff_proto;
6237 	case BPF_FUNC_xdp_adjust_head:
6238 		return &bpf_xdp_adjust_head_proto;
6239 	case BPF_FUNC_xdp_adjust_meta:
6240 		return &bpf_xdp_adjust_meta_proto;
6241 	case BPF_FUNC_redirect:
6242 		return &bpf_xdp_redirect_proto;
6243 	case BPF_FUNC_redirect_map:
6244 		return &bpf_xdp_redirect_map_proto;
6245 	case BPF_FUNC_xdp_adjust_tail:
6246 		return &bpf_xdp_adjust_tail_proto;
6247 	case BPF_FUNC_fib_lookup:
6248 		return &bpf_xdp_fib_lookup_proto;
6249 #ifdef CONFIG_INET
6250 	case BPF_FUNC_sk_lookup_udp:
6251 		return &bpf_xdp_sk_lookup_udp_proto;
6252 	case BPF_FUNC_sk_lookup_tcp:
6253 		return &bpf_xdp_sk_lookup_tcp_proto;
6254 	case BPF_FUNC_sk_release:
6255 		return &bpf_sk_release_proto;
6256 	case BPF_FUNC_skc_lookup_tcp:
6257 		return &bpf_xdp_skc_lookup_tcp_proto;
6258 	case BPF_FUNC_tcp_check_syncookie:
6259 		return &bpf_tcp_check_syncookie_proto;
6260 	case BPF_FUNC_tcp_gen_syncookie:
6261 		return &bpf_tcp_gen_syncookie_proto;
6262 #endif
6263 	default:
6264 		return bpf_base_func_proto(func_id);
6265 	}
6266 }
6267 
6268 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
6269 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
6270 
6271 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6272 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6273 {
6274 	switch (func_id) {
6275 	case BPF_FUNC_setsockopt:
6276 		return &bpf_setsockopt_proto;
6277 	case BPF_FUNC_getsockopt:
6278 		return &bpf_getsockopt_proto;
6279 	case BPF_FUNC_sock_ops_cb_flags_set:
6280 		return &bpf_sock_ops_cb_flags_set_proto;
6281 	case BPF_FUNC_sock_map_update:
6282 		return &bpf_sock_map_update_proto;
6283 	case BPF_FUNC_sock_hash_update:
6284 		return &bpf_sock_hash_update_proto;
6285 	case BPF_FUNC_get_socket_cookie:
6286 		return &bpf_get_socket_cookie_sock_ops_proto;
6287 	case BPF_FUNC_get_local_storage:
6288 		return &bpf_get_local_storage_proto;
6289 	case BPF_FUNC_perf_event_output:
6290 		return &bpf_sockopt_event_output_proto;
6291 	case BPF_FUNC_sk_storage_get:
6292 		return &bpf_sk_storage_get_proto;
6293 	case BPF_FUNC_sk_storage_delete:
6294 		return &bpf_sk_storage_delete_proto;
6295 #ifdef CONFIG_INET
6296 	case BPF_FUNC_tcp_sock:
6297 		return &bpf_tcp_sock_proto;
6298 #endif /* CONFIG_INET */
6299 	default:
6300 		return bpf_base_func_proto(func_id);
6301 	}
6302 }
6303 
6304 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
6305 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
6306 
6307 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6308 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6309 {
6310 	switch (func_id) {
6311 	case BPF_FUNC_msg_redirect_map:
6312 		return &bpf_msg_redirect_map_proto;
6313 	case BPF_FUNC_msg_redirect_hash:
6314 		return &bpf_msg_redirect_hash_proto;
6315 	case BPF_FUNC_msg_apply_bytes:
6316 		return &bpf_msg_apply_bytes_proto;
6317 	case BPF_FUNC_msg_cork_bytes:
6318 		return &bpf_msg_cork_bytes_proto;
6319 	case BPF_FUNC_msg_pull_data:
6320 		return &bpf_msg_pull_data_proto;
6321 	case BPF_FUNC_msg_push_data:
6322 		return &bpf_msg_push_data_proto;
6323 	case BPF_FUNC_msg_pop_data:
6324 		return &bpf_msg_pop_data_proto;
6325 	default:
6326 		return bpf_base_func_proto(func_id);
6327 	}
6328 }
6329 
6330 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
6331 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
6332 
6333 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6334 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6335 {
6336 	switch (func_id) {
6337 	case BPF_FUNC_skb_store_bytes:
6338 		return &bpf_skb_store_bytes_proto;
6339 	case BPF_FUNC_skb_load_bytes:
6340 		return &bpf_skb_load_bytes_proto;
6341 	case BPF_FUNC_skb_pull_data:
6342 		return &sk_skb_pull_data_proto;
6343 	case BPF_FUNC_skb_change_tail:
6344 		return &sk_skb_change_tail_proto;
6345 	case BPF_FUNC_skb_change_head:
6346 		return &sk_skb_change_head_proto;
6347 	case BPF_FUNC_get_socket_cookie:
6348 		return &bpf_get_socket_cookie_proto;
6349 	case BPF_FUNC_get_socket_uid:
6350 		return &bpf_get_socket_uid_proto;
6351 	case BPF_FUNC_sk_redirect_map:
6352 		return &bpf_sk_redirect_map_proto;
6353 	case BPF_FUNC_sk_redirect_hash:
6354 		return &bpf_sk_redirect_hash_proto;
6355 	case BPF_FUNC_perf_event_output:
6356 		return &bpf_skb_event_output_proto;
6357 #ifdef CONFIG_INET
6358 	case BPF_FUNC_sk_lookup_tcp:
6359 		return &bpf_sk_lookup_tcp_proto;
6360 	case BPF_FUNC_sk_lookup_udp:
6361 		return &bpf_sk_lookup_udp_proto;
6362 	case BPF_FUNC_sk_release:
6363 		return &bpf_sk_release_proto;
6364 	case BPF_FUNC_skc_lookup_tcp:
6365 		return &bpf_skc_lookup_tcp_proto;
6366 #endif
6367 	default:
6368 		return bpf_base_func_proto(func_id);
6369 	}
6370 }
6371 
6372 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6373 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6374 {
6375 	switch (func_id) {
6376 	case BPF_FUNC_skb_load_bytes:
6377 		return &bpf_flow_dissector_load_bytes_proto;
6378 	default:
6379 		return bpf_base_func_proto(func_id);
6380 	}
6381 }
6382 
6383 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6384 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6385 {
6386 	switch (func_id) {
6387 	case BPF_FUNC_skb_load_bytes:
6388 		return &bpf_skb_load_bytes_proto;
6389 	case BPF_FUNC_skb_pull_data:
6390 		return &bpf_skb_pull_data_proto;
6391 	case BPF_FUNC_csum_diff:
6392 		return &bpf_csum_diff_proto;
6393 	case BPF_FUNC_get_cgroup_classid:
6394 		return &bpf_get_cgroup_classid_proto;
6395 	case BPF_FUNC_get_route_realm:
6396 		return &bpf_get_route_realm_proto;
6397 	case BPF_FUNC_get_hash_recalc:
6398 		return &bpf_get_hash_recalc_proto;
6399 	case BPF_FUNC_perf_event_output:
6400 		return &bpf_skb_event_output_proto;
6401 	case BPF_FUNC_get_smp_processor_id:
6402 		return &bpf_get_smp_processor_id_proto;
6403 	case BPF_FUNC_skb_under_cgroup:
6404 		return &bpf_skb_under_cgroup_proto;
6405 	default:
6406 		return bpf_base_func_proto(func_id);
6407 	}
6408 }
6409 
6410 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6411 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6412 {
6413 	switch (func_id) {
6414 	case BPF_FUNC_lwt_push_encap:
6415 		return &bpf_lwt_in_push_encap_proto;
6416 	default:
6417 		return lwt_out_func_proto(func_id, prog);
6418 	}
6419 }
6420 
6421 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6422 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6423 {
6424 	switch (func_id) {
6425 	case BPF_FUNC_skb_get_tunnel_key:
6426 		return &bpf_skb_get_tunnel_key_proto;
6427 	case BPF_FUNC_skb_set_tunnel_key:
6428 		return bpf_get_skb_set_tunnel_proto(func_id);
6429 	case BPF_FUNC_skb_get_tunnel_opt:
6430 		return &bpf_skb_get_tunnel_opt_proto;
6431 	case BPF_FUNC_skb_set_tunnel_opt:
6432 		return bpf_get_skb_set_tunnel_proto(func_id);
6433 	case BPF_FUNC_redirect:
6434 		return &bpf_redirect_proto;
6435 	case BPF_FUNC_clone_redirect:
6436 		return &bpf_clone_redirect_proto;
6437 	case BPF_FUNC_skb_change_tail:
6438 		return &bpf_skb_change_tail_proto;
6439 	case BPF_FUNC_skb_change_head:
6440 		return &bpf_skb_change_head_proto;
6441 	case BPF_FUNC_skb_store_bytes:
6442 		return &bpf_skb_store_bytes_proto;
6443 	case BPF_FUNC_csum_update:
6444 		return &bpf_csum_update_proto;
6445 	case BPF_FUNC_l3_csum_replace:
6446 		return &bpf_l3_csum_replace_proto;
6447 	case BPF_FUNC_l4_csum_replace:
6448 		return &bpf_l4_csum_replace_proto;
6449 	case BPF_FUNC_set_hash_invalid:
6450 		return &bpf_set_hash_invalid_proto;
6451 	case BPF_FUNC_lwt_push_encap:
6452 		return &bpf_lwt_xmit_push_encap_proto;
6453 	default:
6454 		return lwt_out_func_proto(func_id, prog);
6455 	}
6456 }
6457 
6458 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6459 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6460 {
6461 	switch (func_id) {
6462 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6463 	case BPF_FUNC_lwt_seg6_store_bytes:
6464 		return &bpf_lwt_seg6_store_bytes_proto;
6465 	case BPF_FUNC_lwt_seg6_action:
6466 		return &bpf_lwt_seg6_action_proto;
6467 	case BPF_FUNC_lwt_seg6_adjust_srh:
6468 		return &bpf_lwt_seg6_adjust_srh_proto;
6469 #endif
6470 	default:
6471 		return lwt_out_func_proto(func_id, prog);
6472 	}
6473 }
6474 
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)6475 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
6476 				    const struct bpf_prog *prog,
6477 				    struct bpf_insn_access_aux *info)
6478 {
6479 	const int size_default = sizeof(__u32);
6480 
6481 	if (off < 0 || off >= sizeof(struct __sk_buff))
6482 		return false;
6483 
6484 	/* The verifier guarantees that size > 0. */
6485 	if (off % size != 0)
6486 		return false;
6487 
6488 	switch (off) {
6489 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6490 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
6491 			return false;
6492 		break;
6493 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
6494 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
6495 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
6496 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
6497 	case bpf_ctx_range(struct __sk_buff, data):
6498 	case bpf_ctx_range(struct __sk_buff, data_meta):
6499 	case bpf_ctx_range(struct __sk_buff, data_end):
6500 		if (size != size_default)
6501 			return false;
6502 		break;
6503 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6504 		return false;
6505 	case bpf_ctx_range(struct __sk_buff, tstamp):
6506 		if (size != sizeof(__u64))
6507 			return false;
6508 		break;
6509 	case offsetof(struct __sk_buff, sk):
6510 		if (type == BPF_WRITE || size != sizeof(__u64))
6511 			return false;
6512 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
6513 		break;
6514 	default:
6515 		/* Only narrow read access allowed for now. */
6516 		if (type == BPF_WRITE) {
6517 			if (size != size_default)
6518 				return false;
6519 		} else {
6520 			bpf_ctx_record_field_size(info, size_default);
6521 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6522 				return false;
6523 		}
6524 	}
6525 
6526 	return true;
6527 }
6528 
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)6529 static bool sk_filter_is_valid_access(int off, int size,
6530 				      enum bpf_access_type type,
6531 				      const struct bpf_prog *prog,
6532 				      struct bpf_insn_access_aux *info)
6533 {
6534 	switch (off) {
6535 	case bpf_ctx_range(struct __sk_buff, tc_classid):
6536 	case bpf_ctx_range(struct __sk_buff, data):
6537 	case bpf_ctx_range(struct __sk_buff, data_meta):
6538 	case bpf_ctx_range(struct __sk_buff, data_end):
6539 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6540 	case bpf_ctx_range(struct __sk_buff, tstamp):
6541 	case bpf_ctx_range(struct __sk_buff, wire_len):
6542 		return false;
6543 	}
6544 
6545 	if (type == BPF_WRITE) {
6546 		switch (off) {
6547 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6548 			break;
6549 		default:
6550 			return false;
6551 		}
6552 	}
6553 
6554 	return bpf_skb_is_valid_access(off, size, type, prog, info);
6555 }
6556 
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)6557 static bool cg_skb_is_valid_access(int off, int size,
6558 				   enum bpf_access_type type,
6559 				   const struct bpf_prog *prog,
6560 				   struct bpf_insn_access_aux *info)
6561 {
6562 	switch (off) {
6563 	case bpf_ctx_range(struct __sk_buff, tc_classid):
6564 	case bpf_ctx_range(struct __sk_buff, data_meta):
6565 	case bpf_ctx_range(struct __sk_buff, wire_len):
6566 		return false;
6567 	case bpf_ctx_range(struct __sk_buff, data):
6568 	case bpf_ctx_range(struct __sk_buff, data_end):
6569 		if (!capable(CAP_SYS_ADMIN))
6570 			return false;
6571 		break;
6572 	}
6573 
6574 	if (type == BPF_WRITE) {
6575 		switch (off) {
6576 		case bpf_ctx_range(struct __sk_buff, mark):
6577 		case bpf_ctx_range(struct __sk_buff, priority):
6578 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6579 			break;
6580 		case bpf_ctx_range(struct __sk_buff, tstamp):
6581 			if (!capable(CAP_SYS_ADMIN))
6582 				return false;
6583 			break;
6584 		default:
6585 			return false;
6586 		}
6587 	}
6588 
6589 	switch (off) {
6590 	case bpf_ctx_range(struct __sk_buff, data):
6591 		info->reg_type = PTR_TO_PACKET;
6592 		break;
6593 	case bpf_ctx_range(struct __sk_buff, data_end):
6594 		info->reg_type = PTR_TO_PACKET_END;
6595 		break;
6596 	}
6597 
6598 	return bpf_skb_is_valid_access(off, size, type, prog, info);
6599 }
6600 
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)6601 static bool lwt_is_valid_access(int off, int size,
6602 				enum bpf_access_type type,
6603 				const struct bpf_prog *prog,
6604 				struct bpf_insn_access_aux *info)
6605 {
6606 	switch (off) {
6607 	case bpf_ctx_range(struct __sk_buff, tc_classid):
6608 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6609 	case bpf_ctx_range(struct __sk_buff, data_meta):
6610 	case bpf_ctx_range(struct __sk_buff, tstamp):
6611 	case bpf_ctx_range(struct __sk_buff, wire_len):
6612 		return false;
6613 	}
6614 
6615 	if (type == BPF_WRITE) {
6616 		switch (off) {
6617 		case bpf_ctx_range(struct __sk_buff, mark):
6618 		case bpf_ctx_range(struct __sk_buff, priority):
6619 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6620 			break;
6621 		default:
6622 			return false;
6623 		}
6624 	}
6625 
6626 	switch (off) {
6627 	case bpf_ctx_range(struct __sk_buff, data):
6628 		info->reg_type = PTR_TO_PACKET;
6629 		break;
6630 	case bpf_ctx_range(struct __sk_buff, data_end):
6631 		info->reg_type = PTR_TO_PACKET_END;
6632 		break;
6633 	}
6634 
6635 	return bpf_skb_is_valid_access(off, size, type, prog, info);
6636 }
6637 
6638 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)6639 static bool __sock_filter_check_attach_type(int off,
6640 					    enum bpf_access_type access_type,
6641 					    enum bpf_attach_type attach_type)
6642 {
6643 	switch (off) {
6644 	case offsetof(struct bpf_sock, bound_dev_if):
6645 	case offsetof(struct bpf_sock, mark):
6646 	case offsetof(struct bpf_sock, priority):
6647 		switch (attach_type) {
6648 		case BPF_CGROUP_INET_SOCK_CREATE:
6649 			goto full_access;
6650 		default:
6651 			return false;
6652 		}
6653 	case bpf_ctx_range(struct bpf_sock, src_ip4):
6654 		switch (attach_type) {
6655 		case BPF_CGROUP_INET4_POST_BIND:
6656 			goto read_only;
6657 		default:
6658 			return false;
6659 		}
6660 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6661 		switch (attach_type) {
6662 		case BPF_CGROUP_INET6_POST_BIND:
6663 			goto read_only;
6664 		default:
6665 			return false;
6666 		}
6667 	case bpf_ctx_range(struct bpf_sock, src_port):
6668 		switch (attach_type) {
6669 		case BPF_CGROUP_INET4_POST_BIND:
6670 		case BPF_CGROUP_INET6_POST_BIND:
6671 			goto read_only;
6672 		default:
6673 			return false;
6674 		}
6675 	}
6676 read_only:
6677 	return access_type == BPF_READ;
6678 full_access:
6679 	return true;
6680 }
6681 
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)6682 bool bpf_sock_common_is_valid_access(int off, int size,
6683 				     enum bpf_access_type type,
6684 				     struct bpf_insn_access_aux *info)
6685 {
6686 	switch (off) {
6687 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
6688 		return false;
6689 	default:
6690 		return bpf_sock_is_valid_access(off, size, type, info);
6691 	}
6692 }
6693 
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)6694 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6695 			      struct bpf_insn_access_aux *info)
6696 {
6697 	const int size_default = sizeof(__u32);
6698 
6699 	if (off < 0 || off >= sizeof(struct bpf_sock))
6700 		return false;
6701 	if (off % size != 0)
6702 		return false;
6703 
6704 	switch (off) {
6705 	case offsetof(struct bpf_sock, state):
6706 	case offsetof(struct bpf_sock, family):
6707 	case offsetof(struct bpf_sock, type):
6708 	case offsetof(struct bpf_sock, protocol):
6709 	case offsetof(struct bpf_sock, dst_port):
6710 	case offsetof(struct bpf_sock, src_port):
6711 	case bpf_ctx_range(struct bpf_sock, src_ip4):
6712 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6713 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
6714 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
6715 		bpf_ctx_record_field_size(info, size_default);
6716 		return bpf_ctx_narrow_access_ok(off, size, size_default);
6717 	}
6718 
6719 	return size == size_default;
6720 }
6721 
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)6722 static bool sock_filter_is_valid_access(int off, int size,
6723 					enum bpf_access_type type,
6724 					const struct bpf_prog *prog,
6725 					struct bpf_insn_access_aux *info)
6726 {
6727 	if (!bpf_sock_is_valid_access(off, size, type, info))
6728 		return false;
6729 	return __sock_filter_check_attach_type(off, type,
6730 					       prog->expected_attach_type);
6731 }
6732 
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)6733 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
6734 			     const struct bpf_prog *prog)
6735 {
6736 	/* Neither direct read nor direct write requires any preliminary
6737 	 * action.
6738 	 */
6739 	return 0;
6740 }
6741 
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)6742 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
6743 				const struct bpf_prog *prog, int drop_verdict)
6744 {
6745 	struct bpf_insn *insn = insn_buf;
6746 
6747 	if (!direct_write)
6748 		return 0;
6749 
6750 	/* if (!skb->cloned)
6751 	 *       goto start;
6752 	 *
6753 	 * (Fast-path, otherwise approximation that we might be
6754 	 *  a clone, do the rest in helper.)
6755 	 */
6756 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
6757 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
6758 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
6759 
6760 	/* ret = bpf_skb_pull_data(skb, 0); */
6761 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
6762 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
6763 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
6764 			       BPF_FUNC_skb_pull_data);
6765 	/* if (!ret)
6766 	 *      goto restore;
6767 	 * return TC_ACT_SHOT;
6768 	 */
6769 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
6770 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
6771 	*insn++ = BPF_EXIT_INSN();
6772 
6773 	/* restore: */
6774 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
6775 	/* start: */
6776 	*insn++ = prog->insnsi[0];
6777 
6778 	return insn - insn_buf;
6779 }
6780 
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)6781 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
6782 			  struct bpf_insn *insn_buf)
6783 {
6784 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
6785 	struct bpf_insn *insn = insn_buf;
6786 
6787 	/* We're guaranteed here that CTX is in R6. */
6788 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
6789 	if (!indirect) {
6790 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
6791 	} else {
6792 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
6793 		if (orig->imm)
6794 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
6795 	}
6796 
6797 	switch (BPF_SIZE(orig->code)) {
6798 	case BPF_B:
6799 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
6800 		break;
6801 	case BPF_H:
6802 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
6803 		break;
6804 	case BPF_W:
6805 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
6806 		break;
6807 	}
6808 
6809 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
6810 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
6811 	*insn++ = BPF_EXIT_INSN();
6812 
6813 	return insn - insn_buf;
6814 }
6815 
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)6816 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
6817 			       const struct bpf_prog *prog)
6818 {
6819 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
6820 }
6821 
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)6822 static bool tc_cls_act_is_valid_access(int off, int size,
6823 				       enum bpf_access_type type,
6824 				       const struct bpf_prog *prog,
6825 				       struct bpf_insn_access_aux *info)
6826 {
6827 	if (type == BPF_WRITE) {
6828 		switch (off) {
6829 		case bpf_ctx_range(struct __sk_buff, mark):
6830 		case bpf_ctx_range(struct __sk_buff, tc_index):
6831 		case bpf_ctx_range(struct __sk_buff, priority):
6832 		case bpf_ctx_range(struct __sk_buff, tc_classid):
6833 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6834 		case bpf_ctx_range(struct __sk_buff, tstamp):
6835 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
6836 			break;
6837 		default:
6838 			return false;
6839 		}
6840 	}
6841 
6842 	switch (off) {
6843 	case bpf_ctx_range(struct __sk_buff, data):
6844 		info->reg_type = PTR_TO_PACKET;
6845 		break;
6846 	case bpf_ctx_range(struct __sk_buff, data_meta):
6847 		info->reg_type = PTR_TO_PACKET_META;
6848 		break;
6849 	case bpf_ctx_range(struct __sk_buff, data_end):
6850 		info->reg_type = PTR_TO_PACKET_END;
6851 		break;
6852 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6853 		return false;
6854 	}
6855 
6856 	return bpf_skb_is_valid_access(off, size, type, prog, info);
6857 }
6858 
__is_valid_xdp_access(int off,int size)6859 static bool __is_valid_xdp_access(int off, int size)
6860 {
6861 	if (off < 0 || off >= sizeof(struct xdp_md))
6862 		return false;
6863 	if (off % size != 0)
6864 		return false;
6865 	if (size != sizeof(__u32))
6866 		return false;
6867 
6868 	return true;
6869 }
6870 
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)6871 static bool xdp_is_valid_access(int off, int size,
6872 				enum bpf_access_type type,
6873 				const struct bpf_prog *prog,
6874 				struct bpf_insn_access_aux *info)
6875 {
6876 	if (type == BPF_WRITE) {
6877 		if (bpf_prog_is_dev_bound(prog->aux)) {
6878 			switch (off) {
6879 			case offsetof(struct xdp_md, rx_queue_index):
6880 				return __is_valid_xdp_access(off, size);
6881 			}
6882 		}
6883 		return false;
6884 	}
6885 
6886 	switch (off) {
6887 	case offsetof(struct xdp_md, data):
6888 		info->reg_type = PTR_TO_PACKET;
6889 		break;
6890 	case offsetof(struct xdp_md, data_meta):
6891 		info->reg_type = PTR_TO_PACKET_META;
6892 		break;
6893 	case offsetof(struct xdp_md, data_end):
6894 		info->reg_type = PTR_TO_PACKET_END;
6895 		break;
6896 	}
6897 
6898 	return __is_valid_xdp_access(off, size);
6899 }
6900 
bpf_warn_invalid_xdp_action(u32 act)6901 void bpf_warn_invalid_xdp_action(u32 act)
6902 {
6903 	const u32 act_max = XDP_REDIRECT;
6904 
6905 	WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
6906 		  act > act_max ? "Illegal" : "Driver unsupported",
6907 		  act);
6908 }
6909 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
6910 
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)6911 static bool sock_addr_is_valid_access(int off, int size,
6912 				      enum bpf_access_type type,
6913 				      const struct bpf_prog *prog,
6914 				      struct bpf_insn_access_aux *info)
6915 {
6916 	const int size_default = sizeof(__u32);
6917 
6918 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
6919 		return false;
6920 	if (off % size != 0)
6921 		return false;
6922 
6923 	/* Disallow access to IPv6 fields from IPv4 contex and vise
6924 	 * versa.
6925 	 */
6926 	switch (off) {
6927 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6928 		switch (prog->expected_attach_type) {
6929 		case BPF_CGROUP_INET4_BIND:
6930 		case BPF_CGROUP_INET4_CONNECT:
6931 		case BPF_CGROUP_UDP4_SENDMSG:
6932 		case BPF_CGROUP_UDP4_RECVMSG:
6933 			break;
6934 		default:
6935 			return false;
6936 		}
6937 		break;
6938 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6939 		switch (prog->expected_attach_type) {
6940 		case BPF_CGROUP_INET6_BIND:
6941 		case BPF_CGROUP_INET6_CONNECT:
6942 		case BPF_CGROUP_UDP6_SENDMSG:
6943 		case BPF_CGROUP_UDP6_RECVMSG:
6944 			break;
6945 		default:
6946 			return false;
6947 		}
6948 		break;
6949 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
6950 		switch (prog->expected_attach_type) {
6951 		case BPF_CGROUP_UDP4_SENDMSG:
6952 			break;
6953 		default:
6954 			return false;
6955 		}
6956 		break;
6957 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6958 				msg_src_ip6[3]):
6959 		switch (prog->expected_attach_type) {
6960 		case BPF_CGROUP_UDP6_SENDMSG:
6961 			break;
6962 		default:
6963 			return false;
6964 		}
6965 		break;
6966 	}
6967 
6968 	switch (off) {
6969 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6970 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6971 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
6972 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6973 				msg_src_ip6[3]):
6974 		if (type == BPF_READ) {
6975 			bpf_ctx_record_field_size(info, size_default);
6976 
6977 			if (bpf_ctx_wide_access_ok(off, size,
6978 						   struct bpf_sock_addr,
6979 						   user_ip6))
6980 				return true;
6981 
6982 			if (bpf_ctx_wide_access_ok(off, size,
6983 						   struct bpf_sock_addr,
6984 						   msg_src_ip6))
6985 				return true;
6986 
6987 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6988 				return false;
6989 		} else {
6990 			if (bpf_ctx_wide_access_ok(off, size,
6991 						   struct bpf_sock_addr,
6992 						   user_ip6))
6993 				return true;
6994 
6995 			if (bpf_ctx_wide_access_ok(off, size,
6996 						   struct bpf_sock_addr,
6997 						   msg_src_ip6))
6998 				return true;
6999 
7000 			if (size != size_default)
7001 				return false;
7002 		}
7003 		break;
7004 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
7005 		if (size != size_default)
7006 			return false;
7007 		break;
7008 	case offsetof(struct bpf_sock_addr, sk):
7009 		if (type != BPF_READ)
7010 			return false;
7011 		if (size != sizeof(__u64))
7012 			return false;
7013 		info->reg_type = PTR_TO_SOCKET;
7014 		break;
7015 	default:
7016 		if (type == BPF_READ) {
7017 			if (size != size_default)
7018 				return false;
7019 		} else {
7020 			return false;
7021 		}
7022 	}
7023 
7024 	return true;
7025 }
7026 
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7027 static bool sock_ops_is_valid_access(int off, int size,
7028 				     enum bpf_access_type type,
7029 				     const struct bpf_prog *prog,
7030 				     struct bpf_insn_access_aux *info)
7031 {
7032 	const int size_default = sizeof(__u32);
7033 
7034 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
7035 		return false;
7036 
7037 	/* The verifier guarantees that size > 0. */
7038 	if (off % size != 0)
7039 		return false;
7040 
7041 	if (type == BPF_WRITE) {
7042 		switch (off) {
7043 		case offsetof(struct bpf_sock_ops, reply):
7044 		case offsetof(struct bpf_sock_ops, sk_txhash):
7045 			if (size != size_default)
7046 				return false;
7047 			break;
7048 		default:
7049 			return false;
7050 		}
7051 	} else {
7052 		switch (off) {
7053 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
7054 					bytes_acked):
7055 			if (size != sizeof(__u64))
7056 				return false;
7057 			break;
7058 		case offsetof(struct bpf_sock_ops, sk):
7059 			if (size != sizeof(__u64))
7060 				return false;
7061 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
7062 			break;
7063 		default:
7064 			if (size != size_default)
7065 				return false;
7066 			break;
7067 		}
7068 	}
7069 
7070 	return true;
7071 }
7072 
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)7073 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
7074 			   const struct bpf_prog *prog)
7075 {
7076 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
7077 }
7078 
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7079 static bool sk_skb_is_valid_access(int off, int size,
7080 				   enum bpf_access_type type,
7081 				   const struct bpf_prog *prog,
7082 				   struct bpf_insn_access_aux *info)
7083 {
7084 	switch (off) {
7085 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7086 	case bpf_ctx_range(struct __sk_buff, data_meta):
7087 	case bpf_ctx_range(struct __sk_buff, tstamp):
7088 	case bpf_ctx_range(struct __sk_buff, wire_len):
7089 		return false;
7090 	}
7091 
7092 	if (type == BPF_WRITE) {
7093 		switch (off) {
7094 		case bpf_ctx_range(struct __sk_buff, tc_index):
7095 		case bpf_ctx_range(struct __sk_buff, priority):
7096 			break;
7097 		default:
7098 			return false;
7099 		}
7100 	}
7101 
7102 	switch (off) {
7103 	case bpf_ctx_range(struct __sk_buff, mark):
7104 		return false;
7105 	case bpf_ctx_range(struct __sk_buff, data):
7106 		info->reg_type = PTR_TO_PACKET;
7107 		break;
7108 	case bpf_ctx_range(struct __sk_buff, data_end):
7109 		info->reg_type = PTR_TO_PACKET_END;
7110 		break;
7111 	}
7112 
7113 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7114 }
7115 
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7116 static bool sk_msg_is_valid_access(int off, int size,
7117 				   enum bpf_access_type type,
7118 				   const struct bpf_prog *prog,
7119 				   struct bpf_insn_access_aux *info)
7120 {
7121 	if (type == BPF_WRITE)
7122 		return false;
7123 
7124 	if (off % size != 0)
7125 		return false;
7126 
7127 	switch (off) {
7128 	case offsetof(struct sk_msg_md, data):
7129 		info->reg_type = PTR_TO_PACKET;
7130 		if (size != sizeof(__u64))
7131 			return false;
7132 		break;
7133 	case offsetof(struct sk_msg_md, data_end):
7134 		info->reg_type = PTR_TO_PACKET_END;
7135 		if (size != sizeof(__u64))
7136 			return false;
7137 		break;
7138 	case bpf_ctx_range(struct sk_msg_md, family):
7139 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
7140 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
7141 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
7142 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
7143 	case bpf_ctx_range(struct sk_msg_md, remote_port):
7144 	case bpf_ctx_range(struct sk_msg_md, local_port):
7145 	case bpf_ctx_range(struct sk_msg_md, size):
7146 		if (size != sizeof(__u32))
7147 			return false;
7148 		break;
7149 	default:
7150 		return false;
7151 	}
7152 	return true;
7153 }
7154 
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7155 static bool flow_dissector_is_valid_access(int off, int size,
7156 					   enum bpf_access_type type,
7157 					   const struct bpf_prog *prog,
7158 					   struct bpf_insn_access_aux *info)
7159 {
7160 	const int size_default = sizeof(__u32);
7161 
7162 	if (off < 0 || off >= sizeof(struct __sk_buff))
7163 		return false;
7164 
7165 	if (type == BPF_WRITE)
7166 		return false;
7167 
7168 	switch (off) {
7169 	case bpf_ctx_range(struct __sk_buff, data):
7170 		if (size != size_default)
7171 			return false;
7172 		info->reg_type = PTR_TO_PACKET;
7173 		return true;
7174 	case bpf_ctx_range(struct __sk_buff, data_end):
7175 		if (size != size_default)
7176 			return false;
7177 		info->reg_type = PTR_TO_PACKET_END;
7178 		return true;
7179 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7180 		if (size != sizeof(__u64))
7181 			return false;
7182 		info->reg_type = PTR_TO_FLOW_KEYS;
7183 		return true;
7184 	default:
7185 		return false;
7186 	}
7187 }
7188 
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7189 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
7190 					     const struct bpf_insn *si,
7191 					     struct bpf_insn *insn_buf,
7192 					     struct bpf_prog *prog,
7193 					     u32 *target_size)
7194 
7195 {
7196 	struct bpf_insn *insn = insn_buf;
7197 
7198 	switch (si->off) {
7199 	case offsetof(struct __sk_buff, data):
7200 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
7201 				      si->dst_reg, si->src_reg,
7202 				      offsetof(struct bpf_flow_dissector, data));
7203 		break;
7204 
7205 	case offsetof(struct __sk_buff, data_end):
7206 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
7207 				      si->dst_reg, si->src_reg,
7208 				      offsetof(struct bpf_flow_dissector, data_end));
7209 		break;
7210 
7211 	case offsetof(struct __sk_buff, flow_keys):
7212 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
7213 				      si->dst_reg, si->src_reg,
7214 				      offsetof(struct bpf_flow_dissector, flow_keys));
7215 		break;
7216 	}
7217 
7218 	return insn - insn_buf;
7219 }
7220 
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7221 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
7222 				  const struct bpf_insn *si,
7223 				  struct bpf_insn *insn_buf,
7224 				  struct bpf_prog *prog, u32 *target_size)
7225 {
7226 	struct bpf_insn *insn = insn_buf;
7227 	int off;
7228 
7229 	switch (si->off) {
7230 	case offsetof(struct __sk_buff, len):
7231 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7232 				      bpf_target_off(struct sk_buff, len, 4,
7233 						     target_size));
7234 		break;
7235 
7236 	case offsetof(struct __sk_buff, protocol):
7237 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7238 				      bpf_target_off(struct sk_buff, protocol, 2,
7239 						     target_size));
7240 		break;
7241 
7242 	case offsetof(struct __sk_buff, vlan_proto):
7243 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7244 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
7245 						     target_size));
7246 		break;
7247 
7248 	case offsetof(struct __sk_buff, priority):
7249 		if (type == BPF_WRITE)
7250 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7251 					      bpf_target_off(struct sk_buff, priority, 4,
7252 							     target_size));
7253 		else
7254 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7255 					      bpf_target_off(struct sk_buff, priority, 4,
7256 							     target_size));
7257 		break;
7258 
7259 	case offsetof(struct __sk_buff, ingress_ifindex):
7260 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7261 				      bpf_target_off(struct sk_buff, skb_iif, 4,
7262 						     target_size));
7263 		break;
7264 
7265 	case offsetof(struct __sk_buff, ifindex):
7266 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7267 				      si->dst_reg, si->src_reg,
7268 				      offsetof(struct sk_buff, dev));
7269 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
7270 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7271 				      bpf_target_off(struct net_device, ifindex, 4,
7272 						     target_size));
7273 		break;
7274 
7275 	case offsetof(struct __sk_buff, hash):
7276 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7277 				      bpf_target_off(struct sk_buff, hash, 4,
7278 						     target_size));
7279 		break;
7280 
7281 	case offsetof(struct __sk_buff, mark):
7282 		if (type == BPF_WRITE)
7283 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7284 					      bpf_target_off(struct sk_buff, mark, 4,
7285 							     target_size));
7286 		else
7287 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7288 					      bpf_target_off(struct sk_buff, mark, 4,
7289 							     target_size));
7290 		break;
7291 
7292 	case offsetof(struct __sk_buff, pkt_type):
7293 		*target_size = 1;
7294 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7295 				      PKT_TYPE_OFFSET());
7296 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
7297 #ifdef __BIG_ENDIAN_BITFIELD
7298 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
7299 #endif
7300 		break;
7301 
7302 	case offsetof(struct __sk_buff, queue_mapping):
7303 		if (type == BPF_WRITE) {
7304 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
7305 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7306 					      bpf_target_off(struct sk_buff,
7307 							     queue_mapping,
7308 							     2, target_size));
7309 		} else {
7310 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7311 					      bpf_target_off(struct sk_buff,
7312 							     queue_mapping,
7313 							     2, target_size));
7314 		}
7315 		break;
7316 
7317 	case offsetof(struct __sk_buff, vlan_present):
7318 		*target_size = 1;
7319 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7320 				      PKT_VLAN_PRESENT_OFFSET());
7321 		if (PKT_VLAN_PRESENT_BIT)
7322 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
7323 		if (PKT_VLAN_PRESENT_BIT < 7)
7324 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
7325 		break;
7326 
7327 	case offsetof(struct __sk_buff, vlan_tci):
7328 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7329 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
7330 						     target_size));
7331 		break;
7332 
7333 	case offsetof(struct __sk_buff, cb[0]) ...
7334 	     offsetofend(struct __sk_buff, cb[4]) - 1:
7335 		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
7336 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
7337 			      offsetof(struct qdisc_skb_cb, data)) %
7338 			     sizeof(__u64));
7339 
7340 		prog->cb_access = 1;
7341 		off  = si->off;
7342 		off -= offsetof(struct __sk_buff, cb[0]);
7343 		off += offsetof(struct sk_buff, cb);
7344 		off += offsetof(struct qdisc_skb_cb, data);
7345 		if (type == BPF_WRITE)
7346 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
7347 					      si->src_reg, off);
7348 		else
7349 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
7350 					      si->src_reg, off);
7351 		break;
7352 
7353 	case offsetof(struct __sk_buff, tc_classid):
7354 		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);
7355 
7356 		off  = si->off;
7357 		off -= offsetof(struct __sk_buff, tc_classid);
7358 		off += offsetof(struct sk_buff, cb);
7359 		off += offsetof(struct qdisc_skb_cb, tc_classid);
7360 		*target_size = 2;
7361 		if (type == BPF_WRITE)
7362 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
7363 					      si->src_reg, off);
7364 		else
7365 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
7366 					      si->src_reg, off);
7367 		break;
7368 
7369 	case offsetof(struct __sk_buff, data):
7370 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
7371 				      si->dst_reg, si->src_reg,
7372 				      offsetof(struct sk_buff, data));
7373 		break;
7374 
7375 	case offsetof(struct __sk_buff, data_meta):
7376 		off  = si->off;
7377 		off -= offsetof(struct __sk_buff, data_meta);
7378 		off += offsetof(struct sk_buff, cb);
7379 		off += offsetof(struct bpf_skb_data_end, data_meta);
7380 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7381 				      si->src_reg, off);
7382 		break;
7383 
7384 	case offsetof(struct __sk_buff, data_end):
7385 		off  = si->off;
7386 		off -= offsetof(struct __sk_buff, data_end);
7387 		off += offsetof(struct sk_buff, cb);
7388 		off += offsetof(struct bpf_skb_data_end, data_end);
7389 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7390 				      si->src_reg, off);
7391 		break;
7392 
7393 	case offsetof(struct __sk_buff, tc_index):
7394 #ifdef CONFIG_NET_SCHED
7395 		if (type == BPF_WRITE)
7396 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7397 					      bpf_target_off(struct sk_buff, tc_index, 2,
7398 							     target_size));
7399 		else
7400 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7401 					      bpf_target_off(struct sk_buff, tc_index, 2,
7402 							     target_size));
7403 #else
7404 		*target_size = 2;
7405 		if (type == BPF_WRITE)
7406 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
7407 		else
7408 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7409 #endif
7410 		break;
7411 
7412 	case offsetof(struct __sk_buff, napi_id):
7413 #if defined(CONFIG_NET_RX_BUSY_POLL)
7414 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7415 				      bpf_target_off(struct sk_buff, napi_id, 4,
7416 						     target_size));
7417 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
7418 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7419 #else
7420 		*target_size = 4;
7421 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7422 #endif
7423 		break;
7424 	case offsetof(struct __sk_buff, family):
7425 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
7426 
7427 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7428 				      si->dst_reg, si->src_reg,
7429 				      offsetof(struct sk_buff, sk));
7430 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7431 				      bpf_target_off(struct sock_common,
7432 						     skc_family,
7433 						     2, target_size));
7434 		break;
7435 	case offsetof(struct __sk_buff, remote_ip4):
7436 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
7437 
7438 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7439 				      si->dst_reg, si->src_reg,
7440 				      offsetof(struct sk_buff, sk));
7441 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7442 				      bpf_target_off(struct sock_common,
7443 						     skc_daddr,
7444 						     4, target_size));
7445 		break;
7446 	case offsetof(struct __sk_buff, local_ip4):
7447 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7448 					  skc_rcv_saddr) != 4);
7449 
7450 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7451 				      si->dst_reg, si->src_reg,
7452 				      offsetof(struct sk_buff, sk));
7453 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7454 				      bpf_target_off(struct sock_common,
7455 						     skc_rcv_saddr,
7456 						     4, target_size));
7457 		break;
7458 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
7459 	     offsetof(struct __sk_buff, remote_ip6[3]):
7460 #if IS_ENABLED(CONFIG_IPV6)
7461 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7462 					  skc_v6_daddr.s6_addr32[0]) != 4);
7463 
7464 		off = si->off;
7465 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
7466 
7467 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7468 				      si->dst_reg, si->src_reg,
7469 				      offsetof(struct sk_buff, sk));
7470 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7471 				      offsetof(struct sock_common,
7472 					       skc_v6_daddr.s6_addr32[0]) +
7473 				      off);
7474 #else
7475 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7476 #endif
7477 		break;
7478 	case offsetof(struct __sk_buff, local_ip6[0]) ...
7479 	     offsetof(struct __sk_buff, local_ip6[3]):
7480 #if IS_ENABLED(CONFIG_IPV6)
7481 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7482 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
7483 
7484 		off = si->off;
7485 		off -= offsetof(struct __sk_buff, local_ip6[0]);
7486 
7487 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7488 				      si->dst_reg, si->src_reg,
7489 				      offsetof(struct sk_buff, sk));
7490 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7491 				      offsetof(struct sock_common,
7492 					       skc_v6_rcv_saddr.s6_addr32[0]) +
7493 				      off);
7494 #else
7495 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7496 #endif
7497 		break;
7498 
7499 	case offsetof(struct __sk_buff, remote_port):
7500 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
7501 
7502 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7503 				      si->dst_reg, si->src_reg,
7504 				      offsetof(struct sk_buff, sk));
7505 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7506 				      bpf_target_off(struct sock_common,
7507 						     skc_dport,
7508 						     2, target_size));
7509 #ifndef __BIG_ENDIAN_BITFIELD
7510 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
7511 #endif
7512 		break;
7513 
7514 	case offsetof(struct __sk_buff, local_port):
7515 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
7516 
7517 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7518 				      si->dst_reg, si->src_reg,
7519 				      offsetof(struct sk_buff, sk));
7520 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7521 				      bpf_target_off(struct sock_common,
7522 						     skc_num, 2, target_size));
7523 		break;
7524 
7525 	case offsetof(struct __sk_buff, tstamp):
7526 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tstamp) != 8);
7527 
7528 		if (type == BPF_WRITE)
7529 			*insn++ = BPF_STX_MEM(BPF_DW,
7530 					      si->dst_reg, si->src_reg,
7531 					      bpf_target_off(struct sk_buff,
7532 							     tstamp, 8,
7533 							     target_size));
7534 		else
7535 			*insn++ = BPF_LDX_MEM(BPF_DW,
7536 					      si->dst_reg, si->src_reg,
7537 					      bpf_target_off(struct sk_buff,
7538 							     tstamp, 8,
7539 							     target_size));
7540 		break;
7541 
7542 	case offsetof(struct __sk_buff, gso_segs):
7543 		/* si->dst_reg = skb_shinfo(SKB); */
7544 #ifdef NET_SKBUFF_DATA_USES_OFFSET
7545 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7546 				      BPF_REG_AX, si->src_reg,
7547 				      offsetof(struct sk_buff, end));
7548 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
7549 				      si->dst_reg, si->src_reg,
7550 				      offsetof(struct sk_buff, head));
7551 		*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
7552 #else
7553 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7554 				      si->dst_reg, si->src_reg,
7555 				      offsetof(struct sk_buff, end));
7556 #endif
7557 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
7558 				      si->dst_reg, si->dst_reg,
7559 				      bpf_target_off(struct skb_shared_info,
7560 						     gso_segs, 2,
7561 						     target_size));
7562 		break;
7563 	case offsetof(struct __sk_buff, wire_len):
7564 		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, pkt_len) != 4);
7565 
7566 		off = si->off;
7567 		off -= offsetof(struct __sk_buff, wire_len);
7568 		off += offsetof(struct sk_buff, cb);
7569 		off += offsetof(struct qdisc_skb_cb, pkt_len);
7570 		*target_size = 4;
7571 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
7572 		break;
7573 
7574 	case offsetof(struct __sk_buff, sk):
7575 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7576 				      si->dst_reg, si->src_reg,
7577 				      offsetof(struct sk_buff, sk));
7578 		break;
7579 	}
7580 
7581 	return insn - insn_buf;
7582 }
7583 
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7584 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
7585 				const struct bpf_insn *si,
7586 				struct bpf_insn *insn_buf,
7587 				struct bpf_prog *prog, u32 *target_size)
7588 {
7589 	struct bpf_insn *insn = insn_buf;
7590 	int off;
7591 
7592 	switch (si->off) {
7593 	case offsetof(struct bpf_sock, bound_dev_if):
7594 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
7595 
7596 		if (type == BPF_WRITE)
7597 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7598 					offsetof(struct sock, sk_bound_dev_if));
7599 		else
7600 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7601 				      offsetof(struct sock, sk_bound_dev_if));
7602 		break;
7603 
7604 	case offsetof(struct bpf_sock, mark):
7605 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);
7606 
7607 		if (type == BPF_WRITE)
7608 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7609 					offsetof(struct sock, sk_mark));
7610 		else
7611 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7612 				      offsetof(struct sock, sk_mark));
7613 		break;
7614 
7615 	case offsetof(struct bpf_sock, priority):
7616 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);
7617 
7618 		if (type == BPF_WRITE)
7619 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7620 					offsetof(struct sock, sk_priority));
7621 		else
7622 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7623 				      offsetof(struct sock, sk_priority));
7624 		break;
7625 
7626 	case offsetof(struct bpf_sock, family):
7627 		*insn++ = BPF_LDX_MEM(
7628 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
7629 			si->dst_reg, si->src_reg,
7630 			bpf_target_off(struct sock_common,
7631 				       skc_family,
7632 				       FIELD_SIZEOF(struct sock_common,
7633 						    skc_family),
7634 				       target_size));
7635 		break;
7636 
7637 	case offsetof(struct bpf_sock, type):
7638 		BUILD_BUG_ON(HWEIGHT32(SK_FL_TYPE_MASK) != BITS_PER_BYTE * 2);
7639 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7640 				      offsetof(struct sock, __sk_flags_offset));
7641 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
7642 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
7643 		*target_size = 2;
7644 		break;
7645 
7646 	case offsetof(struct bpf_sock, protocol):
7647 		BUILD_BUG_ON(HWEIGHT32(SK_FL_PROTO_MASK) != BITS_PER_BYTE);
7648 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7649 				      offsetof(struct sock, __sk_flags_offset));
7650 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
7651 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
7652 		*target_size = 1;
7653 		break;
7654 
7655 	case offsetof(struct bpf_sock, src_ip4):
7656 		*insn++ = BPF_LDX_MEM(
7657 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7658 			bpf_target_off(struct sock_common, skc_rcv_saddr,
7659 				       FIELD_SIZEOF(struct sock_common,
7660 						    skc_rcv_saddr),
7661 				       target_size));
7662 		break;
7663 
7664 	case offsetof(struct bpf_sock, dst_ip4):
7665 		*insn++ = BPF_LDX_MEM(
7666 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7667 			bpf_target_off(struct sock_common, skc_daddr,
7668 				       FIELD_SIZEOF(struct sock_common,
7669 						    skc_daddr),
7670 				       target_size));
7671 		break;
7672 
7673 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7674 #if IS_ENABLED(CONFIG_IPV6)
7675 		off = si->off;
7676 		off -= offsetof(struct bpf_sock, src_ip6[0]);
7677 		*insn++ = BPF_LDX_MEM(
7678 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7679 			bpf_target_off(
7680 				struct sock_common,
7681 				skc_v6_rcv_saddr.s6_addr32[0],
7682 				FIELD_SIZEOF(struct sock_common,
7683 					     skc_v6_rcv_saddr.s6_addr32[0]),
7684 				target_size) + off);
7685 #else
7686 		(void)off;
7687 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7688 #endif
7689 		break;
7690 
7691 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7692 #if IS_ENABLED(CONFIG_IPV6)
7693 		off = si->off;
7694 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
7695 		*insn++ = BPF_LDX_MEM(
7696 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7697 			bpf_target_off(struct sock_common,
7698 				       skc_v6_daddr.s6_addr32[0],
7699 				       FIELD_SIZEOF(struct sock_common,
7700 						    skc_v6_daddr.s6_addr32[0]),
7701 				       target_size) + off);
7702 #else
7703 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7704 		*target_size = 4;
7705 #endif
7706 		break;
7707 
7708 	case offsetof(struct bpf_sock, src_port):
7709 		*insn++ = BPF_LDX_MEM(
7710 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
7711 			si->dst_reg, si->src_reg,
7712 			bpf_target_off(struct sock_common, skc_num,
7713 				       FIELD_SIZEOF(struct sock_common,
7714 						    skc_num),
7715 				       target_size));
7716 		break;
7717 
7718 	case offsetof(struct bpf_sock, dst_port):
7719 		*insn++ = BPF_LDX_MEM(
7720 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
7721 			si->dst_reg, si->src_reg,
7722 			bpf_target_off(struct sock_common, skc_dport,
7723 				       FIELD_SIZEOF(struct sock_common,
7724 						    skc_dport),
7725 				       target_size));
7726 		break;
7727 
7728 	case offsetof(struct bpf_sock, state):
7729 		*insn++ = BPF_LDX_MEM(
7730 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
7731 			si->dst_reg, si->src_reg,
7732 			bpf_target_off(struct sock_common, skc_state,
7733 				       FIELD_SIZEOF(struct sock_common,
7734 						    skc_state),
7735 				       target_size));
7736 		break;
7737 	}
7738 
7739 	return insn - insn_buf;
7740 }
7741 
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7742 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
7743 					 const struct bpf_insn *si,
7744 					 struct bpf_insn *insn_buf,
7745 					 struct bpf_prog *prog, u32 *target_size)
7746 {
7747 	struct bpf_insn *insn = insn_buf;
7748 
7749 	switch (si->off) {
7750 	case offsetof(struct __sk_buff, ifindex):
7751 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7752 				      si->dst_reg, si->src_reg,
7753 				      offsetof(struct sk_buff, dev));
7754 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7755 				      bpf_target_off(struct net_device, ifindex, 4,
7756 						     target_size));
7757 		break;
7758 	default:
7759 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
7760 					      target_size);
7761 	}
7762 
7763 	return insn - insn_buf;
7764 }
7765 
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7766 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
7767 				  const struct bpf_insn *si,
7768 				  struct bpf_insn *insn_buf,
7769 				  struct bpf_prog *prog, u32 *target_size)
7770 {
7771 	struct bpf_insn *insn = insn_buf;
7772 
7773 	switch (si->off) {
7774 	case offsetof(struct xdp_md, data):
7775 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
7776 				      si->dst_reg, si->src_reg,
7777 				      offsetof(struct xdp_buff, data));
7778 		break;
7779 	case offsetof(struct xdp_md, data_meta):
7780 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
7781 				      si->dst_reg, si->src_reg,
7782 				      offsetof(struct xdp_buff, data_meta));
7783 		break;
7784 	case offsetof(struct xdp_md, data_end):
7785 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
7786 				      si->dst_reg, si->src_reg,
7787 				      offsetof(struct xdp_buff, data_end));
7788 		break;
7789 	case offsetof(struct xdp_md, ingress_ifindex):
7790 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
7791 				      si->dst_reg, si->src_reg,
7792 				      offsetof(struct xdp_buff, rxq));
7793 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
7794 				      si->dst_reg, si->dst_reg,
7795 				      offsetof(struct xdp_rxq_info, dev));
7796 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7797 				      offsetof(struct net_device, ifindex));
7798 		break;
7799 	case offsetof(struct xdp_md, rx_queue_index):
7800 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
7801 				      si->dst_reg, si->src_reg,
7802 				      offsetof(struct xdp_buff, rxq));
7803 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7804 				      offsetof(struct xdp_rxq_info,
7805 					       queue_index));
7806 		break;
7807 	}
7808 
7809 	return insn - insn_buf;
7810 }
7811 
7812 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
7813  * context Structure, F is Field in context structure that contains a pointer
7814  * to Nested Structure of type NS that has the field NF.
7815  *
7816  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
7817  * sure that SIZE is not greater than actual size of S.F.NF.
7818  *
7819  * If offset OFF is provided, the load happens from that offset relative to
7820  * offset of NF.
7821  */
7822 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
7823 	do {								       \
7824 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
7825 				      si->src_reg, offsetof(S, F));	       \
7826 		*insn++ = BPF_LDX_MEM(					       \
7827 			SIZE, si->dst_reg, si->dst_reg,			       \
7828 			bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),	       \
7829 				       target_size)			       \
7830 				+ OFF);					       \
7831 	} while (0)
7832 
7833 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
7834 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
7835 					     BPF_FIELD_SIZEOF(NS, NF), 0)
7836 
7837 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
7838  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
7839  *
7840  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
7841  * "register" since two registers available in convert_ctx_access are not
7842  * enough: we can't override neither SRC, since it contains value to store, nor
7843  * DST since it contains pointer to context that may be used by later
7844  * instructions. But we need a temporary place to save pointer to nested
7845  * structure whose field we want to store to.
7846  */
7847 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
7848 	do {								       \
7849 		int tmp_reg = BPF_REG_9;				       \
7850 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
7851 			--tmp_reg;					       \
7852 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
7853 			--tmp_reg;					       \
7854 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
7855 				      offsetof(S, TF));			       \
7856 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
7857 				      si->dst_reg, offsetof(S, F));	       \
7858 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
7859 			bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),	       \
7860 				       target_size)			       \
7861 				+ OFF);					       \
7862 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
7863 				      offsetof(S, TF));			       \
7864 	} while (0)
7865 
7866 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
7867 						      TF)		       \
7868 	do {								       \
7869 		if (type == BPF_WRITE) {				       \
7870 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
7871 							 OFF, TF);	       \
7872 		} else {						       \
7873 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
7874 				S, NS, F, NF, SIZE, OFF);  \
7875 		}							       \
7876 	} while (0)
7877 
7878 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
7879 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
7880 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
7881 
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7882 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
7883 					const struct bpf_insn *si,
7884 					struct bpf_insn *insn_buf,
7885 					struct bpf_prog *prog, u32 *target_size)
7886 {
7887 	struct bpf_insn *insn = insn_buf;
7888 	int off;
7889 
7890 	switch (si->off) {
7891 	case offsetof(struct bpf_sock_addr, user_family):
7892 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7893 					    struct sockaddr, uaddr, sa_family);
7894 		break;
7895 
7896 	case offsetof(struct bpf_sock_addr, user_ip4):
7897 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7898 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
7899 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
7900 		break;
7901 
7902 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7903 		off = si->off;
7904 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
7905 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7906 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
7907 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
7908 			tmp_reg);
7909 		break;
7910 
7911 	case offsetof(struct bpf_sock_addr, user_port):
7912 		/* To get port we need to know sa_family first and then treat
7913 		 * sockaddr as either sockaddr_in or sockaddr_in6.
7914 		 * Though we can simplify since port field has same offset and
7915 		 * size in both structures.
7916 		 * Here we check this invariant and use just one of the
7917 		 * structures if it's true.
7918 		 */
7919 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
7920 			     offsetof(struct sockaddr_in6, sin6_port));
7921 		BUILD_BUG_ON(FIELD_SIZEOF(struct sockaddr_in, sin_port) !=
7922 			     FIELD_SIZEOF(struct sockaddr_in6, sin6_port));
7923 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
7924 						     struct sockaddr_in6, uaddr,
7925 						     sin6_port, tmp_reg);
7926 		break;
7927 
7928 	case offsetof(struct bpf_sock_addr, family):
7929 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7930 					    struct sock, sk, sk_family);
7931 		break;
7932 
7933 	case offsetof(struct bpf_sock_addr, type):
7934 		SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
7935 			struct bpf_sock_addr_kern, struct sock, sk,
7936 			__sk_flags_offset, BPF_W, 0);
7937 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
7938 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
7939 		break;
7940 
7941 	case offsetof(struct bpf_sock_addr, protocol):
7942 		SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
7943 			struct bpf_sock_addr_kern, struct sock, sk,
7944 			__sk_flags_offset, BPF_W, 0);
7945 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
7946 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
7947 					SK_FL_PROTO_SHIFT);
7948 		break;
7949 
7950 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
7951 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
7952 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7953 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
7954 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
7955 		break;
7956 
7957 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7958 				msg_src_ip6[3]):
7959 		off = si->off;
7960 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
7961 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
7962 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7963 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
7964 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
7965 		break;
7966 	case offsetof(struct bpf_sock_addr, sk):
7967 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
7968 				      si->dst_reg, si->src_reg,
7969 				      offsetof(struct bpf_sock_addr_kern, sk));
7970 		break;
7971 	}
7972 
7973 	return insn - insn_buf;
7974 }
7975 
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7976 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
7977 				       const struct bpf_insn *si,
7978 				       struct bpf_insn *insn_buf,
7979 				       struct bpf_prog *prog,
7980 				       u32 *target_size)
7981 {
7982 	struct bpf_insn *insn = insn_buf;
7983 	int off;
7984 
7985 /* Helper macro for adding read access to tcp_sock or sock fields. */
7986 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
7987 	do {								      \
7988 		BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >		      \
7989 			     FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
7990 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
7991 						struct bpf_sock_ops_kern,     \
7992 						is_fullsock),		      \
7993 				      si->dst_reg, si->src_reg,		      \
7994 				      offsetof(struct bpf_sock_ops_kern,      \
7995 					       is_fullsock));		      \
7996 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);	      \
7997 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
7998 						struct bpf_sock_ops_kern, sk),\
7999 				      si->dst_reg, si->src_reg,		      \
8000 				      offsetof(struct bpf_sock_ops_kern, sk));\
8001 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
8002 						       OBJ_FIELD),	      \
8003 				      si->dst_reg, si->dst_reg,		      \
8004 				      offsetof(OBJ, OBJ_FIELD));	      \
8005 	} while (0)
8006 
8007 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
8008 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
8009 
8010 /* Helper macro for adding write access to tcp_sock or sock fields.
8011  * The macro is called with two registers, dst_reg which contains a pointer
8012  * to ctx (context) and src_reg which contains the value that should be
8013  * stored. However, we need an additional register since we cannot overwrite
8014  * dst_reg because it may be used later in the program.
8015  * Instead we "borrow" one of the other register. We first save its value
8016  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
8017  * it at the end of the macro.
8018  */
8019 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
8020 	do {								      \
8021 		int reg = BPF_REG_9;					      \
8022 		BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >		      \
8023 			     FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
8024 		if (si->dst_reg == reg || si->src_reg == reg)		      \
8025 			reg--;						      \
8026 		if (si->dst_reg == reg || si->src_reg == reg)		      \
8027 			reg--;						      \
8028 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
8029 				      offsetof(struct bpf_sock_ops_kern,      \
8030 					       temp));			      \
8031 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
8032 						struct bpf_sock_ops_kern,     \
8033 						is_fullsock),		      \
8034 				      reg, si->dst_reg,			      \
8035 				      offsetof(struct bpf_sock_ops_kern,      \
8036 					       is_fullsock));		      \
8037 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
8038 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
8039 						struct bpf_sock_ops_kern, sk),\
8040 				      reg, si->dst_reg,			      \
8041 				      offsetof(struct bpf_sock_ops_kern, sk));\
8042 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
8043 				      reg, si->src_reg,			      \
8044 				      offsetof(OBJ, OBJ_FIELD));	      \
8045 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
8046 				      offsetof(struct bpf_sock_ops_kern,      \
8047 					       temp));			      \
8048 	} while (0)
8049 
8050 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
8051 	do {								      \
8052 		if (TYPE == BPF_WRITE)					      \
8053 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
8054 		else							      \
8055 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
8056 	} while (0)
8057 
8058 	if (insn > insn_buf)
8059 		return insn - insn_buf;
8060 
8061 	switch (si->off) {
8062 	case offsetof(struct bpf_sock_ops, op) ...
8063 	     offsetof(struct bpf_sock_ops, replylong[3]):
8064 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
8065 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
8066 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
8067 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
8068 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
8069 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
8070 		off = si->off;
8071 		off -= offsetof(struct bpf_sock_ops, op);
8072 		off += offsetof(struct bpf_sock_ops_kern, op);
8073 		if (type == BPF_WRITE)
8074 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8075 					      off);
8076 		else
8077 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8078 					      off);
8079 		break;
8080 
8081 	case offsetof(struct bpf_sock_ops, family):
8082 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
8083 
8084 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8085 					      struct bpf_sock_ops_kern, sk),
8086 				      si->dst_reg, si->src_reg,
8087 				      offsetof(struct bpf_sock_ops_kern, sk));
8088 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8089 				      offsetof(struct sock_common, skc_family));
8090 		break;
8091 
8092 	case offsetof(struct bpf_sock_ops, remote_ip4):
8093 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
8094 
8095 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8096 						struct bpf_sock_ops_kern, sk),
8097 				      si->dst_reg, si->src_reg,
8098 				      offsetof(struct bpf_sock_ops_kern, sk));
8099 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8100 				      offsetof(struct sock_common, skc_daddr));
8101 		break;
8102 
8103 	case offsetof(struct bpf_sock_ops, local_ip4):
8104 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8105 					  skc_rcv_saddr) != 4);
8106 
8107 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8108 					      struct bpf_sock_ops_kern, sk),
8109 				      si->dst_reg, si->src_reg,
8110 				      offsetof(struct bpf_sock_ops_kern, sk));
8111 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8112 				      offsetof(struct sock_common,
8113 					       skc_rcv_saddr));
8114 		break;
8115 
8116 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
8117 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
8118 #if IS_ENABLED(CONFIG_IPV6)
8119 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8120 					  skc_v6_daddr.s6_addr32[0]) != 4);
8121 
8122 		off = si->off;
8123 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
8124 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8125 						struct bpf_sock_ops_kern, sk),
8126 				      si->dst_reg, si->src_reg,
8127 				      offsetof(struct bpf_sock_ops_kern, sk));
8128 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8129 				      offsetof(struct sock_common,
8130 					       skc_v6_daddr.s6_addr32[0]) +
8131 				      off);
8132 #else
8133 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8134 #endif
8135 		break;
8136 
8137 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
8138 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
8139 #if IS_ENABLED(CONFIG_IPV6)
8140 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8141 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8142 
8143 		off = si->off;
8144 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
8145 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8146 						struct bpf_sock_ops_kern, sk),
8147 				      si->dst_reg, si->src_reg,
8148 				      offsetof(struct bpf_sock_ops_kern, sk));
8149 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8150 				      offsetof(struct sock_common,
8151 					       skc_v6_rcv_saddr.s6_addr32[0]) +
8152 				      off);
8153 #else
8154 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8155 #endif
8156 		break;
8157 
8158 	case offsetof(struct bpf_sock_ops, remote_port):
8159 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
8160 
8161 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8162 						struct bpf_sock_ops_kern, sk),
8163 				      si->dst_reg, si->src_reg,
8164 				      offsetof(struct bpf_sock_ops_kern, sk));
8165 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8166 				      offsetof(struct sock_common, skc_dport));
8167 #ifndef __BIG_ENDIAN_BITFIELD
8168 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8169 #endif
8170 		break;
8171 
8172 	case offsetof(struct bpf_sock_ops, local_port):
8173 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
8174 
8175 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8176 						struct bpf_sock_ops_kern, sk),
8177 				      si->dst_reg, si->src_reg,
8178 				      offsetof(struct bpf_sock_ops_kern, sk));
8179 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8180 				      offsetof(struct sock_common, skc_num));
8181 		break;
8182 
8183 	case offsetof(struct bpf_sock_ops, is_fullsock):
8184 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8185 						struct bpf_sock_ops_kern,
8186 						is_fullsock),
8187 				      si->dst_reg, si->src_reg,
8188 				      offsetof(struct bpf_sock_ops_kern,
8189 					       is_fullsock));
8190 		break;
8191 
8192 	case offsetof(struct bpf_sock_ops, state):
8193 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_state) != 1);
8194 
8195 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8196 						struct bpf_sock_ops_kern, sk),
8197 				      si->dst_reg, si->src_reg,
8198 				      offsetof(struct bpf_sock_ops_kern, sk));
8199 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
8200 				      offsetof(struct sock_common, skc_state));
8201 		break;
8202 
8203 	case offsetof(struct bpf_sock_ops, rtt_min):
8204 		BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
8205 			     sizeof(struct minmax));
8206 		BUILD_BUG_ON(sizeof(struct minmax) <
8207 			     sizeof(struct minmax_sample));
8208 
8209 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8210 						struct bpf_sock_ops_kern, sk),
8211 				      si->dst_reg, si->src_reg,
8212 				      offsetof(struct bpf_sock_ops_kern, sk));
8213 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8214 				      offsetof(struct tcp_sock, rtt_min) +
8215 				      FIELD_SIZEOF(struct minmax_sample, t));
8216 		break;
8217 
8218 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
8219 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
8220 				   struct tcp_sock);
8221 		break;
8222 
8223 	case offsetof(struct bpf_sock_ops, sk_txhash):
8224 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
8225 					  struct sock, type);
8226 		break;
8227 	case offsetof(struct bpf_sock_ops, snd_cwnd):
8228 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
8229 		break;
8230 	case offsetof(struct bpf_sock_ops, srtt_us):
8231 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
8232 		break;
8233 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
8234 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
8235 		break;
8236 	case offsetof(struct bpf_sock_ops, rcv_nxt):
8237 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
8238 		break;
8239 	case offsetof(struct bpf_sock_ops, snd_nxt):
8240 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
8241 		break;
8242 	case offsetof(struct bpf_sock_ops, snd_una):
8243 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
8244 		break;
8245 	case offsetof(struct bpf_sock_ops, mss_cache):
8246 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
8247 		break;
8248 	case offsetof(struct bpf_sock_ops, ecn_flags):
8249 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
8250 		break;
8251 	case offsetof(struct bpf_sock_ops, rate_delivered):
8252 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
8253 		break;
8254 	case offsetof(struct bpf_sock_ops, rate_interval_us):
8255 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
8256 		break;
8257 	case offsetof(struct bpf_sock_ops, packets_out):
8258 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
8259 		break;
8260 	case offsetof(struct bpf_sock_ops, retrans_out):
8261 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
8262 		break;
8263 	case offsetof(struct bpf_sock_ops, total_retrans):
8264 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
8265 		break;
8266 	case offsetof(struct bpf_sock_ops, segs_in):
8267 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
8268 		break;
8269 	case offsetof(struct bpf_sock_ops, data_segs_in):
8270 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
8271 		break;
8272 	case offsetof(struct bpf_sock_ops, segs_out):
8273 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
8274 		break;
8275 	case offsetof(struct bpf_sock_ops, data_segs_out):
8276 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
8277 		break;
8278 	case offsetof(struct bpf_sock_ops, lost_out):
8279 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
8280 		break;
8281 	case offsetof(struct bpf_sock_ops, sacked_out):
8282 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
8283 		break;
8284 	case offsetof(struct bpf_sock_ops, bytes_received):
8285 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
8286 		break;
8287 	case offsetof(struct bpf_sock_ops, bytes_acked):
8288 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
8289 		break;
8290 	case offsetof(struct bpf_sock_ops, sk):
8291 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8292 						struct bpf_sock_ops_kern,
8293 						is_fullsock),
8294 				      si->dst_reg, si->src_reg,
8295 				      offsetof(struct bpf_sock_ops_kern,
8296 					       is_fullsock));
8297 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8298 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8299 						struct bpf_sock_ops_kern, sk),
8300 				      si->dst_reg, si->src_reg,
8301 				      offsetof(struct bpf_sock_ops_kern, sk));
8302 		break;
8303 	}
8304 	return insn - insn_buf;
8305 }
8306 
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8307 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
8308 				     const struct bpf_insn *si,
8309 				     struct bpf_insn *insn_buf,
8310 				     struct bpf_prog *prog, u32 *target_size)
8311 {
8312 	struct bpf_insn *insn = insn_buf;
8313 	int off;
8314 
8315 	switch (si->off) {
8316 	case offsetof(struct __sk_buff, data_end):
8317 		off  = si->off;
8318 		off -= offsetof(struct __sk_buff, data_end);
8319 		off += offsetof(struct sk_buff, cb);
8320 		off += offsetof(struct tcp_skb_cb, bpf.data_end);
8321 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8322 				      si->src_reg, off);
8323 		break;
8324 	default:
8325 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
8326 					      target_size);
8327 	}
8328 
8329 	return insn - insn_buf;
8330 }
8331 
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8332 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
8333 				     const struct bpf_insn *si,
8334 				     struct bpf_insn *insn_buf,
8335 				     struct bpf_prog *prog, u32 *target_size)
8336 {
8337 	struct bpf_insn *insn = insn_buf;
8338 #if IS_ENABLED(CONFIG_IPV6)
8339 	int off;
8340 #endif
8341 
8342 	/* convert ctx uses the fact sg element is first in struct */
8343 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
8344 
8345 	switch (si->off) {
8346 	case offsetof(struct sk_msg_md, data):
8347 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
8348 				      si->dst_reg, si->src_reg,
8349 				      offsetof(struct sk_msg, data));
8350 		break;
8351 	case offsetof(struct sk_msg_md, data_end):
8352 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
8353 				      si->dst_reg, si->src_reg,
8354 				      offsetof(struct sk_msg, data_end));
8355 		break;
8356 	case offsetof(struct sk_msg_md, family):
8357 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
8358 
8359 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8360 					      struct sk_msg, sk),
8361 				      si->dst_reg, si->src_reg,
8362 				      offsetof(struct sk_msg, sk));
8363 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8364 				      offsetof(struct sock_common, skc_family));
8365 		break;
8366 
8367 	case offsetof(struct sk_msg_md, remote_ip4):
8368 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
8369 
8370 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8371 						struct sk_msg, sk),
8372 				      si->dst_reg, si->src_reg,
8373 				      offsetof(struct sk_msg, sk));
8374 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8375 				      offsetof(struct sock_common, skc_daddr));
8376 		break;
8377 
8378 	case offsetof(struct sk_msg_md, local_ip4):
8379 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8380 					  skc_rcv_saddr) != 4);
8381 
8382 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8383 					      struct sk_msg, sk),
8384 				      si->dst_reg, si->src_reg,
8385 				      offsetof(struct sk_msg, sk));
8386 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8387 				      offsetof(struct sock_common,
8388 					       skc_rcv_saddr));
8389 		break;
8390 
8391 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
8392 	     offsetof(struct sk_msg_md, remote_ip6[3]):
8393 #if IS_ENABLED(CONFIG_IPV6)
8394 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8395 					  skc_v6_daddr.s6_addr32[0]) != 4);
8396 
8397 		off = si->off;
8398 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
8399 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8400 						struct sk_msg, sk),
8401 				      si->dst_reg, si->src_reg,
8402 				      offsetof(struct sk_msg, sk));
8403 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8404 				      offsetof(struct sock_common,
8405 					       skc_v6_daddr.s6_addr32[0]) +
8406 				      off);
8407 #else
8408 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8409 #endif
8410 		break;
8411 
8412 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
8413 	     offsetof(struct sk_msg_md, local_ip6[3]):
8414 #if IS_ENABLED(CONFIG_IPV6)
8415 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8416 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8417 
8418 		off = si->off;
8419 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
8420 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8421 						struct sk_msg, sk),
8422 				      si->dst_reg, si->src_reg,
8423 				      offsetof(struct sk_msg, sk));
8424 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8425 				      offsetof(struct sock_common,
8426 					       skc_v6_rcv_saddr.s6_addr32[0]) +
8427 				      off);
8428 #else
8429 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8430 #endif
8431 		break;
8432 
8433 	case offsetof(struct sk_msg_md, remote_port):
8434 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
8435 
8436 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8437 						struct sk_msg, sk),
8438 				      si->dst_reg, si->src_reg,
8439 				      offsetof(struct sk_msg, sk));
8440 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8441 				      offsetof(struct sock_common, skc_dport));
8442 #ifndef __BIG_ENDIAN_BITFIELD
8443 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8444 #endif
8445 		break;
8446 
8447 	case offsetof(struct sk_msg_md, local_port):
8448 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
8449 
8450 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8451 						struct sk_msg, sk),
8452 				      si->dst_reg, si->src_reg,
8453 				      offsetof(struct sk_msg, sk));
8454 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8455 				      offsetof(struct sock_common, skc_num));
8456 		break;
8457 
8458 	case offsetof(struct sk_msg_md, size):
8459 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
8460 				      si->dst_reg, si->src_reg,
8461 				      offsetof(struct sk_msg_sg, size));
8462 		break;
8463 	}
8464 
8465 	return insn - insn_buf;
8466 }
8467 
8468 const struct bpf_verifier_ops sk_filter_verifier_ops = {
8469 	.get_func_proto		= sk_filter_func_proto,
8470 	.is_valid_access	= sk_filter_is_valid_access,
8471 	.convert_ctx_access	= bpf_convert_ctx_access,
8472 	.gen_ld_abs		= bpf_gen_ld_abs,
8473 };
8474 
8475 const struct bpf_prog_ops sk_filter_prog_ops = {
8476 	.test_run		= bpf_prog_test_run_skb,
8477 };
8478 
8479 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
8480 	.get_func_proto		= tc_cls_act_func_proto,
8481 	.is_valid_access	= tc_cls_act_is_valid_access,
8482 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
8483 	.gen_prologue		= tc_cls_act_prologue,
8484 	.gen_ld_abs		= bpf_gen_ld_abs,
8485 };
8486 
8487 const struct bpf_prog_ops tc_cls_act_prog_ops = {
8488 	.test_run		= bpf_prog_test_run_skb,
8489 };
8490 
8491 const struct bpf_verifier_ops xdp_verifier_ops = {
8492 	.get_func_proto		= xdp_func_proto,
8493 	.is_valid_access	= xdp_is_valid_access,
8494 	.convert_ctx_access	= xdp_convert_ctx_access,
8495 	.gen_prologue		= bpf_noop_prologue,
8496 };
8497 
8498 const struct bpf_prog_ops xdp_prog_ops = {
8499 	.test_run		= bpf_prog_test_run_xdp,
8500 };
8501 
8502 const struct bpf_verifier_ops cg_skb_verifier_ops = {
8503 	.get_func_proto		= cg_skb_func_proto,
8504 	.is_valid_access	= cg_skb_is_valid_access,
8505 	.convert_ctx_access	= bpf_convert_ctx_access,
8506 };
8507 
8508 const struct bpf_prog_ops cg_skb_prog_ops = {
8509 	.test_run		= bpf_prog_test_run_skb,
8510 };
8511 
8512 const struct bpf_verifier_ops lwt_in_verifier_ops = {
8513 	.get_func_proto		= lwt_in_func_proto,
8514 	.is_valid_access	= lwt_is_valid_access,
8515 	.convert_ctx_access	= bpf_convert_ctx_access,
8516 };
8517 
8518 const struct bpf_prog_ops lwt_in_prog_ops = {
8519 	.test_run		= bpf_prog_test_run_skb,
8520 };
8521 
8522 const struct bpf_verifier_ops lwt_out_verifier_ops = {
8523 	.get_func_proto		= lwt_out_func_proto,
8524 	.is_valid_access	= lwt_is_valid_access,
8525 	.convert_ctx_access	= bpf_convert_ctx_access,
8526 };
8527 
8528 const struct bpf_prog_ops lwt_out_prog_ops = {
8529 	.test_run		= bpf_prog_test_run_skb,
8530 };
8531 
8532 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
8533 	.get_func_proto		= lwt_xmit_func_proto,
8534 	.is_valid_access	= lwt_is_valid_access,
8535 	.convert_ctx_access	= bpf_convert_ctx_access,
8536 	.gen_prologue		= tc_cls_act_prologue,
8537 };
8538 
8539 const struct bpf_prog_ops lwt_xmit_prog_ops = {
8540 	.test_run		= bpf_prog_test_run_skb,
8541 };
8542 
8543 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
8544 	.get_func_proto		= lwt_seg6local_func_proto,
8545 	.is_valid_access	= lwt_is_valid_access,
8546 	.convert_ctx_access	= bpf_convert_ctx_access,
8547 };
8548 
8549 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
8550 	.test_run		= bpf_prog_test_run_skb,
8551 };
8552 
8553 const struct bpf_verifier_ops cg_sock_verifier_ops = {
8554 	.get_func_proto		= sock_filter_func_proto,
8555 	.is_valid_access	= sock_filter_is_valid_access,
8556 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
8557 };
8558 
8559 const struct bpf_prog_ops cg_sock_prog_ops = {
8560 };
8561 
8562 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
8563 	.get_func_proto		= sock_addr_func_proto,
8564 	.is_valid_access	= sock_addr_is_valid_access,
8565 	.convert_ctx_access	= sock_addr_convert_ctx_access,
8566 };
8567 
8568 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
8569 };
8570 
8571 const struct bpf_verifier_ops sock_ops_verifier_ops = {
8572 	.get_func_proto		= sock_ops_func_proto,
8573 	.is_valid_access	= sock_ops_is_valid_access,
8574 	.convert_ctx_access	= sock_ops_convert_ctx_access,
8575 };
8576 
8577 const struct bpf_prog_ops sock_ops_prog_ops = {
8578 };
8579 
8580 const struct bpf_verifier_ops sk_skb_verifier_ops = {
8581 	.get_func_proto		= sk_skb_func_proto,
8582 	.is_valid_access	= sk_skb_is_valid_access,
8583 	.convert_ctx_access	= sk_skb_convert_ctx_access,
8584 	.gen_prologue		= sk_skb_prologue,
8585 };
8586 
8587 const struct bpf_prog_ops sk_skb_prog_ops = {
8588 };
8589 
8590 const struct bpf_verifier_ops sk_msg_verifier_ops = {
8591 	.get_func_proto		= sk_msg_func_proto,
8592 	.is_valid_access	= sk_msg_is_valid_access,
8593 	.convert_ctx_access	= sk_msg_convert_ctx_access,
8594 	.gen_prologue		= bpf_noop_prologue,
8595 };
8596 
8597 const struct bpf_prog_ops sk_msg_prog_ops = {
8598 };
8599 
8600 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
8601 	.get_func_proto		= flow_dissector_func_proto,
8602 	.is_valid_access	= flow_dissector_is_valid_access,
8603 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
8604 };
8605 
8606 const struct bpf_prog_ops flow_dissector_prog_ops = {
8607 	.test_run		= bpf_prog_test_run_flow_dissector,
8608 };
8609 
sk_detach_filter(struct sock * sk)8610 int sk_detach_filter(struct sock *sk)
8611 {
8612 	int ret = -ENOENT;
8613 	struct sk_filter *filter;
8614 
8615 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
8616 		return -EPERM;
8617 
8618 	filter = rcu_dereference_protected(sk->sk_filter,
8619 					   lockdep_sock_is_held(sk));
8620 	if (filter) {
8621 		RCU_INIT_POINTER(sk->sk_filter, NULL);
8622 		sk_filter_uncharge(sk, filter);
8623 		ret = 0;
8624 	}
8625 
8626 	return ret;
8627 }
8628 EXPORT_SYMBOL_GPL(sk_detach_filter);
8629 
sk_get_filter(struct sock * sk,struct sock_filter __user * ubuf,unsigned int len)8630 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
8631 		  unsigned int len)
8632 {
8633 	struct sock_fprog_kern *fprog;
8634 	struct sk_filter *filter;
8635 	int ret = 0;
8636 
8637 	lock_sock(sk);
8638 	filter = rcu_dereference_protected(sk->sk_filter,
8639 					   lockdep_sock_is_held(sk));
8640 	if (!filter)
8641 		goto out;
8642 
8643 	/* We're copying the filter that has been originally attached,
8644 	 * so no conversion/decode needed anymore. eBPF programs that
8645 	 * have no original program cannot be dumped through this.
8646 	 */
8647 	ret = -EACCES;
8648 	fprog = filter->prog->orig_prog;
8649 	if (!fprog)
8650 		goto out;
8651 
8652 	ret = fprog->len;
8653 	if (!len)
8654 		/* User space only enquires number of filter blocks. */
8655 		goto out;
8656 
8657 	ret = -EINVAL;
8658 	if (len < fprog->len)
8659 		goto out;
8660 
8661 	ret = -EFAULT;
8662 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
8663 		goto out;
8664 
8665 	/* Instead of bytes, the API requests to return the number
8666 	 * of filter blocks.
8667 	 */
8668 	ret = fprog->len;
8669 out:
8670 	release_sock(sk);
8671 	return ret;
8672 }
8673 
8674 #ifdef CONFIG_INET
8675 struct sk_reuseport_kern {
8676 	struct sk_buff *skb;
8677 	struct sock *sk;
8678 	struct sock *selected_sk;
8679 	void *data_end;
8680 	u32 hash;
8681 	u32 reuseport_id;
8682 	bool bind_inany;
8683 };
8684 
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,u32 hash)8685 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
8686 				    struct sock_reuseport *reuse,
8687 				    struct sock *sk, struct sk_buff *skb,
8688 				    u32 hash)
8689 {
8690 	reuse_kern->skb = skb;
8691 	reuse_kern->sk = sk;
8692 	reuse_kern->selected_sk = NULL;
8693 	reuse_kern->data_end = skb->data + skb_headlen(skb);
8694 	reuse_kern->hash = hash;
8695 	reuse_kern->reuseport_id = reuse->reuseport_id;
8696 	reuse_kern->bind_inany = reuse->bind_inany;
8697 }
8698 
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,u32 hash)8699 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
8700 				  struct bpf_prog *prog, struct sk_buff *skb,
8701 				  u32 hash)
8702 {
8703 	struct sk_reuseport_kern reuse_kern;
8704 	enum sk_action action;
8705 
8706 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
8707 	action = BPF_PROG_RUN(prog, &reuse_kern);
8708 
8709 	if (action == SK_PASS)
8710 		return reuse_kern.selected_sk;
8711 	else
8712 		return ERR_PTR(-ECONNREFUSED);
8713 }
8714 
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)8715 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
8716 	   struct bpf_map *, map, void *, key, u32, flags)
8717 {
8718 	struct sock_reuseport *reuse;
8719 	struct sock *selected_sk;
8720 
8721 	selected_sk = map->ops->map_lookup_elem(map, key);
8722 	if (!selected_sk)
8723 		return -ENOENT;
8724 
8725 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
8726 	if (!reuse)
8727 		/* selected_sk is unhashed (e.g. by close()) after the
8728 		 * above map_lookup_elem().  Treat selected_sk has already
8729 		 * been removed from the map.
8730 		 */
8731 		return -ENOENT;
8732 
8733 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
8734 		struct sock *sk;
8735 
8736 		if (unlikely(!reuse_kern->reuseport_id))
8737 			/* There is a small race between adding the
8738 			 * sk to the map and setting the
8739 			 * reuse_kern->reuseport_id.
8740 			 * Treat it as the sk has not been added to
8741 			 * the bpf map yet.
8742 			 */
8743 			return -ENOENT;
8744 
8745 		sk = reuse_kern->sk;
8746 		if (sk->sk_protocol != selected_sk->sk_protocol)
8747 			return -EPROTOTYPE;
8748 		else if (sk->sk_family != selected_sk->sk_family)
8749 			return -EAFNOSUPPORT;
8750 
8751 		/* Catch all. Likely bound to a different sockaddr. */
8752 		return -EBADFD;
8753 	}
8754 
8755 	reuse_kern->selected_sk = selected_sk;
8756 
8757 	return 0;
8758 }
8759 
8760 static const struct bpf_func_proto sk_select_reuseport_proto = {
8761 	.func           = sk_select_reuseport,
8762 	.gpl_only       = false,
8763 	.ret_type       = RET_INTEGER,
8764 	.arg1_type	= ARG_PTR_TO_CTX,
8765 	.arg2_type      = ARG_CONST_MAP_PTR,
8766 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
8767 	.arg4_type	= ARG_ANYTHING,
8768 };
8769 
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)8770 BPF_CALL_4(sk_reuseport_load_bytes,
8771 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
8772 	   void *, to, u32, len)
8773 {
8774 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
8775 }
8776 
8777 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
8778 	.func		= sk_reuseport_load_bytes,
8779 	.gpl_only	= false,
8780 	.ret_type	= RET_INTEGER,
8781 	.arg1_type	= ARG_PTR_TO_CTX,
8782 	.arg2_type	= ARG_ANYTHING,
8783 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
8784 	.arg4_type	= ARG_CONST_SIZE,
8785 };
8786 
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)8787 BPF_CALL_5(sk_reuseport_load_bytes_relative,
8788 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
8789 	   void *, to, u32, len, u32, start_header)
8790 {
8791 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
8792 					       len, start_header);
8793 }
8794 
8795 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
8796 	.func		= sk_reuseport_load_bytes_relative,
8797 	.gpl_only	= false,
8798 	.ret_type	= RET_INTEGER,
8799 	.arg1_type	= ARG_PTR_TO_CTX,
8800 	.arg2_type	= ARG_ANYTHING,
8801 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
8802 	.arg4_type	= ARG_CONST_SIZE,
8803 	.arg5_type	= ARG_ANYTHING,
8804 };
8805 
8806 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8807 sk_reuseport_func_proto(enum bpf_func_id func_id,
8808 			const struct bpf_prog *prog)
8809 {
8810 	switch (func_id) {
8811 	case BPF_FUNC_sk_select_reuseport:
8812 		return &sk_select_reuseport_proto;
8813 	case BPF_FUNC_skb_load_bytes:
8814 		return &sk_reuseport_load_bytes_proto;
8815 	case BPF_FUNC_skb_load_bytes_relative:
8816 		return &sk_reuseport_load_bytes_relative_proto;
8817 	default:
8818 		return bpf_base_func_proto(func_id);
8819 	}
8820 }
8821 
8822 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8823 sk_reuseport_is_valid_access(int off, int size,
8824 			     enum bpf_access_type type,
8825 			     const struct bpf_prog *prog,
8826 			     struct bpf_insn_access_aux *info)
8827 {
8828 	const u32 size_default = sizeof(__u32);
8829 
8830 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
8831 	    off % size || type != BPF_READ)
8832 		return false;
8833 
8834 	switch (off) {
8835 	case offsetof(struct sk_reuseport_md, data):
8836 		info->reg_type = PTR_TO_PACKET;
8837 		return size == sizeof(__u64);
8838 
8839 	case offsetof(struct sk_reuseport_md, data_end):
8840 		info->reg_type = PTR_TO_PACKET_END;
8841 		return size == sizeof(__u64);
8842 
8843 	case offsetof(struct sk_reuseport_md, hash):
8844 		return size == size_default;
8845 
8846 	/* Fields that allow narrowing */
8847 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
8848 		if (size < FIELD_SIZEOF(struct sk_buff, protocol))
8849 			return false;
8850 		/* fall through */
8851 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
8852 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
8853 	case bpf_ctx_range(struct sk_reuseport_md, len):
8854 		bpf_ctx_record_field_size(info, size_default);
8855 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8856 
8857 	default:
8858 		return false;
8859 	}
8860 }
8861 
8862 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
8863 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
8864 			      si->dst_reg, si->src_reg,			\
8865 			      bpf_target_off(struct sk_reuseport_kern, F, \
8866 					     FIELD_SIZEOF(struct sk_reuseport_kern, F), \
8867 					     target_size));		\
8868 	})
8869 
8870 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
8871 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
8872 				    struct sk_buff,			\
8873 				    skb,				\
8874 				    SKB_FIELD)
8875 
8876 #define SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(SK_FIELD, BPF_SIZE, EXTRA_OFF) \
8877 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(struct sk_reuseport_kern,	\
8878 					     struct sock,		\
8879 					     sk,			\
8880 					     SK_FIELD, BPF_SIZE, EXTRA_OFF)
8881 
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8882 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
8883 					   const struct bpf_insn *si,
8884 					   struct bpf_insn *insn_buf,
8885 					   struct bpf_prog *prog,
8886 					   u32 *target_size)
8887 {
8888 	struct bpf_insn *insn = insn_buf;
8889 
8890 	switch (si->off) {
8891 	case offsetof(struct sk_reuseport_md, data):
8892 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
8893 		break;
8894 
8895 	case offsetof(struct sk_reuseport_md, len):
8896 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
8897 		break;
8898 
8899 	case offsetof(struct sk_reuseport_md, eth_protocol):
8900 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
8901 		break;
8902 
8903 	case offsetof(struct sk_reuseport_md, ip_protocol):
8904 		BUILD_BUG_ON(HWEIGHT32(SK_FL_PROTO_MASK) != BITS_PER_BYTE);
8905 		SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(__sk_flags_offset,
8906 						    BPF_W, 0);
8907 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
8908 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
8909 					SK_FL_PROTO_SHIFT);
8910 		/* SK_FL_PROTO_MASK and SK_FL_PROTO_SHIFT are endian
8911 		 * aware.  No further narrowing or masking is needed.
8912 		 */
8913 		*target_size = 1;
8914 		break;
8915 
8916 	case offsetof(struct sk_reuseport_md, data_end):
8917 		SK_REUSEPORT_LOAD_FIELD(data_end);
8918 		break;
8919 
8920 	case offsetof(struct sk_reuseport_md, hash):
8921 		SK_REUSEPORT_LOAD_FIELD(hash);
8922 		break;
8923 
8924 	case offsetof(struct sk_reuseport_md, bind_inany):
8925 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
8926 		break;
8927 	}
8928 
8929 	return insn - insn_buf;
8930 }
8931 
8932 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
8933 	.get_func_proto		= sk_reuseport_func_proto,
8934 	.is_valid_access	= sk_reuseport_is_valid_access,
8935 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
8936 };
8937 
8938 const struct bpf_prog_ops sk_reuseport_prog_ops = {
8939 };
8940 #endif /* CONFIG_INET */
8941