• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * inet fragments management
4  *
5  * 		Authors:	Pavel Emelyanov <xemul@openvz.org>
6  *				Started as consolidation of ipv4/ip_fragment.c,
7  *				ipv6/reassembly. and ipv6 nf conntrack reassembly
8  */
9 
10 #include <linux/list.h>
11 #include <linux/spinlock.h>
12 #include <linux/module.h>
13 #include <linux/timer.h>
14 #include <linux/mm.h>
15 #include <linux/random.h>
16 #include <linux/skbuff.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/rhashtable.h>
20 
21 #include <net/sock.h>
22 #include <net/inet_frag.h>
23 #include <net/inet_ecn.h>
24 #include <net/ip.h>
25 #include <net/ipv6.h>
26 
27 /* Use skb->cb to track consecutive/adjacent fragments coming at
28  * the end of the queue. Nodes in the rb-tree queue will
29  * contain "runs" of one or more adjacent fragments.
30  *
31  * Invariants:
32  * - next_frag is NULL at the tail of a "run";
33  * - the head of a "run" has the sum of all fragment lengths in frag_run_len.
34  */
35 struct ipfrag_skb_cb {
36 	union {
37 		struct inet_skb_parm	h4;
38 		struct inet6_skb_parm	h6;
39 	};
40 	struct sk_buff		*next_frag;
41 	int			frag_run_len;
42 };
43 
44 #define FRAG_CB(skb)		((struct ipfrag_skb_cb *)((skb)->cb))
45 
fragcb_clear(struct sk_buff * skb)46 static void fragcb_clear(struct sk_buff *skb)
47 {
48 	RB_CLEAR_NODE(&skb->rbnode);
49 	FRAG_CB(skb)->next_frag = NULL;
50 	FRAG_CB(skb)->frag_run_len = skb->len;
51 }
52 
53 /* Append skb to the last "run". */
fragrun_append_to_last(struct inet_frag_queue * q,struct sk_buff * skb)54 static void fragrun_append_to_last(struct inet_frag_queue *q,
55 				   struct sk_buff *skb)
56 {
57 	fragcb_clear(skb);
58 
59 	FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
60 	FRAG_CB(q->fragments_tail)->next_frag = skb;
61 	q->fragments_tail = skb;
62 }
63 
64 /* Create a new "run" with the skb. */
fragrun_create(struct inet_frag_queue * q,struct sk_buff * skb)65 static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb)
66 {
67 	BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
68 	fragcb_clear(skb);
69 
70 	if (q->last_run_head)
71 		rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
72 			     &q->last_run_head->rbnode.rb_right);
73 	else
74 		rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
75 	rb_insert_color(&skb->rbnode, &q->rb_fragments);
76 
77 	q->fragments_tail = skb;
78 	q->last_run_head = skb;
79 }
80 
81 /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
82  * Value : 0xff if frame should be dropped.
83  *         0 or INET_ECN_CE value, to be ORed in to final iph->tos field
84  */
85 const u8 ip_frag_ecn_table[16] = {
86 	/* at least one fragment had CE, and others ECT_0 or ECT_1 */
87 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0]			= INET_ECN_CE,
88 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1]			= INET_ECN_CE,
89 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1]	= INET_ECN_CE,
90 
91 	/* invalid combinations : drop frame */
92 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff,
93 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff,
94 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff,
95 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
96 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff,
97 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff,
98 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
99 };
100 EXPORT_SYMBOL(ip_frag_ecn_table);
101 
inet_frags_init(struct inet_frags * f)102 int inet_frags_init(struct inet_frags *f)
103 {
104 	f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0,
105 					    NULL);
106 	if (!f->frags_cachep)
107 		return -ENOMEM;
108 
109 	refcount_set(&f->refcnt, 1);
110 	init_completion(&f->completion);
111 	return 0;
112 }
113 EXPORT_SYMBOL(inet_frags_init);
114 
inet_frags_fini(struct inet_frags * f)115 void inet_frags_fini(struct inet_frags *f)
116 {
117 	if (refcount_dec_and_test(&f->refcnt))
118 		complete(&f->completion);
119 
120 	wait_for_completion(&f->completion);
121 
122 	kmem_cache_destroy(f->frags_cachep);
123 	f->frags_cachep = NULL;
124 }
125 EXPORT_SYMBOL(inet_frags_fini);
126 
127 /* called from rhashtable_free_and_destroy() at netns_frags dismantle */
inet_frags_free_cb(void * ptr,void * arg)128 static void inet_frags_free_cb(void *ptr, void *arg)
129 {
130 	struct inet_frag_queue *fq = ptr;
131 	int count;
132 
133 	count = del_timer_sync(&fq->timer) ? 1 : 0;
134 
135 	spin_lock_bh(&fq->lock);
136 	if (!(fq->flags & INET_FRAG_COMPLETE)) {
137 		fq->flags |= INET_FRAG_COMPLETE;
138 		count++;
139 	} else if (fq->flags & INET_FRAG_HASH_DEAD) {
140 		count++;
141 	}
142 	spin_unlock_bh(&fq->lock);
143 
144 	if (refcount_sub_and_test(count, &fq->refcnt))
145 		inet_frag_destroy(fq);
146 }
147 
fqdir_work_fn(struct work_struct * work)148 static void fqdir_work_fn(struct work_struct *work)
149 {
150 	struct fqdir *fqdir = container_of(work, struct fqdir, destroy_work);
151 	struct inet_frags *f = fqdir->f;
152 
153 	rhashtable_free_and_destroy(&fqdir->rhashtable, inet_frags_free_cb, NULL);
154 
155 	/* We need to make sure all ongoing call_rcu(..., inet_frag_destroy_rcu)
156 	 * have completed, since they need to dereference fqdir.
157 	 * Would it not be nice to have kfree_rcu_barrier() ? :)
158 	 */
159 	rcu_barrier();
160 
161 	if (refcount_dec_and_test(&f->refcnt))
162 		complete(&f->completion);
163 
164 	kfree(fqdir);
165 }
166 
fqdir_init(struct fqdir ** fqdirp,struct inet_frags * f,struct net * net)167 int fqdir_init(struct fqdir **fqdirp, struct inet_frags *f, struct net *net)
168 {
169 	struct fqdir *fqdir = kzalloc(sizeof(*fqdir), GFP_KERNEL);
170 	int res;
171 
172 	if (!fqdir)
173 		return -ENOMEM;
174 	fqdir->f = f;
175 	fqdir->net = net;
176 	res = rhashtable_init(&fqdir->rhashtable, &fqdir->f->rhash_params);
177 	if (res < 0) {
178 		kfree(fqdir);
179 		return res;
180 	}
181 	refcount_inc(&f->refcnt);
182 	*fqdirp = fqdir;
183 	return 0;
184 }
185 EXPORT_SYMBOL(fqdir_init);
186 
fqdir_exit(struct fqdir * fqdir)187 void fqdir_exit(struct fqdir *fqdir)
188 {
189 	INIT_WORK(&fqdir->destroy_work, fqdir_work_fn);
190 	queue_work(system_wq, &fqdir->destroy_work);
191 }
192 EXPORT_SYMBOL(fqdir_exit);
193 
inet_frag_kill(struct inet_frag_queue * fq)194 void inet_frag_kill(struct inet_frag_queue *fq)
195 {
196 	if (del_timer(&fq->timer))
197 		refcount_dec(&fq->refcnt);
198 
199 	if (!(fq->flags & INET_FRAG_COMPLETE)) {
200 		struct fqdir *fqdir = fq->fqdir;
201 
202 		fq->flags |= INET_FRAG_COMPLETE;
203 		rcu_read_lock();
204 		/* The RCU read lock provides a memory barrier
205 		 * guaranteeing that if fqdir->dead is false then
206 		 * the hash table destruction will not start until
207 		 * after we unlock.  Paired with inet_frags_exit_net().
208 		 */
209 		if (!fqdir->dead) {
210 			rhashtable_remove_fast(&fqdir->rhashtable, &fq->node,
211 					       fqdir->f->rhash_params);
212 			refcount_dec(&fq->refcnt);
213 		} else {
214 			fq->flags |= INET_FRAG_HASH_DEAD;
215 		}
216 		rcu_read_unlock();
217 	}
218 }
219 EXPORT_SYMBOL(inet_frag_kill);
220 
inet_frag_destroy_rcu(struct rcu_head * head)221 static void inet_frag_destroy_rcu(struct rcu_head *head)
222 {
223 	struct inet_frag_queue *q = container_of(head, struct inet_frag_queue,
224 						 rcu);
225 	struct inet_frags *f = q->fqdir->f;
226 
227 	if (f->destructor)
228 		f->destructor(q);
229 	kmem_cache_free(f->frags_cachep, q);
230 }
231 
inet_frag_rbtree_purge(struct rb_root * root)232 unsigned int inet_frag_rbtree_purge(struct rb_root *root)
233 {
234 	struct rb_node *p = rb_first(root);
235 	unsigned int sum = 0;
236 
237 	while (p) {
238 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
239 
240 		p = rb_next(p);
241 		rb_erase(&skb->rbnode, root);
242 		while (skb) {
243 			struct sk_buff *next = FRAG_CB(skb)->next_frag;
244 
245 			sum += skb->truesize;
246 			kfree_skb(skb);
247 			skb = next;
248 		}
249 	}
250 	return sum;
251 }
252 EXPORT_SYMBOL(inet_frag_rbtree_purge);
253 
inet_frag_destroy(struct inet_frag_queue * q)254 void inet_frag_destroy(struct inet_frag_queue *q)
255 {
256 	struct fqdir *fqdir;
257 	unsigned int sum, sum_truesize = 0;
258 	struct inet_frags *f;
259 
260 	WARN_ON(!(q->flags & INET_FRAG_COMPLETE));
261 	WARN_ON(del_timer(&q->timer) != 0);
262 
263 	/* Release all fragment data. */
264 	fqdir = q->fqdir;
265 	f = fqdir->f;
266 	sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments);
267 	sum = sum_truesize + f->qsize;
268 
269 	call_rcu(&q->rcu, inet_frag_destroy_rcu);
270 
271 	sub_frag_mem_limit(fqdir, sum);
272 }
273 EXPORT_SYMBOL(inet_frag_destroy);
274 
inet_frag_alloc(struct fqdir * fqdir,struct inet_frags * f,void * arg)275 static struct inet_frag_queue *inet_frag_alloc(struct fqdir *fqdir,
276 					       struct inet_frags *f,
277 					       void *arg)
278 {
279 	struct inet_frag_queue *q;
280 
281 	q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC);
282 	if (!q)
283 		return NULL;
284 
285 	q->fqdir = fqdir;
286 	f->constructor(q, arg);
287 	add_frag_mem_limit(fqdir, f->qsize);
288 
289 	timer_setup(&q->timer, f->frag_expire, 0);
290 	spin_lock_init(&q->lock);
291 	refcount_set(&q->refcnt, 3);
292 
293 	return q;
294 }
295 
inet_frag_create(struct fqdir * fqdir,void * arg,struct inet_frag_queue ** prev)296 static struct inet_frag_queue *inet_frag_create(struct fqdir *fqdir,
297 						void *arg,
298 						struct inet_frag_queue **prev)
299 {
300 	struct inet_frags *f = fqdir->f;
301 	struct inet_frag_queue *q;
302 
303 	q = inet_frag_alloc(fqdir, f, arg);
304 	if (!q) {
305 		*prev = ERR_PTR(-ENOMEM);
306 		return NULL;
307 	}
308 	mod_timer(&q->timer, jiffies + fqdir->timeout);
309 
310 	*prev = rhashtable_lookup_get_insert_key(&fqdir->rhashtable, &q->key,
311 						 &q->node, f->rhash_params);
312 	if (*prev) {
313 		q->flags |= INET_FRAG_COMPLETE;
314 		inet_frag_kill(q);
315 		inet_frag_destroy(q);
316 		return NULL;
317 	}
318 	return q;
319 }
320 
321 /* TODO : call from rcu_read_lock() and no longer use refcount_inc_not_zero() */
inet_frag_find(struct fqdir * fqdir,void * key)322 struct inet_frag_queue *inet_frag_find(struct fqdir *fqdir, void *key)
323 {
324 	struct inet_frag_queue *fq = NULL, *prev;
325 
326 	if (!fqdir->high_thresh || frag_mem_limit(fqdir) > fqdir->high_thresh)
327 		return NULL;
328 
329 	rcu_read_lock();
330 
331 	prev = rhashtable_lookup(&fqdir->rhashtable, key, fqdir->f->rhash_params);
332 	if (!prev)
333 		fq = inet_frag_create(fqdir, key, &prev);
334 	if (!IS_ERR_OR_NULL(prev)) {
335 		fq = prev;
336 		if (!refcount_inc_not_zero(&fq->refcnt))
337 			fq = NULL;
338 	}
339 	rcu_read_unlock();
340 	return fq;
341 }
342 EXPORT_SYMBOL(inet_frag_find);
343 
inet_frag_queue_insert(struct inet_frag_queue * q,struct sk_buff * skb,int offset,int end)344 int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb,
345 			   int offset, int end)
346 {
347 	struct sk_buff *last = q->fragments_tail;
348 
349 	/* RFC5722, Section 4, amended by Errata ID : 3089
350 	 *                          When reassembling an IPv6 datagram, if
351 	 *   one or more its constituent fragments is determined to be an
352 	 *   overlapping fragment, the entire datagram (and any constituent
353 	 *   fragments) MUST be silently discarded.
354 	 *
355 	 * Duplicates, however, should be ignored (i.e. skb dropped, but the
356 	 * queue/fragments kept for later reassembly).
357 	 */
358 	if (!last)
359 		fragrun_create(q, skb);  /* First fragment. */
360 	else if (last->ip_defrag_offset + last->len < end) {
361 		/* This is the common case: skb goes to the end. */
362 		/* Detect and discard overlaps. */
363 		if (offset < last->ip_defrag_offset + last->len)
364 			return IPFRAG_OVERLAP;
365 		if (offset == last->ip_defrag_offset + last->len)
366 			fragrun_append_to_last(q, skb);
367 		else
368 			fragrun_create(q, skb);
369 	} else {
370 		/* Binary search. Note that skb can become the first fragment,
371 		 * but not the last (covered above).
372 		 */
373 		struct rb_node **rbn, *parent;
374 
375 		rbn = &q->rb_fragments.rb_node;
376 		do {
377 			struct sk_buff *curr;
378 			int curr_run_end;
379 
380 			parent = *rbn;
381 			curr = rb_to_skb(parent);
382 			curr_run_end = curr->ip_defrag_offset +
383 					FRAG_CB(curr)->frag_run_len;
384 			if (end <= curr->ip_defrag_offset)
385 				rbn = &parent->rb_left;
386 			else if (offset >= curr_run_end)
387 				rbn = &parent->rb_right;
388 			else if (offset >= curr->ip_defrag_offset &&
389 				 end <= curr_run_end)
390 				return IPFRAG_DUP;
391 			else
392 				return IPFRAG_OVERLAP;
393 		} while (*rbn);
394 		/* Here we have parent properly set, and rbn pointing to
395 		 * one of its NULL left/right children. Insert skb.
396 		 */
397 		fragcb_clear(skb);
398 		rb_link_node(&skb->rbnode, parent, rbn);
399 		rb_insert_color(&skb->rbnode, &q->rb_fragments);
400 	}
401 
402 	skb->ip_defrag_offset = offset;
403 
404 	return IPFRAG_OK;
405 }
406 EXPORT_SYMBOL(inet_frag_queue_insert);
407 
inet_frag_reasm_prepare(struct inet_frag_queue * q,struct sk_buff * skb,struct sk_buff * parent)408 void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb,
409 			      struct sk_buff *parent)
410 {
411 	struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments);
412 	struct sk_buff **nextp;
413 	int delta;
414 
415 	if (head != skb) {
416 		fp = skb_clone(skb, GFP_ATOMIC);
417 		if (!fp)
418 			return NULL;
419 		FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
420 		if (RB_EMPTY_NODE(&skb->rbnode))
421 			FRAG_CB(parent)->next_frag = fp;
422 		else
423 			rb_replace_node(&skb->rbnode, &fp->rbnode,
424 					&q->rb_fragments);
425 		if (q->fragments_tail == skb)
426 			q->fragments_tail = fp;
427 		skb_morph(skb, head);
428 		FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
429 		rb_replace_node(&head->rbnode, &skb->rbnode,
430 				&q->rb_fragments);
431 		consume_skb(head);
432 		head = skb;
433 	}
434 	WARN_ON(head->ip_defrag_offset != 0);
435 
436 	delta = -head->truesize;
437 
438 	/* Head of list must not be cloned. */
439 	if (skb_unclone(head, GFP_ATOMIC))
440 		return NULL;
441 
442 	delta += head->truesize;
443 	if (delta)
444 		add_frag_mem_limit(q->fqdir, delta);
445 
446 	/* If the first fragment is fragmented itself, we split
447 	 * it to two chunks: the first with data and paged part
448 	 * and the second, holding only fragments.
449 	 */
450 	if (skb_has_frag_list(head)) {
451 		struct sk_buff *clone;
452 		int i, plen = 0;
453 
454 		clone = alloc_skb(0, GFP_ATOMIC);
455 		if (!clone)
456 			return NULL;
457 		skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
458 		skb_frag_list_init(head);
459 		for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
460 			plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
461 		clone->data_len = head->data_len - plen;
462 		clone->len = clone->data_len;
463 		head->truesize += clone->truesize;
464 		clone->csum = 0;
465 		clone->ip_summed = head->ip_summed;
466 		add_frag_mem_limit(q->fqdir, clone->truesize);
467 		skb_shinfo(head)->frag_list = clone;
468 		nextp = &clone->next;
469 	} else {
470 		nextp = &skb_shinfo(head)->frag_list;
471 	}
472 
473 	return nextp;
474 }
475 EXPORT_SYMBOL(inet_frag_reasm_prepare);
476 
inet_frag_reasm_finish(struct inet_frag_queue * q,struct sk_buff * head,void * reasm_data,bool try_coalesce)477 void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head,
478 			    void *reasm_data, bool try_coalesce)
479 {
480 	struct sk_buff **nextp = (struct sk_buff **)reasm_data;
481 	struct rb_node *rbn;
482 	struct sk_buff *fp;
483 	int sum_truesize;
484 
485 	skb_push(head, head->data - skb_network_header(head));
486 
487 	/* Traverse the tree in order, to build frag_list. */
488 	fp = FRAG_CB(head)->next_frag;
489 	rbn = rb_next(&head->rbnode);
490 	rb_erase(&head->rbnode, &q->rb_fragments);
491 
492 	sum_truesize = head->truesize;
493 	while (rbn || fp) {
494 		/* fp points to the next sk_buff in the current run;
495 		 * rbn points to the next run.
496 		 */
497 		/* Go through the current run. */
498 		while (fp) {
499 			struct sk_buff *next_frag = FRAG_CB(fp)->next_frag;
500 			bool stolen;
501 			int delta;
502 
503 			sum_truesize += fp->truesize;
504 			if (head->ip_summed != fp->ip_summed)
505 				head->ip_summed = CHECKSUM_NONE;
506 			else if (head->ip_summed == CHECKSUM_COMPLETE)
507 				head->csum = csum_add(head->csum, fp->csum);
508 
509 			if (try_coalesce && skb_try_coalesce(head, fp, &stolen,
510 							     &delta)) {
511 				kfree_skb_partial(fp, stolen);
512 			} else {
513 				fp->prev = NULL;
514 				memset(&fp->rbnode, 0, sizeof(fp->rbnode));
515 				fp->sk = NULL;
516 
517 				head->data_len += fp->len;
518 				head->len += fp->len;
519 				head->truesize += fp->truesize;
520 
521 				*nextp = fp;
522 				nextp = &fp->next;
523 			}
524 
525 			fp = next_frag;
526 		}
527 		/* Move to the next run. */
528 		if (rbn) {
529 			struct rb_node *rbnext = rb_next(rbn);
530 
531 			fp = rb_to_skb(rbn);
532 			rb_erase(rbn, &q->rb_fragments);
533 			rbn = rbnext;
534 		}
535 	}
536 	sub_frag_mem_limit(q->fqdir, sum_truesize);
537 
538 	*nextp = NULL;
539 	skb_mark_not_on_list(head);
540 	head->prev = NULL;
541 	head->tstamp = q->stamp;
542 }
543 EXPORT_SYMBOL(inet_frag_reasm_finish);
544 
inet_frag_pull_head(struct inet_frag_queue * q)545 struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q)
546 {
547 	struct sk_buff *head, *skb;
548 
549 	head = skb_rb_first(&q->rb_fragments);
550 	if (!head)
551 		return NULL;
552 	skb = FRAG_CB(head)->next_frag;
553 	if (skb)
554 		rb_replace_node(&head->rbnode, &skb->rbnode,
555 				&q->rb_fragments);
556 	else
557 		rb_erase(&head->rbnode, &q->rb_fragments);
558 	memset(&head->rbnode, 0, sizeof(head->rbnode));
559 	barrier();
560 
561 	if (head == q->fragments_tail)
562 		q->fragments_tail = NULL;
563 
564 	sub_frag_mem_limit(q->fqdir, head->truesize);
565 
566 	return head;
567 }
568 EXPORT_SYMBOL(inet_frag_pull_head);
569