1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
26 * : AF independence
27 *
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
35 *
36 */
37
38 #define pr_fmt(fmt) "TCP: " fmt
39
40 #include <net/tcp.h>
41
42 #include <linux/compiler.h>
43 #include <linux/gfp.h>
44 #include <linux/module.h>
45 #include <linux/static_key.h>
46
47 #include <trace/events/tcp.h>
48
49 /* Refresh clocks of a TCP socket,
50 * ensuring monotically increasing values.
51 */
tcp_mstamp_refresh(struct tcp_sock * tp)52 void tcp_mstamp_refresh(struct tcp_sock *tp)
53 {
54 u64 val = tcp_clock_ns();
55
56 tp->tcp_clock_cache = val;
57 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
58 }
59
60 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
61 int push_one, gfp_t gfp);
62
63 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)64 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
65 {
66 struct inet_connection_sock *icsk = inet_csk(sk);
67 struct tcp_sock *tp = tcp_sk(sk);
68 unsigned int prior_packets = tp->packets_out;
69
70 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
71
72 __skb_unlink(skb, &sk->sk_write_queue);
73 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
74
75 if (tp->highest_sack == NULL)
76 tp->highest_sack = skb;
77
78 tp->packets_out += tcp_skb_pcount(skb);
79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 tcp_rearm_rto(sk);
81
82 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 tcp_skb_pcount(skb));
84 }
85
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87 * window scaling factor due to loss of precision.
88 * If window has been shrunk, what should we make? It is not clear at all.
89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91 * invalid. OK, let's make this for now:
92 */
tcp_acceptable_seq(const struct sock * sk)93 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
94 {
95 const struct tcp_sock *tp = tcp_sk(sk);
96
97 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
98 (tp->rx_opt.wscale_ok &&
99 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
100 return tp->snd_nxt;
101 else
102 return tcp_wnd_end(tp);
103 }
104
105 /* Calculate mss to advertise in SYN segment.
106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
107 *
108 * 1. It is independent of path mtu.
109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111 * attached devices, because some buggy hosts are confused by
112 * large MSS.
113 * 4. We do not make 3, we advertise MSS, calculated from first
114 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
115 * This may be overridden via information stored in routing table.
116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117 * probably even Jumbo".
118 */
tcp_advertise_mss(struct sock * sk)119 static __u16 tcp_advertise_mss(struct sock *sk)
120 {
121 struct tcp_sock *tp = tcp_sk(sk);
122 const struct dst_entry *dst = __sk_dst_get(sk);
123 int mss = tp->advmss;
124
125 if (dst) {
126 unsigned int metric = dst_metric_advmss(dst);
127
128 if (metric < mss) {
129 mss = metric;
130 tp->advmss = mss;
131 }
132 }
133
134 return (__u16)mss;
135 }
136
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138 * This is the first part of cwnd validation mechanism.
139 */
tcp_cwnd_restart(struct sock * sk,s32 delta)140 void tcp_cwnd_restart(struct sock *sk, s32 delta)
141 {
142 struct tcp_sock *tp = tcp_sk(sk);
143 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
144 u32 cwnd = tp->snd_cwnd;
145
146 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
147
148 tp->snd_ssthresh = tcp_current_ssthresh(sk);
149 restart_cwnd = min(restart_cwnd, cwnd);
150
151 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
152 cwnd >>= 1;
153 tp->snd_cwnd = max(cwnd, restart_cwnd);
154 tp->snd_cwnd_stamp = tcp_jiffies32;
155 tp->snd_cwnd_used = 0;
156 }
157
158 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)159 static void tcp_event_data_sent(struct tcp_sock *tp,
160 struct sock *sk)
161 {
162 struct inet_connection_sock *icsk = inet_csk(sk);
163 const u32 now = tcp_jiffies32;
164
165 if (tcp_packets_in_flight(tp) == 0)
166 tcp_ca_event(sk, CA_EVENT_TX_START);
167
168 /* If this is the first data packet sent in response to the
169 * previous received data,
170 * and it is a reply for ato after last received packet,
171 * increase pingpong count.
172 */
173 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
174 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
175 inet_csk_inc_pingpong_cnt(sk);
176
177 tp->lsndtime = now;
178 }
179
180 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,unsigned int pkts,u32 rcv_nxt)181 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
182 u32 rcv_nxt)
183 {
184 struct tcp_sock *tp = tcp_sk(sk);
185
186 if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) {
187 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
188 tp->compressed_ack - TCP_FASTRETRANS_THRESH);
189 tp->compressed_ack = TCP_FASTRETRANS_THRESH;
190 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
191 __sock_put(sk);
192 }
193
194 if (unlikely(rcv_nxt != tp->rcv_nxt))
195 return; /* Special ACK sent by DCTCP to reflect ECN */
196 tcp_dec_quickack_mode(sk, pkts);
197 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
198 }
199
200 /* Determine a window scaling and initial window to offer.
201 * Based on the assumption that the given amount of space
202 * will be offered. Store the results in the tp structure.
203 * NOTE: for smooth operation initial space offering should
204 * be a multiple of mss if possible. We assume here that mss >= 1.
205 * This MUST be enforced by all callers.
206 */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)207 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
208 __u32 *rcv_wnd, __u32 *window_clamp,
209 int wscale_ok, __u8 *rcv_wscale,
210 __u32 init_rcv_wnd)
211 {
212 unsigned int space = (__space < 0 ? 0 : __space);
213
214 /* If no clamp set the clamp to the max possible scaled window */
215 if (*window_clamp == 0)
216 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
217 space = min(*window_clamp, space);
218
219 /* Quantize space offering to a multiple of mss if possible. */
220 if (space > mss)
221 space = rounddown(space, mss);
222
223 /* NOTE: offering an initial window larger than 32767
224 * will break some buggy TCP stacks. If the admin tells us
225 * it is likely we could be speaking with such a buggy stack
226 * we will truncate our initial window offering to 32K-1
227 * unless the remote has sent us a window scaling option,
228 * which we interpret as a sign the remote TCP is not
229 * misinterpreting the window field as a signed quantity.
230 */
231 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
232 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
233 else
234 (*rcv_wnd) = min_t(u32, space, U16_MAX);
235
236 if (init_rcv_wnd)
237 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
238
239 *rcv_wscale = 0;
240 if (wscale_ok) {
241 /* Set window scaling on max possible window */
242 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
243 space = max_t(u32, space, sysctl_rmem_max);
244 space = min_t(u32, space, *window_clamp);
245 *rcv_wscale = clamp_t(int, ilog2(space) - 15,
246 0, TCP_MAX_WSCALE);
247 }
248 /* Set the clamp no higher than max representable value */
249 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
250 }
251 EXPORT_SYMBOL(tcp_select_initial_window);
252
253 /* Chose a new window to advertise, update state in tcp_sock for the
254 * socket, and return result with RFC1323 scaling applied. The return
255 * value can be stuffed directly into th->window for an outgoing
256 * frame.
257 */
tcp_select_window(struct sock * sk)258 static u16 tcp_select_window(struct sock *sk)
259 {
260 struct tcp_sock *tp = tcp_sk(sk);
261 u32 old_win = tp->rcv_wnd;
262 u32 cur_win = tcp_receive_window(tp);
263 u32 new_win = __tcp_select_window(sk);
264
265 /* Never shrink the offered window */
266 if (new_win < cur_win) {
267 /* Danger Will Robinson!
268 * Don't update rcv_wup/rcv_wnd here or else
269 * we will not be able to advertise a zero
270 * window in time. --DaveM
271 *
272 * Relax Will Robinson.
273 */
274 if (new_win == 0)
275 NET_INC_STATS(sock_net(sk),
276 LINUX_MIB_TCPWANTZEROWINDOWADV);
277 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
278 }
279 tp->rcv_wnd = new_win;
280 tp->rcv_wup = tp->rcv_nxt;
281
282 /* Make sure we do not exceed the maximum possible
283 * scaled window.
284 */
285 if (!tp->rx_opt.rcv_wscale &&
286 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
287 new_win = min(new_win, MAX_TCP_WINDOW);
288 else
289 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
290
291 /* RFC1323 scaling applied */
292 new_win >>= tp->rx_opt.rcv_wscale;
293
294 /* If we advertise zero window, disable fast path. */
295 if (new_win == 0) {
296 tp->pred_flags = 0;
297 if (old_win)
298 NET_INC_STATS(sock_net(sk),
299 LINUX_MIB_TCPTOZEROWINDOWADV);
300 } else if (old_win == 0) {
301 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
302 }
303
304 return new_win;
305 }
306
307 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)308 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
309 {
310 const struct tcp_sock *tp = tcp_sk(sk);
311
312 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
313 if (!(tp->ecn_flags & TCP_ECN_OK))
314 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
315 else if (tcp_ca_needs_ecn(sk) ||
316 tcp_bpf_ca_needs_ecn(sk))
317 INET_ECN_xmit(sk);
318 }
319
320 /* Packet ECN state for a SYN. */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)321 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
322 {
323 struct tcp_sock *tp = tcp_sk(sk);
324 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
325 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
326 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
327
328 if (!use_ecn) {
329 const struct dst_entry *dst = __sk_dst_get(sk);
330
331 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
332 use_ecn = true;
333 }
334
335 tp->ecn_flags = 0;
336
337 if (use_ecn) {
338 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
339 tp->ecn_flags = TCP_ECN_OK;
340 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
341 INET_ECN_xmit(sk);
342 }
343 }
344
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)345 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
346 {
347 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
348 /* tp->ecn_flags are cleared at a later point in time when
349 * SYN ACK is ultimatively being received.
350 */
351 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
352 }
353
354 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)355 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
356 {
357 if (inet_rsk(req)->ecn_ok)
358 th->ece = 1;
359 }
360
361 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
362 * be sent.
363 */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)364 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
365 struct tcphdr *th, int tcp_header_len)
366 {
367 struct tcp_sock *tp = tcp_sk(sk);
368
369 if (tp->ecn_flags & TCP_ECN_OK) {
370 /* Not-retransmitted data segment: set ECT and inject CWR. */
371 if (skb->len != tcp_header_len &&
372 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
373 INET_ECN_xmit(sk);
374 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
375 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
376 th->cwr = 1;
377 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
378 }
379 } else if (!tcp_ca_needs_ecn(sk)) {
380 /* ACK or retransmitted segment: clear ECT|CE */
381 INET_ECN_dontxmit(sk);
382 }
383 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
384 th->ece = 1;
385 }
386 }
387
388 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
389 * auto increment end seqno.
390 */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)391 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
392 {
393 skb->ip_summed = CHECKSUM_PARTIAL;
394
395 TCP_SKB_CB(skb)->tcp_flags = flags;
396 TCP_SKB_CB(skb)->sacked = 0;
397
398 tcp_skb_pcount_set(skb, 1);
399
400 TCP_SKB_CB(skb)->seq = seq;
401 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
402 seq++;
403 TCP_SKB_CB(skb)->end_seq = seq;
404 }
405
tcp_urg_mode(const struct tcp_sock * tp)406 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
407 {
408 return tp->snd_una != tp->snd_up;
409 }
410
411 #define OPTION_SACK_ADVERTISE (1 << 0)
412 #define OPTION_TS (1 << 1)
413 #define OPTION_MD5 (1 << 2)
414 #define OPTION_WSCALE (1 << 3)
415 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
416 #define OPTION_SMC (1 << 9)
417
smc_options_write(__be32 * ptr,u16 * options)418 static void smc_options_write(__be32 *ptr, u16 *options)
419 {
420 #if IS_ENABLED(CONFIG_SMC)
421 if (static_branch_unlikely(&tcp_have_smc)) {
422 if (unlikely(OPTION_SMC & *options)) {
423 *ptr++ = htonl((TCPOPT_NOP << 24) |
424 (TCPOPT_NOP << 16) |
425 (TCPOPT_EXP << 8) |
426 (TCPOLEN_EXP_SMC_BASE));
427 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
428 }
429 }
430 #endif
431 }
432
433 struct tcp_out_options {
434 u16 options; /* bit field of OPTION_* */
435 u16 mss; /* 0 to disable */
436 u8 ws; /* window scale, 0 to disable */
437 u8 num_sack_blocks; /* number of SACK blocks to include */
438 u8 hash_size; /* bytes in hash_location */
439 __u8 *hash_location; /* temporary pointer, overloaded */
440 __u32 tsval, tsecr; /* need to include OPTION_TS */
441 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
442 };
443
444 /* Write previously computed TCP options to the packet.
445 *
446 * Beware: Something in the Internet is very sensitive to the ordering of
447 * TCP options, we learned this through the hard way, so be careful here.
448 * Luckily we can at least blame others for their non-compliance but from
449 * inter-operability perspective it seems that we're somewhat stuck with
450 * the ordering which we have been using if we want to keep working with
451 * those broken things (not that it currently hurts anybody as there isn't
452 * particular reason why the ordering would need to be changed).
453 *
454 * At least SACK_PERM as the first option is known to lead to a disaster
455 * (but it may well be that other scenarios fail similarly).
456 */
tcp_options_write(__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)457 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
458 struct tcp_out_options *opts)
459 {
460 u16 options = opts->options; /* mungable copy */
461
462 if (unlikely(OPTION_MD5 & options)) {
463 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
464 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
465 /* overload cookie hash location */
466 opts->hash_location = (__u8 *)ptr;
467 ptr += 4;
468 }
469
470 if (unlikely(opts->mss)) {
471 *ptr++ = htonl((TCPOPT_MSS << 24) |
472 (TCPOLEN_MSS << 16) |
473 opts->mss);
474 }
475
476 if (likely(OPTION_TS & options)) {
477 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
478 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
479 (TCPOLEN_SACK_PERM << 16) |
480 (TCPOPT_TIMESTAMP << 8) |
481 TCPOLEN_TIMESTAMP);
482 options &= ~OPTION_SACK_ADVERTISE;
483 } else {
484 *ptr++ = htonl((TCPOPT_NOP << 24) |
485 (TCPOPT_NOP << 16) |
486 (TCPOPT_TIMESTAMP << 8) |
487 TCPOLEN_TIMESTAMP);
488 }
489 *ptr++ = htonl(opts->tsval);
490 *ptr++ = htonl(opts->tsecr);
491 }
492
493 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
494 *ptr++ = htonl((TCPOPT_NOP << 24) |
495 (TCPOPT_NOP << 16) |
496 (TCPOPT_SACK_PERM << 8) |
497 TCPOLEN_SACK_PERM);
498 }
499
500 if (unlikely(OPTION_WSCALE & options)) {
501 *ptr++ = htonl((TCPOPT_NOP << 24) |
502 (TCPOPT_WINDOW << 16) |
503 (TCPOLEN_WINDOW << 8) |
504 opts->ws);
505 }
506
507 if (unlikely(opts->num_sack_blocks)) {
508 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
509 tp->duplicate_sack : tp->selective_acks;
510 int this_sack;
511
512 *ptr++ = htonl((TCPOPT_NOP << 24) |
513 (TCPOPT_NOP << 16) |
514 (TCPOPT_SACK << 8) |
515 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
516 TCPOLEN_SACK_PERBLOCK)));
517
518 for (this_sack = 0; this_sack < opts->num_sack_blocks;
519 ++this_sack) {
520 *ptr++ = htonl(sp[this_sack].start_seq);
521 *ptr++ = htonl(sp[this_sack].end_seq);
522 }
523
524 tp->rx_opt.dsack = 0;
525 }
526
527 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
528 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
529 u8 *p = (u8 *)ptr;
530 u32 len; /* Fast Open option length */
531
532 if (foc->exp) {
533 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
534 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
535 TCPOPT_FASTOPEN_MAGIC);
536 p += TCPOLEN_EXP_FASTOPEN_BASE;
537 } else {
538 len = TCPOLEN_FASTOPEN_BASE + foc->len;
539 *p++ = TCPOPT_FASTOPEN;
540 *p++ = len;
541 }
542
543 memcpy(p, foc->val, foc->len);
544 if ((len & 3) == 2) {
545 p[foc->len] = TCPOPT_NOP;
546 p[foc->len + 1] = TCPOPT_NOP;
547 }
548 ptr += (len + 3) >> 2;
549 }
550
551 smc_options_write(ptr, &options);
552 }
553
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)554 static void smc_set_option(const struct tcp_sock *tp,
555 struct tcp_out_options *opts,
556 unsigned int *remaining)
557 {
558 #if IS_ENABLED(CONFIG_SMC)
559 if (static_branch_unlikely(&tcp_have_smc)) {
560 if (tp->syn_smc) {
561 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
562 opts->options |= OPTION_SMC;
563 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
564 }
565 }
566 }
567 #endif
568 }
569
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)570 static void smc_set_option_cond(const struct tcp_sock *tp,
571 const struct inet_request_sock *ireq,
572 struct tcp_out_options *opts,
573 unsigned int *remaining)
574 {
575 #if IS_ENABLED(CONFIG_SMC)
576 if (static_branch_unlikely(&tcp_have_smc)) {
577 if (tp->syn_smc && ireq->smc_ok) {
578 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
579 opts->options |= OPTION_SMC;
580 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
581 }
582 }
583 }
584 #endif
585 }
586
587 /* Compute TCP options for SYN packets. This is not the final
588 * network wire format yet.
589 */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)590 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
591 struct tcp_out_options *opts,
592 struct tcp_md5sig_key **md5)
593 {
594 struct tcp_sock *tp = tcp_sk(sk);
595 unsigned int remaining = MAX_TCP_OPTION_SPACE;
596 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
597
598 *md5 = NULL;
599 #ifdef CONFIG_TCP_MD5SIG
600 if (static_branch_unlikely(&tcp_md5_needed) &&
601 rcu_access_pointer(tp->md5sig_info)) {
602 *md5 = tp->af_specific->md5_lookup(sk, sk);
603 if (*md5) {
604 opts->options |= OPTION_MD5;
605 remaining -= TCPOLEN_MD5SIG_ALIGNED;
606 }
607 }
608 #endif
609
610 /* We always get an MSS option. The option bytes which will be seen in
611 * normal data packets should timestamps be used, must be in the MSS
612 * advertised. But we subtract them from tp->mss_cache so that
613 * calculations in tcp_sendmsg are simpler etc. So account for this
614 * fact here if necessary. If we don't do this correctly, as a
615 * receiver we won't recognize data packets as being full sized when we
616 * should, and thus we won't abide by the delayed ACK rules correctly.
617 * SACKs don't matter, we never delay an ACK when we have any of those
618 * going out. */
619 opts->mss = tcp_advertise_mss(sk);
620 remaining -= TCPOLEN_MSS_ALIGNED;
621
622 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
623 opts->options |= OPTION_TS;
624 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
625 opts->tsecr = tp->rx_opt.ts_recent;
626 remaining -= TCPOLEN_TSTAMP_ALIGNED;
627 }
628 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
629 opts->ws = tp->rx_opt.rcv_wscale;
630 opts->options |= OPTION_WSCALE;
631 remaining -= TCPOLEN_WSCALE_ALIGNED;
632 }
633 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
634 opts->options |= OPTION_SACK_ADVERTISE;
635 if (unlikely(!(OPTION_TS & opts->options)))
636 remaining -= TCPOLEN_SACKPERM_ALIGNED;
637 }
638
639 if (fastopen && fastopen->cookie.len >= 0) {
640 u32 need = fastopen->cookie.len;
641
642 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
643 TCPOLEN_FASTOPEN_BASE;
644 need = (need + 3) & ~3U; /* Align to 32 bits */
645 if (remaining >= need) {
646 opts->options |= OPTION_FAST_OPEN_COOKIE;
647 opts->fastopen_cookie = &fastopen->cookie;
648 remaining -= need;
649 tp->syn_fastopen = 1;
650 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
651 }
652 }
653
654 smc_set_option(tp, opts, &remaining);
655
656 return MAX_TCP_OPTION_SPACE - remaining;
657 }
658
659 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_md5sig_key * md5,struct tcp_fastopen_cookie * foc)660 static unsigned int tcp_synack_options(const struct sock *sk,
661 struct request_sock *req,
662 unsigned int mss, struct sk_buff *skb,
663 struct tcp_out_options *opts,
664 const struct tcp_md5sig_key *md5,
665 struct tcp_fastopen_cookie *foc)
666 {
667 struct inet_request_sock *ireq = inet_rsk(req);
668 unsigned int remaining = MAX_TCP_OPTION_SPACE;
669
670 #ifdef CONFIG_TCP_MD5SIG
671 if (md5) {
672 opts->options |= OPTION_MD5;
673 remaining -= TCPOLEN_MD5SIG_ALIGNED;
674
675 /* We can't fit any SACK blocks in a packet with MD5 + TS
676 * options. There was discussion about disabling SACK
677 * rather than TS in order to fit in better with old,
678 * buggy kernels, but that was deemed to be unnecessary.
679 */
680 ireq->tstamp_ok &= !ireq->sack_ok;
681 }
682 #endif
683
684 /* We always send an MSS option. */
685 opts->mss = mss;
686 remaining -= TCPOLEN_MSS_ALIGNED;
687
688 if (likely(ireq->wscale_ok)) {
689 opts->ws = ireq->rcv_wscale;
690 opts->options |= OPTION_WSCALE;
691 remaining -= TCPOLEN_WSCALE_ALIGNED;
692 }
693 if (likely(ireq->tstamp_ok)) {
694 opts->options |= OPTION_TS;
695 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
696 opts->tsecr = req->ts_recent;
697 remaining -= TCPOLEN_TSTAMP_ALIGNED;
698 }
699 if (likely(ireq->sack_ok)) {
700 opts->options |= OPTION_SACK_ADVERTISE;
701 if (unlikely(!ireq->tstamp_ok))
702 remaining -= TCPOLEN_SACKPERM_ALIGNED;
703 }
704 if (foc != NULL && foc->len >= 0) {
705 u32 need = foc->len;
706
707 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
708 TCPOLEN_FASTOPEN_BASE;
709 need = (need + 3) & ~3U; /* Align to 32 bits */
710 if (remaining >= need) {
711 opts->options |= OPTION_FAST_OPEN_COOKIE;
712 opts->fastopen_cookie = foc;
713 remaining -= need;
714 }
715 }
716
717 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
718
719 return MAX_TCP_OPTION_SPACE - remaining;
720 }
721
722 /* Compute TCP options for ESTABLISHED sockets. This is not the
723 * final wire format yet.
724 */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)725 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
726 struct tcp_out_options *opts,
727 struct tcp_md5sig_key **md5)
728 {
729 struct tcp_sock *tp = tcp_sk(sk);
730 unsigned int size = 0;
731 unsigned int eff_sacks;
732
733 opts->options = 0;
734
735 *md5 = NULL;
736 #ifdef CONFIG_TCP_MD5SIG
737 if (static_branch_unlikely(&tcp_md5_needed) &&
738 rcu_access_pointer(tp->md5sig_info)) {
739 *md5 = tp->af_specific->md5_lookup(sk, sk);
740 if (*md5) {
741 opts->options |= OPTION_MD5;
742 size += TCPOLEN_MD5SIG_ALIGNED;
743 }
744 }
745 #endif
746
747 if (likely(tp->rx_opt.tstamp_ok)) {
748 opts->options |= OPTION_TS;
749 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
750 opts->tsecr = tp->rx_opt.ts_recent;
751 size += TCPOLEN_TSTAMP_ALIGNED;
752 }
753
754 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
755 if (unlikely(eff_sacks)) {
756 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
757 opts->num_sack_blocks =
758 min_t(unsigned int, eff_sacks,
759 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
760 TCPOLEN_SACK_PERBLOCK);
761 if (likely(opts->num_sack_blocks))
762 size += TCPOLEN_SACK_BASE_ALIGNED +
763 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
764 }
765
766 return size;
767 }
768
769
770 /* TCP SMALL QUEUES (TSQ)
771 *
772 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
773 * to reduce RTT and bufferbloat.
774 * We do this using a special skb destructor (tcp_wfree).
775 *
776 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
777 * needs to be reallocated in a driver.
778 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
779 *
780 * Since transmit from skb destructor is forbidden, we use a tasklet
781 * to process all sockets that eventually need to send more skbs.
782 * We use one tasklet per cpu, with its own queue of sockets.
783 */
784 struct tsq_tasklet {
785 struct tasklet_struct tasklet;
786 struct list_head head; /* queue of tcp sockets */
787 };
788 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
789
tcp_tsq_write(struct sock * sk)790 static void tcp_tsq_write(struct sock *sk)
791 {
792 if ((1 << sk->sk_state) &
793 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
794 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
795 struct tcp_sock *tp = tcp_sk(sk);
796
797 if (tp->lost_out > tp->retrans_out &&
798 tp->snd_cwnd > tcp_packets_in_flight(tp)) {
799 tcp_mstamp_refresh(tp);
800 tcp_xmit_retransmit_queue(sk);
801 }
802
803 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
804 0, GFP_ATOMIC);
805 }
806 }
807
tcp_tsq_handler(struct sock * sk)808 static void tcp_tsq_handler(struct sock *sk)
809 {
810 bh_lock_sock(sk);
811 if (!sock_owned_by_user(sk))
812 tcp_tsq_write(sk);
813 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
814 sock_hold(sk);
815 bh_unlock_sock(sk);
816 }
817 /*
818 * One tasklet per cpu tries to send more skbs.
819 * We run in tasklet context but need to disable irqs when
820 * transferring tsq->head because tcp_wfree() might
821 * interrupt us (non NAPI drivers)
822 */
tcp_tasklet_func(unsigned long data)823 static void tcp_tasklet_func(unsigned long data)
824 {
825 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
826 LIST_HEAD(list);
827 unsigned long flags;
828 struct list_head *q, *n;
829 struct tcp_sock *tp;
830 struct sock *sk;
831
832 local_irq_save(flags);
833 list_splice_init(&tsq->head, &list);
834 local_irq_restore(flags);
835
836 list_for_each_safe(q, n, &list) {
837 tp = list_entry(q, struct tcp_sock, tsq_node);
838 list_del(&tp->tsq_node);
839
840 sk = (struct sock *)tp;
841 smp_mb__before_atomic();
842 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
843
844 tcp_tsq_handler(sk);
845 sk_free(sk);
846 }
847 }
848
849 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
850 TCPF_WRITE_TIMER_DEFERRED | \
851 TCPF_DELACK_TIMER_DEFERRED | \
852 TCPF_MTU_REDUCED_DEFERRED)
853 /**
854 * tcp_release_cb - tcp release_sock() callback
855 * @sk: socket
856 *
857 * called from release_sock() to perform protocol dependent
858 * actions before socket release.
859 */
tcp_release_cb(struct sock * sk)860 void tcp_release_cb(struct sock *sk)
861 {
862 unsigned long flags, nflags;
863
864 /* perform an atomic operation only if at least one flag is set */
865 do {
866 flags = sk->sk_tsq_flags;
867 if (!(flags & TCP_DEFERRED_ALL))
868 return;
869 nflags = flags & ~TCP_DEFERRED_ALL;
870 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
871
872 if (flags & TCPF_TSQ_DEFERRED) {
873 tcp_tsq_write(sk);
874 __sock_put(sk);
875 }
876 /* Here begins the tricky part :
877 * We are called from release_sock() with :
878 * 1) BH disabled
879 * 2) sk_lock.slock spinlock held
880 * 3) socket owned by us (sk->sk_lock.owned == 1)
881 *
882 * But following code is meant to be called from BH handlers,
883 * so we should keep BH disabled, but early release socket ownership
884 */
885 sock_release_ownership(sk);
886
887 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
888 tcp_write_timer_handler(sk);
889 __sock_put(sk);
890 }
891 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
892 tcp_delack_timer_handler(sk);
893 __sock_put(sk);
894 }
895 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
896 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
897 __sock_put(sk);
898 }
899 }
900 EXPORT_SYMBOL(tcp_release_cb);
901
tcp_tasklet_init(void)902 void __init tcp_tasklet_init(void)
903 {
904 int i;
905
906 for_each_possible_cpu(i) {
907 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
908
909 INIT_LIST_HEAD(&tsq->head);
910 tasklet_init(&tsq->tasklet,
911 tcp_tasklet_func,
912 (unsigned long)tsq);
913 }
914 }
915
916 /*
917 * Write buffer destructor automatically called from kfree_skb.
918 * We can't xmit new skbs from this context, as we might already
919 * hold qdisc lock.
920 */
tcp_wfree(struct sk_buff * skb)921 void tcp_wfree(struct sk_buff *skb)
922 {
923 struct sock *sk = skb->sk;
924 struct tcp_sock *tp = tcp_sk(sk);
925 unsigned long flags, nval, oval;
926
927 /* Keep one reference on sk_wmem_alloc.
928 * Will be released by sk_free() from here or tcp_tasklet_func()
929 */
930 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
931
932 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
933 * Wait until our queues (qdisc + devices) are drained.
934 * This gives :
935 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
936 * - chance for incoming ACK (processed by another cpu maybe)
937 * to migrate this flow (skb->ooo_okay will be eventually set)
938 */
939 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
940 goto out;
941
942 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
943 struct tsq_tasklet *tsq;
944 bool empty;
945
946 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
947 goto out;
948
949 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
950 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
951 if (nval != oval)
952 continue;
953
954 /* queue this socket to tasklet queue */
955 local_irq_save(flags);
956 tsq = this_cpu_ptr(&tsq_tasklet);
957 empty = list_empty(&tsq->head);
958 list_add(&tp->tsq_node, &tsq->head);
959 if (empty)
960 tasklet_schedule(&tsq->tasklet);
961 local_irq_restore(flags);
962 return;
963 }
964 out:
965 sk_free(sk);
966 }
967
968 /* Note: Called under soft irq.
969 * We can call TCP stack right away, unless socket is owned by user.
970 */
tcp_pace_kick(struct hrtimer * timer)971 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
972 {
973 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
974 struct sock *sk = (struct sock *)tp;
975
976 tcp_tsq_handler(sk);
977 sock_put(sk);
978
979 return HRTIMER_NORESTART;
980 }
981
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)982 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
983 u64 prior_wstamp)
984 {
985 struct tcp_sock *tp = tcp_sk(sk);
986
987 if (sk->sk_pacing_status != SK_PACING_NONE) {
988 unsigned long rate = sk->sk_pacing_rate;
989
990 /* Original sch_fq does not pace first 10 MSS
991 * Note that tp->data_segs_out overflows after 2^32 packets,
992 * this is a minor annoyance.
993 */
994 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
995 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
996 u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
997
998 /* take into account OS jitter */
999 len_ns -= min_t(u64, len_ns / 2, credit);
1000 tp->tcp_wstamp_ns += len_ns;
1001 }
1002 }
1003 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1004 }
1005
1006 /* This routine actually transmits TCP packets queued in by
1007 * tcp_do_sendmsg(). This is used by both the initial
1008 * transmission and possible later retransmissions.
1009 * All SKB's seen here are completely headerless. It is our
1010 * job to build the TCP header, and pass the packet down to
1011 * IP so it can do the same plus pass the packet off to the
1012 * device.
1013 *
1014 * We are working here with either a clone of the original
1015 * SKB, or a fresh unique copy made by the retransmit engine.
1016 */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1017 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1018 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1019 {
1020 const struct inet_connection_sock *icsk = inet_csk(sk);
1021 struct inet_sock *inet;
1022 struct tcp_sock *tp;
1023 struct tcp_skb_cb *tcb;
1024 struct tcp_out_options opts;
1025 unsigned int tcp_options_size, tcp_header_size;
1026 struct sk_buff *oskb = NULL;
1027 struct tcp_md5sig_key *md5;
1028 struct tcphdr *th;
1029 u64 prior_wstamp;
1030 int err;
1031
1032 BUG_ON(!skb || !tcp_skb_pcount(skb));
1033 tp = tcp_sk(sk);
1034 prior_wstamp = tp->tcp_wstamp_ns;
1035 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1036 skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1037 if (clone_it) {
1038 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1039 - tp->snd_una;
1040 oskb = skb;
1041
1042 tcp_skb_tsorted_save(oskb) {
1043 if (unlikely(skb_cloned(oskb)))
1044 skb = pskb_copy(oskb, gfp_mask);
1045 else
1046 skb = skb_clone(oskb, gfp_mask);
1047 } tcp_skb_tsorted_restore(oskb);
1048
1049 if (unlikely(!skb))
1050 return -ENOBUFS;
1051 }
1052
1053 inet = inet_sk(sk);
1054 tcb = TCP_SKB_CB(skb);
1055 memset(&opts, 0, sizeof(opts));
1056
1057 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1058 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1059 } else {
1060 tcp_options_size = tcp_established_options(sk, skb, &opts,
1061 &md5);
1062 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1063 * at receiver : This slightly improve GRO performance.
1064 * Note that we do not force the PSH flag for non GSO packets,
1065 * because they might be sent under high congestion events,
1066 * and in this case it is better to delay the delivery of 1-MSS
1067 * packets and thus the corresponding ACK packet that would
1068 * release the following packet.
1069 */
1070 if (tcp_skb_pcount(skb) > 1)
1071 tcb->tcp_flags |= TCPHDR_PSH;
1072 }
1073 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1074
1075 /* if no packet is in qdisc/device queue, then allow XPS to select
1076 * another queue. We can be called from tcp_tsq_handler()
1077 * which holds one reference to sk.
1078 *
1079 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1080 * One way to get this would be to set skb->truesize = 2 on them.
1081 */
1082 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1083
1084 /* If we had to use memory reserve to allocate this skb,
1085 * this might cause drops if packet is looped back :
1086 * Other socket might not have SOCK_MEMALLOC.
1087 * Packets not looped back do not care about pfmemalloc.
1088 */
1089 skb->pfmemalloc = 0;
1090
1091 skb_push(skb, tcp_header_size);
1092 skb_reset_transport_header(skb);
1093
1094 skb_orphan(skb);
1095 skb->sk = sk;
1096 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1097 skb_set_hash_from_sk(skb, sk);
1098 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1099
1100 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1101
1102 /* Build TCP header and checksum it. */
1103 th = (struct tcphdr *)skb->data;
1104 th->source = inet->inet_sport;
1105 th->dest = inet->inet_dport;
1106 th->seq = htonl(tcb->seq);
1107 th->ack_seq = htonl(rcv_nxt);
1108 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1109 tcb->tcp_flags);
1110
1111 th->check = 0;
1112 th->urg_ptr = 0;
1113
1114 /* The urg_mode check is necessary during a below snd_una win probe */
1115 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1116 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1117 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1118 th->urg = 1;
1119 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1120 th->urg_ptr = htons(0xFFFF);
1121 th->urg = 1;
1122 }
1123 }
1124
1125 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1126 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1127 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1128 th->window = htons(tcp_select_window(sk));
1129 tcp_ecn_send(sk, skb, th, tcp_header_size);
1130 } else {
1131 /* RFC1323: The window in SYN & SYN/ACK segments
1132 * is never scaled.
1133 */
1134 th->window = htons(min(tp->rcv_wnd, 65535U));
1135 }
1136 #ifdef CONFIG_TCP_MD5SIG
1137 /* Calculate the MD5 hash, as we have all we need now */
1138 if (md5) {
1139 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1140 tp->af_specific->calc_md5_hash(opts.hash_location,
1141 md5, sk, skb);
1142 }
1143 #endif
1144
1145 icsk->icsk_af_ops->send_check(sk, skb);
1146
1147 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1148 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1149
1150 if (skb->len != tcp_header_size) {
1151 tcp_event_data_sent(tp, sk);
1152 tp->data_segs_out += tcp_skb_pcount(skb);
1153 tp->bytes_sent += skb->len - tcp_header_size;
1154 }
1155
1156 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1157 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1158 tcp_skb_pcount(skb));
1159
1160 tp->segs_out += tcp_skb_pcount(skb);
1161 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1162 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1163 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1164
1165 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1166
1167 /* Cleanup our debris for IP stacks */
1168 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1169 sizeof(struct inet6_skb_parm)));
1170
1171 tcp_add_tx_delay(skb, tp);
1172
1173 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1174
1175 if (unlikely(err > 0)) {
1176 tcp_enter_cwr(sk);
1177 err = net_xmit_eval(err);
1178 }
1179 if (!err && oskb) {
1180 tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1181 tcp_rate_skb_sent(sk, oskb);
1182 }
1183 return err;
1184 }
1185
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1186 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1187 gfp_t gfp_mask)
1188 {
1189 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1190 tcp_sk(sk)->rcv_nxt);
1191 }
1192
1193 /* This routine just queues the buffer for sending.
1194 *
1195 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1196 * otherwise socket can stall.
1197 */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1198 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1199 {
1200 struct tcp_sock *tp = tcp_sk(sk);
1201
1202 /* Advance write_seq and place onto the write_queue. */
1203 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1204 __skb_header_release(skb);
1205 tcp_add_write_queue_tail(sk, skb);
1206 sk_wmem_queued_add(sk, skb->truesize);
1207 sk_mem_charge(sk, skb->truesize);
1208 }
1209
1210 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1211 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1212 {
1213 if (skb->len <= mss_now) {
1214 /* Avoid the costly divide in the normal
1215 * non-TSO case.
1216 */
1217 tcp_skb_pcount_set(skb, 1);
1218 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1219 } else {
1220 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1221 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1222 }
1223 }
1224
1225 /* Pcount in the middle of the write queue got changed, we need to do various
1226 * tweaks to fix counters
1227 */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1228 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1229 {
1230 struct tcp_sock *tp = tcp_sk(sk);
1231
1232 tp->packets_out -= decr;
1233
1234 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1235 tp->sacked_out -= decr;
1236 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1237 tp->retrans_out -= decr;
1238 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1239 tp->lost_out -= decr;
1240
1241 /* Reno case is special. Sigh... */
1242 if (tcp_is_reno(tp) && decr > 0)
1243 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1244
1245 if (tp->lost_skb_hint &&
1246 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1247 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1248 tp->lost_cnt_hint -= decr;
1249
1250 tcp_verify_left_out(tp);
1251 }
1252
tcp_has_tx_tstamp(const struct sk_buff * skb)1253 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1254 {
1255 return TCP_SKB_CB(skb)->txstamp_ack ||
1256 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1257 }
1258
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1259 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1260 {
1261 struct skb_shared_info *shinfo = skb_shinfo(skb);
1262
1263 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1264 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1265 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1266 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1267
1268 shinfo->tx_flags &= ~tsflags;
1269 shinfo2->tx_flags |= tsflags;
1270 swap(shinfo->tskey, shinfo2->tskey);
1271 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1272 TCP_SKB_CB(skb)->txstamp_ack = 0;
1273 }
1274 }
1275
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1276 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1277 {
1278 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1279 TCP_SKB_CB(skb)->eor = 0;
1280 }
1281
1282 /* Insert buff after skb on the write or rtx queue of sk. */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1283 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1284 struct sk_buff *buff,
1285 struct sock *sk,
1286 enum tcp_queue tcp_queue)
1287 {
1288 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1289 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1290 else
1291 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1292 }
1293
1294 /* Function to create two new TCP segments. Shrinks the given segment
1295 * to the specified size and appends a new segment with the rest of the
1296 * packet to the list. This won't be called frequently, I hope.
1297 * Remember, these are still headerless SKBs at this point.
1298 */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1299 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1300 struct sk_buff *skb, u32 len,
1301 unsigned int mss_now, gfp_t gfp)
1302 {
1303 struct tcp_sock *tp = tcp_sk(sk);
1304 struct sk_buff *buff;
1305 int nsize, old_factor;
1306 long limit;
1307 int nlen;
1308 u8 flags;
1309
1310 if (WARN_ON(len > skb->len))
1311 return -EINVAL;
1312
1313 nsize = skb_headlen(skb) - len;
1314 if (nsize < 0)
1315 nsize = 0;
1316
1317 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1318 * We need some allowance to not penalize applications setting small
1319 * SO_SNDBUF values.
1320 * Also allow first and last skb in retransmit queue to be split.
1321 */
1322 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1323 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1324 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1325 skb != tcp_rtx_queue_head(sk) &&
1326 skb != tcp_rtx_queue_tail(sk))) {
1327 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1328 return -ENOMEM;
1329 }
1330
1331 if (skb_unclone(skb, gfp))
1332 return -ENOMEM;
1333
1334 /* Get a new skb... force flag on. */
1335 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1336 if (!buff)
1337 return -ENOMEM; /* We'll just try again later. */
1338 skb_copy_decrypted(buff, skb);
1339
1340 sk_wmem_queued_add(sk, buff->truesize);
1341 sk_mem_charge(sk, buff->truesize);
1342 nlen = skb->len - len - nsize;
1343 buff->truesize += nlen;
1344 skb->truesize -= nlen;
1345
1346 /* Correct the sequence numbers. */
1347 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1348 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1349 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1350
1351 /* PSH and FIN should only be set in the second packet. */
1352 flags = TCP_SKB_CB(skb)->tcp_flags;
1353 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1354 TCP_SKB_CB(buff)->tcp_flags = flags;
1355 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1356 tcp_skb_fragment_eor(skb, buff);
1357
1358 skb_split(skb, buff, len);
1359
1360 buff->ip_summed = CHECKSUM_PARTIAL;
1361
1362 buff->tstamp = skb->tstamp;
1363 tcp_fragment_tstamp(skb, buff);
1364
1365 old_factor = tcp_skb_pcount(skb);
1366
1367 /* Fix up tso_factor for both original and new SKB. */
1368 tcp_set_skb_tso_segs(skb, mss_now);
1369 tcp_set_skb_tso_segs(buff, mss_now);
1370
1371 /* Update delivered info for the new segment */
1372 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1373
1374 /* If this packet has been sent out already, we must
1375 * adjust the various packet counters.
1376 */
1377 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1378 int diff = old_factor - tcp_skb_pcount(skb) -
1379 tcp_skb_pcount(buff);
1380
1381 if (diff)
1382 tcp_adjust_pcount(sk, skb, diff);
1383 }
1384
1385 /* Link BUFF into the send queue. */
1386 __skb_header_release(buff);
1387 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1388 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1389 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1390
1391 return 0;
1392 }
1393
1394 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1395 * data is not copied, but immediately discarded.
1396 */
__pskb_trim_head(struct sk_buff * skb,int len)1397 static int __pskb_trim_head(struct sk_buff *skb, int len)
1398 {
1399 struct skb_shared_info *shinfo;
1400 int i, k, eat;
1401
1402 eat = min_t(int, len, skb_headlen(skb));
1403 if (eat) {
1404 __skb_pull(skb, eat);
1405 len -= eat;
1406 if (!len)
1407 return 0;
1408 }
1409 eat = len;
1410 k = 0;
1411 shinfo = skb_shinfo(skb);
1412 for (i = 0; i < shinfo->nr_frags; i++) {
1413 int size = skb_frag_size(&shinfo->frags[i]);
1414
1415 if (size <= eat) {
1416 skb_frag_unref(skb, i);
1417 eat -= size;
1418 } else {
1419 shinfo->frags[k] = shinfo->frags[i];
1420 if (eat) {
1421 skb_frag_off_add(&shinfo->frags[k], eat);
1422 skb_frag_size_sub(&shinfo->frags[k], eat);
1423 eat = 0;
1424 }
1425 k++;
1426 }
1427 }
1428 shinfo->nr_frags = k;
1429
1430 skb->data_len -= len;
1431 skb->len = skb->data_len;
1432 return len;
1433 }
1434
1435 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1436 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1437 {
1438 u32 delta_truesize;
1439
1440 if (skb_unclone(skb, GFP_ATOMIC))
1441 return -ENOMEM;
1442
1443 delta_truesize = __pskb_trim_head(skb, len);
1444
1445 TCP_SKB_CB(skb)->seq += len;
1446 skb->ip_summed = CHECKSUM_PARTIAL;
1447
1448 if (delta_truesize) {
1449 skb->truesize -= delta_truesize;
1450 sk_wmem_queued_add(sk, -delta_truesize);
1451 sk_mem_uncharge(sk, delta_truesize);
1452 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1453 }
1454
1455 /* Any change of skb->len requires recalculation of tso factor. */
1456 if (tcp_skb_pcount(skb) > 1)
1457 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1458
1459 return 0;
1460 }
1461
1462 /* Calculate MSS not accounting any TCP options. */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1463 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1464 {
1465 const struct tcp_sock *tp = tcp_sk(sk);
1466 const struct inet_connection_sock *icsk = inet_csk(sk);
1467 int mss_now;
1468
1469 /* Calculate base mss without TCP options:
1470 It is MMS_S - sizeof(tcphdr) of rfc1122
1471 */
1472 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1473
1474 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1475 if (icsk->icsk_af_ops->net_frag_header_len) {
1476 const struct dst_entry *dst = __sk_dst_get(sk);
1477
1478 if (dst && dst_allfrag(dst))
1479 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1480 }
1481
1482 /* Clamp it (mss_clamp does not include tcp options) */
1483 if (mss_now > tp->rx_opt.mss_clamp)
1484 mss_now = tp->rx_opt.mss_clamp;
1485
1486 /* Now subtract optional transport overhead */
1487 mss_now -= icsk->icsk_ext_hdr_len;
1488
1489 /* Then reserve room for full set of TCP options and 8 bytes of data */
1490 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1491 return mss_now;
1492 }
1493
1494 /* Calculate MSS. Not accounting for SACKs here. */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1495 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1496 {
1497 /* Subtract TCP options size, not including SACKs */
1498 return __tcp_mtu_to_mss(sk, pmtu) -
1499 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1500 }
1501
1502 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1503 int tcp_mss_to_mtu(struct sock *sk, int mss)
1504 {
1505 const struct tcp_sock *tp = tcp_sk(sk);
1506 const struct inet_connection_sock *icsk = inet_csk(sk);
1507 int mtu;
1508
1509 mtu = mss +
1510 tp->tcp_header_len +
1511 icsk->icsk_ext_hdr_len +
1512 icsk->icsk_af_ops->net_header_len;
1513
1514 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1515 if (icsk->icsk_af_ops->net_frag_header_len) {
1516 const struct dst_entry *dst = __sk_dst_get(sk);
1517
1518 if (dst && dst_allfrag(dst))
1519 mtu += icsk->icsk_af_ops->net_frag_header_len;
1520 }
1521 return mtu;
1522 }
1523 EXPORT_SYMBOL(tcp_mss_to_mtu);
1524
1525 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1526 void tcp_mtup_init(struct sock *sk)
1527 {
1528 struct tcp_sock *tp = tcp_sk(sk);
1529 struct inet_connection_sock *icsk = inet_csk(sk);
1530 struct net *net = sock_net(sk);
1531
1532 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1533 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1534 icsk->icsk_af_ops->net_header_len;
1535 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1536 icsk->icsk_mtup.probe_size = 0;
1537 if (icsk->icsk_mtup.enabled)
1538 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1539 }
1540 EXPORT_SYMBOL(tcp_mtup_init);
1541
1542 /* This function synchronize snd mss to current pmtu/exthdr set.
1543
1544 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1545 for TCP options, but includes only bare TCP header.
1546
1547 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1548 It is minimum of user_mss and mss received with SYN.
1549 It also does not include TCP options.
1550
1551 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1552
1553 tp->mss_cache is current effective sending mss, including
1554 all tcp options except for SACKs. It is evaluated,
1555 taking into account current pmtu, but never exceeds
1556 tp->rx_opt.mss_clamp.
1557
1558 NOTE1. rfc1122 clearly states that advertised MSS
1559 DOES NOT include either tcp or ip options.
1560
1561 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1562 are READ ONLY outside this function. --ANK (980731)
1563 */
tcp_sync_mss(struct sock * sk,u32 pmtu)1564 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1565 {
1566 struct tcp_sock *tp = tcp_sk(sk);
1567 struct inet_connection_sock *icsk = inet_csk(sk);
1568 int mss_now;
1569
1570 if (icsk->icsk_mtup.search_high > pmtu)
1571 icsk->icsk_mtup.search_high = pmtu;
1572
1573 mss_now = tcp_mtu_to_mss(sk, pmtu);
1574 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1575
1576 /* And store cached results */
1577 icsk->icsk_pmtu_cookie = pmtu;
1578 if (icsk->icsk_mtup.enabled)
1579 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1580 tp->mss_cache = mss_now;
1581
1582 return mss_now;
1583 }
1584 EXPORT_SYMBOL(tcp_sync_mss);
1585
1586 /* Compute the current effective MSS, taking SACKs and IP options,
1587 * and even PMTU discovery events into account.
1588 */
tcp_current_mss(struct sock * sk)1589 unsigned int tcp_current_mss(struct sock *sk)
1590 {
1591 const struct tcp_sock *tp = tcp_sk(sk);
1592 const struct dst_entry *dst = __sk_dst_get(sk);
1593 u32 mss_now;
1594 unsigned int header_len;
1595 struct tcp_out_options opts;
1596 struct tcp_md5sig_key *md5;
1597
1598 mss_now = tp->mss_cache;
1599
1600 if (dst) {
1601 u32 mtu = dst_mtu(dst);
1602 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1603 mss_now = tcp_sync_mss(sk, mtu);
1604 }
1605
1606 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1607 sizeof(struct tcphdr);
1608 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1609 * some common options. If this is an odd packet (because we have SACK
1610 * blocks etc) then our calculated header_len will be different, and
1611 * we have to adjust mss_now correspondingly */
1612 if (header_len != tp->tcp_header_len) {
1613 int delta = (int) header_len - tp->tcp_header_len;
1614 mss_now -= delta;
1615 }
1616
1617 return mss_now;
1618 }
1619
1620 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1621 * As additional protections, we do not touch cwnd in retransmission phases,
1622 * and if application hit its sndbuf limit recently.
1623 */
tcp_cwnd_application_limited(struct sock * sk)1624 static void tcp_cwnd_application_limited(struct sock *sk)
1625 {
1626 struct tcp_sock *tp = tcp_sk(sk);
1627
1628 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1629 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1630 /* Limited by application or receiver window. */
1631 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1632 u32 win_used = max(tp->snd_cwnd_used, init_win);
1633 if (win_used < tp->snd_cwnd) {
1634 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1635 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1636 }
1637 tp->snd_cwnd_used = 0;
1638 }
1639 tp->snd_cwnd_stamp = tcp_jiffies32;
1640 }
1641
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1642 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1643 {
1644 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1645 struct tcp_sock *tp = tcp_sk(sk);
1646
1647 /* Track the maximum number of outstanding packets in each
1648 * window, and remember whether we were cwnd-limited then.
1649 */
1650 if (!before(tp->snd_una, tp->max_packets_seq) ||
1651 tp->packets_out > tp->max_packets_out) {
1652 tp->max_packets_out = tp->packets_out;
1653 tp->max_packets_seq = tp->snd_nxt;
1654 tp->is_cwnd_limited = is_cwnd_limited;
1655 }
1656
1657 if (tcp_is_cwnd_limited(sk)) {
1658 /* Network is feed fully. */
1659 tp->snd_cwnd_used = 0;
1660 tp->snd_cwnd_stamp = tcp_jiffies32;
1661 } else {
1662 /* Network starves. */
1663 if (tp->packets_out > tp->snd_cwnd_used)
1664 tp->snd_cwnd_used = tp->packets_out;
1665
1666 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1667 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1668 !ca_ops->cong_control)
1669 tcp_cwnd_application_limited(sk);
1670
1671 /* The following conditions together indicate the starvation
1672 * is caused by insufficient sender buffer:
1673 * 1) just sent some data (see tcp_write_xmit)
1674 * 2) not cwnd limited (this else condition)
1675 * 3) no more data to send (tcp_write_queue_empty())
1676 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1677 */
1678 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1679 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1680 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1681 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1682 }
1683 }
1684
1685 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1686 static bool tcp_minshall_check(const struct tcp_sock *tp)
1687 {
1688 return after(tp->snd_sml, tp->snd_una) &&
1689 !after(tp->snd_sml, tp->snd_nxt);
1690 }
1691
1692 /* Update snd_sml if this skb is under mss
1693 * Note that a TSO packet might end with a sub-mss segment
1694 * The test is really :
1695 * if ((skb->len % mss) != 0)
1696 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1697 * But we can avoid doing the divide again given we already have
1698 * skb_pcount = skb->len / mss_now
1699 */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1700 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1701 const struct sk_buff *skb)
1702 {
1703 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1704 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1705 }
1706
1707 /* Return false, if packet can be sent now without violation Nagle's rules:
1708 * 1. It is full sized. (provided by caller in %partial bool)
1709 * 2. Or it contains FIN. (already checked by caller)
1710 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1711 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1712 * With Minshall's modification: all sent small packets are ACKed.
1713 */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1714 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1715 int nonagle)
1716 {
1717 return partial &&
1718 ((nonagle & TCP_NAGLE_CORK) ||
1719 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1720 }
1721
1722 /* Return how many segs we'd like on a TSO packet,
1723 * to send one TSO packet per ms
1724 */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)1725 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1726 int min_tso_segs)
1727 {
1728 u32 bytes, segs;
1729
1730 bytes = min_t(unsigned long,
1731 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
1732 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1733
1734 /* Goal is to send at least one packet per ms,
1735 * not one big TSO packet every 100 ms.
1736 * This preserves ACK clocking and is consistent
1737 * with tcp_tso_should_defer() heuristic.
1738 */
1739 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1740
1741 return segs;
1742 }
1743
1744 /* Return the number of segments we want in the skb we are transmitting.
1745 * See if congestion control module wants to decide; otherwise, autosize.
1746 */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)1747 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1748 {
1749 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1750 u32 min_tso, tso_segs;
1751
1752 min_tso = ca_ops->min_tso_segs ?
1753 ca_ops->min_tso_segs(sk) :
1754 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1755
1756 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1757 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1758 }
1759
1760 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)1761 static unsigned int tcp_mss_split_point(const struct sock *sk,
1762 const struct sk_buff *skb,
1763 unsigned int mss_now,
1764 unsigned int max_segs,
1765 int nonagle)
1766 {
1767 const struct tcp_sock *tp = tcp_sk(sk);
1768 u32 partial, needed, window, max_len;
1769
1770 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1771 max_len = mss_now * max_segs;
1772
1773 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1774 return max_len;
1775
1776 needed = min(skb->len, window);
1777
1778 if (max_len <= needed)
1779 return max_len;
1780
1781 partial = needed % mss_now;
1782 /* If last segment is not a full MSS, check if Nagle rules allow us
1783 * to include this last segment in this skb.
1784 * Otherwise, we'll split the skb at last MSS boundary
1785 */
1786 if (tcp_nagle_check(partial != 0, tp, nonagle))
1787 return needed - partial;
1788
1789 return needed;
1790 }
1791
1792 /* Can at least one segment of SKB be sent right now, according to the
1793 * congestion window rules? If so, return how many segments are allowed.
1794 */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)1795 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1796 const struct sk_buff *skb)
1797 {
1798 u32 in_flight, cwnd, halfcwnd;
1799
1800 /* Don't be strict about the congestion window for the final FIN. */
1801 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1802 tcp_skb_pcount(skb) == 1)
1803 return 1;
1804
1805 in_flight = tcp_packets_in_flight(tp);
1806 cwnd = tp->snd_cwnd;
1807 if (in_flight >= cwnd)
1808 return 0;
1809
1810 /* For better scheduling, ensure we have at least
1811 * 2 GSO packets in flight.
1812 */
1813 halfcwnd = max(cwnd >> 1, 1U);
1814 return min(halfcwnd, cwnd - in_flight);
1815 }
1816
1817 /* Initialize TSO state of a skb.
1818 * This must be invoked the first time we consider transmitting
1819 * SKB onto the wire.
1820 */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)1821 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1822 {
1823 int tso_segs = tcp_skb_pcount(skb);
1824
1825 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1826 tcp_set_skb_tso_segs(skb, mss_now);
1827 tso_segs = tcp_skb_pcount(skb);
1828 }
1829 return tso_segs;
1830 }
1831
1832
1833 /* Return true if the Nagle test allows this packet to be
1834 * sent now.
1835 */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)1836 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1837 unsigned int cur_mss, int nonagle)
1838 {
1839 /* Nagle rule does not apply to frames, which sit in the middle of the
1840 * write_queue (they have no chances to get new data).
1841 *
1842 * This is implemented in the callers, where they modify the 'nonagle'
1843 * argument based upon the location of SKB in the send queue.
1844 */
1845 if (nonagle & TCP_NAGLE_PUSH)
1846 return true;
1847
1848 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1849 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1850 return true;
1851
1852 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1853 return true;
1854
1855 return false;
1856 }
1857
1858 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)1859 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1860 const struct sk_buff *skb,
1861 unsigned int cur_mss)
1862 {
1863 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1864
1865 if (skb->len > cur_mss)
1866 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1867
1868 return !after(end_seq, tcp_wnd_end(tp));
1869 }
1870
1871 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1872 * which is put after SKB on the list. It is very much like
1873 * tcp_fragment() except that it may make several kinds of assumptions
1874 * in order to speed up the splitting operation. In particular, we
1875 * know that all the data is in scatter-gather pages, and that the
1876 * packet has never been sent out before (and thus is not cloned).
1877 */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)1878 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1879 unsigned int mss_now, gfp_t gfp)
1880 {
1881 int nlen = skb->len - len;
1882 struct sk_buff *buff;
1883 u8 flags;
1884
1885 /* All of a TSO frame must be composed of paged data. */
1886 if (skb->len != skb->data_len)
1887 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
1888 skb, len, mss_now, gfp);
1889
1890 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1891 if (unlikely(!buff))
1892 return -ENOMEM;
1893 skb_copy_decrypted(buff, skb);
1894
1895 sk_wmem_queued_add(sk, buff->truesize);
1896 sk_mem_charge(sk, buff->truesize);
1897 buff->truesize += nlen;
1898 skb->truesize -= nlen;
1899
1900 /* Correct the sequence numbers. */
1901 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1902 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1903 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1904
1905 /* PSH and FIN should only be set in the second packet. */
1906 flags = TCP_SKB_CB(skb)->tcp_flags;
1907 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1908 TCP_SKB_CB(buff)->tcp_flags = flags;
1909
1910 /* This packet was never sent out yet, so no SACK bits. */
1911 TCP_SKB_CB(buff)->sacked = 0;
1912
1913 tcp_skb_fragment_eor(skb, buff);
1914
1915 buff->ip_summed = CHECKSUM_PARTIAL;
1916 skb_split(skb, buff, len);
1917 tcp_fragment_tstamp(skb, buff);
1918
1919 /* Fix up tso_factor for both original and new SKB. */
1920 tcp_set_skb_tso_segs(skb, mss_now);
1921 tcp_set_skb_tso_segs(buff, mss_now);
1922
1923 /* Link BUFF into the send queue. */
1924 __skb_header_release(buff);
1925 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
1926
1927 return 0;
1928 }
1929
1930 /* Try to defer sending, if possible, in order to minimize the amount
1931 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1932 *
1933 * This algorithm is from John Heffner.
1934 */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)1935 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1936 bool *is_cwnd_limited,
1937 bool *is_rwnd_limited,
1938 u32 max_segs)
1939 {
1940 const struct inet_connection_sock *icsk = inet_csk(sk);
1941 u32 send_win, cong_win, limit, in_flight;
1942 struct tcp_sock *tp = tcp_sk(sk);
1943 struct sk_buff *head;
1944 int win_divisor;
1945 s64 delta;
1946
1947 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1948 goto send_now;
1949
1950 /* Avoid bursty behavior by allowing defer
1951 * only if the last write was recent (1 ms).
1952 * Note that tp->tcp_wstamp_ns can be in the future if we have
1953 * packets waiting in a qdisc or device for EDT delivery.
1954 */
1955 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
1956 if (delta > 0)
1957 goto send_now;
1958
1959 in_flight = tcp_packets_in_flight(tp);
1960
1961 BUG_ON(tcp_skb_pcount(skb) <= 1);
1962 BUG_ON(tp->snd_cwnd <= in_flight);
1963
1964 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1965
1966 /* From in_flight test above, we know that cwnd > in_flight. */
1967 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1968
1969 limit = min(send_win, cong_win);
1970
1971 /* If a full-sized TSO skb can be sent, do it. */
1972 if (limit >= max_segs * tp->mss_cache)
1973 goto send_now;
1974
1975 /* Middle in queue won't get any more data, full sendable already? */
1976 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1977 goto send_now;
1978
1979 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1980 if (win_divisor) {
1981 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1982
1983 /* If at least some fraction of a window is available,
1984 * just use it.
1985 */
1986 chunk /= win_divisor;
1987 if (limit >= chunk)
1988 goto send_now;
1989 } else {
1990 /* Different approach, try not to defer past a single
1991 * ACK. Receiver should ACK every other full sized
1992 * frame, so if we have space for more than 3 frames
1993 * then send now.
1994 */
1995 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1996 goto send_now;
1997 }
1998
1999 /* TODO : use tsorted_sent_queue ? */
2000 head = tcp_rtx_queue_head(sk);
2001 if (!head)
2002 goto send_now;
2003 delta = tp->tcp_clock_cache - head->tstamp;
2004 /* If next ACK is likely to come too late (half srtt), do not defer */
2005 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2006 goto send_now;
2007
2008 /* Ok, it looks like it is advisable to defer.
2009 * Three cases are tracked :
2010 * 1) We are cwnd-limited
2011 * 2) We are rwnd-limited
2012 * 3) We are application limited.
2013 */
2014 if (cong_win < send_win) {
2015 if (cong_win <= skb->len) {
2016 *is_cwnd_limited = true;
2017 return true;
2018 }
2019 } else {
2020 if (send_win <= skb->len) {
2021 *is_rwnd_limited = true;
2022 return true;
2023 }
2024 }
2025
2026 /* If this packet won't get more data, do not wait. */
2027 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2028 TCP_SKB_CB(skb)->eor)
2029 goto send_now;
2030
2031 return true;
2032
2033 send_now:
2034 return false;
2035 }
2036
tcp_mtu_check_reprobe(struct sock * sk)2037 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2038 {
2039 struct inet_connection_sock *icsk = inet_csk(sk);
2040 struct tcp_sock *tp = tcp_sk(sk);
2041 struct net *net = sock_net(sk);
2042 u32 interval;
2043 s32 delta;
2044
2045 interval = net->ipv4.sysctl_tcp_probe_interval;
2046 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2047 if (unlikely(delta >= interval * HZ)) {
2048 int mss = tcp_current_mss(sk);
2049
2050 /* Update current search range */
2051 icsk->icsk_mtup.probe_size = 0;
2052 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2053 sizeof(struct tcphdr) +
2054 icsk->icsk_af_ops->net_header_len;
2055 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2056
2057 /* Update probe time stamp */
2058 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2059 }
2060 }
2061
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2062 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2063 {
2064 struct sk_buff *skb, *next;
2065
2066 skb = tcp_send_head(sk);
2067 tcp_for_write_queue_from_safe(skb, next, sk) {
2068 if (len <= skb->len)
2069 break;
2070
2071 if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2072 return false;
2073
2074 len -= skb->len;
2075 }
2076
2077 return true;
2078 }
2079
2080 /* Create a new MTU probe if we are ready.
2081 * MTU probe is regularly attempting to increase the path MTU by
2082 * deliberately sending larger packets. This discovers routing
2083 * changes resulting in larger path MTUs.
2084 *
2085 * Returns 0 if we should wait to probe (no cwnd available),
2086 * 1 if a probe was sent,
2087 * -1 otherwise
2088 */
tcp_mtu_probe(struct sock * sk)2089 static int tcp_mtu_probe(struct sock *sk)
2090 {
2091 struct inet_connection_sock *icsk = inet_csk(sk);
2092 struct tcp_sock *tp = tcp_sk(sk);
2093 struct sk_buff *skb, *nskb, *next;
2094 struct net *net = sock_net(sk);
2095 int probe_size;
2096 int size_needed;
2097 int copy, len;
2098 int mss_now;
2099 int interval;
2100
2101 /* Not currently probing/verifying,
2102 * not in recovery,
2103 * have enough cwnd, and
2104 * not SACKing (the variable headers throw things off)
2105 */
2106 if (likely(!icsk->icsk_mtup.enabled ||
2107 icsk->icsk_mtup.probe_size ||
2108 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2109 tp->snd_cwnd < 11 ||
2110 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2111 return -1;
2112
2113 /* Use binary search for probe_size between tcp_mss_base,
2114 * and current mss_clamp. if (search_high - search_low)
2115 * smaller than a threshold, backoff from probing.
2116 */
2117 mss_now = tcp_current_mss(sk);
2118 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2119 icsk->icsk_mtup.search_low) >> 1);
2120 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2121 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2122 /* When misfortune happens, we are reprobing actively,
2123 * and then reprobe timer has expired. We stick with current
2124 * probing process by not resetting search range to its orignal.
2125 */
2126 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2127 interval < net->ipv4.sysctl_tcp_probe_threshold) {
2128 /* Check whether enough time has elaplased for
2129 * another round of probing.
2130 */
2131 tcp_mtu_check_reprobe(sk);
2132 return -1;
2133 }
2134
2135 /* Have enough data in the send queue to probe? */
2136 if (tp->write_seq - tp->snd_nxt < size_needed)
2137 return -1;
2138
2139 if (tp->snd_wnd < size_needed)
2140 return -1;
2141 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2142 return 0;
2143
2144 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2145 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2146 if (!tcp_packets_in_flight(tp))
2147 return -1;
2148 else
2149 return 0;
2150 }
2151
2152 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2153 return -1;
2154
2155 /* We're allowed to probe. Build it now. */
2156 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2157 if (!nskb)
2158 return -1;
2159 sk_wmem_queued_add(sk, nskb->truesize);
2160 sk_mem_charge(sk, nskb->truesize);
2161
2162 skb = tcp_send_head(sk);
2163 skb_copy_decrypted(nskb, skb);
2164
2165 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2166 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2167 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2168 TCP_SKB_CB(nskb)->sacked = 0;
2169 nskb->csum = 0;
2170 nskb->ip_summed = CHECKSUM_PARTIAL;
2171
2172 tcp_insert_write_queue_before(nskb, skb, sk);
2173 tcp_highest_sack_replace(sk, skb, nskb);
2174
2175 len = 0;
2176 tcp_for_write_queue_from_safe(skb, next, sk) {
2177 copy = min_t(int, skb->len, probe_size - len);
2178 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2179
2180 if (skb->len <= copy) {
2181 /* We've eaten all the data from this skb.
2182 * Throw it away. */
2183 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2184 /* If this is the last SKB we copy and eor is set
2185 * we need to propagate it to the new skb.
2186 */
2187 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2188 tcp_skb_collapse_tstamp(nskb, skb);
2189 tcp_unlink_write_queue(skb, sk);
2190 sk_wmem_free_skb(sk, skb);
2191 } else {
2192 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2193 ~(TCPHDR_FIN|TCPHDR_PSH);
2194 if (!skb_shinfo(skb)->nr_frags) {
2195 skb_pull(skb, copy);
2196 } else {
2197 __pskb_trim_head(skb, copy);
2198 tcp_set_skb_tso_segs(skb, mss_now);
2199 }
2200 TCP_SKB_CB(skb)->seq += copy;
2201 }
2202
2203 len += copy;
2204
2205 if (len >= probe_size)
2206 break;
2207 }
2208 tcp_init_tso_segs(nskb, nskb->len);
2209
2210 /* We're ready to send. If this fails, the probe will
2211 * be resegmented into mss-sized pieces by tcp_write_xmit().
2212 */
2213 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2214 /* Decrement cwnd here because we are sending
2215 * effectively two packets. */
2216 tp->snd_cwnd--;
2217 tcp_event_new_data_sent(sk, nskb);
2218
2219 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2220 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2221 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2222
2223 return 1;
2224 }
2225
2226 return -1;
2227 }
2228
tcp_pacing_check(struct sock * sk)2229 static bool tcp_pacing_check(struct sock *sk)
2230 {
2231 struct tcp_sock *tp = tcp_sk(sk);
2232
2233 if (!tcp_needs_internal_pacing(sk))
2234 return false;
2235
2236 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2237 return false;
2238
2239 if (!hrtimer_is_queued(&tp->pacing_timer)) {
2240 hrtimer_start(&tp->pacing_timer,
2241 ns_to_ktime(tp->tcp_wstamp_ns),
2242 HRTIMER_MODE_ABS_PINNED_SOFT);
2243 sock_hold(sk);
2244 }
2245 return true;
2246 }
2247
2248 /* TCP Small Queues :
2249 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2250 * (These limits are doubled for retransmits)
2251 * This allows for :
2252 * - better RTT estimation and ACK scheduling
2253 * - faster recovery
2254 * - high rates
2255 * Alas, some drivers / subsystems require a fair amount
2256 * of queued bytes to ensure line rate.
2257 * One example is wifi aggregation (802.11 AMPDU)
2258 */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2259 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2260 unsigned int factor)
2261 {
2262 unsigned long limit;
2263
2264 limit = max_t(unsigned long,
2265 2 * skb->truesize,
2266 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2267 if (sk->sk_pacing_status == SK_PACING_NONE)
2268 limit = min_t(unsigned long, limit,
2269 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2270 limit <<= factor;
2271
2272 if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2273 tcp_sk(sk)->tcp_tx_delay) {
2274 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2275
2276 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2277 * approximate our needs assuming an ~100% skb->truesize overhead.
2278 * USEC_PER_SEC is approximated by 2^20.
2279 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2280 */
2281 extra_bytes >>= (20 - 1);
2282 limit += extra_bytes;
2283 }
2284 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2285 /* Always send skb if rtx queue is empty.
2286 * No need to wait for TX completion to call us back,
2287 * after softirq/tasklet schedule.
2288 * This helps when TX completions are delayed too much.
2289 */
2290 if (tcp_rtx_queue_empty(sk))
2291 return false;
2292
2293 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2294 /* It is possible TX completion already happened
2295 * before we set TSQ_THROTTLED, so we must
2296 * test again the condition.
2297 */
2298 smp_mb__after_atomic();
2299 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2300 return true;
2301 }
2302 return false;
2303 }
2304
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2305 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2306 {
2307 const u32 now = tcp_jiffies32;
2308 enum tcp_chrono old = tp->chrono_type;
2309
2310 if (old > TCP_CHRONO_UNSPEC)
2311 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2312 tp->chrono_start = now;
2313 tp->chrono_type = new;
2314 }
2315
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2316 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2317 {
2318 struct tcp_sock *tp = tcp_sk(sk);
2319
2320 /* If there are multiple conditions worthy of tracking in a
2321 * chronograph then the highest priority enum takes precedence
2322 * over the other conditions. So that if something "more interesting"
2323 * starts happening, stop the previous chrono and start a new one.
2324 */
2325 if (type > tp->chrono_type)
2326 tcp_chrono_set(tp, type);
2327 }
2328
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2329 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2330 {
2331 struct tcp_sock *tp = tcp_sk(sk);
2332
2333
2334 /* There are multiple conditions worthy of tracking in a
2335 * chronograph, so that the highest priority enum takes
2336 * precedence over the other conditions (see tcp_chrono_start).
2337 * If a condition stops, we only stop chrono tracking if
2338 * it's the "most interesting" or current chrono we are
2339 * tracking and starts busy chrono if we have pending data.
2340 */
2341 if (tcp_rtx_and_write_queues_empty(sk))
2342 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2343 else if (type == tp->chrono_type)
2344 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2345 }
2346
2347 /* This routine writes packets to the network. It advances the
2348 * send_head. This happens as incoming acks open up the remote
2349 * window for us.
2350 *
2351 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2352 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2353 * account rare use of URG, this is not a big flaw.
2354 *
2355 * Send at most one packet when push_one > 0. Temporarily ignore
2356 * cwnd limit to force at most one packet out when push_one == 2.
2357
2358 * Returns true, if no segments are in flight and we have queued segments,
2359 * but cannot send anything now because of SWS or another problem.
2360 */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2361 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2362 int push_one, gfp_t gfp)
2363 {
2364 struct tcp_sock *tp = tcp_sk(sk);
2365 struct sk_buff *skb;
2366 unsigned int tso_segs, sent_pkts;
2367 int cwnd_quota;
2368 int result;
2369 bool is_cwnd_limited = false, is_rwnd_limited = false;
2370 u32 max_segs;
2371
2372 sent_pkts = 0;
2373
2374 tcp_mstamp_refresh(tp);
2375 if (!push_one) {
2376 /* Do MTU probing. */
2377 result = tcp_mtu_probe(sk);
2378 if (!result) {
2379 return false;
2380 } else if (result > 0) {
2381 sent_pkts = 1;
2382 }
2383 }
2384
2385 max_segs = tcp_tso_segs(sk, mss_now);
2386 while ((skb = tcp_send_head(sk))) {
2387 unsigned int limit;
2388
2389 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2390 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2391 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2392 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2393 tcp_init_tso_segs(skb, mss_now);
2394 goto repair; /* Skip network transmission */
2395 }
2396
2397 if (tcp_pacing_check(sk))
2398 break;
2399
2400 tso_segs = tcp_init_tso_segs(skb, mss_now);
2401 BUG_ON(!tso_segs);
2402
2403 cwnd_quota = tcp_cwnd_test(tp, skb);
2404 if (!cwnd_quota) {
2405 if (push_one == 2)
2406 /* Force out a loss probe pkt. */
2407 cwnd_quota = 1;
2408 else
2409 break;
2410 }
2411
2412 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2413 is_rwnd_limited = true;
2414 break;
2415 }
2416
2417 if (tso_segs == 1) {
2418 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2419 (tcp_skb_is_last(sk, skb) ?
2420 nonagle : TCP_NAGLE_PUSH))))
2421 break;
2422 } else {
2423 if (!push_one &&
2424 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2425 &is_rwnd_limited, max_segs))
2426 break;
2427 }
2428
2429 limit = mss_now;
2430 if (tso_segs > 1 && !tcp_urg_mode(tp))
2431 limit = tcp_mss_split_point(sk, skb, mss_now,
2432 min_t(unsigned int,
2433 cwnd_quota,
2434 max_segs),
2435 nonagle);
2436
2437 if (skb->len > limit &&
2438 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2439 break;
2440
2441 if (tcp_small_queue_check(sk, skb, 0))
2442 break;
2443
2444 /* Argh, we hit an empty skb(), presumably a thread
2445 * is sleeping in sendmsg()/sk_stream_wait_memory().
2446 * We do not want to send a pure-ack packet and have
2447 * a strange looking rtx queue with empty packet(s).
2448 */
2449 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2450 break;
2451
2452 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2453 break;
2454
2455 repair:
2456 /* Advance the send_head. This one is sent out.
2457 * This call will increment packets_out.
2458 */
2459 tcp_event_new_data_sent(sk, skb);
2460
2461 tcp_minshall_update(tp, mss_now, skb);
2462 sent_pkts += tcp_skb_pcount(skb);
2463
2464 if (push_one)
2465 break;
2466 }
2467
2468 if (is_rwnd_limited)
2469 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2470 else
2471 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2472
2473 if (likely(sent_pkts)) {
2474 if (tcp_in_cwnd_reduction(sk))
2475 tp->prr_out += sent_pkts;
2476
2477 /* Send one loss probe per tail loss episode. */
2478 if (push_one != 2)
2479 tcp_schedule_loss_probe(sk, false);
2480 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2481 tcp_cwnd_validate(sk, is_cwnd_limited);
2482 return false;
2483 }
2484 return !tp->packets_out && !tcp_write_queue_empty(sk);
2485 }
2486
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2487 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2488 {
2489 struct inet_connection_sock *icsk = inet_csk(sk);
2490 struct tcp_sock *tp = tcp_sk(sk);
2491 u32 timeout, rto_delta_us;
2492 int early_retrans;
2493
2494 /* Don't do any loss probe on a Fast Open connection before 3WHS
2495 * finishes.
2496 */
2497 if (rcu_access_pointer(tp->fastopen_rsk))
2498 return false;
2499
2500 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2501 /* Schedule a loss probe in 2*RTT for SACK capable connections
2502 * not in loss recovery, that are either limited by cwnd or application.
2503 */
2504 if ((early_retrans != 3 && early_retrans != 4) ||
2505 !tp->packets_out || !tcp_is_sack(tp) ||
2506 (icsk->icsk_ca_state != TCP_CA_Open &&
2507 icsk->icsk_ca_state != TCP_CA_CWR))
2508 return false;
2509
2510 /* Probe timeout is 2*rtt. Add minimum RTO to account
2511 * for delayed ack when there's one outstanding packet. If no RTT
2512 * sample is available then probe after TCP_TIMEOUT_INIT.
2513 */
2514 if (tp->srtt_us) {
2515 timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2516 if (tp->packets_out == 1)
2517 timeout += TCP_RTO_MIN;
2518 else
2519 timeout += TCP_TIMEOUT_MIN;
2520 } else {
2521 timeout = TCP_TIMEOUT_INIT;
2522 }
2523
2524 /* If the RTO formula yields an earlier time, then use that time. */
2525 rto_delta_us = advancing_rto ?
2526 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2527 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2528 if (rto_delta_us > 0)
2529 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2530
2531 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2532 TCP_RTO_MAX, NULL);
2533 return true;
2534 }
2535
2536 /* Thanks to skb fast clones, we can detect if a prior transmit of
2537 * a packet is still in a qdisc or driver queue.
2538 * In this case, there is very little point doing a retransmit !
2539 */
skb_still_in_host_queue(const struct sock * sk,const struct sk_buff * skb)2540 static bool skb_still_in_host_queue(const struct sock *sk,
2541 const struct sk_buff *skb)
2542 {
2543 if (unlikely(skb_fclone_busy(sk, skb))) {
2544 NET_INC_STATS(sock_net(sk),
2545 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2546 return true;
2547 }
2548 return false;
2549 }
2550
2551 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2552 * retransmit the last segment.
2553 */
tcp_send_loss_probe(struct sock * sk)2554 void tcp_send_loss_probe(struct sock *sk)
2555 {
2556 struct tcp_sock *tp = tcp_sk(sk);
2557 struct sk_buff *skb;
2558 int pcount;
2559 int mss = tcp_current_mss(sk);
2560
2561 skb = tcp_send_head(sk);
2562 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2563 pcount = tp->packets_out;
2564 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2565 if (tp->packets_out > pcount)
2566 goto probe_sent;
2567 goto rearm_timer;
2568 }
2569 skb = skb_rb_last(&sk->tcp_rtx_queue);
2570 if (unlikely(!skb)) {
2571 WARN_ONCE(tp->packets_out,
2572 "invalid inflight: %u state %u cwnd %u mss %d\n",
2573 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2574 inet_csk(sk)->icsk_pending = 0;
2575 return;
2576 }
2577
2578 /* At most one outstanding TLP retransmission. */
2579 if (tp->tlp_high_seq)
2580 goto rearm_timer;
2581
2582 if (skb_still_in_host_queue(sk, skb))
2583 goto rearm_timer;
2584
2585 pcount = tcp_skb_pcount(skb);
2586 if (WARN_ON(!pcount))
2587 goto rearm_timer;
2588
2589 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2590 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2591 (pcount - 1) * mss, mss,
2592 GFP_ATOMIC)))
2593 goto rearm_timer;
2594 skb = skb_rb_next(skb);
2595 }
2596
2597 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2598 goto rearm_timer;
2599
2600 if (__tcp_retransmit_skb(sk, skb, 1))
2601 goto rearm_timer;
2602
2603 /* Record snd_nxt for loss detection. */
2604 tp->tlp_high_seq = tp->snd_nxt;
2605
2606 probe_sent:
2607 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2608 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2609 inet_csk(sk)->icsk_pending = 0;
2610 rearm_timer:
2611 tcp_rearm_rto(sk);
2612 }
2613
2614 /* Push out any pending frames which were held back due to
2615 * TCP_CORK or attempt at coalescing tiny packets.
2616 * The socket must be locked by the caller.
2617 */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2618 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2619 int nonagle)
2620 {
2621 /* If we are closed, the bytes will have to remain here.
2622 * In time closedown will finish, we empty the write queue and
2623 * all will be happy.
2624 */
2625 if (unlikely(sk->sk_state == TCP_CLOSE))
2626 return;
2627
2628 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2629 sk_gfp_mask(sk, GFP_ATOMIC)))
2630 tcp_check_probe_timer(sk);
2631 }
2632
2633 /* Send _single_ skb sitting at the send head. This function requires
2634 * true push pending frames to setup probe timer etc.
2635 */
tcp_push_one(struct sock * sk,unsigned int mss_now)2636 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2637 {
2638 struct sk_buff *skb = tcp_send_head(sk);
2639
2640 BUG_ON(!skb || skb->len < mss_now);
2641
2642 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2643 }
2644
2645 /* This function returns the amount that we can raise the
2646 * usable window based on the following constraints
2647 *
2648 * 1. The window can never be shrunk once it is offered (RFC 793)
2649 * 2. We limit memory per socket
2650 *
2651 * RFC 1122:
2652 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2653 * RECV.NEXT + RCV.WIN fixed until:
2654 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2655 *
2656 * i.e. don't raise the right edge of the window until you can raise
2657 * it at least MSS bytes.
2658 *
2659 * Unfortunately, the recommended algorithm breaks header prediction,
2660 * since header prediction assumes th->window stays fixed.
2661 *
2662 * Strictly speaking, keeping th->window fixed violates the receiver
2663 * side SWS prevention criteria. The problem is that under this rule
2664 * a stream of single byte packets will cause the right side of the
2665 * window to always advance by a single byte.
2666 *
2667 * Of course, if the sender implements sender side SWS prevention
2668 * then this will not be a problem.
2669 *
2670 * BSD seems to make the following compromise:
2671 *
2672 * If the free space is less than the 1/4 of the maximum
2673 * space available and the free space is less than 1/2 mss,
2674 * then set the window to 0.
2675 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2676 * Otherwise, just prevent the window from shrinking
2677 * and from being larger than the largest representable value.
2678 *
2679 * This prevents incremental opening of the window in the regime
2680 * where TCP is limited by the speed of the reader side taking
2681 * data out of the TCP receive queue. It does nothing about
2682 * those cases where the window is constrained on the sender side
2683 * because the pipeline is full.
2684 *
2685 * BSD also seems to "accidentally" limit itself to windows that are a
2686 * multiple of MSS, at least until the free space gets quite small.
2687 * This would appear to be a side effect of the mbuf implementation.
2688 * Combining these two algorithms results in the observed behavior
2689 * of having a fixed window size at almost all times.
2690 *
2691 * Below we obtain similar behavior by forcing the offered window to
2692 * a multiple of the mss when it is feasible to do so.
2693 *
2694 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2695 * Regular options like TIMESTAMP are taken into account.
2696 */
__tcp_select_window(struct sock * sk)2697 u32 __tcp_select_window(struct sock *sk)
2698 {
2699 struct inet_connection_sock *icsk = inet_csk(sk);
2700 struct tcp_sock *tp = tcp_sk(sk);
2701 /* MSS for the peer's data. Previous versions used mss_clamp
2702 * here. I don't know if the value based on our guesses
2703 * of peer's MSS is better for the performance. It's more correct
2704 * but may be worse for the performance because of rcv_mss
2705 * fluctuations. --SAW 1998/11/1
2706 */
2707 int mss = icsk->icsk_ack.rcv_mss;
2708 int free_space = tcp_space(sk);
2709 int allowed_space = tcp_full_space(sk);
2710 int full_space = min_t(int, tp->window_clamp, allowed_space);
2711 int window;
2712
2713 if (unlikely(mss > full_space)) {
2714 mss = full_space;
2715 if (mss <= 0)
2716 return 0;
2717 }
2718 if (free_space < (full_space >> 1)) {
2719 icsk->icsk_ack.quick = 0;
2720
2721 if (tcp_under_memory_pressure(sk))
2722 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2723 4U * tp->advmss);
2724
2725 /* free_space might become our new window, make sure we don't
2726 * increase it due to wscale.
2727 */
2728 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2729
2730 /* if free space is less than mss estimate, or is below 1/16th
2731 * of the maximum allowed, try to move to zero-window, else
2732 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2733 * new incoming data is dropped due to memory limits.
2734 * With large window, mss test triggers way too late in order
2735 * to announce zero window in time before rmem limit kicks in.
2736 */
2737 if (free_space < (allowed_space >> 4) || free_space < mss)
2738 return 0;
2739 }
2740
2741 if (free_space > tp->rcv_ssthresh)
2742 free_space = tp->rcv_ssthresh;
2743
2744 /* Don't do rounding if we are using window scaling, since the
2745 * scaled window will not line up with the MSS boundary anyway.
2746 */
2747 if (tp->rx_opt.rcv_wscale) {
2748 window = free_space;
2749
2750 /* Advertise enough space so that it won't get scaled away.
2751 * Import case: prevent zero window announcement if
2752 * 1<<rcv_wscale > mss.
2753 */
2754 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2755 } else {
2756 window = tp->rcv_wnd;
2757 /* Get the largest window that is a nice multiple of mss.
2758 * Window clamp already applied above.
2759 * If our current window offering is within 1 mss of the
2760 * free space we just keep it. This prevents the divide
2761 * and multiply from happening most of the time.
2762 * We also don't do any window rounding when the free space
2763 * is too small.
2764 */
2765 if (window <= free_space - mss || window > free_space)
2766 window = rounddown(free_space, mss);
2767 else if (mss == full_space &&
2768 free_space > window + (full_space >> 1))
2769 window = free_space;
2770 }
2771
2772 return window;
2773 }
2774
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)2775 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2776 const struct sk_buff *next_skb)
2777 {
2778 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2779 const struct skb_shared_info *next_shinfo =
2780 skb_shinfo(next_skb);
2781 struct skb_shared_info *shinfo = skb_shinfo(skb);
2782
2783 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2784 shinfo->tskey = next_shinfo->tskey;
2785 TCP_SKB_CB(skb)->txstamp_ack |=
2786 TCP_SKB_CB(next_skb)->txstamp_ack;
2787 }
2788 }
2789
2790 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)2791 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2792 {
2793 struct tcp_sock *tp = tcp_sk(sk);
2794 struct sk_buff *next_skb = skb_rb_next(skb);
2795 int next_skb_size;
2796
2797 next_skb_size = next_skb->len;
2798
2799 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2800
2801 if (next_skb_size) {
2802 if (next_skb_size <= skb_availroom(skb))
2803 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2804 next_skb_size);
2805 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
2806 return false;
2807 }
2808 tcp_highest_sack_replace(sk, next_skb, skb);
2809
2810 /* Update sequence range on original skb. */
2811 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2812
2813 /* Merge over control information. This moves PSH/FIN etc. over */
2814 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2815
2816 /* All done, get rid of second SKB and account for it so
2817 * packet counting does not break.
2818 */
2819 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2820 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2821
2822 /* changed transmit queue under us so clear hints */
2823 tcp_clear_retrans_hints_partial(tp);
2824 if (next_skb == tp->retransmit_skb_hint)
2825 tp->retransmit_skb_hint = skb;
2826
2827 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2828
2829 tcp_skb_collapse_tstamp(skb, next_skb);
2830
2831 tcp_rtx_queue_unlink_and_free(next_skb, sk);
2832 return true;
2833 }
2834
2835 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)2836 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2837 {
2838 if (tcp_skb_pcount(skb) > 1)
2839 return false;
2840 if (skb_cloned(skb))
2841 return false;
2842 /* Some heuristics for collapsing over SACK'd could be invented */
2843 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2844 return false;
2845
2846 return true;
2847 }
2848
2849 /* Collapse packets in the retransmit queue to make to create
2850 * less packets on the wire. This is only done on retransmission.
2851 */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)2852 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2853 int space)
2854 {
2855 struct tcp_sock *tp = tcp_sk(sk);
2856 struct sk_buff *skb = to, *tmp;
2857 bool first = true;
2858
2859 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2860 return;
2861 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2862 return;
2863
2864 skb_rbtree_walk_from_safe(skb, tmp) {
2865 if (!tcp_can_collapse(sk, skb))
2866 break;
2867
2868 if (!tcp_skb_can_collapse_to(to))
2869 break;
2870
2871 space -= skb->len;
2872
2873 if (first) {
2874 first = false;
2875 continue;
2876 }
2877
2878 if (space < 0)
2879 break;
2880
2881 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2882 break;
2883
2884 if (!tcp_collapse_retrans(sk, to))
2885 break;
2886 }
2887 }
2888
2889 /* This retransmits one SKB. Policy decisions and retransmit queue
2890 * state updates are done by the caller. Returns non-zero if an
2891 * error occurred which prevented the send.
2892 */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)2893 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2894 {
2895 struct inet_connection_sock *icsk = inet_csk(sk);
2896 struct tcp_sock *tp = tcp_sk(sk);
2897 unsigned int cur_mss;
2898 int diff, len, err;
2899
2900
2901 /* Inconclusive MTU probe */
2902 if (icsk->icsk_mtup.probe_size)
2903 icsk->icsk_mtup.probe_size = 0;
2904
2905 /* Do not sent more than we queued. 1/4 is reserved for possible
2906 * copying overhead: fragmentation, tunneling, mangling etc.
2907 */
2908 if (refcount_read(&sk->sk_wmem_alloc) >
2909 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2910 sk->sk_sndbuf))
2911 return -EAGAIN;
2912
2913 if (skb_still_in_host_queue(sk, skb))
2914 return -EBUSY;
2915
2916 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2917 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2918 WARN_ON_ONCE(1);
2919 return -EINVAL;
2920 }
2921 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2922 return -ENOMEM;
2923 }
2924
2925 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2926 return -EHOSTUNREACH; /* Routing failure or similar. */
2927
2928 cur_mss = tcp_current_mss(sk);
2929
2930 /* If receiver has shrunk his window, and skb is out of
2931 * new window, do not retransmit it. The exception is the
2932 * case, when window is shrunk to zero. In this case
2933 * our retransmit serves as a zero window probe.
2934 */
2935 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2936 TCP_SKB_CB(skb)->seq != tp->snd_una)
2937 return -EAGAIN;
2938
2939 len = cur_mss * segs;
2940 if (skb->len > len) {
2941 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2942 cur_mss, GFP_ATOMIC))
2943 return -ENOMEM; /* We'll try again later. */
2944 } else {
2945 if (skb_unclone(skb, GFP_ATOMIC))
2946 return -ENOMEM;
2947
2948 diff = tcp_skb_pcount(skb);
2949 tcp_set_skb_tso_segs(skb, cur_mss);
2950 diff -= tcp_skb_pcount(skb);
2951 if (diff)
2952 tcp_adjust_pcount(sk, skb, diff);
2953 if (skb->len < cur_mss)
2954 tcp_retrans_try_collapse(sk, skb, cur_mss);
2955 }
2956
2957 /* RFC3168, section 6.1.1.1. ECN fallback */
2958 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2959 tcp_ecn_clear_syn(sk, skb);
2960
2961 /* Update global and local TCP statistics. */
2962 segs = tcp_skb_pcount(skb);
2963 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2964 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2965 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2966 tp->total_retrans += segs;
2967 tp->bytes_retrans += skb->len;
2968
2969 /* make sure skb->data is aligned on arches that require it
2970 * and check if ack-trimming & collapsing extended the headroom
2971 * beyond what csum_start can cover.
2972 */
2973 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2974 skb_headroom(skb) >= 0xFFFF)) {
2975 struct sk_buff *nskb;
2976
2977 tcp_skb_tsorted_save(skb) {
2978 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2979 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2980 -ENOBUFS;
2981 } tcp_skb_tsorted_restore(skb);
2982
2983 if (!err) {
2984 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
2985 tcp_rate_skb_sent(sk, skb);
2986 }
2987 } else {
2988 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2989 }
2990
2991 /* To avoid taking spuriously low RTT samples based on a timestamp
2992 * for a transmit that never happened, always mark EVER_RETRANS
2993 */
2994 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2995
2996 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
2997 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
2998 TCP_SKB_CB(skb)->seq, segs, err);
2999
3000 if (likely(!err)) {
3001 trace_tcp_retransmit_skb(sk, skb);
3002 } else if (err != -EBUSY) {
3003 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3004 }
3005 return err;
3006 }
3007
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3008 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3009 {
3010 struct tcp_sock *tp = tcp_sk(sk);
3011 int err = __tcp_retransmit_skb(sk, skb, segs);
3012
3013 if (err == 0) {
3014 #if FASTRETRANS_DEBUG > 0
3015 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3016 net_dbg_ratelimited("retrans_out leaked\n");
3017 }
3018 #endif
3019 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3020 tp->retrans_out += tcp_skb_pcount(skb);
3021 }
3022
3023 /* Save stamp of the first (attempted) retransmit. */
3024 if (!tp->retrans_stamp)
3025 tp->retrans_stamp = tcp_skb_timestamp(skb);
3026
3027 if (tp->undo_retrans < 0)
3028 tp->undo_retrans = 0;
3029 tp->undo_retrans += tcp_skb_pcount(skb);
3030 return err;
3031 }
3032
3033 /* This gets called after a retransmit timeout, and the initially
3034 * retransmitted data is acknowledged. It tries to continue
3035 * resending the rest of the retransmit queue, until either
3036 * we've sent it all or the congestion window limit is reached.
3037 */
tcp_xmit_retransmit_queue(struct sock * sk)3038 void tcp_xmit_retransmit_queue(struct sock *sk)
3039 {
3040 const struct inet_connection_sock *icsk = inet_csk(sk);
3041 struct sk_buff *skb, *rtx_head, *hole = NULL;
3042 struct tcp_sock *tp = tcp_sk(sk);
3043 u32 max_segs;
3044 int mib_idx;
3045
3046 if (!tp->packets_out)
3047 return;
3048
3049 rtx_head = tcp_rtx_queue_head(sk);
3050 skb = tp->retransmit_skb_hint ?: rtx_head;
3051 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3052 skb_rbtree_walk_from(skb) {
3053 __u8 sacked;
3054 int segs;
3055
3056 if (tcp_pacing_check(sk))
3057 break;
3058
3059 /* we could do better than to assign each time */
3060 if (!hole)
3061 tp->retransmit_skb_hint = skb;
3062
3063 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3064 if (segs <= 0)
3065 return;
3066 sacked = TCP_SKB_CB(skb)->sacked;
3067 /* In case tcp_shift_skb_data() have aggregated large skbs,
3068 * we need to make sure not sending too bigs TSO packets
3069 */
3070 segs = min_t(int, segs, max_segs);
3071
3072 if (tp->retrans_out >= tp->lost_out) {
3073 break;
3074 } else if (!(sacked & TCPCB_LOST)) {
3075 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3076 hole = skb;
3077 continue;
3078
3079 } else {
3080 if (icsk->icsk_ca_state != TCP_CA_Loss)
3081 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3082 else
3083 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3084 }
3085
3086 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3087 continue;
3088
3089 if (tcp_small_queue_check(sk, skb, 1))
3090 return;
3091
3092 if (tcp_retransmit_skb(sk, skb, segs))
3093 return;
3094
3095 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3096
3097 if (tcp_in_cwnd_reduction(sk))
3098 tp->prr_out += tcp_skb_pcount(skb);
3099
3100 if (skb == rtx_head &&
3101 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3102 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3103 inet_csk(sk)->icsk_rto,
3104 TCP_RTO_MAX,
3105 skb);
3106 }
3107 }
3108
3109 /* We allow to exceed memory limits for FIN packets to expedite
3110 * connection tear down and (memory) recovery.
3111 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3112 * or even be forced to close flow without any FIN.
3113 * In general, we want to allow one skb per socket to avoid hangs
3114 * with edge trigger epoll()
3115 */
sk_forced_mem_schedule(struct sock * sk,int size)3116 void sk_forced_mem_schedule(struct sock *sk, int size)
3117 {
3118 int amt;
3119
3120 if (size <= sk->sk_forward_alloc)
3121 return;
3122 amt = sk_mem_pages(size);
3123 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3124 sk_memory_allocated_add(sk, amt);
3125
3126 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3127 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3128 }
3129
3130 /* Send a FIN. The caller locks the socket for us.
3131 * We should try to send a FIN packet really hard, but eventually give up.
3132 */
tcp_send_fin(struct sock * sk)3133 void tcp_send_fin(struct sock *sk)
3134 {
3135 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3136 struct tcp_sock *tp = tcp_sk(sk);
3137
3138 /* Optimization, tack on the FIN if we have one skb in write queue and
3139 * this skb was not yet sent, or we are under memory pressure.
3140 * Note: in the latter case, FIN packet will be sent after a timeout,
3141 * as TCP stack thinks it has already been transmitted.
3142 */
3143 if (!tskb && tcp_under_memory_pressure(sk))
3144 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3145
3146 if (tskb) {
3147 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3148 TCP_SKB_CB(tskb)->end_seq++;
3149 tp->write_seq++;
3150 if (tcp_write_queue_empty(sk)) {
3151 /* This means tskb was already sent.
3152 * Pretend we included the FIN on previous transmit.
3153 * We need to set tp->snd_nxt to the value it would have
3154 * if FIN had been sent. This is because retransmit path
3155 * does not change tp->snd_nxt.
3156 */
3157 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3158 return;
3159 }
3160 } else {
3161 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3162 if (unlikely(!skb))
3163 return;
3164
3165 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3166 skb_reserve(skb, MAX_TCP_HEADER);
3167 sk_forced_mem_schedule(sk, skb->truesize);
3168 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3169 tcp_init_nondata_skb(skb, tp->write_seq,
3170 TCPHDR_ACK | TCPHDR_FIN);
3171 tcp_queue_skb(sk, skb);
3172 }
3173 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3174 }
3175
3176 /* We get here when a process closes a file descriptor (either due to
3177 * an explicit close() or as a byproduct of exit()'ing) and there
3178 * was unread data in the receive queue. This behavior is recommended
3179 * by RFC 2525, section 2.17. -DaveM
3180 */
tcp_send_active_reset(struct sock * sk,gfp_t priority)3181 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3182 {
3183 struct sk_buff *skb;
3184
3185 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3186
3187 /* NOTE: No TCP options attached and we never retransmit this. */
3188 skb = alloc_skb(MAX_TCP_HEADER, priority);
3189 if (!skb) {
3190 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3191 return;
3192 }
3193
3194 /* Reserve space for headers and prepare control bits. */
3195 skb_reserve(skb, MAX_TCP_HEADER);
3196 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3197 TCPHDR_ACK | TCPHDR_RST);
3198 tcp_mstamp_refresh(tcp_sk(sk));
3199 /* Send it off. */
3200 if (tcp_transmit_skb(sk, skb, 0, priority))
3201 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3202
3203 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3204 * skb here is different to the troublesome skb, so use NULL
3205 */
3206 trace_tcp_send_reset(sk, NULL);
3207 }
3208
3209 /* Send a crossed SYN-ACK during socket establishment.
3210 * WARNING: This routine must only be called when we have already sent
3211 * a SYN packet that crossed the incoming SYN that caused this routine
3212 * to get called. If this assumption fails then the initial rcv_wnd
3213 * and rcv_wscale values will not be correct.
3214 */
tcp_send_synack(struct sock * sk)3215 int tcp_send_synack(struct sock *sk)
3216 {
3217 struct sk_buff *skb;
3218
3219 skb = tcp_rtx_queue_head(sk);
3220 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3221 pr_err("%s: wrong queue state\n", __func__);
3222 return -EFAULT;
3223 }
3224 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3225 if (skb_cloned(skb)) {
3226 struct sk_buff *nskb;
3227
3228 tcp_skb_tsorted_save(skb) {
3229 nskb = skb_copy(skb, GFP_ATOMIC);
3230 } tcp_skb_tsorted_restore(skb);
3231 if (!nskb)
3232 return -ENOMEM;
3233 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3234 tcp_highest_sack_replace(sk, skb, nskb);
3235 tcp_rtx_queue_unlink_and_free(skb, sk);
3236 __skb_header_release(nskb);
3237 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3238 sk_wmem_queued_add(sk, nskb->truesize);
3239 sk_mem_charge(sk, nskb->truesize);
3240 skb = nskb;
3241 }
3242
3243 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3244 tcp_ecn_send_synack(sk, skb);
3245 }
3246 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3247 }
3248
3249 /**
3250 * tcp_make_synack - Prepare a SYN-ACK.
3251 * sk: listener socket
3252 * dst: dst entry attached to the SYNACK
3253 * req: request_sock pointer
3254 *
3255 * Allocate one skb and build a SYNACK packet.
3256 * @dst is consumed : Caller should not use it again.
3257 */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type)3258 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3259 struct request_sock *req,
3260 struct tcp_fastopen_cookie *foc,
3261 enum tcp_synack_type synack_type)
3262 {
3263 struct inet_request_sock *ireq = inet_rsk(req);
3264 const struct tcp_sock *tp = tcp_sk(sk);
3265 struct tcp_md5sig_key *md5 = NULL;
3266 struct tcp_out_options opts;
3267 struct sk_buff *skb;
3268 int tcp_header_size;
3269 struct tcphdr *th;
3270 int mss;
3271 u64 now;
3272
3273 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3274 if (unlikely(!skb)) {
3275 dst_release(dst);
3276 return NULL;
3277 }
3278 /* Reserve space for headers. */
3279 skb_reserve(skb, MAX_TCP_HEADER);
3280
3281 switch (synack_type) {
3282 case TCP_SYNACK_NORMAL:
3283 skb_set_owner_w(skb, req_to_sk(req));
3284 break;
3285 case TCP_SYNACK_COOKIE:
3286 /* Under synflood, we do not attach skb to a socket,
3287 * to avoid false sharing.
3288 */
3289 break;
3290 case TCP_SYNACK_FASTOPEN:
3291 /* sk is a const pointer, because we want to express multiple
3292 * cpu might call us concurrently.
3293 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3294 */
3295 skb_set_owner_w(skb, (struct sock *)sk);
3296 break;
3297 }
3298 skb_dst_set(skb, dst);
3299
3300 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3301
3302 memset(&opts, 0, sizeof(opts));
3303 now = tcp_clock_ns();
3304 #ifdef CONFIG_SYN_COOKIES
3305 if (unlikely(req->cookie_ts))
3306 skb->skb_mstamp_ns = cookie_init_timestamp(req);
3307 else
3308 #endif
3309 {
3310 skb->skb_mstamp_ns = now;
3311 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3312 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3313 }
3314
3315 #ifdef CONFIG_TCP_MD5SIG
3316 rcu_read_lock();
3317 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3318 #endif
3319 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3320 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3321 foc) + sizeof(*th);
3322
3323 skb_push(skb, tcp_header_size);
3324 skb_reset_transport_header(skb);
3325
3326 th = (struct tcphdr *)skb->data;
3327 memset(th, 0, sizeof(struct tcphdr));
3328 th->syn = 1;
3329 th->ack = 1;
3330 tcp_ecn_make_synack(req, th);
3331 th->source = htons(ireq->ir_num);
3332 th->dest = ireq->ir_rmt_port;
3333 skb->mark = ireq->ir_mark;
3334 skb->ip_summed = CHECKSUM_PARTIAL;
3335 th->seq = htonl(tcp_rsk(req)->snt_isn);
3336 /* XXX data is queued and acked as is. No buffer/window check */
3337 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3338
3339 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3340 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3341 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3342 th->doff = (tcp_header_size >> 2);
3343 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3344
3345 #ifdef CONFIG_TCP_MD5SIG
3346 /* Okay, we have all we need - do the md5 hash if needed */
3347 if (md5)
3348 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3349 md5, req_to_sk(req), skb);
3350 rcu_read_unlock();
3351 #endif
3352
3353 skb->skb_mstamp_ns = now;
3354 tcp_add_tx_delay(skb, tp);
3355
3356 return skb;
3357 }
3358 EXPORT_SYMBOL(tcp_make_synack);
3359
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3360 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3361 {
3362 struct inet_connection_sock *icsk = inet_csk(sk);
3363 const struct tcp_congestion_ops *ca;
3364 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3365
3366 if (ca_key == TCP_CA_UNSPEC)
3367 return;
3368
3369 rcu_read_lock();
3370 ca = tcp_ca_find_key(ca_key);
3371 if (likely(ca && try_module_get(ca->owner))) {
3372 module_put(icsk->icsk_ca_ops->owner);
3373 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3374 icsk->icsk_ca_ops = ca;
3375 }
3376 rcu_read_unlock();
3377 }
3378
3379 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3380 static void tcp_connect_init(struct sock *sk)
3381 {
3382 const struct dst_entry *dst = __sk_dst_get(sk);
3383 struct tcp_sock *tp = tcp_sk(sk);
3384 __u8 rcv_wscale;
3385 u32 rcv_wnd;
3386
3387 /* We'll fix this up when we get a response from the other end.
3388 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3389 */
3390 tp->tcp_header_len = sizeof(struct tcphdr);
3391 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3392 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3393
3394 #ifdef CONFIG_TCP_MD5SIG
3395 if (tp->af_specific->md5_lookup(sk, sk))
3396 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3397 #endif
3398
3399 /* If user gave his TCP_MAXSEG, record it to clamp */
3400 if (tp->rx_opt.user_mss)
3401 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3402 tp->max_window = 0;
3403 tcp_mtup_init(sk);
3404 tcp_sync_mss(sk, dst_mtu(dst));
3405
3406 tcp_ca_dst_init(sk, dst);
3407
3408 if (!tp->window_clamp)
3409 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3410 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3411
3412 tcp_initialize_rcv_mss(sk);
3413
3414 /* limit the window selection if the user enforce a smaller rx buffer */
3415 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3416 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3417 tp->window_clamp = tcp_full_space(sk);
3418
3419 rcv_wnd = tcp_rwnd_init_bpf(sk);
3420 if (rcv_wnd == 0)
3421 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3422
3423 tcp_select_initial_window(sk, tcp_full_space(sk),
3424 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3425 &tp->rcv_wnd,
3426 &tp->window_clamp,
3427 sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3428 &rcv_wscale,
3429 rcv_wnd);
3430
3431 tp->rx_opt.rcv_wscale = rcv_wscale;
3432 tp->rcv_ssthresh = tp->rcv_wnd;
3433
3434 sk->sk_err = 0;
3435 sock_reset_flag(sk, SOCK_DONE);
3436 tp->snd_wnd = 0;
3437 tcp_init_wl(tp, 0);
3438 tcp_write_queue_purge(sk);
3439 tp->snd_una = tp->write_seq;
3440 tp->snd_sml = tp->write_seq;
3441 tp->snd_up = tp->write_seq;
3442 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3443
3444 if (likely(!tp->repair))
3445 tp->rcv_nxt = 0;
3446 else
3447 tp->rcv_tstamp = tcp_jiffies32;
3448 tp->rcv_wup = tp->rcv_nxt;
3449 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3450
3451 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3452 inet_csk(sk)->icsk_retransmits = 0;
3453 tcp_clear_retrans(tp);
3454 }
3455
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3456 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3457 {
3458 struct tcp_sock *tp = tcp_sk(sk);
3459 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3460
3461 tcb->end_seq += skb->len;
3462 __skb_header_release(skb);
3463 sk_wmem_queued_add(sk, skb->truesize);
3464 sk_mem_charge(sk, skb->truesize);
3465 WRITE_ONCE(tp->write_seq, tcb->end_seq);
3466 tp->packets_out += tcp_skb_pcount(skb);
3467 }
3468
3469 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3470 * queue a data-only packet after the regular SYN, such that regular SYNs
3471 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3472 * only the SYN sequence, the data are retransmitted in the first ACK.
3473 * If cookie is not cached or other error occurs, falls back to send a
3474 * regular SYN with Fast Open cookie request option.
3475 */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3476 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3477 {
3478 struct tcp_sock *tp = tcp_sk(sk);
3479 struct tcp_fastopen_request *fo = tp->fastopen_req;
3480 int space, err = 0;
3481 struct sk_buff *syn_data;
3482
3483 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3484 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3485 goto fallback;
3486
3487 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3488 * user-MSS. Reserve maximum option space for middleboxes that add
3489 * private TCP options. The cost is reduced data space in SYN :(
3490 */
3491 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3492
3493 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3494 MAX_TCP_OPTION_SPACE;
3495
3496 space = min_t(size_t, space, fo->size);
3497
3498 /* limit to order-0 allocations */
3499 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3500
3501 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3502 if (!syn_data)
3503 goto fallback;
3504 syn_data->ip_summed = CHECKSUM_PARTIAL;
3505 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3506 if (space) {
3507 int copied = copy_from_iter(skb_put(syn_data, space), space,
3508 &fo->data->msg_iter);
3509 if (unlikely(!copied)) {
3510 tcp_skb_tsorted_anchor_cleanup(syn_data);
3511 kfree_skb(syn_data);
3512 goto fallback;
3513 }
3514 if (copied != space) {
3515 skb_trim(syn_data, copied);
3516 space = copied;
3517 }
3518 skb_zcopy_set(syn_data, fo->uarg, NULL);
3519 }
3520 /* No more data pending in inet_wait_for_connect() */
3521 if (space == fo->size)
3522 fo->data = NULL;
3523 fo->copied = space;
3524
3525 tcp_connect_queue_skb(sk, syn_data);
3526 if (syn_data->len)
3527 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3528
3529 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3530
3531 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3532
3533 /* Now full SYN+DATA was cloned and sent (or not),
3534 * remove the SYN from the original skb (syn_data)
3535 * we keep in write queue in case of a retransmit, as we
3536 * also have the SYN packet (with no data) in the same queue.
3537 */
3538 TCP_SKB_CB(syn_data)->seq++;
3539 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3540 if (!err) {
3541 tp->syn_data = (fo->copied > 0);
3542 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3543 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3544 goto done;
3545 }
3546
3547 /* data was not sent, put it in write_queue */
3548 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3549 tp->packets_out -= tcp_skb_pcount(syn_data);
3550
3551 fallback:
3552 /* Send a regular SYN with Fast Open cookie request option */
3553 if (fo->cookie.len > 0)
3554 fo->cookie.len = 0;
3555 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3556 if (err)
3557 tp->syn_fastopen = 0;
3558 done:
3559 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3560 return err;
3561 }
3562
3563 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3564 int tcp_connect(struct sock *sk)
3565 {
3566 struct tcp_sock *tp = tcp_sk(sk);
3567 struct sk_buff *buff;
3568 int err;
3569
3570 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3571
3572 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3573 return -EHOSTUNREACH; /* Routing failure or similar. */
3574
3575 tcp_connect_init(sk);
3576
3577 if (unlikely(tp->repair)) {
3578 tcp_finish_connect(sk, NULL);
3579 return 0;
3580 }
3581
3582 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3583 if (unlikely(!buff))
3584 return -ENOBUFS;
3585
3586 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3587 tcp_mstamp_refresh(tp);
3588 tp->retrans_stamp = tcp_time_stamp(tp);
3589 tcp_connect_queue_skb(sk, buff);
3590 tcp_ecn_send_syn(sk, buff);
3591 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3592
3593 /* Send off SYN; include data in Fast Open. */
3594 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3595 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3596 if (err == -ECONNREFUSED)
3597 return err;
3598
3599 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3600 * in order to make this packet get counted in tcpOutSegs.
3601 */
3602 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3603 tp->pushed_seq = tp->write_seq;
3604 buff = tcp_send_head(sk);
3605 if (unlikely(buff)) {
3606 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3607 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3608 }
3609 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3610
3611 /* Timer for repeating the SYN until an answer. */
3612 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3613 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3614 return 0;
3615 }
3616 EXPORT_SYMBOL(tcp_connect);
3617
3618 /* Send out a delayed ack, the caller does the policy checking
3619 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3620 * for details.
3621 */
tcp_send_delayed_ack(struct sock * sk)3622 void tcp_send_delayed_ack(struct sock *sk)
3623 {
3624 struct inet_connection_sock *icsk = inet_csk(sk);
3625 int ato = icsk->icsk_ack.ato;
3626 unsigned long timeout;
3627
3628 if (ato > TCP_DELACK_MIN) {
3629 const struct tcp_sock *tp = tcp_sk(sk);
3630 int max_ato = HZ / 2;
3631
3632 if (inet_csk_in_pingpong_mode(sk) ||
3633 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3634 max_ato = TCP_DELACK_MAX;
3635
3636 /* Slow path, intersegment interval is "high". */
3637
3638 /* If some rtt estimate is known, use it to bound delayed ack.
3639 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3640 * directly.
3641 */
3642 if (tp->srtt_us) {
3643 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3644 TCP_DELACK_MIN);
3645
3646 if (rtt < max_ato)
3647 max_ato = rtt;
3648 }
3649
3650 ato = min(ato, max_ato);
3651 }
3652
3653 /* Stay within the limit we were given */
3654 timeout = jiffies + ato;
3655
3656 /* Use new timeout only if there wasn't a older one earlier. */
3657 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3658 /* If delack timer was blocked or is about to expire,
3659 * send ACK now.
3660 */
3661 if (icsk->icsk_ack.blocked ||
3662 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3663 tcp_send_ack(sk);
3664 return;
3665 }
3666
3667 if (!time_before(timeout, icsk->icsk_ack.timeout))
3668 timeout = icsk->icsk_ack.timeout;
3669 }
3670 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3671 icsk->icsk_ack.timeout = timeout;
3672 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3673 }
3674
3675 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)3676 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3677 {
3678 struct sk_buff *buff;
3679
3680 /* If we have been reset, we may not send again. */
3681 if (sk->sk_state == TCP_CLOSE)
3682 return;
3683
3684 /* We are not putting this on the write queue, so
3685 * tcp_transmit_skb() will set the ownership to this
3686 * sock.
3687 */
3688 buff = alloc_skb(MAX_TCP_HEADER,
3689 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3690 if (unlikely(!buff)) {
3691 inet_csk_schedule_ack(sk);
3692 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3693 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3694 TCP_DELACK_MAX, TCP_RTO_MAX);
3695 return;
3696 }
3697
3698 /* Reserve space for headers and prepare control bits. */
3699 skb_reserve(buff, MAX_TCP_HEADER);
3700 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3701
3702 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3703 * too much.
3704 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3705 */
3706 skb_set_tcp_pure_ack(buff);
3707
3708 /* Send it off, this clears delayed acks for us. */
3709 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3710 }
3711 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3712
tcp_send_ack(struct sock * sk)3713 void tcp_send_ack(struct sock *sk)
3714 {
3715 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3716 }
3717
3718 /* This routine sends a packet with an out of date sequence
3719 * number. It assumes the other end will try to ack it.
3720 *
3721 * Question: what should we make while urgent mode?
3722 * 4.4BSD forces sending single byte of data. We cannot send
3723 * out of window data, because we have SND.NXT==SND.MAX...
3724 *
3725 * Current solution: to send TWO zero-length segments in urgent mode:
3726 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3727 * out-of-date with SND.UNA-1 to probe window.
3728 */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)3729 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3730 {
3731 struct tcp_sock *tp = tcp_sk(sk);
3732 struct sk_buff *skb;
3733
3734 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3735 skb = alloc_skb(MAX_TCP_HEADER,
3736 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3737 if (!skb)
3738 return -1;
3739
3740 /* Reserve space for headers and set control bits. */
3741 skb_reserve(skb, MAX_TCP_HEADER);
3742 /* Use a previous sequence. This should cause the other
3743 * end to send an ack. Don't queue or clone SKB, just
3744 * send it.
3745 */
3746 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3747 NET_INC_STATS(sock_net(sk), mib);
3748 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3749 }
3750
3751 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)3752 void tcp_send_window_probe(struct sock *sk)
3753 {
3754 if (sk->sk_state == TCP_ESTABLISHED) {
3755 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3756 tcp_mstamp_refresh(tcp_sk(sk));
3757 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3758 }
3759 }
3760
3761 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)3762 int tcp_write_wakeup(struct sock *sk, int mib)
3763 {
3764 struct tcp_sock *tp = tcp_sk(sk);
3765 struct sk_buff *skb;
3766
3767 if (sk->sk_state == TCP_CLOSE)
3768 return -1;
3769
3770 skb = tcp_send_head(sk);
3771 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3772 int err;
3773 unsigned int mss = tcp_current_mss(sk);
3774 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3775
3776 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3777 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3778
3779 /* We are probing the opening of a window
3780 * but the window size is != 0
3781 * must have been a result SWS avoidance ( sender )
3782 */
3783 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3784 skb->len > mss) {
3785 seg_size = min(seg_size, mss);
3786 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3787 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3788 skb, seg_size, mss, GFP_ATOMIC))
3789 return -1;
3790 } else if (!tcp_skb_pcount(skb))
3791 tcp_set_skb_tso_segs(skb, mss);
3792
3793 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3794 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3795 if (!err)
3796 tcp_event_new_data_sent(sk, skb);
3797 return err;
3798 } else {
3799 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3800 tcp_xmit_probe_skb(sk, 1, mib);
3801 return tcp_xmit_probe_skb(sk, 0, mib);
3802 }
3803 }
3804
3805 /* A window probe timeout has occurred. If window is not closed send
3806 * a partial packet else a zero probe.
3807 */
tcp_send_probe0(struct sock * sk)3808 void tcp_send_probe0(struct sock *sk)
3809 {
3810 struct inet_connection_sock *icsk = inet_csk(sk);
3811 struct tcp_sock *tp = tcp_sk(sk);
3812 struct net *net = sock_net(sk);
3813 unsigned long timeout;
3814 int err;
3815
3816 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3817
3818 if (tp->packets_out || tcp_write_queue_empty(sk)) {
3819 /* Cancel probe timer, if it is not required. */
3820 icsk->icsk_probes_out = 0;
3821 icsk->icsk_backoff = 0;
3822 return;
3823 }
3824
3825 icsk->icsk_probes_out++;
3826 if (err <= 0) {
3827 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3828 icsk->icsk_backoff++;
3829 timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
3830 } else {
3831 /* If packet was not sent due to local congestion,
3832 * Let senders fight for local resources conservatively.
3833 */
3834 timeout = TCP_RESOURCE_PROBE_INTERVAL;
3835 }
3836 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX, NULL);
3837 }
3838
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)3839 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3840 {
3841 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3842 struct flowi fl;
3843 int res;
3844
3845 tcp_rsk(req)->txhash = net_tx_rndhash();
3846 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3847 if (!res) {
3848 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3849 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3850 if (unlikely(tcp_passive_fastopen(sk)))
3851 tcp_sk(sk)->total_retrans++;
3852 trace_tcp_retransmit_synack(sk, req);
3853 }
3854 return res;
3855 }
3856 EXPORT_SYMBOL(tcp_rtx_synack);
3857