• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 
42 #include <linux/compiler.h>
43 #include <linux/gfp.h>
44 #include <linux/module.h>
45 #include <linux/static_key.h>
46 
47 #include <trace/events/tcp.h>
48 
49 /* Refresh clocks of a TCP socket,
50  * ensuring monotically increasing values.
51  */
tcp_mstamp_refresh(struct tcp_sock * tp)52 void tcp_mstamp_refresh(struct tcp_sock *tp)
53 {
54 	u64 val = tcp_clock_ns();
55 
56 	tp->tcp_clock_cache = val;
57 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
58 }
59 
60 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
61 			   int push_one, gfp_t gfp);
62 
63 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)64 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
65 {
66 	struct inet_connection_sock *icsk = inet_csk(sk);
67 	struct tcp_sock *tp = tcp_sk(sk);
68 	unsigned int prior_packets = tp->packets_out;
69 
70 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
71 
72 	__skb_unlink(skb, &sk->sk_write_queue);
73 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
74 
75 	if (tp->highest_sack == NULL)
76 		tp->highest_sack = skb;
77 
78 	tp->packets_out += tcp_skb_pcount(skb);
79 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 		tcp_rearm_rto(sk);
81 
82 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 		      tcp_skb_pcount(skb));
84 }
85 
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87  * window scaling factor due to loss of precision.
88  * If window has been shrunk, what should we make? It is not clear at all.
89  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91  * invalid. OK, let's make this for now:
92  */
tcp_acceptable_seq(const struct sock * sk)93 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
94 {
95 	const struct tcp_sock *tp = tcp_sk(sk);
96 
97 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
98 	    (tp->rx_opt.wscale_ok &&
99 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
100 		return tp->snd_nxt;
101 	else
102 		return tcp_wnd_end(tp);
103 }
104 
105 /* Calculate mss to advertise in SYN segment.
106  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
107  *
108  * 1. It is independent of path mtu.
109  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111  *    attached devices, because some buggy hosts are confused by
112  *    large MSS.
113  * 4. We do not make 3, we advertise MSS, calculated from first
114  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
115  *    This may be overridden via information stored in routing table.
116  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117  *    probably even Jumbo".
118  */
tcp_advertise_mss(struct sock * sk)119 static __u16 tcp_advertise_mss(struct sock *sk)
120 {
121 	struct tcp_sock *tp = tcp_sk(sk);
122 	const struct dst_entry *dst = __sk_dst_get(sk);
123 	int mss = tp->advmss;
124 
125 	if (dst) {
126 		unsigned int metric = dst_metric_advmss(dst);
127 
128 		if (metric < mss) {
129 			mss = metric;
130 			tp->advmss = mss;
131 		}
132 	}
133 
134 	return (__u16)mss;
135 }
136 
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138  * This is the first part of cwnd validation mechanism.
139  */
tcp_cwnd_restart(struct sock * sk,s32 delta)140 void tcp_cwnd_restart(struct sock *sk, s32 delta)
141 {
142 	struct tcp_sock *tp = tcp_sk(sk);
143 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
144 	u32 cwnd = tp->snd_cwnd;
145 
146 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
147 
148 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
149 	restart_cwnd = min(restart_cwnd, cwnd);
150 
151 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
152 		cwnd >>= 1;
153 	tp->snd_cwnd = max(cwnd, restart_cwnd);
154 	tp->snd_cwnd_stamp = tcp_jiffies32;
155 	tp->snd_cwnd_used = 0;
156 }
157 
158 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)159 static void tcp_event_data_sent(struct tcp_sock *tp,
160 				struct sock *sk)
161 {
162 	struct inet_connection_sock *icsk = inet_csk(sk);
163 	const u32 now = tcp_jiffies32;
164 
165 	if (tcp_packets_in_flight(tp) == 0)
166 		tcp_ca_event(sk, CA_EVENT_TX_START);
167 
168 	/* If this is the first data packet sent in response to the
169 	 * previous received data,
170 	 * and it is a reply for ato after last received packet,
171 	 * increase pingpong count.
172 	 */
173 	if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
174 	    (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
175 		inet_csk_inc_pingpong_cnt(sk);
176 
177 	tp->lsndtime = now;
178 }
179 
180 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,unsigned int pkts,u32 rcv_nxt)181 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
182 				      u32 rcv_nxt)
183 {
184 	struct tcp_sock *tp = tcp_sk(sk);
185 
186 	if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) {
187 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
188 			      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
189 		tp->compressed_ack = TCP_FASTRETRANS_THRESH;
190 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
191 			__sock_put(sk);
192 	}
193 
194 	if (unlikely(rcv_nxt != tp->rcv_nxt))
195 		return;  /* Special ACK sent by DCTCP to reflect ECN */
196 	tcp_dec_quickack_mode(sk, pkts);
197 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
198 }
199 
200 /* Determine a window scaling and initial window to offer.
201  * Based on the assumption that the given amount of space
202  * will be offered. Store the results in the tp structure.
203  * NOTE: for smooth operation initial space offering should
204  * be a multiple of mss if possible. We assume here that mss >= 1.
205  * This MUST be enforced by all callers.
206  */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)207 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
208 			       __u32 *rcv_wnd, __u32 *window_clamp,
209 			       int wscale_ok, __u8 *rcv_wscale,
210 			       __u32 init_rcv_wnd)
211 {
212 	unsigned int space = (__space < 0 ? 0 : __space);
213 
214 	/* If no clamp set the clamp to the max possible scaled window */
215 	if (*window_clamp == 0)
216 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
217 	space = min(*window_clamp, space);
218 
219 	/* Quantize space offering to a multiple of mss if possible. */
220 	if (space > mss)
221 		space = rounddown(space, mss);
222 
223 	/* NOTE: offering an initial window larger than 32767
224 	 * will break some buggy TCP stacks. If the admin tells us
225 	 * it is likely we could be speaking with such a buggy stack
226 	 * we will truncate our initial window offering to 32K-1
227 	 * unless the remote has sent us a window scaling option,
228 	 * which we interpret as a sign the remote TCP is not
229 	 * misinterpreting the window field as a signed quantity.
230 	 */
231 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
232 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
233 	else
234 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
235 
236 	if (init_rcv_wnd)
237 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
238 
239 	*rcv_wscale = 0;
240 	if (wscale_ok) {
241 		/* Set window scaling on max possible window */
242 		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
243 		space = max_t(u32, space, sysctl_rmem_max);
244 		space = min_t(u32, space, *window_clamp);
245 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
246 				      0, TCP_MAX_WSCALE);
247 	}
248 	/* Set the clamp no higher than max representable value */
249 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
250 }
251 EXPORT_SYMBOL(tcp_select_initial_window);
252 
253 /* Chose a new window to advertise, update state in tcp_sock for the
254  * socket, and return result with RFC1323 scaling applied.  The return
255  * value can be stuffed directly into th->window for an outgoing
256  * frame.
257  */
tcp_select_window(struct sock * sk)258 static u16 tcp_select_window(struct sock *sk)
259 {
260 	struct tcp_sock *tp = tcp_sk(sk);
261 	u32 old_win = tp->rcv_wnd;
262 	u32 cur_win = tcp_receive_window(tp);
263 	u32 new_win = __tcp_select_window(sk);
264 
265 	/* Never shrink the offered window */
266 	if (new_win < cur_win) {
267 		/* Danger Will Robinson!
268 		 * Don't update rcv_wup/rcv_wnd here or else
269 		 * we will not be able to advertise a zero
270 		 * window in time.  --DaveM
271 		 *
272 		 * Relax Will Robinson.
273 		 */
274 		if (new_win == 0)
275 			NET_INC_STATS(sock_net(sk),
276 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
277 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
278 	}
279 	tp->rcv_wnd = new_win;
280 	tp->rcv_wup = tp->rcv_nxt;
281 
282 	/* Make sure we do not exceed the maximum possible
283 	 * scaled window.
284 	 */
285 	if (!tp->rx_opt.rcv_wscale &&
286 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
287 		new_win = min(new_win, MAX_TCP_WINDOW);
288 	else
289 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
290 
291 	/* RFC1323 scaling applied */
292 	new_win >>= tp->rx_opt.rcv_wscale;
293 
294 	/* If we advertise zero window, disable fast path. */
295 	if (new_win == 0) {
296 		tp->pred_flags = 0;
297 		if (old_win)
298 			NET_INC_STATS(sock_net(sk),
299 				      LINUX_MIB_TCPTOZEROWINDOWADV);
300 	} else if (old_win == 0) {
301 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
302 	}
303 
304 	return new_win;
305 }
306 
307 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)308 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
309 {
310 	const struct tcp_sock *tp = tcp_sk(sk);
311 
312 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
313 	if (!(tp->ecn_flags & TCP_ECN_OK))
314 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
315 	else if (tcp_ca_needs_ecn(sk) ||
316 		 tcp_bpf_ca_needs_ecn(sk))
317 		INET_ECN_xmit(sk);
318 }
319 
320 /* Packet ECN state for a SYN.  */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)321 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
322 {
323 	struct tcp_sock *tp = tcp_sk(sk);
324 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
325 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
326 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
327 
328 	if (!use_ecn) {
329 		const struct dst_entry *dst = __sk_dst_get(sk);
330 
331 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
332 			use_ecn = true;
333 	}
334 
335 	tp->ecn_flags = 0;
336 
337 	if (use_ecn) {
338 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
339 		tp->ecn_flags = TCP_ECN_OK;
340 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
341 			INET_ECN_xmit(sk);
342 	}
343 }
344 
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)345 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
346 {
347 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
348 		/* tp->ecn_flags are cleared at a later point in time when
349 		 * SYN ACK is ultimatively being received.
350 		 */
351 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
352 }
353 
354 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)355 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
356 {
357 	if (inet_rsk(req)->ecn_ok)
358 		th->ece = 1;
359 }
360 
361 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
362  * be sent.
363  */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)364 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
365 			 struct tcphdr *th, int tcp_header_len)
366 {
367 	struct tcp_sock *tp = tcp_sk(sk);
368 
369 	if (tp->ecn_flags & TCP_ECN_OK) {
370 		/* Not-retransmitted data segment: set ECT and inject CWR. */
371 		if (skb->len != tcp_header_len &&
372 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
373 			INET_ECN_xmit(sk);
374 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
375 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
376 				th->cwr = 1;
377 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
378 			}
379 		} else if (!tcp_ca_needs_ecn(sk)) {
380 			/* ACK or retransmitted segment: clear ECT|CE */
381 			INET_ECN_dontxmit(sk);
382 		}
383 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
384 			th->ece = 1;
385 	}
386 }
387 
388 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
389  * auto increment end seqno.
390  */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)391 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
392 {
393 	skb->ip_summed = CHECKSUM_PARTIAL;
394 
395 	TCP_SKB_CB(skb)->tcp_flags = flags;
396 	TCP_SKB_CB(skb)->sacked = 0;
397 
398 	tcp_skb_pcount_set(skb, 1);
399 
400 	TCP_SKB_CB(skb)->seq = seq;
401 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
402 		seq++;
403 	TCP_SKB_CB(skb)->end_seq = seq;
404 }
405 
tcp_urg_mode(const struct tcp_sock * tp)406 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
407 {
408 	return tp->snd_una != tp->snd_up;
409 }
410 
411 #define OPTION_SACK_ADVERTISE	(1 << 0)
412 #define OPTION_TS		(1 << 1)
413 #define OPTION_MD5		(1 << 2)
414 #define OPTION_WSCALE		(1 << 3)
415 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
416 #define OPTION_SMC		(1 << 9)
417 
smc_options_write(__be32 * ptr,u16 * options)418 static void smc_options_write(__be32 *ptr, u16 *options)
419 {
420 #if IS_ENABLED(CONFIG_SMC)
421 	if (static_branch_unlikely(&tcp_have_smc)) {
422 		if (unlikely(OPTION_SMC & *options)) {
423 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
424 				       (TCPOPT_NOP  << 16) |
425 				       (TCPOPT_EXP <<  8) |
426 				       (TCPOLEN_EXP_SMC_BASE));
427 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
428 		}
429 	}
430 #endif
431 }
432 
433 struct tcp_out_options {
434 	u16 options;		/* bit field of OPTION_* */
435 	u16 mss;		/* 0 to disable */
436 	u8 ws;			/* window scale, 0 to disable */
437 	u8 num_sack_blocks;	/* number of SACK blocks to include */
438 	u8 hash_size;		/* bytes in hash_location */
439 	__u8 *hash_location;	/* temporary pointer, overloaded */
440 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
441 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
442 };
443 
444 /* Write previously computed TCP options to the packet.
445  *
446  * Beware: Something in the Internet is very sensitive to the ordering of
447  * TCP options, we learned this through the hard way, so be careful here.
448  * Luckily we can at least blame others for their non-compliance but from
449  * inter-operability perspective it seems that we're somewhat stuck with
450  * the ordering which we have been using if we want to keep working with
451  * those broken things (not that it currently hurts anybody as there isn't
452  * particular reason why the ordering would need to be changed).
453  *
454  * At least SACK_PERM as the first option is known to lead to a disaster
455  * (but it may well be that other scenarios fail similarly).
456  */
tcp_options_write(__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)457 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
458 			      struct tcp_out_options *opts)
459 {
460 	u16 options = opts->options;	/* mungable copy */
461 
462 	if (unlikely(OPTION_MD5 & options)) {
463 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
464 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
465 		/* overload cookie hash location */
466 		opts->hash_location = (__u8 *)ptr;
467 		ptr += 4;
468 	}
469 
470 	if (unlikely(opts->mss)) {
471 		*ptr++ = htonl((TCPOPT_MSS << 24) |
472 			       (TCPOLEN_MSS << 16) |
473 			       opts->mss);
474 	}
475 
476 	if (likely(OPTION_TS & options)) {
477 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
478 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
479 				       (TCPOLEN_SACK_PERM << 16) |
480 				       (TCPOPT_TIMESTAMP << 8) |
481 				       TCPOLEN_TIMESTAMP);
482 			options &= ~OPTION_SACK_ADVERTISE;
483 		} else {
484 			*ptr++ = htonl((TCPOPT_NOP << 24) |
485 				       (TCPOPT_NOP << 16) |
486 				       (TCPOPT_TIMESTAMP << 8) |
487 				       TCPOLEN_TIMESTAMP);
488 		}
489 		*ptr++ = htonl(opts->tsval);
490 		*ptr++ = htonl(opts->tsecr);
491 	}
492 
493 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
494 		*ptr++ = htonl((TCPOPT_NOP << 24) |
495 			       (TCPOPT_NOP << 16) |
496 			       (TCPOPT_SACK_PERM << 8) |
497 			       TCPOLEN_SACK_PERM);
498 	}
499 
500 	if (unlikely(OPTION_WSCALE & options)) {
501 		*ptr++ = htonl((TCPOPT_NOP << 24) |
502 			       (TCPOPT_WINDOW << 16) |
503 			       (TCPOLEN_WINDOW << 8) |
504 			       opts->ws);
505 	}
506 
507 	if (unlikely(opts->num_sack_blocks)) {
508 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
509 			tp->duplicate_sack : tp->selective_acks;
510 		int this_sack;
511 
512 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
513 			       (TCPOPT_NOP  << 16) |
514 			       (TCPOPT_SACK <<  8) |
515 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
516 						     TCPOLEN_SACK_PERBLOCK)));
517 
518 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
519 		     ++this_sack) {
520 			*ptr++ = htonl(sp[this_sack].start_seq);
521 			*ptr++ = htonl(sp[this_sack].end_seq);
522 		}
523 
524 		tp->rx_opt.dsack = 0;
525 	}
526 
527 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
528 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
529 		u8 *p = (u8 *)ptr;
530 		u32 len; /* Fast Open option length */
531 
532 		if (foc->exp) {
533 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
534 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
535 				     TCPOPT_FASTOPEN_MAGIC);
536 			p += TCPOLEN_EXP_FASTOPEN_BASE;
537 		} else {
538 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
539 			*p++ = TCPOPT_FASTOPEN;
540 			*p++ = len;
541 		}
542 
543 		memcpy(p, foc->val, foc->len);
544 		if ((len & 3) == 2) {
545 			p[foc->len] = TCPOPT_NOP;
546 			p[foc->len + 1] = TCPOPT_NOP;
547 		}
548 		ptr += (len + 3) >> 2;
549 	}
550 
551 	smc_options_write(ptr, &options);
552 }
553 
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)554 static void smc_set_option(const struct tcp_sock *tp,
555 			   struct tcp_out_options *opts,
556 			   unsigned int *remaining)
557 {
558 #if IS_ENABLED(CONFIG_SMC)
559 	if (static_branch_unlikely(&tcp_have_smc)) {
560 		if (tp->syn_smc) {
561 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
562 				opts->options |= OPTION_SMC;
563 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
564 			}
565 		}
566 	}
567 #endif
568 }
569 
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)570 static void smc_set_option_cond(const struct tcp_sock *tp,
571 				const struct inet_request_sock *ireq,
572 				struct tcp_out_options *opts,
573 				unsigned int *remaining)
574 {
575 #if IS_ENABLED(CONFIG_SMC)
576 	if (static_branch_unlikely(&tcp_have_smc)) {
577 		if (tp->syn_smc && ireq->smc_ok) {
578 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
579 				opts->options |= OPTION_SMC;
580 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
581 			}
582 		}
583 	}
584 #endif
585 }
586 
587 /* Compute TCP options for SYN packets. This is not the final
588  * network wire format yet.
589  */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)590 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
591 				struct tcp_out_options *opts,
592 				struct tcp_md5sig_key **md5)
593 {
594 	struct tcp_sock *tp = tcp_sk(sk);
595 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
596 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
597 
598 	*md5 = NULL;
599 #ifdef CONFIG_TCP_MD5SIG
600 	if (static_branch_unlikely(&tcp_md5_needed) &&
601 	    rcu_access_pointer(tp->md5sig_info)) {
602 		*md5 = tp->af_specific->md5_lookup(sk, sk);
603 		if (*md5) {
604 			opts->options |= OPTION_MD5;
605 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
606 		}
607 	}
608 #endif
609 
610 	/* We always get an MSS option.  The option bytes which will be seen in
611 	 * normal data packets should timestamps be used, must be in the MSS
612 	 * advertised.  But we subtract them from tp->mss_cache so that
613 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
614 	 * fact here if necessary.  If we don't do this correctly, as a
615 	 * receiver we won't recognize data packets as being full sized when we
616 	 * should, and thus we won't abide by the delayed ACK rules correctly.
617 	 * SACKs don't matter, we never delay an ACK when we have any of those
618 	 * going out.  */
619 	opts->mss = tcp_advertise_mss(sk);
620 	remaining -= TCPOLEN_MSS_ALIGNED;
621 
622 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
623 		opts->options |= OPTION_TS;
624 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
625 		opts->tsecr = tp->rx_opt.ts_recent;
626 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
627 	}
628 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
629 		opts->ws = tp->rx_opt.rcv_wscale;
630 		opts->options |= OPTION_WSCALE;
631 		remaining -= TCPOLEN_WSCALE_ALIGNED;
632 	}
633 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
634 		opts->options |= OPTION_SACK_ADVERTISE;
635 		if (unlikely(!(OPTION_TS & opts->options)))
636 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
637 	}
638 
639 	if (fastopen && fastopen->cookie.len >= 0) {
640 		u32 need = fastopen->cookie.len;
641 
642 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
643 					       TCPOLEN_FASTOPEN_BASE;
644 		need = (need + 3) & ~3U;  /* Align to 32 bits */
645 		if (remaining >= need) {
646 			opts->options |= OPTION_FAST_OPEN_COOKIE;
647 			opts->fastopen_cookie = &fastopen->cookie;
648 			remaining -= need;
649 			tp->syn_fastopen = 1;
650 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
651 		}
652 	}
653 
654 	smc_set_option(tp, opts, &remaining);
655 
656 	return MAX_TCP_OPTION_SPACE - remaining;
657 }
658 
659 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_md5sig_key * md5,struct tcp_fastopen_cookie * foc)660 static unsigned int tcp_synack_options(const struct sock *sk,
661 				       struct request_sock *req,
662 				       unsigned int mss, struct sk_buff *skb,
663 				       struct tcp_out_options *opts,
664 				       const struct tcp_md5sig_key *md5,
665 				       struct tcp_fastopen_cookie *foc)
666 {
667 	struct inet_request_sock *ireq = inet_rsk(req);
668 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
669 
670 #ifdef CONFIG_TCP_MD5SIG
671 	if (md5) {
672 		opts->options |= OPTION_MD5;
673 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
674 
675 		/* We can't fit any SACK blocks in a packet with MD5 + TS
676 		 * options. There was discussion about disabling SACK
677 		 * rather than TS in order to fit in better with old,
678 		 * buggy kernels, but that was deemed to be unnecessary.
679 		 */
680 		ireq->tstamp_ok &= !ireq->sack_ok;
681 	}
682 #endif
683 
684 	/* We always send an MSS option. */
685 	opts->mss = mss;
686 	remaining -= TCPOLEN_MSS_ALIGNED;
687 
688 	if (likely(ireq->wscale_ok)) {
689 		opts->ws = ireq->rcv_wscale;
690 		opts->options |= OPTION_WSCALE;
691 		remaining -= TCPOLEN_WSCALE_ALIGNED;
692 	}
693 	if (likely(ireq->tstamp_ok)) {
694 		opts->options |= OPTION_TS;
695 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
696 		opts->tsecr = req->ts_recent;
697 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
698 	}
699 	if (likely(ireq->sack_ok)) {
700 		opts->options |= OPTION_SACK_ADVERTISE;
701 		if (unlikely(!ireq->tstamp_ok))
702 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
703 	}
704 	if (foc != NULL && foc->len >= 0) {
705 		u32 need = foc->len;
706 
707 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
708 				   TCPOLEN_FASTOPEN_BASE;
709 		need = (need + 3) & ~3U;  /* Align to 32 bits */
710 		if (remaining >= need) {
711 			opts->options |= OPTION_FAST_OPEN_COOKIE;
712 			opts->fastopen_cookie = foc;
713 			remaining -= need;
714 		}
715 	}
716 
717 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
718 
719 	return MAX_TCP_OPTION_SPACE - remaining;
720 }
721 
722 /* Compute TCP options for ESTABLISHED sockets. This is not the
723  * final wire format yet.
724  */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)725 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
726 					struct tcp_out_options *opts,
727 					struct tcp_md5sig_key **md5)
728 {
729 	struct tcp_sock *tp = tcp_sk(sk);
730 	unsigned int size = 0;
731 	unsigned int eff_sacks;
732 
733 	opts->options = 0;
734 
735 	*md5 = NULL;
736 #ifdef CONFIG_TCP_MD5SIG
737 	if (static_branch_unlikely(&tcp_md5_needed) &&
738 	    rcu_access_pointer(tp->md5sig_info)) {
739 		*md5 = tp->af_specific->md5_lookup(sk, sk);
740 		if (*md5) {
741 			opts->options |= OPTION_MD5;
742 			size += TCPOLEN_MD5SIG_ALIGNED;
743 		}
744 	}
745 #endif
746 
747 	if (likely(tp->rx_opt.tstamp_ok)) {
748 		opts->options |= OPTION_TS;
749 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
750 		opts->tsecr = tp->rx_opt.ts_recent;
751 		size += TCPOLEN_TSTAMP_ALIGNED;
752 	}
753 
754 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
755 	if (unlikely(eff_sacks)) {
756 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
757 		opts->num_sack_blocks =
758 			min_t(unsigned int, eff_sacks,
759 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
760 			      TCPOLEN_SACK_PERBLOCK);
761 		if (likely(opts->num_sack_blocks))
762 			size += TCPOLEN_SACK_BASE_ALIGNED +
763 				opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
764 	}
765 
766 	return size;
767 }
768 
769 
770 /* TCP SMALL QUEUES (TSQ)
771  *
772  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
773  * to reduce RTT and bufferbloat.
774  * We do this using a special skb destructor (tcp_wfree).
775  *
776  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
777  * needs to be reallocated in a driver.
778  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
779  *
780  * Since transmit from skb destructor is forbidden, we use a tasklet
781  * to process all sockets that eventually need to send more skbs.
782  * We use one tasklet per cpu, with its own queue of sockets.
783  */
784 struct tsq_tasklet {
785 	struct tasklet_struct	tasklet;
786 	struct list_head	head; /* queue of tcp sockets */
787 };
788 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
789 
tcp_tsq_write(struct sock * sk)790 static void tcp_tsq_write(struct sock *sk)
791 {
792 	if ((1 << sk->sk_state) &
793 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
794 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
795 		struct tcp_sock *tp = tcp_sk(sk);
796 
797 		if (tp->lost_out > tp->retrans_out &&
798 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
799 			tcp_mstamp_refresh(tp);
800 			tcp_xmit_retransmit_queue(sk);
801 		}
802 
803 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
804 			       0, GFP_ATOMIC);
805 	}
806 }
807 
tcp_tsq_handler(struct sock * sk)808 static void tcp_tsq_handler(struct sock *sk)
809 {
810 	bh_lock_sock(sk);
811 	if (!sock_owned_by_user(sk))
812 		tcp_tsq_write(sk);
813 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
814 		sock_hold(sk);
815 	bh_unlock_sock(sk);
816 }
817 /*
818  * One tasklet per cpu tries to send more skbs.
819  * We run in tasklet context but need to disable irqs when
820  * transferring tsq->head because tcp_wfree() might
821  * interrupt us (non NAPI drivers)
822  */
tcp_tasklet_func(unsigned long data)823 static void tcp_tasklet_func(unsigned long data)
824 {
825 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
826 	LIST_HEAD(list);
827 	unsigned long flags;
828 	struct list_head *q, *n;
829 	struct tcp_sock *tp;
830 	struct sock *sk;
831 
832 	local_irq_save(flags);
833 	list_splice_init(&tsq->head, &list);
834 	local_irq_restore(flags);
835 
836 	list_for_each_safe(q, n, &list) {
837 		tp = list_entry(q, struct tcp_sock, tsq_node);
838 		list_del(&tp->tsq_node);
839 
840 		sk = (struct sock *)tp;
841 		smp_mb__before_atomic();
842 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
843 
844 		tcp_tsq_handler(sk);
845 		sk_free(sk);
846 	}
847 }
848 
849 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
850 			  TCPF_WRITE_TIMER_DEFERRED |	\
851 			  TCPF_DELACK_TIMER_DEFERRED |	\
852 			  TCPF_MTU_REDUCED_DEFERRED)
853 /**
854  * tcp_release_cb - tcp release_sock() callback
855  * @sk: socket
856  *
857  * called from release_sock() to perform protocol dependent
858  * actions before socket release.
859  */
tcp_release_cb(struct sock * sk)860 void tcp_release_cb(struct sock *sk)
861 {
862 	unsigned long flags, nflags;
863 
864 	/* perform an atomic operation only if at least one flag is set */
865 	do {
866 		flags = sk->sk_tsq_flags;
867 		if (!(flags & TCP_DEFERRED_ALL))
868 			return;
869 		nflags = flags & ~TCP_DEFERRED_ALL;
870 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
871 
872 	if (flags & TCPF_TSQ_DEFERRED) {
873 		tcp_tsq_write(sk);
874 		__sock_put(sk);
875 	}
876 	/* Here begins the tricky part :
877 	 * We are called from release_sock() with :
878 	 * 1) BH disabled
879 	 * 2) sk_lock.slock spinlock held
880 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
881 	 *
882 	 * But following code is meant to be called from BH handlers,
883 	 * so we should keep BH disabled, but early release socket ownership
884 	 */
885 	sock_release_ownership(sk);
886 
887 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
888 		tcp_write_timer_handler(sk);
889 		__sock_put(sk);
890 	}
891 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
892 		tcp_delack_timer_handler(sk);
893 		__sock_put(sk);
894 	}
895 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
896 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
897 		__sock_put(sk);
898 	}
899 }
900 EXPORT_SYMBOL(tcp_release_cb);
901 
tcp_tasklet_init(void)902 void __init tcp_tasklet_init(void)
903 {
904 	int i;
905 
906 	for_each_possible_cpu(i) {
907 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
908 
909 		INIT_LIST_HEAD(&tsq->head);
910 		tasklet_init(&tsq->tasklet,
911 			     tcp_tasklet_func,
912 			     (unsigned long)tsq);
913 	}
914 }
915 
916 /*
917  * Write buffer destructor automatically called from kfree_skb.
918  * We can't xmit new skbs from this context, as we might already
919  * hold qdisc lock.
920  */
tcp_wfree(struct sk_buff * skb)921 void tcp_wfree(struct sk_buff *skb)
922 {
923 	struct sock *sk = skb->sk;
924 	struct tcp_sock *tp = tcp_sk(sk);
925 	unsigned long flags, nval, oval;
926 
927 	/* Keep one reference on sk_wmem_alloc.
928 	 * Will be released by sk_free() from here or tcp_tasklet_func()
929 	 */
930 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
931 
932 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
933 	 * Wait until our queues (qdisc + devices) are drained.
934 	 * This gives :
935 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
936 	 * - chance for incoming ACK (processed by another cpu maybe)
937 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
938 	 */
939 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
940 		goto out;
941 
942 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
943 		struct tsq_tasklet *tsq;
944 		bool empty;
945 
946 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
947 			goto out;
948 
949 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
950 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
951 		if (nval != oval)
952 			continue;
953 
954 		/* queue this socket to tasklet queue */
955 		local_irq_save(flags);
956 		tsq = this_cpu_ptr(&tsq_tasklet);
957 		empty = list_empty(&tsq->head);
958 		list_add(&tp->tsq_node, &tsq->head);
959 		if (empty)
960 			tasklet_schedule(&tsq->tasklet);
961 		local_irq_restore(flags);
962 		return;
963 	}
964 out:
965 	sk_free(sk);
966 }
967 
968 /* Note: Called under soft irq.
969  * We can call TCP stack right away, unless socket is owned by user.
970  */
tcp_pace_kick(struct hrtimer * timer)971 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
972 {
973 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
974 	struct sock *sk = (struct sock *)tp;
975 
976 	tcp_tsq_handler(sk);
977 	sock_put(sk);
978 
979 	return HRTIMER_NORESTART;
980 }
981 
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)982 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
983 				      u64 prior_wstamp)
984 {
985 	struct tcp_sock *tp = tcp_sk(sk);
986 
987 	if (sk->sk_pacing_status != SK_PACING_NONE) {
988 		unsigned long rate = sk->sk_pacing_rate;
989 
990 		/* Original sch_fq does not pace first 10 MSS
991 		 * Note that tp->data_segs_out overflows after 2^32 packets,
992 		 * this is a minor annoyance.
993 		 */
994 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
995 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
996 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
997 
998 			/* take into account OS jitter */
999 			len_ns -= min_t(u64, len_ns / 2, credit);
1000 			tp->tcp_wstamp_ns += len_ns;
1001 		}
1002 	}
1003 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1004 }
1005 
1006 /* This routine actually transmits TCP packets queued in by
1007  * tcp_do_sendmsg().  This is used by both the initial
1008  * transmission and possible later retransmissions.
1009  * All SKB's seen here are completely headerless.  It is our
1010  * job to build the TCP header, and pass the packet down to
1011  * IP so it can do the same plus pass the packet off to the
1012  * device.
1013  *
1014  * We are working here with either a clone of the original
1015  * SKB, or a fresh unique copy made by the retransmit engine.
1016  */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1017 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1018 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1019 {
1020 	const struct inet_connection_sock *icsk = inet_csk(sk);
1021 	struct inet_sock *inet;
1022 	struct tcp_sock *tp;
1023 	struct tcp_skb_cb *tcb;
1024 	struct tcp_out_options opts;
1025 	unsigned int tcp_options_size, tcp_header_size;
1026 	struct sk_buff *oskb = NULL;
1027 	struct tcp_md5sig_key *md5;
1028 	struct tcphdr *th;
1029 	u64 prior_wstamp;
1030 	int err;
1031 
1032 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1033 	tp = tcp_sk(sk);
1034 	prior_wstamp = tp->tcp_wstamp_ns;
1035 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1036 	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1037 	if (clone_it) {
1038 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1039 			- tp->snd_una;
1040 		oskb = skb;
1041 
1042 		tcp_skb_tsorted_save(oskb) {
1043 			if (unlikely(skb_cloned(oskb)))
1044 				skb = pskb_copy(oskb, gfp_mask);
1045 			else
1046 				skb = skb_clone(oskb, gfp_mask);
1047 		} tcp_skb_tsorted_restore(oskb);
1048 
1049 		if (unlikely(!skb))
1050 			return -ENOBUFS;
1051 	}
1052 
1053 	inet = inet_sk(sk);
1054 	tcb = TCP_SKB_CB(skb);
1055 	memset(&opts, 0, sizeof(opts));
1056 
1057 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1058 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1059 	} else {
1060 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1061 							   &md5);
1062 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1063 		 * at receiver : This slightly improve GRO performance.
1064 		 * Note that we do not force the PSH flag for non GSO packets,
1065 		 * because they might be sent under high congestion events,
1066 		 * and in this case it is better to delay the delivery of 1-MSS
1067 		 * packets and thus the corresponding ACK packet that would
1068 		 * release the following packet.
1069 		 */
1070 		if (tcp_skb_pcount(skb) > 1)
1071 			tcb->tcp_flags |= TCPHDR_PSH;
1072 	}
1073 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1074 
1075 	/* if no packet is in qdisc/device queue, then allow XPS to select
1076 	 * another queue. We can be called from tcp_tsq_handler()
1077 	 * which holds one reference to sk.
1078 	 *
1079 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1080 	 * One way to get this would be to set skb->truesize = 2 on them.
1081 	 */
1082 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1083 
1084 	/* If we had to use memory reserve to allocate this skb,
1085 	 * this might cause drops if packet is looped back :
1086 	 * Other socket might not have SOCK_MEMALLOC.
1087 	 * Packets not looped back do not care about pfmemalloc.
1088 	 */
1089 	skb->pfmemalloc = 0;
1090 
1091 	skb_push(skb, tcp_header_size);
1092 	skb_reset_transport_header(skb);
1093 
1094 	skb_orphan(skb);
1095 	skb->sk = sk;
1096 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1097 	skb_set_hash_from_sk(skb, sk);
1098 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1099 
1100 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1101 
1102 	/* Build TCP header and checksum it. */
1103 	th = (struct tcphdr *)skb->data;
1104 	th->source		= inet->inet_sport;
1105 	th->dest		= inet->inet_dport;
1106 	th->seq			= htonl(tcb->seq);
1107 	th->ack_seq		= htonl(rcv_nxt);
1108 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1109 					tcb->tcp_flags);
1110 
1111 	th->check		= 0;
1112 	th->urg_ptr		= 0;
1113 
1114 	/* The urg_mode check is necessary during a below snd_una win probe */
1115 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1116 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1117 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1118 			th->urg = 1;
1119 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1120 			th->urg_ptr = htons(0xFFFF);
1121 			th->urg = 1;
1122 		}
1123 	}
1124 
1125 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1126 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1127 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1128 		th->window      = htons(tcp_select_window(sk));
1129 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1130 	} else {
1131 		/* RFC1323: The window in SYN & SYN/ACK segments
1132 		 * is never scaled.
1133 		 */
1134 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1135 	}
1136 #ifdef CONFIG_TCP_MD5SIG
1137 	/* Calculate the MD5 hash, as we have all we need now */
1138 	if (md5) {
1139 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1140 		tp->af_specific->calc_md5_hash(opts.hash_location,
1141 					       md5, sk, skb);
1142 	}
1143 #endif
1144 
1145 	icsk->icsk_af_ops->send_check(sk, skb);
1146 
1147 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1148 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1149 
1150 	if (skb->len != tcp_header_size) {
1151 		tcp_event_data_sent(tp, sk);
1152 		tp->data_segs_out += tcp_skb_pcount(skb);
1153 		tp->bytes_sent += skb->len - tcp_header_size;
1154 	}
1155 
1156 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1157 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1158 			      tcp_skb_pcount(skb));
1159 
1160 	tp->segs_out += tcp_skb_pcount(skb);
1161 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1162 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1163 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1164 
1165 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1166 
1167 	/* Cleanup our debris for IP stacks */
1168 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1169 			       sizeof(struct inet6_skb_parm)));
1170 
1171 	tcp_add_tx_delay(skb, tp);
1172 
1173 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1174 
1175 	if (unlikely(err > 0)) {
1176 		tcp_enter_cwr(sk);
1177 		err = net_xmit_eval(err);
1178 	}
1179 	if (!err && oskb) {
1180 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1181 		tcp_rate_skb_sent(sk, oskb);
1182 	}
1183 	return err;
1184 }
1185 
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1186 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1187 			    gfp_t gfp_mask)
1188 {
1189 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1190 				  tcp_sk(sk)->rcv_nxt);
1191 }
1192 
1193 /* This routine just queues the buffer for sending.
1194  *
1195  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1196  * otherwise socket can stall.
1197  */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1198 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1199 {
1200 	struct tcp_sock *tp = tcp_sk(sk);
1201 
1202 	/* Advance write_seq and place onto the write_queue. */
1203 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1204 	__skb_header_release(skb);
1205 	tcp_add_write_queue_tail(sk, skb);
1206 	sk_wmem_queued_add(sk, skb->truesize);
1207 	sk_mem_charge(sk, skb->truesize);
1208 }
1209 
1210 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1211 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1212 {
1213 	if (skb->len <= mss_now) {
1214 		/* Avoid the costly divide in the normal
1215 		 * non-TSO case.
1216 		 */
1217 		tcp_skb_pcount_set(skb, 1);
1218 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1219 	} else {
1220 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1221 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1222 	}
1223 }
1224 
1225 /* Pcount in the middle of the write queue got changed, we need to do various
1226  * tweaks to fix counters
1227  */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1228 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1229 {
1230 	struct tcp_sock *tp = tcp_sk(sk);
1231 
1232 	tp->packets_out -= decr;
1233 
1234 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1235 		tp->sacked_out -= decr;
1236 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1237 		tp->retrans_out -= decr;
1238 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1239 		tp->lost_out -= decr;
1240 
1241 	/* Reno case is special. Sigh... */
1242 	if (tcp_is_reno(tp) && decr > 0)
1243 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1244 
1245 	if (tp->lost_skb_hint &&
1246 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1247 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1248 		tp->lost_cnt_hint -= decr;
1249 
1250 	tcp_verify_left_out(tp);
1251 }
1252 
tcp_has_tx_tstamp(const struct sk_buff * skb)1253 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1254 {
1255 	return TCP_SKB_CB(skb)->txstamp_ack ||
1256 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1257 }
1258 
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1259 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1260 {
1261 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1262 
1263 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1264 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1265 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1266 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1267 
1268 		shinfo->tx_flags &= ~tsflags;
1269 		shinfo2->tx_flags |= tsflags;
1270 		swap(shinfo->tskey, shinfo2->tskey);
1271 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1272 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1273 	}
1274 }
1275 
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1276 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1277 {
1278 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1279 	TCP_SKB_CB(skb)->eor = 0;
1280 }
1281 
1282 /* Insert buff after skb on the write or rtx queue of sk.  */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1283 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1284 					 struct sk_buff *buff,
1285 					 struct sock *sk,
1286 					 enum tcp_queue tcp_queue)
1287 {
1288 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1289 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1290 	else
1291 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1292 }
1293 
1294 /* Function to create two new TCP segments.  Shrinks the given segment
1295  * to the specified size and appends a new segment with the rest of the
1296  * packet to the list.  This won't be called frequently, I hope.
1297  * Remember, these are still headerless SKBs at this point.
1298  */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1299 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1300 		 struct sk_buff *skb, u32 len,
1301 		 unsigned int mss_now, gfp_t gfp)
1302 {
1303 	struct tcp_sock *tp = tcp_sk(sk);
1304 	struct sk_buff *buff;
1305 	int nsize, old_factor;
1306 	long limit;
1307 	int nlen;
1308 	u8 flags;
1309 
1310 	if (WARN_ON(len > skb->len))
1311 		return -EINVAL;
1312 
1313 	nsize = skb_headlen(skb) - len;
1314 	if (nsize < 0)
1315 		nsize = 0;
1316 
1317 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1318 	 * We need some allowance to not penalize applications setting small
1319 	 * SO_SNDBUF values.
1320 	 * Also allow first and last skb in retransmit queue to be split.
1321 	 */
1322 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1323 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1324 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1325 		     skb != tcp_rtx_queue_head(sk) &&
1326 		     skb != tcp_rtx_queue_tail(sk))) {
1327 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1328 		return -ENOMEM;
1329 	}
1330 
1331 	if (skb_unclone(skb, gfp))
1332 		return -ENOMEM;
1333 
1334 	/* Get a new skb... force flag on. */
1335 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1336 	if (!buff)
1337 		return -ENOMEM; /* We'll just try again later. */
1338 	skb_copy_decrypted(buff, skb);
1339 
1340 	sk_wmem_queued_add(sk, buff->truesize);
1341 	sk_mem_charge(sk, buff->truesize);
1342 	nlen = skb->len - len - nsize;
1343 	buff->truesize += nlen;
1344 	skb->truesize -= nlen;
1345 
1346 	/* Correct the sequence numbers. */
1347 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1348 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1349 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1350 
1351 	/* PSH and FIN should only be set in the second packet. */
1352 	flags = TCP_SKB_CB(skb)->tcp_flags;
1353 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1354 	TCP_SKB_CB(buff)->tcp_flags = flags;
1355 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1356 	tcp_skb_fragment_eor(skb, buff);
1357 
1358 	skb_split(skb, buff, len);
1359 
1360 	buff->ip_summed = CHECKSUM_PARTIAL;
1361 
1362 	buff->tstamp = skb->tstamp;
1363 	tcp_fragment_tstamp(skb, buff);
1364 
1365 	old_factor = tcp_skb_pcount(skb);
1366 
1367 	/* Fix up tso_factor for both original and new SKB.  */
1368 	tcp_set_skb_tso_segs(skb, mss_now);
1369 	tcp_set_skb_tso_segs(buff, mss_now);
1370 
1371 	/* Update delivered info for the new segment */
1372 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1373 
1374 	/* If this packet has been sent out already, we must
1375 	 * adjust the various packet counters.
1376 	 */
1377 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1378 		int diff = old_factor - tcp_skb_pcount(skb) -
1379 			tcp_skb_pcount(buff);
1380 
1381 		if (diff)
1382 			tcp_adjust_pcount(sk, skb, diff);
1383 	}
1384 
1385 	/* Link BUFF into the send queue. */
1386 	__skb_header_release(buff);
1387 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1388 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1389 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1390 
1391 	return 0;
1392 }
1393 
1394 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1395  * data is not copied, but immediately discarded.
1396  */
__pskb_trim_head(struct sk_buff * skb,int len)1397 static int __pskb_trim_head(struct sk_buff *skb, int len)
1398 {
1399 	struct skb_shared_info *shinfo;
1400 	int i, k, eat;
1401 
1402 	eat = min_t(int, len, skb_headlen(skb));
1403 	if (eat) {
1404 		__skb_pull(skb, eat);
1405 		len -= eat;
1406 		if (!len)
1407 			return 0;
1408 	}
1409 	eat = len;
1410 	k = 0;
1411 	shinfo = skb_shinfo(skb);
1412 	for (i = 0; i < shinfo->nr_frags; i++) {
1413 		int size = skb_frag_size(&shinfo->frags[i]);
1414 
1415 		if (size <= eat) {
1416 			skb_frag_unref(skb, i);
1417 			eat -= size;
1418 		} else {
1419 			shinfo->frags[k] = shinfo->frags[i];
1420 			if (eat) {
1421 				skb_frag_off_add(&shinfo->frags[k], eat);
1422 				skb_frag_size_sub(&shinfo->frags[k], eat);
1423 				eat = 0;
1424 			}
1425 			k++;
1426 		}
1427 	}
1428 	shinfo->nr_frags = k;
1429 
1430 	skb->data_len -= len;
1431 	skb->len = skb->data_len;
1432 	return len;
1433 }
1434 
1435 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1436 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1437 {
1438 	u32 delta_truesize;
1439 
1440 	if (skb_unclone(skb, GFP_ATOMIC))
1441 		return -ENOMEM;
1442 
1443 	delta_truesize = __pskb_trim_head(skb, len);
1444 
1445 	TCP_SKB_CB(skb)->seq += len;
1446 	skb->ip_summed = CHECKSUM_PARTIAL;
1447 
1448 	if (delta_truesize) {
1449 		skb->truesize	   -= delta_truesize;
1450 		sk_wmem_queued_add(sk, -delta_truesize);
1451 		sk_mem_uncharge(sk, delta_truesize);
1452 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1453 	}
1454 
1455 	/* Any change of skb->len requires recalculation of tso factor. */
1456 	if (tcp_skb_pcount(skb) > 1)
1457 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1458 
1459 	return 0;
1460 }
1461 
1462 /* Calculate MSS not accounting any TCP options.  */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1463 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1464 {
1465 	const struct tcp_sock *tp = tcp_sk(sk);
1466 	const struct inet_connection_sock *icsk = inet_csk(sk);
1467 	int mss_now;
1468 
1469 	/* Calculate base mss without TCP options:
1470 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1471 	 */
1472 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1473 
1474 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1475 	if (icsk->icsk_af_ops->net_frag_header_len) {
1476 		const struct dst_entry *dst = __sk_dst_get(sk);
1477 
1478 		if (dst && dst_allfrag(dst))
1479 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1480 	}
1481 
1482 	/* Clamp it (mss_clamp does not include tcp options) */
1483 	if (mss_now > tp->rx_opt.mss_clamp)
1484 		mss_now = tp->rx_opt.mss_clamp;
1485 
1486 	/* Now subtract optional transport overhead */
1487 	mss_now -= icsk->icsk_ext_hdr_len;
1488 
1489 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1490 	mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1491 	return mss_now;
1492 }
1493 
1494 /* Calculate MSS. Not accounting for SACKs here.  */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1495 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1496 {
1497 	/* Subtract TCP options size, not including SACKs */
1498 	return __tcp_mtu_to_mss(sk, pmtu) -
1499 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1500 }
1501 
1502 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1503 int tcp_mss_to_mtu(struct sock *sk, int mss)
1504 {
1505 	const struct tcp_sock *tp = tcp_sk(sk);
1506 	const struct inet_connection_sock *icsk = inet_csk(sk);
1507 	int mtu;
1508 
1509 	mtu = mss +
1510 	      tp->tcp_header_len +
1511 	      icsk->icsk_ext_hdr_len +
1512 	      icsk->icsk_af_ops->net_header_len;
1513 
1514 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1515 	if (icsk->icsk_af_ops->net_frag_header_len) {
1516 		const struct dst_entry *dst = __sk_dst_get(sk);
1517 
1518 		if (dst && dst_allfrag(dst))
1519 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1520 	}
1521 	return mtu;
1522 }
1523 EXPORT_SYMBOL(tcp_mss_to_mtu);
1524 
1525 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1526 void tcp_mtup_init(struct sock *sk)
1527 {
1528 	struct tcp_sock *tp = tcp_sk(sk);
1529 	struct inet_connection_sock *icsk = inet_csk(sk);
1530 	struct net *net = sock_net(sk);
1531 
1532 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1533 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1534 			       icsk->icsk_af_ops->net_header_len;
1535 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1536 	icsk->icsk_mtup.probe_size = 0;
1537 	if (icsk->icsk_mtup.enabled)
1538 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1539 }
1540 EXPORT_SYMBOL(tcp_mtup_init);
1541 
1542 /* This function synchronize snd mss to current pmtu/exthdr set.
1543 
1544    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1545    for TCP options, but includes only bare TCP header.
1546 
1547    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1548    It is minimum of user_mss and mss received with SYN.
1549    It also does not include TCP options.
1550 
1551    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1552 
1553    tp->mss_cache is current effective sending mss, including
1554    all tcp options except for SACKs. It is evaluated,
1555    taking into account current pmtu, but never exceeds
1556    tp->rx_opt.mss_clamp.
1557 
1558    NOTE1. rfc1122 clearly states that advertised MSS
1559    DOES NOT include either tcp or ip options.
1560 
1561    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1562    are READ ONLY outside this function.		--ANK (980731)
1563  */
tcp_sync_mss(struct sock * sk,u32 pmtu)1564 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1565 {
1566 	struct tcp_sock *tp = tcp_sk(sk);
1567 	struct inet_connection_sock *icsk = inet_csk(sk);
1568 	int mss_now;
1569 
1570 	if (icsk->icsk_mtup.search_high > pmtu)
1571 		icsk->icsk_mtup.search_high = pmtu;
1572 
1573 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1574 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1575 
1576 	/* And store cached results */
1577 	icsk->icsk_pmtu_cookie = pmtu;
1578 	if (icsk->icsk_mtup.enabled)
1579 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1580 	tp->mss_cache = mss_now;
1581 
1582 	return mss_now;
1583 }
1584 EXPORT_SYMBOL(tcp_sync_mss);
1585 
1586 /* Compute the current effective MSS, taking SACKs and IP options,
1587  * and even PMTU discovery events into account.
1588  */
tcp_current_mss(struct sock * sk)1589 unsigned int tcp_current_mss(struct sock *sk)
1590 {
1591 	const struct tcp_sock *tp = tcp_sk(sk);
1592 	const struct dst_entry *dst = __sk_dst_get(sk);
1593 	u32 mss_now;
1594 	unsigned int header_len;
1595 	struct tcp_out_options opts;
1596 	struct tcp_md5sig_key *md5;
1597 
1598 	mss_now = tp->mss_cache;
1599 
1600 	if (dst) {
1601 		u32 mtu = dst_mtu(dst);
1602 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1603 			mss_now = tcp_sync_mss(sk, mtu);
1604 	}
1605 
1606 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1607 		     sizeof(struct tcphdr);
1608 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1609 	 * some common options. If this is an odd packet (because we have SACK
1610 	 * blocks etc) then our calculated header_len will be different, and
1611 	 * we have to adjust mss_now correspondingly */
1612 	if (header_len != tp->tcp_header_len) {
1613 		int delta = (int) header_len - tp->tcp_header_len;
1614 		mss_now -= delta;
1615 	}
1616 
1617 	return mss_now;
1618 }
1619 
1620 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1621  * As additional protections, we do not touch cwnd in retransmission phases,
1622  * and if application hit its sndbuf limit recently.
1623  */
tcp_cwnd_application_limited(struct sock * sk)1624 static void tcp_cwnd_application_limited(struct sock *sk)
1625 {
1626 	struct tcp_sock *tp = tcp_sk(sk);
1627 
1628 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1629 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1630 		/* Limited by application or receiver window. */
1631 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1632 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1633 		if (win_used < tp->snd_cwnd) {
1634 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1635 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1636 		}
1637 		tp->snd_cwnd_used = 0;
1638 	}
1639 	tp->snd_cwnd_stamp = tcp_jiffies32;
1640 }
1641 
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1642 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1643 {
1644 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1645 	struct tcp_sock *tp = tcp_sk(sk);
1646 
1647 	/* Track the maximum number of outstanding packets in each
1648 	 * window, and remember whether we were cwnd-limited then.
1649 	 */
1650 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1651 	    tp->packets_out > tp->max_packets_out) {
1652 		tp->max_packets_out = tp->packets_out;
1653 		tp->max_packets_seq = tp->snd_nxt;
1654 		tp->is_cwnd_limited = is_cwnd_limited;
1655 	}
1656 
1657 	if (tcp_is_cwnd_limited(sk)) {
1658 		/* Network is feed fully. */
1659 		tp->snd_cwnd_used = 0;
1660 		tp->snd_cwnd_stamp = tcp_jiffies32;
1661 	} else {
1662 		/* Network starves. */
1663 		if (tp->packets_out > tp->snd_cwnd_used)
1664 			tp->snd_cwnd_used = tp->packets_out;
1665 
1666 		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1667 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1668 		    !ca_ops->cong_control)
1669 			tcp_cwnd_application_limited(sk);
1670 
1671 		/* The following conditions together indicate the starvation
1672 		 * is caused by insufficient sender buffer:
1673 		 * 1) just sent some data (see tcp_write_xmit)
1674 		 * 2) not cwnd limited (this else condition)
1675 		 * 3) no more data to send (tcp_write_queue_empty())
1676 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1677 		 */
1678 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1679 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1680 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1681 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1682 	}
1683 }
1684 
1685 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1686 static bool tcp_minshall_check(const struct tcp_sock *tp)
1687 {
1688 	return after(tp->snd_sml, tp->snd_una) &&
1689 		!after(tp->snd_sml, tp->snd_nxt);
1690 }
1691 
1692 /* Update snd_sml if this skb is under mss
1693  * Note that a TSO packet might end with a sub-mss segment
1694  * The test is really :
1695  * if ((skb->len % mss) != 0)
1696  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1697  * But we can avoid doing the divide again given we already have
1698  *  skb_pcount = skb->len / mss_now
1699  */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1700 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1701 				const struct sk_buff *skb)
1702 {
1703 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1704 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1705 }
1706 
1707 /* Return false, if packet can be sent now without violation Nagle's rules:
1708  * 1. It is full sized. (provided by caller in %partial bool)
1709  * 2. Or it contains FIN. (already checked by caller)
1710  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1711  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1712  *    With Minshall's modification: all sent small packets are ACKed.
1713  */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1714 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1715 			    int nonagle)
1716 {
1717 	return partial &&
1718 		((nonagle & TCP_NAGLE_CORK) ||
1719 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1720 }
1721 
1722 /* Return how many segs we'd like on a TSO packet,
1723  * to send one TSO packet per ms
1724  */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)1725 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1726 			    int min_tso_segs)
1727 {
1728 	u32 bytes, segs;
1729 
1730 	bytes = min_t(unsigned long,
1731 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
1732 		      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1733 
1734 	/* Goal is to send at least one packet per ms,
1735 	 * not one big TSO packet every 100 ms.
1736 	 * This preserves ACK clocking and is consistent
1737 	 * with tcp_tso_should_defer() heuristic.
1738 	 */
1739 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1740 
1741 	return segs;
1742 }
1743 
1744 /* Return the number of segments we want in the skb we are transmitting.
1745  * See if congestion control module wants to decide; otherwise, autosize.
1746  */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)1747 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1748 {
1749 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1750 	u32 min_tso, tso_segs;
1751 
1752 	min_tso = ca_ops->min_tso_segs ?
1753 			ca_ops->min_tso_segs(sk) :
1754 			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1755 
1756 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1757 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1758 }
1759 
1760 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)1761 static unsigned int tcp_mss_split_point(const struct sock *sk,
1762 					const struct sk_buff *skb,
1763 					unsigned int mss_now,
1764 					unsigned int max_segs,
1765 					int nonagle)
1766 {
1767 	const struct tcp_sock *tp = tcp_sk(sk);
1768 	u32 partial, needed, window, max_len;
1769 
1770 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1771 	max_len = mss_now * max_segs;
1772 
1773 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1774 		return max_len;
1775 
1776 	needed = min(skb->len, window);
1777 
1778 	if (max_len <= needed)
1779 		return max_len;
1780 
1781 	partial = needed % mss_now;
1782 	/* If last segment is not a full MSS, check if Nagle rules allow us
1783 	 * to include this last segment in this skb.
1784 	 * Otherwise, we'll split the skb at last MSS boundary
1785 	 */
1786 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1787 		return needed - partial;
1788 
1789 	return needed;
1790 }
1791 
1792 /* Can at least one segment of SKB be sent right now, according to the
1793  * congestion window rules?  If so, return how many segments are allowed.
1794  */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)1795 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1796 					 const struct sk_buff *skb)
1797 {
1798 	u32 in_flight, cwnd, halfcwnd;
1799 
1800 	/* Don't be strict about the congestion window for the final FIN.  */
1801 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1802 	    tcp_skb_pcount(skb) == 1)
1803 		return 1;
1804 
1805 	in_flight = tcp_packets_in_flight(tp);
1806 	cwnd = tp->snd_cwnd;
1807 	if (in_flight >= cwnd)
1808 		return 0;
1809 
1810 	/* For better scheduling, ensure we have at least
1811 	 * 2 GSO packets in flight.
1812 	 */
1813 	halfcwnd = max(cwnd >> 1, 1U);
1814 	return min(halfcwnd, cwnd - in_flight);
1815 }
1816 
1817 /* Initialize TSO state of a skb.
1818  * This must be invoked the first time we consider transmitting
1819  * SKB onto the wire.
1820  */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)1821 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1822 {
1823 	int tso_segs = tcp_skb_pcount(skb);
1824 
1825 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1826 		tcp_set_skb_tso_segs(skb, mss_now);
1827 		tso_segs = tcp_skb_pcount(skb);
1828 	}
1829 	return tso_segs;
1830 }
1831 
1832 
1833 /* Return true if the Nagle test allows this packet to be
1834  * sent now.
1835  */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)1836 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1837 				  unsigned int cur_mss, int nonagle)
1838 {
1839 	/* Nagle rule does not apply to frames, which sit in the middle of the
1840 	 * write_queue (they have no chances to get new data).
1841 	 *
1842 	 * This is implemented in the callers, where they modify the 'nonagle'
1843 	 * argument based upon the location of SKB in the send queue.
1844 	 */
1845 	if (nonagle & TCP_NAGLE_PUSH)
1846 		return true;
1847 
1848 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1849 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1850 		return true;
1851 
1852 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1853 		return true;
1854 
1855 	return false;
1856 }
1857 
1858 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)1859 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1860 			     const struct sk_buff *skb,
1861 			     unsigned int cur_mss)
1862 {
1863 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1864 
1865 	if (skb->len > cur_mss)
1866 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1867 
1868 	return !after(end_seq, tcp_wnd_end(tp));
1869 }
1870 
1871 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1872  * which is put after SKB on the list.  It is very much like
1873  * tcp_fragment() except that it may make several kinds of assumptions
1874  * in order to speed up the splitting operation.  In particular, we
1875  * know that all the data is in scatter-gather pages, and that the
1876  * packet has never been sent out before (and thus is not cloned).
1877  */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)1878 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1879 			unsigned int mss_now, gfp_t gfp)
1880 {
1881 	int nlen = skb->len - len;
1882 	struct sk_buff *buff;
1883 	u8 flags;
1884 
1885 	/* All of a TSO frame must be composed of paged data.  */
1886 	if (skb->len != skb->data_len)
1887 		return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
1888 				    skb, len, mss_now, gfp);
1889 
1890 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1891 	if (unlikely(!buff))
1892 		return -ENOMEM;
1893 	skb_copy_decrypted(buff, skb);
1894 
1895 	sk_wmem_queued_add(sk, buff->truesize);
1896 	sk_mem_charge(sk, buff->truesize);
1897 	buff->truesize += nlen;
1898 	skb->truesize -= nlen;
1899 
1900 	/* Correct the sequence numbers. */
1901 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1902 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1903 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1904 
1905 	/* PSH and FIN should only be set in the second packet. */
1906 	flags = TCP_SKB_CB(skb)->tcp_flags;
1907 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1908 	TCP_SKB_CB(buff)->tcp_flags = flags;
1909 
1910 	/* This packet was never sent out yet, so no SACK bits. */
1911 	TCP_SKB_CB(buff)->sacked = 0;
1912 
1913 	tcp_skb_fragment_eor(skb, buff);
1914 
1915 	buff->ip_summed = CHECKSUM_PARTIAL;
1916 	skb_split(skb, buff, len);
1917 	tcp_fragment_tstamp(skb, buff);
1918 
1919 	/* Fix up tso_factor for both original and new SKB.  */
1920 	tcp_set_skb_tso_segs(skb, mss_now);
1921 	tcp_set_skb_tso_segs(buff, mss_now);
1922 
1923 	/* Link BUFF into the send queue. */
1924 	__skb_header_release(buff);
1925 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
1926 
1927 	return 0;
1928 }
1929 
1930 /* Try to defer sending, if possible, in order to minimize the amount
1931  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1932  *
1933  * This algorithm is from John Heffner.
1934  */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)1935 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1936 				 bool *is_cwnd_limited,
1937 				 bool *is_rwnd_limited,
1938 				 u32 max_segs)
1939 {
1940 	const struct inet_connection_sock *icsk = inet_csk(sk);
1941 	u32 send_win, cong_win, limit, in_flight;
1942 	struct tcp_sock *tp = tcp_sk(sk);
1943 	struct sk_buff *head;
1944 	int win_divisor;
1945 	s64 delta;
1946 
1947 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1948 		goto send_now;
1949 
1950 	/* Avoid bursty behavior by allowing defer
1951 	 * only if the last write was recent (1 ms).
1952 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
1953 	 * packets waiting in a qdisc or device for EDT delivery.
1954 	 */
1955 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
1956 	if (delta > 0)
1957 		goto send_now;
1958 
1959 	in_flight = tcp_packets_in_flight(tp);
1960 
1961 	BUG_ON(tcp_skb_pcount(skb) <= 1);
1962 	BUG_ON(tp->snd_cwnd <= in_flight);
1963 
1964 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1965 
1966 	/* From in_flight test above, we know that cwnd > in_flight.  */
1967 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1968 
1969 	limit = min(send_win, cong_win);
1970 
1971 	/* If a full-sized TSO skb can be sent, do it. */
1972 	if (limit >= max_segs * tp->mss_cache)
1973 		goto send_now;
1974 
1975 	/* Middle in queue won't get any more data, full sendable already? */
1976 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1977 		goto send_now;
1978 
1979 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1980 	if (win_divisor) {
1981 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1982 
1983 		/* If at least some fraction of a window is available,
1984 		 * just use it.
1985 		 */
1986 		chunk /= win_divisor;
1987 		if (limit >= chunk)
1988 			goto send_now;
1989 	} else {
1990 		/* Different approach, try not to defer past a single
1991 		 * ACK.  Receiver should ACK every other full sized
1992 		 * frame, so if we have space for more than 3 frames
1993 		 * then send now.
1994 		 */
1995 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1996 			goto send_now;
1997 	}
1998 
1999 	/* TODO : use tsorted_sent_queue ? */
2000 	head = tcp_rtx_queue_head(sk);
2001 	if (!head)
2002 		goto send_now;
2003 	delta = tp->tcp_clock_cache - head->tstamp;
2004 	/* If next ACK is likely to come too late (half srtt), do not defer */
2005 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2006 		goto send_now;
2007 
2008 	/* Ok, it looks like it is advisable to defer.
2009 	 * Three cases are tracked :
2010 	 * 1) We are cwnd-limited
2011 	 * 2) We are rwnd-limited
2012 	 * 3) We are application limited.
2013 	 */
2014 	if (cong_win < send_win) {
2015 		if (cong_win <= skb->len) {
2016 			*is_cwnd_limited = true;
2017 			return true;
2018 		}
2019 	} else {
2020 		if (send_win <= skb->len) {
2021 			*is_rwnd_limited = true;
2022 			return true;
2023 		}
2024 	}
2025 
2026 	/* If this packet won't get more data, do not wait. */
2027 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2028 	    TCP_SKB_CB(skb)->eor)
2029 		goto send_now;
2030 
2031 	return true;
2032 
2033 send_now:
2034 	return false;
2035 }
2036 
tcp_mtu_check_reprobe(struct sock * sk)2037 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2038 {
2039 	struct inet_connection_sock *icsk = inet_csk(sk);
2040 	struct tcp_sock *tp = tcp_sk(sk);
2041 	struct net *net = sock_net(sk);
2042 	u32 interval;
2043 	s32 delta;
2044 
2045 	interval = net->ipv4.sysctl_tcp_probe_interval;
2046 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2047 	if (unlikely(delta >= interval * HZ)) {
2048 		int mss = tcp_current_mss(sk);
2049 
2050 		/* Update current search range */
2051 		icsk->icsk_mtup.probe_size = 0;
2052 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2053 			sizeof(struct tcphdr) +
2054 			icsk->icsk_af_ops->net_header_len;
2055 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2056 
2057 		/* Update probe time stamp */
2058 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2059 	}
2060 }
2061 
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2062 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2063 {
2064 	struct sk_buff *skb, *next;
2065 
2066 	skb = tcp_send_head(sk);
2067 	tcp_for_write_queue_from_safe(skb, next, sk) {
2068 		if (len <= skb->len)
2069 			break;
2070 
2071 		if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2072 			return false;
2073 
2074 		len -= skb->len;
2075 	}
2076 
2077 	return true;
2078 }
2079 
2080 /* Create a new MTU probe if we are ready.
2081  * MTU probe is regularly attempting to increase the path MTU by
2082  * deliberately sending larger packets.  This discovers routing
2083  * changes resulting in larger path MTUs.
2084  *
2085  * Returns 0 if we should wait to probe (no cwnd available),
2086  *         1 if a probe was sent,
2087  *         -1 otherwise
2088  */
tcp_mtu_probe(struct sock * sk)2089 static int tcp_mtu_probe(struct sock *sk)
2090 {
2091 	struct inet_connection_sock *icsk = inet_csk(sk);
2092 	struct tcp_sock *tp = tcp_sk(sk);
2093 	struct sk_buff *skb, *nskb, *next;
2094 	struct net *net = sock_net(sk);
2095 	int probe_size;
2096 	int size_needed;
2097 	int copy, len;
2098 	int mss_now;
2099 	int interval;
2100 
2101 	/* Not currently probing/verifying,
2102 	 * not in recovery,
2103 	 * have enough cwnd, and
2104 	 * not SACKing (the variable headers throw things off)
2105 	 */
2106 	if (likely(!icsk->icsk_mtup.enabled ||
2107 		   icsk->icsk_mtup.probe_size ||
2108 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2109 		   tp->snd_cwnd < 11 ||
2110 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2111 		return -1;
2112 
2113 	/* Use binary search for probe_size between tcp_mss_base,
2114 	 * and current mss_clamp. if (search_high - search_low)
2115 	 * smaller than a threshold, backoff from probing.
2116 	 */
2117 	mss_now = tcp_current_mss(sk);
2118 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2119 				    icsk->icsk_mtup.search_low) >> 1);
2120 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2121 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2122 	/* When misfortune happens, we are reprobing actively,
2123 	 * and then reprobe timer has expired. We stick with current
2124 	 * probing process by not resetting search range to its orignal.
2125 	 */
2126 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2127 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2128 		/* Check whether enough time has elaplased for
2129 		 * another round of probing.
2130 		 */
2131 		tcp_mtu_check_reprobe(sk);
2132 		return -1;
2133 	}
2134 
2135 	/* Have enough data in the send queue to probe? */
2136 	if (tp->write_seq - tp->snd_nxt < size_needed)
2137 		return -1;
2138 
2139 	if (tp->snd_wnd < size_needed)
2140 		return -1;
2141 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2142 		return 0;
2143 
2144 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2145 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2146 		if (!tcp_packets_in_flight(tp))
2147 			return -1;
2148 		else
2149 			return 0;
2150 	}
2151 
2152 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2153 		return -1;
2154 
2155 	/* We're allowed to probe.  Build it now. */
2156 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2157 	if (!nskb)
2158 		return -1;
2159 	sk_wmem_queued_add(sk, nskb->truesize);
2160 	sk_mem_charge(sk, nskb->truesize);
2161 
2162 	skb = tcp_send_head(sk);
2163 	skb_copy_decrypted(nskb, skb);
2164 
2165 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2166 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2167 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2168 	TCP_SKB_CB(nskb)->sacked = 0;
2169 	nskb->csum = 0;
2170 	nskb->ip_summed = CHECKSUM_PARTIAL;
2171 
2172 	tcp_insert_write_queue_before(nskb, skb, sk);
2173 	tcp_highest_sack_replace(sk, skb, nskb);
2174 
2175 	len = 0;
2176 	tcp_for_write_queue_from_safe(skb, next, sk) {
2177 		copy = min_t(int, skb->len, probe_size - len);
2178 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2179 
2180 		if (skb->len <= copy) {
2181 			/* We've eaten all the data from this skb.
2182 			 * Throw it away. */
2183 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2184 			/* If this is the last SKB we copy and eor is set
2185 			 * we need to propagate it to the new skb.
2186 			 */
2187 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2188 			tcp_skb_collapse_tstamp(nskb, skb);
2189 			tcp_unlink_write_queue(skb, sk);
2190 			sk_wmem_free_skb(sk, skb);
2191 		} else {
2192 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2193 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2194 			if (!skb_shinfo(skb)->nr_frags) {
2195 				skb_pull(skb, copy);
2196 			} else {
2197 				__pskb_trim_head(skb, copy);
2198 				tcp_set_skb_tso_segs(skb, mss_now);
2199 			}
2200 			TCP_SKB_CB(skb)->seq += copy;
2201 		}
2202 
2203 		len += copy;
2204 
2205 		if (len >= probe_size)
2206 			break;
2207 	}
2208 	tcp_init_tso_segs(nskb, nskb->len);
2209 
2210 	/* We're ready to send.  If this fails, the probe will
2211 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2212 	 */
2213 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2214 		/* Decrement cwnd here because we are sending
2215 		 * effectively two packets. */
2216 		tp->snd_cwnd--;
2217 		tcp_event_new_data_sent(sk, nskb);
2218 
2219 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2220 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2221 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2222 
2223 		return 1;
2224 	}
2225 
2226 	return -1;
2227 }
2228 
tcp_pacing_check(struct sock * sk)2229 static bool tcp_pacing_check(struct sock *sk)
2230 {
2231 	struct tcp_sock *tp = tcp_sk(sk);
2232 
2233 	if (!tcp_needs_internal_pacing(sk))
2234 		return false;
2235 
2236 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2237 		return false;
2238 
2239 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2240 		hrtimer_start(&tp->pacing_timer,
2241 			      ns_to_ktime(tp->tcp_wstamp_ns),
2242 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2243 		sock_hold(sk);
2244 	}
2245 	return true;
2246 }
2247 
2248 /* TCP Small Queues :
2249  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2250  * (These limits are doubled for retransmits)
2251  * This allows for :
2252  *  - better RTT estimation and ACK scheduling
2253  *  - faster recovery
2254  *  - high rates
2255  * Alas, some drivers / subsystems require a fair amount
2256  * of queued bytes to ensure line rate.
2257  * One example is wifi aggregation (802.11 AMPDU)
2258  */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2259 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2260 				  unsigned int factor)
2261 {
2262 	unsigned long limit;
2263 
2264 	limit = max_t(unsigned long,
2265 		      2 * skb->truesize,
2266 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2267 	if (sk->sk_pacing_status == SK_PACING_NONE)
2268 		limit = min_t(unsigned long, limit,
2269 			      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2270 	limit <<= factor;
2271 
2272 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2273 	    tcp_sk(sk)->tcp_tx_delay) {
2274 		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2275 
2276 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2277 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2278 		 * USEC_PER_SEC is approximated by 2^20.
2279 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2280 		 */
2281 		extra_bytes >>= (20 - 1);
2282 		limit += extra_bytes;
2283 	}
2284 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2285 		/* Always send skb if rtx queue is empty.
2286 		 * No need to wait for TX completion to call us back,
2287 		 * after softirq/tasklet schedule.
2288 		 * This helps when TX completions are delayed too much.
2289 		 */
2290 		if (tcp_rtx_queue_empty(sk))
2291 			return false;
2292 
2293 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2294 		/* It is possible TX completion already happened
2295 		 * before we set TSQ_THROTTLED, so we must
2296 		 * test again the condition.
2297 		 */
2298 		smp_mb__after_atomic();
2299 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2300 			return true;
2301 	}
2302 	return false;
2303 }
2304 
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2305 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2306 {
2307 	const u32 now = tcp_jiffies32;
2308 	enum tcp_chrono old = tp->chrono_type;
2309 
2310 	if (old > TCP_CHRONO_UNSPEC)
2311 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2312 	tp->chrono_start = now;
2313 	tp->chrono_type = new;
2314 }
2315 
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2316 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2317 {
2318 	struct tcp_sock *tp = tcp_sk(sk);
2319 
2320 	/* If there are multiple conditions worthy of tracking in a
2321 	 * chronograph then the highest priority enum takes precedence
2322 	 * over the other conditions. So that if something "more interesting"
2323 	 * starts happening, stop the previous chrono and start a new one.
2324 	 */
2325 	if (type > tp->chrono_type)
2326 		tcp_chrono_set(tp, type);
2327 }
2328 
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2329 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2330 {
2331 	struct tcp_sock *tp = tcp_sk(sk);
2332 
2333 
2334 	/* There are multiple conditions worthy of tracking in a
2335 	 * chronograph, so that the highest priority enum takes
2336 	 * precedence over the other conditions (see tcp_chrono_start).
2337 	 * If a condition stops, we only stop chrono tracking if
2338 	 * it's the "most interesting" or current chrono we are
2339 	 * tracking and starts busy chrono if we have pending data.
2340 	 */
2341 	if (tcp_rtx_and_write_queues_empty(sk))
2342 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2343 	else if (type == tp->chrono_type)
2344 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2345 }
2346 
2347 /* This routine writes packets to the network.  It advances the
2348  * send_head.  This happens as incoming acks open up the remote
2349  * window for us.
2350  *
2351  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2352  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2353  * account rare use of URG, this is not a big flaw.
2354  *
2355  * Send at most one packet when push_one > 0. Temporarily ignore
2356  * cwnd limit to force at most one packet out when push_one == 2.
2357 
2358  * Returns true, if no segments are in flight and we have queued segments,
2359  * but cannot send anything now because of SWS or another problem.
2360  */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2361 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2362 			   int push_one, gfp_t gfp)
2363 {
2364 	struct tcp_sock *tp = tcp_sk(sk);
2365 	struct sk_buff *skb;
2366 	unsigned int tso_segs, sent_pkts;
2367 	int cwnd_quota;
2368 	int result;
2369 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2370 	u32 max_segs;
2371 
2372 	sent_pkts = 0;
2373 
2374 	tcp_mstamp_refresh(tp);
2375 	if (!push_one) {
2376 		/* Do MTU probing. */
2377 		result = tcp_mtu_probe(sk);
2378 		if (!result) {
2379 			return false;
2380 		} else if (result > 0) {
2381 			sent_pkts = 1;
2382 		}
2383 	}
2384 
2385 	max_segs = tcp_tso_segs(sk, mss_now);
2386 	while ((skb = tcp_send_head(sk))) {
2387 		unsigned int limit;
2388 
2389 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2390 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2391 			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2392 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2393 			tcp_init_tso_segs(skb, mss_now);
2394 			goto repair; /* Skip network transmission */
2395 		}
2396 
2397 		if (tcp_pacing_check(sk))
2398 			break;
2399 
2400 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2401 		BUG_ON(!tso_segs);
2402 
2403 		cwnd_quota = tcp_cwnd_test(tp, skb);
2404 		if (!cwnd_quota) {
2405 			if (push_one == 2)
2406 				/* Force out a loss probe pkt. */
2407 				cwnd_quota = 1;
2408 			else
2409 				break;
2410 		}
2411 
2412 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2413 			is_rwnd_limited = true;
2414 			break;
2415 		}
2416 
2417 		if (tso_segs == 1) {
2418 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2419 						     (tcp_skb_is_last(sk, skb) ?
2420 						      nonagle : TCP_NAGLE_PUSH))))
2421 				break;
2422 		} else {
2423 			if (!push_one &&
2424 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2425 						 &is_rwnd_limited, max_segs))
2426 				break;
2427 		}
2428 
2429 		limit = mss_now;
2430 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2431 			limit = tcp_mss_split_point(sk, skb, mss_now,
2432 						    min_t(unsigned int,
2433 							  cwnd_quota,
2434 							  max_segs),
2435 						    nonagle);
2436 
2437 		if (skb->len > limit &&
2438 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2439 			break;
2440 
2441 		if (tcp_small_queue_check(sk, skb, 0))
2442 			break;
2443 
2444 		/* Argh, we hit an empty skb(), presumably a thread
2445 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2446 		 * We do not want to send a pure-ack packet and have
2447 		 * a strange looking rtx queue with empty packet(s).
2448 		 */
2449 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2450 			break;
2451 
2452 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2453 			break;
2454 
2455 repair:
2456 		/* Advance the send_head.  This one is sent out.
2457 		 * This call will increment packets_out.
2458 		 */
2459 		tcp_event_new_data_sent(sk, skb);
2460 
2461 		tcp_minshall_update(tp, mss_now, skb);
2462 		sent_pkts += tcp_skb_pcount(skb);
2463 
2464 		if (push_one)
2465 			break;
2466 	}
2467 
2468 	if (is_rwnd_limited)
2469 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2470 	else
2471 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2472 
2473 	if (likely(sent_pkts)) {
2474 		if (tcp_in_cwnd_reduction(sk))
2475 			tp->prr_out += sent_pkts;
2476 
2477 		/* Send one loss probe per tail loss episode. */
2478 		if (push_one != 2)
2479 			tcp_schedule_loss_probe(sk, false);
2480 		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2481 		tcp_cwnd_validate(sk, is_cwnd_limited);
2482 		return false;
2483 	}
2484 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2485 }
2486 
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2487 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2488 {
2489 	struct inet_connection_sock *icsk = inet_csk(sk);
2490 	struct tcp_sock *tp = tcp_sk(sk);
2491 	u32 timeout, rto_delta_us;
2492 	int early_retrans;
2493 
2494 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2495 	 * finishes.
2496 	 */
2497 	if (rcu_access_pointer(tp->fastopen_rsk))
2498 		return false;
2499 
2500 	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2501 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2502 	 * not in loss recovery, that are either limited by cwnd or application.
2503 	 */
2504 	if ((early_retrans != 3 && early_retrans != 4) ||
2505 	    !tp->packets_out || !tcp_is_sack(tp) ||
2506 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2507 	     icsk->icsk_ca_state != TCP_CA_CWR))
2508 		return false;
2509 
2510 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2511 	 * for delayed ack when there's one outstanding packet. If no RTT
2512 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2513 	 */
2514 	if (tp->srtt_us) {
2515 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2516 		if (tp->packets_out == 1)
2517 			timeout += TCP_RTO_MIN;
2518 		else
2519 			timeout += TCP_TIMEOUT_MIN;
2520 	} else {
2521 		timeout = TCP_TIMEOUT_INIT;
2522 	}
2523 
2524 	/* If the RTO formula yields an earlier time, then use that time. */
2525 	rto_delta_us = advancing_rto ?
2526 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2527 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2528 	if (rto_delta_us > 0)
2529 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2530 
2531 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2532 			     TCP_RTO_MAX, NULL);
2533 	return true;
2534 }
2535 
2536 /* Thanks to skb fast clones, we can detect if a prior transmit of
2537  * a packet is still in a qdisc or driver queue.
2538  * In this case, there is very little point doing a retransmit !
2539  */
skb_still_in_host_queue(const struct sock * sk,const struct sk_buff * skb)2540 static bool skb_still_in_host_queue(const struct sock *sk,
2541 				    const struct sk_buff *skb)
2542 {
2543 	if (unlikely(skb_fclone_busy(sk, skb))) {
2544 		NET_INC_STATS(sock_net(sk),
2545 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2546 		return true;
2547 	}
2548 	return false;
2549 }
2550 
2551 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2552  * retransmit the last segment.
2553  */
tcp_send_loss_probe(struct sock * sk)2554 void tcp_send_loss_probe(struct sock *sk)
2555 {
2556 	struct tcp_sock *tp = tcp_sk(sk);
2557 	struct sk_buff *skb;
2558 	int pcount;
2559 	int mss = tcp_current_mss(sk);
2560 
2561 	skb = tcp_send_head(sk);
2562 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2563 		pcount = tp->packets_out;
2564 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2565 		if (tp->packets_out > pcount)
2566 			goto probe_sent;
2567 		goto rearm_timer;
2568 	}
2569 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2570 	if (unlikely(!skb)) {
2571 		WARN_ONCE(tp->packets_out,
2572 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2573 			  tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2574 		inet_csk(sk)->icsk_pending = 0;
2575 		return;
2576 	}
2577 
2578 	/* At most one outstanding TLP retransmission. */
2579 	if (tp->tlp_high_seq)
2580 		goto rearm_timer;
2581 
2582 	if (skb_still_in_host_queue(sk, skb))
2583 		goto rearm_timer;
2584 
2585 	pcount = tcp_skb_pcount(skb);
2586 	if (WARN_ON(!pcount))
2587 		goto rearm_timer;
2588 
2589 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2590 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2591 					  (pcount - 1) * mss, mss,
2592 					  GFP_ATOMIC)))
2593 			goto rearm_timer;
2594 		skb = skb_rb_next(skb);
2595 	}
2596 
2597 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2598 		goto rearm_timer;
2599 
2600 	if (__tcp_retransmit_skb(sk, skb, 1))
2601 		goto rearm_timer;
2602 
2603 	/* Record snd_nxt for loss detection. */
2604 	tp->tlp_high_seq = tp->snd_nxt;
2605 
2606 probe_sent:
2607 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2608 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2609 	inet_csk(sk)->icsk_pending = 0;
2610 rearm_timer:
2611 	tcp_rearm_rto(sk);
2612 }
2613 
2614 /* Push out any pending frames which were held back due to
2615  * TCP_CORK or attempt at coalescing tiny packets.
2616  * The socket must be locked by the caller.
2617  */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2618 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2619 			       int nonagle)
2620 {
2621 	/* If we are closed, the bytes will have to remain here.
2622 	 * In time closedown will finish, we empty the write queue and
2623 	 * all will be happy.
2624 	 */
2625 	if (unlikely(sk->sk_state == TCP_CLOSE))
2626 		return;
2627 
2628 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2629 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2630 		tcp_check_probe_timer(sk);
2631 }
2632 
2633 /* Send _single_ skb sitting at the send head. This function requires
2634  * true push pending frames to setup probe timer etc.
2635  */
tcp_push_one(struct sock * sk,unsigned int mss_now)2636 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2637 {
2638 	struct sk_buff *skb = tcp_send_head(sk);
2639 
2640 	BUG_ON(!skb || skb->len < mss_now);
2641 
2642 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2643 }
2644 
2645 /* This function returns the amount that we can raise the
2646  * usable window based on the following constraints
2647  *
2648  * 1. The window can never be shrunk once it is offered (RFC 793)
2649  * 2. We limit memory per socket
2650  *
2651  * RFC 1122:
2652  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2653  *  RECV.NEXT + RCV.WIN fixed until:
2654  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2655  *
2656  * i.e. don't raise the right edge of the window until you can raise
2657  * it at least MSS bytes.
2658  *
2659  * Unfortunately, the recommended algorithm breaks header prediction,
2660  * since header prediction assumes th->window stays fixed.
2661  *
2662  * Strictly speaking, keeping th->window fixed violates the receiver
2663  * side SWS prevention criteria. The problem is that under this rule
2664  * a stream of single byte packets will cause the right side of the
2665  * window to always advance by a single byte.
2666  *
2667  * Of course, if the sender implements sender side SWS prevention
2668  * then this will not be a problem.
2669  *
2670  * BSD seems to make the following compromise:
2671  *
2672  *	If the free space is less than the 1/4 of the maximum
2673  *	space available and the free space is less than 1/2 mss,
2674  *	then set the window to 0.
2675  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2676  *	Otherwise, just prevent the window from shrinking
2677  *	and from being larger than the largest representable value.
2678  *
2679  * This prevents incremental opening of the window in the regime
2680  * where TCP is limited by the speed of the reader side taking
2681  * data out of the TCP receive queue. It does nothing about
2682  * those cases where the window is constrained on the sender side
2683  * because the pipeline is full.
2684  *
2685  * BSD also seems to "accidentally" limit itself to windows that are a
2686  * multiple of MSS, at least until the free space gets quite small.
2687  * This would appear to be a side effect of the mbuf implementation.
2688  * Combining these two algorithms results in the observed behavior
2689  * of having a fixed window size at almost all times.
2690  *
2691  * Below we obtain similar behavior by forcing the offered window to
2692  * a multiple of the mss when it is feasible to do so.
2693  *
2694  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2695  * Regular options like TIMESTAMP are taken into account.
2696  */
__tcp_select_window(struct sock * sk)2697 u32 __tcp_select_window(struct sock *sk)
2698 {
2699 	struct inet_connection_sock *icsk = inet_csk(sk);
2700 	struct tcp_sock *tp = tcp_sk(sk);
2701 	/* MSS for the peer's data.  Previous versions used mss_clamp
2702 	 * here.  I don't know if the value based on our guesses
2703 	 * of peer's MSS is better for the performance.  It's more correct
2704 	 * but may be worse for the performance because of rcv_mss
2705 	 * fluctuations.  --SAW  1998/11/1
2706 	 */
2707 	int mss = icsk->icsk_ack.rcv_mss;
2708 	int free_space = tcp_space(sk);
2709 	int allowed_space = tcp_full_space(sk);
2710 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2711 	int window;
2712 
2713 	if (unlikely(mss > full_space)) {
2714 		mss = full_space;
2715 		if (mss <= 0)
2716 			return 0;
2717 	}
2718 	if (free_space < (full_space >> 1)) {
2719 		icsk->icsk_ack.quick = 0;
2720 
2721 		if (tcp_under_memory_pressure(sk))
2722 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2723 					       4U * tp->advmss);
2724 
2725 		/* free_space might become our new window, make sure we don't
2726 		 * increase it due to wscale.
2727 		 */
2728 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2729 
2730 		/* if free space is less than mss estimate, or is below 1/16th
2731 		 * of the maximum allowed, try to move to zero-window, else
2732 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2733 		 * new incoming data is dropped due to memory limits.
2734 		 * With large window, mss test triggers way too late in order
2735 		 * to announce zero window in time before rmem limit kicks in.
2736 		 */
2737 		if (free_space < (allowed_space >> 4) || free_space < mss)
2738 			return 0;
2739 	}
2740 
2741 	if (free_space > tp->rcv_ssthresh)
2742 		free_space = tp->rcv_ssthresh;
2743 
2744 	/* Don't do rounding if we are using window scaling, since the
2745 	 * scaled window will not line up with the MSS boundary anyway.
2746 	 */
2747 	if (tp->rx_opt.rcv_wscale) {
2748 		window = free_space;
2749 
2750 		/* Advertise enough space so that it won't get scaled away.
2751 		 * Import case: prevent zero window announcement if
2752 		 * 1<<rcv_wscale > mss.
2753 		 */
2754 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2755 	} else {
2756 		window = tp->rcv_wnd;
2757 		/* Get the largest window that is a nice multiple of mss.
2758 		 * Window clamp already applied above.
2759 		 * If our current window offering is within 1 mss of the
2760 		 * free space we just keep it. This prevents the divide
2761 		 * and multiply from happening most of the time.
2762 		 * We also don't do any window rounding when the free space
2763 		 * is too small.
2764 		 */
2765 		if (window <= free_space - mss || window > free_space)
2766 			window = rounddown(free_space, mss);
2767 		else if (mss == full_space &&
2768 			 free_space > window + (full_space >> 1))
2769 			window = free_space;
2770 	}
2771 
2772 	return window;
2773 }
2774 
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)2775 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2776 			     const struct sk_buff *next_skb)
2777 {
2778 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2779 		const struct skb_shared_info *next_shinfo =
2780 			skb_shinfo(next_skb);
2781 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2782 
2783 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2784 		shinfo->tskey = next_shinfo->tskey;
2785 		TCP_SKB_CB(skb)->txstamp_ack |=
2786 			TCP_SKB_CB(next_skb)->txstamp_ack;
2787 	}
2788 }
2789 
2790 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)2791 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2792 {
2793 	struct tcp_sock *tp = tcp_sk(sk);
2794 	struct sk_buff *next_skb = skb_rb_next(skb);
2795 	int next_skb_size;
2796 
2797 	next_skb_size = next_skb->len;
2798 
2799 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2800 
2801 	if (next_skb_size) {
2802 		if (next_skb_size <= skb_availroom(skb))
2803 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2804 				      next_skb_size);
2805 		else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
2806 			return false;
2807 	}
2808 	tcp_highest_sack_replace(sk, next_skb, skb);
2809 
2810 	/* Update sequence range on original skb. */
2811 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2812 
2813 	/* Merge over control information. This moves PSH/FIN etc. over */
2814 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2815 
2816 	/* All done, get rid of second SKB and account for it so
2817 	 * packet counting does not break.
2818 	 */
2819 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2820 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2821 
2822 	/* changed transmit queue under us so clear hints */
2823 	tcp_clear_retrans_hints_partial(tp);
2824 	if (next_skb == tp->retransmit_skb_hint)
2825 		tp->retransmit_skb_hint = skb;
2826 
2827 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2828 
2829 	tcp_skb_collapse_tstamp(skb, next_skb);
2830 
2831 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
2832 	return true;
2833 }
2834 
2835 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)2836 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2837 {
2838 	if (tcp_skb_pcount(skb) > 1)
2839 		return false;
2840 	if (skb_cloned(skb))
2841 		return false;
2842 	/* Some heuristics for collapsing over SACK'd could be invented */
2843 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2844 		return false;
2845 
2846 	return true;
2847 }
2848 
2849 /* Collapse packets in the retransmit queue to make to create
2850  * less packets on the wire. This is only done on retransmission.
2851  */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)2852 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2853 				     int space)
2854 {
2855 	struct tcp_sock *tp = tcp_sk(sk);
2856 	struct sk_buff *skb = to, *tmp;
2857 	bool first = true;
2858 
2859 	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2860 		return;
2861 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2862 		return;
2863 
2864 	skb_rbtree_walk_from_safe(skb, tmp) {
2865 		if (!tcp_can_collapse(sk, skb))
2866 			break;
2867 
2868 		if (!tcp_skb_can_collapse_to(to))
2869 			break;
2870 
2871 		space -= skb->len;
2872 
2873 		if (first) {
2874 			first = false;
2875 			continue;
2876 		}
2877 
2878 		if (space < 0)
2879 			break;
2880 
2881 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2882 			break;
2883 
2884 		if (!tcp_collapse_retrans(sk, to))
2885 			break;
2886 	}
2887 }
2888 
2889 /* This retransmits one SKB.  Policy decisions and retransmit queue
2890  * state updates are done by the caller.  Returns non-zero if an
2891  * error occurred which prevented the send.
2892  */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)2893 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2894 {
2895 	struct inet_connection_sock *icsk = inet_csk(sk);
2896 	struct tcp_sock *tp = tcp_sk(sk);
2897 	unsigned int cur_mss;
2898 	int diff, len, err;
2899 
2900 
2901 	/* Inconclusive MTU probe */
2902 	if (icsk->icsk_mtup.probe_size)
2903 		icsk->icsk_mtup.probe_size = 0;
2904 
2905 	/* Do not sent more than we queued. 1/4 is reserved for possible
2906 	 * copying overhead: fragmentation, tunneling, mangling etc.
2907 	 */
2908 	if (refcount_read(&sk->sk_wmem_alloc) >
2909 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2910 		  sk->sk_sndbuf))
2911 		return -EAGAIN;
2912 
2913 	if (skb_still_in_host_queue(sk, skb))
2914 		return -EBUSY;
2915 
2916 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2917 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2918 			WARN_ON_ONCE(1);
2919 			return -EINVAL;
2920 		}
2921 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2922 			return -ENOMEM;
2923 	}
2924 
2925 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2926 		return -EHOSTUNREACH; /* Routing failure or similar. */
2927 
2928 	cur_mss = tcp_current_mss(sk);
2929 
2930 	/* If receiver has shrunk his window, and skb is out of
2931 	 * new window, do not retransmit it. The exception is the
2932 	 * case, when window is shrunk to zero. In this case
2933 	 * our retransmit serves as a zero window probe.
2934 	 */
2935 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2936 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2937 		return -EAGAIN;
2938 
2939 	len = cur_mss * segs;
2940 	if (skb->len > len) {
2941 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2942 				 cur_mss, GFP_ATOMIC))
2943 			return -ENOMEM; /* We'll try again later. */
2944 	} else {
2945 		if (skb_unclone(skb, GFP_ATOMIC))
2946 			return -ENOMEM;
2947 
2948 		diff = tcp_skb_pcount(skb);
2949 		tcp_set_skb_tso_segs(skb, cur_mss);
2950 		diff -= tcp_skb_pcount(skb);
2951 		if (diff)
2952 			tcp_adjust_pcount(sk, skb, diff);
2953 		if (skb->len < cur_mss)
2954 			tcp_retrans_try_collapse(sk, skb, cur_mss);
2955 	}
2956 
2957 	/* RFC3168, section 6.1.1.1. ECN fallback */
2958 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2959 		tcp_ecn_clear_syn(sk, skb);
2960 
2961 	/* Update global and local TCP statistics. */
2962 	segs = tcp_skb_pcount(skb);
2963 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2964 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2965 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2966 	tp->total_retrans += segs;
2967 	tp->bytes_retrans += skb->len;
2968 
2969 	/* make sure skb->data is aligned on arches that require it
2970 	 * and check if ack-trimming & collapsing extended the headroom
2971 	 * beyond what csum_start can cover.
2972 	 */
2973 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2974 		     skb_headroom(skb) >= 0xFFFF)) {
2975 		struct sk_buff *nskb;
2976 
2977 		tcp_skb_tsorted_save(skb) {
2978 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2979 			err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2980 				     -ENOBUFS;
2981 		} tcp_skb_tsorted_restore(skb);
2982 
2983 		if (!err) {
2984 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
2985 			tcp_rate_skb_sent(sk, skb);
2986 		}
2987 	} else {
2988 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2989 	}
2990 
2991 	/* To avoid taking spuriously low RTT samples based on a timestamp
2992 	 * for a transmit that never happened, always mark EVER_RETRANS
2993 	 */
2994 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2995 
2996 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
2997 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
2998 				  TCP_SKB_CB(skb)->seq, segs, err);
2999 
3000 	if (likely(!err)) {
3001 		trace_tcp_retransmit_skb(sk, skb);
3002 	} else if (err != -EBUSY) {
3003 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3004 	}
3005 	return err;
3006 }
3007 
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3008 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3009 {
3010 	struct tcp_sock *tp = tcp_sk(sk);
3011 	int err = __tcp_retransmit_skb(sk, skb, segs);
3012 
3013 	if (err == 0) {
3014 #if FASTRETRANS_DEBUG > 0
3015 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3016 			net_dbg_ratelimited("retrans_out leaked\n");
3017 		}
3018 #endif
3019 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3020 		tp->retrans_out += tcp_skb_pcount(skb);
3021 	}
3022 
3023 	/* Save stamp of the first (attempted) retransmit. */
3024 	if (!tp->retrans_stamp)
3025 		tp->retrans_stamp = tcp_skb_timestamp(skb);
3026 
3027 	if (tp->undo_retrans < 0)
3028 		tp->undo_retrans = 0;
3029 	tp->undo_retrans += tcp_skb_pcount(skb);
3030 	return err;
3031 }
3032 
3033 /* This gets called after a retransmit timeout, and the initially
3034  * retransmitted data is acknowledged.  It tries to continue
3035  * resending the rest of the retransmit queue, until either
3036  * we've sent it all or the congestion window limit is reached.
3037  */
tcp_xmit_retransmit_queue(struct sock * sk)3038 void tcp_xmit_retransmit_queue(struct sock *sk)
3039 {
3040 	const struct inet_connection_sock *icsk = inet_csk(sk);
3041 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3042 	struct tcp_sock *tp = tcp_sk(sk);
3043 	u32 max_segs;
3044 	int mib_idx;
3045 
3046 	if (!tp->packets_out)
3047 		return;
3048 
3049 	rtx_head = tcp_rtx_queue_head(sk);
3050 	skb = tp->retransmit_skb_hint ?: rtx_head;
3051 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3052 	skb_rbtree_walk_from(skb) {
3053 		__u8 sacked;
3054 		int segs;
3055 
3056 		if (tcp_pacing_check(sk))
3057 			break;
3058 
3059 		/* we could do better than to assign each time */
3060 		if (!hole)
3061 			tp->retransmit_skb_hint = skb;
3062 
3063 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3064 		if (segs <= 0)
3065 			return;
3066 		sacked = TCP_SKB_CB(skb)->sacked;
3067 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3068 		 * we need to make sure not sending too bigs TSO packets
3069 		 */
3070 		segs = min_t(int, segs, max_segs);
3071 
3072 		if (tp->retrans_out >= tp->lost_out) {
3073 			break;
3074 		} else if (!(sacked & TCPCB_LOST)) {
3075 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3076 				hole = skb;
3077 			continue;
3078 
3079 		} else {
3080 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3081 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3082 			else
3083 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3084 		}
3085 
3086 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3087 			continue;
3088 
3089 		if (tcp_small_queue_check(sk, skb, 1))
3090 			return;
3091 
3092 		if (tcp_retransmit_skb(sk, skb, segs))
3093 			return;
3094 
3095 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3096 
3097 		if (tcp_in_cwnd_reduction(sk))
3098 			tp->prr_out += tcp_skb_pcount(skb);
3099 
3100 		if (skb == rtx_head &&
3101 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3102 			tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3103 					     inet_csk(sk)->icsk_rto,
3104 					     TCP_RTO_MAX,
3105 					     skb);
3106 	}
3107 }
3108 
3109 /* We allow to exceed memory limits for FIN packets to expedite
3110  * connection tear down and (memory) recovery.
3111  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3112  * or even be forced to close flow without any FIN.
3113  * In general, we want to allow one skb per socket to avoid hangs
3114  * with edge trigger epoll()
3115  */
sk_forced_mem_schedule(struct sock * sk,int size)3116 void sk_forced_mem_schedule(struct sock *sk, int size)
3117 {
3118 	int amt;
3119 
3120 	if (size <= sk->sk_forward_alloc)
3121 		return;
3122 	amt = sk_mem_pages(size);
3123 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3124 	sk_memory_allocated_add(sk, amt);
3125 
3126 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3127 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3128 }
3129 
3130 /* Send a FIN. The caller locks the socket for us.
3131  * We should try to send a FIN packet really hard, but eventually give up.
3132  */
tcp_send_fin(struct sock * sk)3133 void tcp_send_fin(struct sock *sk)
3134 {
3135 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3136 	struct tcp_sock *tp = tcp_sk(sk);
3137 
3138 	/* Optimization, tack on the FIN if we have one skb in write queue and
3139 	 * this skb was not yet sent, or we are under memory pressure.
3140 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3141 	 * as TCP stack thinks it has already been transmitted.
3142 	 */
3143 	if (!tskb && tcp_under_memory_pressure(sk))
3144 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3145 
3146 	if (tskb) {
3147 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3148 		TCP_SKB_CB(tskb)->end_seq++;
3149 		tp->write_seq++;
3150 		if (tcp_write_queue_empty(sk)) {
3151 			/* This means tskb was already sent.
3152 			 * Pretend we included the FIN on previous transmit.
3153 			 * We need to set tp->snd_nxt to the value it would have
3154 			 * if FIN had been sent. This is because retransmit path
3155 			 * does not change tp->snd_nxt.
3156 			 */
3157 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3158 			return;
3159 		}
3160 	} else {
3161 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3162 		if (unlikely(!skb))
3163 			return;
3164 
3165 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3166 		skb_reserve(skb, MAX_TCP_HEADER);
3167 		sk_forced_mem_schedule(sk, skb->truesize);
3168 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3169 		tcp_init_nondata_skb(skb, tp->write_seq,
3170 				     TCPHDR_ACK | TCPHDR_FIN);
3171 		tcp_queue_skb(sk, skb);
3172 	}
3173 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3174 }
3175 
3176 /* We get here when a process closes a file descriptor (either due to
3177  * an explicit close() or as a byproduct of exit()'ing) and there
3178  * was unread data in the receive queue.  This behavior is recommended
3179  * by RFC 2525, section 2.17.  -DaveM
3180  */
tcp_send_active_reset(struct sock * sk,gfp_t priority)3181 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3182 {
3183 	struct sk_buff *skb;
3184 
3185 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3186 
3187 	/* NOTE: No TCP options attached and we never retransmit this. */
3188 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3189 	if (!skb) {
3190 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3191 		return;
3192 	}
3193 
3194 	/* Reserve space for headers and prepare control bits. */
3195 	skb_reserve(skb, MAX_TCP_HEADER);
3196 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3197 			     TCPHDR_ACK | TCPHDR_RST);
3198 	tcp_mstamp_refresh(tcp_sk(sk));
3199 	/* Send it off. */
3200 	if (tcp_transmit_skb(sk, skb, 0, priority))
3201 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3202 
3203 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3204 	 * skb here is different to the troublesome skb, so use NULL
3205 	 */
3206 	trace_tcp_send_reset(sk, NULL);
3207 }
3208 
3209 /* Send a crossed SYN-ACK during socket establishment.
3210  * WARNING: This routine must only be called when we have already sent
3211  * a SYN packet that crossed the incoming SYN that caused this routine
3212  * to get called. If this assumption fails then the initial rcv_wnd
3213  * and rcv_wscale values will not be correct.
3214  */
tcp_send_synack(struct sock * sk)3215 int tcp_send_synack(struct sock *sk)
3216 {
3217 	struct sk_buff *skb;
3218 
3219 	skb = tcp_rtx_queue_head(sk);
3220 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3221 		pr_err("%s: wrong queue state\n", __func__);
3222 		return -EFAULT;
3223 	}
3224 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3225 		if (skb_cloned(skb)) {
3226 			struct sk_buff *nskb;
3227 
3228 			tcp_skb_tsorted_save(skb) {
3229 				nskb = skb_copy(skb, GFP_ATOMIC);
3230 			} tcp_skb_tsorted_restore(skb);
3231 			if (!nskb)
3232 				return -ENOMEM;
3233 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3234 			tcp_highest_sack_replace(sk, skb, nskb);
3235 			tcp_rtx_queue_unlink_and_free(skb, sk);
3236 			__skb_header_release(nskb);
3237 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3238 			sk_wmem_queued_add(sk, nskb->truesize);
3239 			sk_mem_charge(sk, nskb->truesize);
3240 			skb = nskb;
3241 		}
3242 
3243 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3244 		tcp_ecn_send_synack(sk, skb);
3245 	}
3246 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3247 }
3248 
3249 /**
3250  * tcp_make_synack - Prepare a SYN-ACK.
3251  * sk: listener socket
3252  * dst: dst entry attached to the SYNACK
3253  * req: request_sock pointer
3254  *
3255  * Allocate one skb and build a SYNACK packet.
3256  * @dst is consumed : Caller should not use it again.
3257  */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type)3258 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3259 				struct request_sock *req,
3260 				struct tcp_fastopen_cookie *foc,
3261 				enum tcp_synack_type synack_type)
3262 {
3263 	struct inet_request_sock *ireq = inet_rsk(req);
3264 	const struct tcp_sock *tp = tcp_sk(sk);
3265 	struct tcp_md5sig_key *md5 = NULL;
3266 	struct tcp_out_options opts;
3267 	struct sk_buff *skb;
3268 	int tcp_header_size;
3269 	struct tcphdr *th;
3270 	int mss;
3271 	u64 now;
3272 
3273 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3274 	if (unlikely(!skb)) {
3275 		dst_release(dst);
3276 		return NULL;
3277 	}
3278 	/* Reserve space for headers. */
3279 	skb_reserve(skb, MAX_TCP_HEADER);
3280 
3281 	switch (synack_type) {
3282 	case TCP_SYNACK_NORMAL:
3283 		skb_set_owner_w(skb, req_to_sk(req));
3284 		break;
3285 	case TCP_SYNACK_COOKIE:
3286 		/* Under synflood, we do not attach skb to a socket,
3287 		 * to avoid false sharing.
3288 		 */
3289 		break;
3290 	case TCP_SYNACK_FASTOPEN:
3291 		/* sk is a const pointer, because we want to express multiple
3292 		 * cpu might call us concurrently.
3293 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3294 		 */
3295 		skb_set_owner_w(skb, (struct sock *)sk);
3296 		break;
3297 	}
3298 	skb_dst_set(skb, dst);
3299 
3300 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3301 
3302 	memset(&opts, 0, sizeof(opts));
3303 	now = tcp_clock_ns();
3304 #ifdef CONFIG_SYN_COOKIES
3305 	if (unlikely(req->cookie_ts))
3306 		skb->skb_mstamp_ns = cookie_init_timestamp(req);
3307 	else
3308 #endif
3309 	{
3310 		skb->skb_mstamp_ns = now;
3311 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3312 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3313 	}
3314 
3315 #ifdef CONFIG_TCP_MD5SIG
3316 	rcu_read_lock();
3317 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3318 #endif
3319 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3320 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3321 					     foc) + sizeof(*th);
3322 
3323 	skb_push(skb, tcp_header_size);
3324 	skb_reset_transport_header(skb);
3325 
3326 	th = (struct tcphdr *)skb->data;
3327 	memset(th, 0, sizeof(struct tcphdr));
3328 	th->syn = 1;
3329 	th->ack = 1;
3330 	tcp_ecn_make_synack(req, th);
3331 	th->source = htons(ireq->ir_num);
3332 	th->dest = ireq->ir_rmt_port;
3333 	skb->mark = ireq->ir_mark;
3334 	skb->ip_summed = CHECKSUM_PARTIAL;
3335 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3336 	/* XXX data is queued and acked as is. No buffer/window check */
3337 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3338 
3339 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3340 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3341 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3342 	th->doff = (tcp_header_size >> 2);
3343 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3344 
3345 #ifdef CONFIG_TCP_MD5SIG
3346 	/* Okay, we have all we need - do the md5 hash if needed */
3347 	if (md5)
3348 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3349 					       md5, req_to_sk(req), skb);
3350 	rcu_read_unlock();
3351 #endif
3352 
3353 	skb->skb_mstamp_ns = now;
3354 	tcp_add_tx_delay(skb, tp);
3355 
3356 	return skb;
3357 }
3358 EXPORT_SYMBOL(tcp_make_synack);
3359 
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3360 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3361 {
3362 	struct inet_connection_sock *icsk = inet_csk(sk);
3363 	const struct tcp_congestion_ops *ca;
3364 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3365 
3366 	if (ca_key == TCP_CA_UNSPEC)
3367 		return;
3368 
3369 	rcu_read_lock();
3370 	ca = tcp_ca_find_key(ca_key);
3371 	if (likely(ca && try_module_get(ca->owner))) {
3372 		module_put(icsk->icsk_ca_ops->owner);
3373 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3374 		icsk->icsk_ca_ops = ca;
3375 	}
3376 	rcu_read_unlock();
3377 }
3378 
3379 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3380 static void tcp_connect_init(struct sock *sk)
3381 {
3382 	const struct dst_entry *dst = __sk_dst_get(sk);
3383 	struct tcp_sock *tp = tcp_sk(sk);
3384 	__u8 rcv_wscale;
3385 	u32 rcv_wnd;
3386 
3387 	/* We'll fix this up when we get a response from the other end.
3388 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3389 	 */
3390 	tp->tcp_header_len = sizeof(struct tcphdr);
3391 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3392 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3393 
3394 #ifdef CONFIG_TCP_MD5SIG
3395 	if (tp->af_specific->md5_lookup(sk, sk))
3396 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3397 #endif
3398 
3399 	/* If user gave his TCP_MAXSEG, record it to clamp */
3400 	if (tp->rx_opt.user_mss)
3401 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3402 	tp->max_window = 0;
3403 	tcp_mtup_init(sk);
3404 	tcp_sync_mss(sk, dst_mtu(dst));
3405 
3406 	tcp_ca_dst_init(sk, dst);
3407 
3408 	if (!tp->window_clamp)
3409 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3410 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3411 
3412 	tcp_initialize_rcv_mss(sk);
3413 
3414 	/* limit the window selection if the user enforce a smaller rx buffer */
3415 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3416 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3417 		tp->window_clamp = tcp_full_space(sk);
3418 
3419 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3420 	if (rcv_wnd == 0)
3421 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3422 
3423 	tcp_select_initial_window(sk, tcp_full_space(sk),
3424 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3425 				  &tp->rcv_wnd,
3426 				  &tp->window_clamp,
3427 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3428 				  &rcv_wscale,
3429 				  rcv_wnd);
3430 
3431 	tp->rx_opt.rcv_wscale = rcv_wscale;
3432 	tp->rcv_ssthresh = tp->rcv_wnd;
3433 
3434 	sk->sk_err = 0;
3435 	sock_reset_flag(sk, SOCK_DONE);
3436 	tp->snd_wnd = 0;
3437 	tcp_init_wl(tp, 0);
3438 	tcp_write_queue_purge(sk);
3439 	tp->snd_una = tp->write_seq;
3440 	tp->snd_sml = tp->write_seq;
3441 	tp->snd_up = tp->write_seq;
3442 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3443 
3444 	if (likely(!tp->repair))
3445 		tp->rcv_nxt = 0;
3446 	else
3447 		tp->rcv_tstamp = tcp_jiffies32;
3448 	tp->rcv_wup = tp->rcv_nxt;
3449 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3450 
3451 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3452 	inet_csk(sk)->icsk_retransmits = 0;
3453 	tcp_clear_retrans(tp);
3454 }
3455 
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3456 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3457 {
3458 	struct tcp_sock *tp = tcp_sk(sk);
3459 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3460 
3461 	tcb->end_seq += skb->len;
3462 	__skb_header_release(skb);
3463 	sk_wmem_queued_add(sk, skb->truesize);
3464 	sk_mem_charge(sk, skb->truesize);
3465 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3466 	tp->packets_out += tcp_skb_pcount(skb);
3467 }
3468 
3469 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3470  * queue a data-only packet after the regular SYN, such that regular SYNs
3471  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3472  * only the SYN sequence, the data are retransmitted in the first ACK.
3473  * If cookie is not cached or other error occurs, falls back to send a
3474  * regular SYN with Fast Open cookie request option.
3475  */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3476 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3477 {
3478 	struct tcp_sock *tp = tcp_sk(sk);
3479 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3480 	int space, err = 0;
3481 	struct sk_buff *syn_data;
3482 
3483 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3484 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3485 		goto fallback;
3486 
3487 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3488 	 * user-MSS. Reserve maximum option space for middleboxes that add
3489 	 * private TCP options. The cost is reduced data space in SYN :(
3490 	 */
3491 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3492 
3493 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3494 		MAX_TCP_OPTION_SPACE;
3495 
3496 	space = min_t(size_t, space, fo->size);
3497 
3498 	/* limit to order-0 allocations */
3499 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3500 
3501 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3502 	if (!syn_data)
3503 		goto fallback;
3504 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3505 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3506 	if (space) {
3507 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3508 					    &fo->data->msg_iter);
3509 		if (unlikely(!copied)) {
3510 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3511 			kfree_skb(syn_data);
3512 			goto fallback;
3513 		}
3514 		if (copied != space) {
3515 			skb_trim(syn_data, copied);
3516 			space = copied;
3517 		}
3518 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3519 	}
3520 	/* No more data pending in inet_wait_for_connect() */
3521 	if (space == fo->size)
3522 		fo->data = NULL;
3523 	fo->copied = space;
3524 
3525 	tcp_connect_queue_skb(sk, syn_data);
3526 	if (syn_data->len)
3527 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3528 
3529 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3530 
3531 	syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3532 
3533 	/* Now full SYN+DATA was cloned and sent (or not),
3534 	 * remove the SYN from the original skb (syn_data)
3535 	 * we keep in write queue in case of a retransmit, as we
3536 	 * also have the SYN packet (with no data) in the same queue.
3537 	 */
3538 	TCP_SKB_CB(syn_data)->seq++;
3539 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3540 	if (!err) {
3541 		tp->syn_data = (fo->copied > 0);
3542 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3543 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3544 		goto done;
3545 	}
3546 
3547 	/* data was not sent, put it in write_queue */
3548 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3549 	tp->packets_out -= tcp_skb_pcount(syn_data);
3550 
3551 fallback:
3552 	/* Send a regular SYN with Fast Open cookie request option */
3553 	if (fo->cookie.len > 0)
3554 		fo->cookie.len = 0;
3555 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3556 	if (err)
3557 		tp->syn_fastopen = 0;
3558 done:
3559 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3560 	return err;
3561 }
3562 
3563 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3564 int tcp_connect(struct sock *sk)
3565 {
3566 	struct tcp_sock *tp = tcp_sk(sk);
3567 	struct sk_buff *buff;
3568 	int err;
3569 
3570 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3571 
3572 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3573 		return -EHOSTUNREACH; /* Routing failure or similar. */
3574 
3575 	tcp_connect_init(sk);
3576 
3577 	if (unlikely(tp->repair)) {
3578 		tcp_finish_connect(sk, NULL);
3579 		return 0;
3580 	}
3581 
3582 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3583 	if (unlikely(!buff))
3584 		return -ENOBUFS;
3585 
3586 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3587 	tcp_mstamp_refresh(tp);
3588 	tp->retrans_stamp = tcp_time_stamp(tp);
3589 	tcp_connect_queue_skb(sk, buff);
3590 	tcp_ecn_send_syn(sk, buff);
3591 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3592 
3593 	/* Send off SYN; include data in Fast Open. */
3594 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3595 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3596 	if (err == -ECONNREFUSED)
3597 		return err;
3598 
3599 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3600 	 * in order to make this packet get counted in tcpOutSegs.
3601 	 */
3602 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3603 	tp->pushed_seq = tp->write_seq;
3604 	buff = tcp_send_head(sk);
3605 	if (unlikely(buff)) {
3606 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3607 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3608 	}
3609 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3610 
3611 	/* Timer for repeating the SYN until an answer. */
3612 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3613 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3614 	return 0;
3615 }
3616 EXPORT_SYMBOL(tcp_connect);
3617 
3618 /* Send out a delayed ack, the caller does the policy checking
3619  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3620  * for details.
3621  */
tcp_send_delayed_ack(struct sock * sk)3622 void tcp_send_delayed_ack(struct sock *sk)
3623 {
3624 	struct inet_connection_sock *icsk = inet_csk(sk);
3625 	int ato = icsk->icsk_ack.ato;
3626 	unsigned long timeout;
3627 
3628 	if (ato > TCP_DELACK_MIN) {
3629 		const struct tcp_sock *tp = tcp_sk(sk);
3630 		int max_ato = HZ / 2;
3631 
3632 		if (inet_csk_in_pingpong_mode(sk) ||
3633 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3634 			max_ato = TCP_DELACK_MAX;
3635 
3636 		/* Slow path, intersegment interval is "high". */
3637 
3638 		/* If some rtt estimate is known, use it to bound delayed ack.
3639 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3640 		 * directly.
3641 		 */
3642 		if (tp->srtt_us) {
3643 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3644 					TCP_DELACK_MIN);
3645 
3646 			if (rtt < max_ato)
3647 				max_ato = rtt;
3648 		}
3649 
3650 		ato = min(ato, max_ato);
3651 	}
3652 
3653 	/* Stay within the limit we were given */
3654 	timeout = jiffies + ato;
3655 
3656 	/* Use new timeout only if there wasn't a older one earlier. */
3657 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3658 		/* If delack timer was blocked or is about to expire,
3659 		 * send ACK now.
3660 		 */
3661 		if (icsk->icsk_ack.blocked ||
3662 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3663 			tcp_send_ack(sk);
3664 			return;
3665 		}
3666 
3667 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3668 			timeout = icsk->icsk_ack.timeout;
3669 	}
3670 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3671 	icsk->icsk_ack.timeout = timeout;
3672 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3673 }
3674 
3675 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)3676 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3677 {
3678 	struct sk_buff *buff;
3679 
3680 	/* If we have been reset, we may not send again. */
3681 	if (sk->sk_state == TCP_CLOSE)
3682 		return;
3683 
3684 	/* We are not putting this on the write queue, so
3685 	 * tcp_transmit_skb() will set the ownership to this
3686 	 * sock.
3687 	 */
3688 	buff = alloc_skb(MAX_TCP_HEADER,
3689 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3690 	if (unlikely(!buff)) {
3691 		inet_csk_schedule_ack(sk);
3692 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3693 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3694 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3695 		return;
3696 	}
3697 
3698 	/* Reserve space for headers and prepare control bits. */
3699 	skb_reserve(buff, MAX_TCP_HEADER);
3700 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3701 
3702 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3703 	 * too much.
3704 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3705 	 */
3706 	skb_set_tcp_pure_ack(buff);
3707 
3708 	/* Send it off, this clears delayed acks for us. */
3709 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3710 }
3711 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3712 
tcp_send_ack(struct sock * sk)3713 void tcp_send_ack(struct sock *sk)
3714 {
3715 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3716 }
3717 
3718 /* This routine sends a packet with an out of date sequence
3719  * number. It assumes the other end will try to ack it.
3720  *
3721  * Question: what should we make while urgent mode?
3722  * 4.4BSD forces sending single byte of data. We cannot send
3723  * out of window data, because we have SND.NXT==SND.MAX...
3724  *
3725  * Current solution: to send TWO zero-length segments in urgent mode:
3726  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3727  * out-of-date with SND.UNA-1 to probe window.
3728  */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)3729 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3730 {
3731 	struct tcp_sock *tp = tcp_sk(sk);
3732 	struct sk_buff *skb;
3733 
3734 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3735 	skb = alloc_skb(MAX_TCP_HEADER,
3736 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3737 	if (!skb)
3738 		return -1;
3739 
3740 	/* Reserve space for headers and set control bits. */
3741 	skb_reserve(skb, MAX_TCP_HEADER);
3742 	/* Use a previous sequence.  This should cause the other
3743 	 * end to send an ack.  Don't queue or clone SKB, just
3744 	 * send it.
3745 	 */
3746 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3747 	NET_INC_STATS(sock_net(sk), mib);
3748 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3749 }
3750 
3751 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)3752 void tcp_send_window_probe(struct sock *sk)
3753 {
3754 	if (sk->sk_state == TCP_ESTABLISHED) {
3755 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3756 		tcp_mstamp_refresh(tcp_sk(sk));
3757 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3758 	}
3759 }
3760 
3761 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)3762 int tcp_write_wakeup(struct sock *sk, int mib)
3763 {
3764 	struct tcp_sock *tp = tcp_sk(sk);
3765 	struct sk_buff *skb;
3766 
3767 	if (sk->sk_state == TCP_CLOSE)
3768 		return -1;
3769 
3770 	skb = tcp_send_head(sk);
3771 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3772 		int err;
3773 		unsigned int mss = tcp_current_mss(sk);
3774 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3775 
3776 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3777 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3778 
3779 		/* We are probing the opening of a window
3780 		 * but the window size is != 0
3781 		 * must have been a result SWS avoidance ( sender )
3782 		 */
3783 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3784 		    skb->len > mss) {
3785 			seg_size = min(seg_size, mss);
3786 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3787 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3788 					 skb, seg_size, mss, GFP_ATOMIC))
3789 				return -1;
3790 		} else if (!tcp_skb_pcount(skb))
3791 			tcp_set_skb_tso_segs(skb, mss);
3792 
3793 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3794 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3795 		if (!err)
3796 			tcp_event_new_data_sent(sk, skb);
3797 		return err;
3798 	} else {
3799 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3800 			tcp_xmit_probe_skb(sk, 1, mib);
3801 		return tcp_xmit_probe_skb(sk, 0, mib);
3802 	}
3803 }
3804 
3805 /* A window probe timeout has occurred.  If window is not closed send
3806  * a partial packet else a zero probe.
3807  */
tcp_send_probe0(struct sock * sk)3808 void tcp_send_probe0(struct sock *sk)
3809 {
3810 	struct inet_connection_sock *icsk = inet_csk(sk);
3811 	struct tcp_sock *tp = tcp_sk(sk);
3812 	struct net *net = sock_net(sk);
3813 	unsigned long timeout;
3814 	int err;
3815 
3816 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3817 
3818 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
3819 		/* Cancel probe timer, if it is not required. */
3820 		icsk->icsk_probes_out = 0;
3821 		icsk->icsk_backoff = 0;
3822 		return;
3823 	}
3824 
3825 	icsk->icsk_probes_out++;
3826 	if (err <= 0) {
3827 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3828 			icsk->icsk_backoff++;
3829 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
3830 	} else {
3831 		/* If packet was not sent due to local congestion,
3832 		 * Let senders fight for local resources conservatively.
3833 		 */
3834 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
3835 	}
3836 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX, NULL);
3837 }
3838 
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)3839 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3840 {
3841 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3842 	struct flowi fl;
3843 	int res;
3844 
3845 	tcp_rsk(req)->txhash = net_tx_rndhash();
3846 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3847 	if (!res) {
3848 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3849 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3850 		if (unlikely(tcp_passive_fastopen(sk)))
3851 			tcp_sk(sk)->total_retrans++;
3852 		trace_tcp_retransmit_synack(sk, req);
3853 	}
3854 	return res;
3855 }
3856 EXPORT_SYMBOL(tcp_rtx_synack);
3857