1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * PACKET - implements raw packet sockets.
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Alan Cox, <gw4pts@gw4pts.ampr.org>
12 *
13 * Fixes:
14 * Alan Cox : verify_area() now used correctly
15 * Alan Cox : new skbuff lists, look ma no backlogs!
16 * Alan Cox : tidied skbuff lists.
17 * Alan Cox : Now uses generic datagram routines I
18 * added. Also fixed the peek/read crash
19 * from all old Linux datagram code.
20 * Alan Cox : Uses the improved datagram code.
21 * Alan Cox : Added NULL's for socket options.
22 * Alan Cox : Re-commented the code.
23 * Alan Cox : Use new kernel side addressing
24 * Rob Janssen : Correct MTU usage.
25 * Dave Platt : Counter leaks caused by incorrect
26 * interrupt locking and some slightly
27 * dubious gcc output. Can you read
28 * compiler: it said _VOLATILE_
29 * Richard Kooijman : Timestamp fixes.
30 * Alan Cox : New buffers. Use sk->mac.raw.
31 * Alan Cox : sendmsg/recvmsg support.
32 * Alan Cox : Protocol setting support
33 * Alexey Kuznetsov : Untied from IPv4 stack.
34 * Cyrus Durgin : Fixed kerneld for kmod.
35 * Michal Ostrowski : Module initialization cleanup.
36 * Ulises Alonso : Frame number limit removal and
37 * packet_set_ring memory leak.
38 * Eric Biederman : Allow for > 8 byte hardware addresses.
39 * The convention is that longer addresses
40 * will simply extend the hardware address
41 * byte arrays at the end of sockaddr_ll
42 * and packet_mreq.
43 * Johann Baudy : Added TX RING.
44 * Chetan Loke : Implemented TPACKET_V3 block abstraction
45 * layer.
46 * Copyright (C) 2011, <lokec@ccs.neu.edu>
47 */
48
49 #include <linux/types.h>
50 #include <linux/mm.h>
51 #include <linux/capability.h>
52 #include <linux/fcntl.h>
53 #include <linux/socket.h>
54 #include <linux/in.h>
55 #include <linux/inet.h>
56 #include <linux/netdevice.h>
57 #include <linux/if_packet.h>
58 #include <linux/wireless.h>
59 #include <linux/kernel.h>
60 #include <linux/kmod.h>
61 #include <linux/slab.h>
62 #include <linux/vmalloc.h>
63 #include <net/net_namespace.h>
64 #include <net/ip.h>
65 #include <net/protocol.h>
66 #include <linux/skbuff.h>
67 #include <net/sock.h>
68 #include <linux/errno.h>
69 #include <linux/timer.h>
70 #include <linux/uaccess.h>
71 #include <asm/ioctls.h>
72 #include <asm/page.h>
73 #include <asm/cacheflush.h>
74 #include <asm/io.h>
75 #include <linux/proc_fs.h>
76 #include <linux/seq_file.h>
77 #include <linux/poll.h>
78 #include <linux/module.h>
79 #include <linux/init.h>
80 #include <linux/mutex.h>
81 #include <linux/if_vlan.h>
82 #include <linux/virtio_net.h>
83 #include <linux/errqueue.h>
84 #include <linux/net_tstamp.h>
85 #include <linux/percpu.h>
86 #ifdef CONFIG_INET
87 #include <net/inet_common.h>
88 #endif
89 #include <linux/bpf.h>
90 #include <net/compat.h>
91
92 #include "internal.h"
93
94 /*
95 Assumptions:
96 - if device has no dev->hard_header routine, it adds and removes ll header
97 inside itself. In this case ll header is invisible outside of device,
98 but higher levels still should reserve dev->hard_header_len.
99 Some devices are enough clever to reallocate skb, when header
100 will not fit to reserved space (tunnel), another ones are silly
101 (PPP).
102 - packet socket receives packets with pulled ll header,
103 so that SOCK_RAW should push it back.
104
105 On receive:
106 -----------
107
108 Incoming, dev->hard_header!=NULL
109 mac_header -> ll header
110 data -> data
111
112 Outgoing, dev->hard_header!=NULL
113 mac_header -> ll header
114 data -> ll header
115
116 Incoming, dev->hard_header==NULL
117 mac_header -> UNKNOWN position. It is very likely, that it points to ll
118 header. PPP makes it, that is wrong, because introduce
119 assymetry between rx and tx paths.
120 data -> data
121
122 Outgoing, dev->hard_header==NULL
123 mac_header -> data. ll header is still not built!
124 data -> data
125
126 Resume
127 If dev->hard_header==NULL we are unlikely to restore sensible ll header.
128
129
130 On transmit:
131 ------------
132
133 dev->hard_header != NULL
134 mac_header -> ll header
135 data -> ll header
136
137 dev->hard_header == NULL (ll header is added by device, we cannot control it)
138 mac_header -> data
139 data -> data
140
141 We should set nh.raw on output to correct posistion,
142 packet classifier depends on it.
143 */
144
145 /* Private packet socket structures. */
146
147 /* identical to struct packet_mreq except it has
148 * a longer address field.
149 */
150 struct packet_mreq_max {
151 int mr_ifindex;
152 unsigned short mr_type;
153 unsigned short mr_alen;
154 unsigned char mr_address[MAX_ADDR_LEN];
155 };
156
157 union tpacket_uhdr {
158 struct tpacket_hdr *h1;
159 struct tpacket2_hdr *h2;
160 struct tpacket3_hdr *h3;
161 void *raw;
162 };
163
164 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
165 int closing, int tx_ring);
166
167 #define V3_ALIGNMENT (8)
168
169 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
170
171 #define BLK_PLUS_PRIV(sz_of_priv) \
172 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
173
174 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
175 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
176 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
177 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
178 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
179 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
180 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x)))
181
182 struct packet_sock;
183 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
184 struct packet_type *pt, struct net_device *orig_dev);
185
186 static void *packet_previous_frame(struct packet_sock *po,
187 struct packet_ring_buffer *rb,
188 int status);
189 static void packet_increment_head(struct packet_ring_buffer *buff);
190 static int prb_curr_blk_in_use(struct tpacket_block_desc *);
191 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
192 struct packet_sock *);
193 static void prb_retire_current_block(struct tpacket_kbdq_core *,
194 struct packet_sock *, unsigned int status);
195 static int prb_queue_frozen(struct tpacket_kbdq_core *);
196 static void prb_open_block(struct tpacket_kbdq_core *,
197 struct tpacket_block_desc *);
198 static void prb_retire_rx_blk_timer_expired(struct timer_list *);
199 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
200 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
201 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
202 struct tpacket3_hdr *);
203 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
204 struct tpacket3_hdr *);
205 static void packet_flush_mclist(struct sock *sk);
206 static u16 packet_pick_tx_queue(struct sk_buff *skb);
207
208 struct packet_skb_cb {
209 union {
210 struct sockaddr_pkt pkt;
211 union {
212 /* Trick: alias skb original length with
213 * ll.sll_family and ll.protocol in order
214 * to save room.
215 */
216 unsigned int origlen;
217 struct sockaddr_ll ll;
218 };
219 } sa;
220 };
221
222 #define vio_le() virtio_legacy_is_little_endian()
223
224 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
225
226 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
227 #define GET_PBLOCK_DESC(x, bid) \
228 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
229 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
230 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
231 #define GET_NEXT_PRB_BLK_NUM(x) \
232 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
233 ((x)->kactive_blk_num+1) : 0)
234
235 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
236 static void __fanout_link(struct sock *sk, struct packet_sock *po);
237
packet_direct_xmit(struct sk_buff * skb)238 static int packet_direct_xmit(struct sk_buff *skb)
239 {
240 return dev_direct_xmit(skb, packet_pick_tx_queue(skb));
241 }
242
packet_cached_dev_get(struct packet_sock * po)243 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
244 {
245 struct net_device *dev;
246
247 rcu_read_lock();
248 dev = rcu_dereference(po->cached_dev);
249 if (likely(dev))
250 dev_hold(dev);
251 rcu_read_unlock();
252
253 return dev;
254 }
255
packet_cached_dev_assign(struct packet_sock * po,struct net_device * dev)256 static void packet_cached_dev_assign(struct packet_sock *po,
257 struct net_device *dev)
258 {
259 rcu_assign_pointer(po->cached_dev, dev);
260 }
261
packet_cached_dev_reset(struct packet_sock * po)262 static void packet_cached_dev_reset(struct packet_sock *po)
263 {
264 RCU_INIT_POINTER(po->cached_dev, NULL);
265 }
266
packet_use_direct_xmit(const struct packet_sock * po)267 static bool packet_use_direct_xmit(const struct packet_sock *po)
268 {
269 return po->xmit == packet_direct_xmit;
270 }
271
packet_pick_tx_queue(struct sk_buff * skb)272 static u16 packet_pick_tx_queue(struct sk_buff *skb)
273 {
274 struct net_device *dev = skb->dev;
275 const struct net_device_ops *ops = dev->netdev_ops;
276 int cpu = raw_smp_processor_id();
277 u16 queue_index;
278
279 #ifdef CONFIG_XPS
280 skb->sender_cpu = cpu + 1;
281 #endif
282 skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues);
283 if (ops->ndo_select_queue) {
284 queue_index = ops->ndo_select_queue(dev, skb, NULL);
285 queue_index = netdev_cap_txqueue(dev, queue_index);
286 } else {
287 queue_index = netdev_pick_tx(dev, skb, NULL);
288 }
289
290 return queue_index;
291 }
292
293 /* __register_prot_hook must be invoked through register_prot_hook
294 * or from a context in which asynchronous accesses to the packet
295 * socket is not possible (packet_create()).
296 */
__register_prot_hook(struct sock * sk)297 static void __register_prot_hook(struct sock *sk)
298 {
299 struct packet_sock *po = pkt_sk(sk);
300
301 if (!po->running) {
302 if (po->fanout)
303 __fanout_link(sk, po);
304 else
305 dev_add_pack(&po->prot_hook);
306
307 sock_hold(sk);
308 po->running = 1;
309 }
310 }
311
register_prot_hook(struct sock * sk)312 static void register_prot_hook(struct sock *sk)
313 {
314 lockdep_assert_held_once(&pkt_sk(sk)->bind_lock);
315 __register_prot_hook(sk);
316 }
317
318 /* If the sync parameter is true, we will temporarily drop
319 * the po->bind_lock and do a synchronize_net to make sure no
320 * asynchronous packet processing paths still refer to the elements
321 * of po->prot_hook. If the sync parameter is false, it is the
322 * callers responsibility to take care of this.
323 */
__unregister_prot_hook(struct sock * sk,bool sync)324 static void __unregister_prot_hook(struct sock *sk, bool sync)
325 {
326 struct packet_sock *po = pkt_sk(sk);
327
328 lockdep_assert_held_once(&po->bind_lock);
329
330 po->running = 0;
331
332 if (po->fanout)
333 __fanout_unlink(sk, po);
334 else
335 __dev_remove_pack(&po->prot_hook);
336
337 __sock_put(sk);
338
339 if (sync) {
340 spin_unlock(&po->bind_lock);
341 synchronize_net();
342 spin_lock(&po->bind_lock);
343 }
344 }
345
unregister_prot_hook(struct sock * sk,bool sync)346 static void unregister_prot_hook(struct sock *sk, bool sync)
347 {
348 struct packet_sock *po = pkt_sk(sk);
349
350 if (po->running)
351 __unregister_prot_hook(sk, sync);
352 }
353
pgv_to_page(void * addr)354 static inline struct page * __pure pgv_to_page(void *addr)
355 {
356 if (is_vmalloc_addr(addr))
357 return vmalloc_to_page(addr);
358 return virt_to_page(addr);
359 }
360
__packet_set_status(struct packet_sock * po,void * frame,int status)361 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
362 {
363 union tpacket_uhdr h;
364
365 h.raw = frame;
366 switch (po->tp_version) {
367 case TPACKET_V1:
368 h.h1->tp_status = status;
369 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
370 break;
371 case TPACKET_V2:
372 h.h2->tp_status = status;
373 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
374 break;
375 case TPACKET_V3:
376 h.h3->tp_status = status;
377 flush_dcache_page(pgv_to_page(&h.h3->tp_status));
378 break;
379 default:
380 WARN(1, "TPACKET version not supported.\n");
381 BUG();
382 }
383
384 smp_wmb();
385 }
386
__packet_get_status(const struct packet_sock * po,void * frame)387 static int __packet_get_status(const struct packet_sock *po, void *frame)
388 {
389 union tpacket_uhdr h;
390
391 smp_rmb();
392
393 h.raw = frame;
394 switch (po->tp_version) {
395 case TPACKET_V1:
396 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
397 return h.h1->tp_status;
398 case TPACKET_V2:
399 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
400 return h.h2->tp_status;
401 case TPACKET_V3:
402 flush_dcache_page(pgv_to_page(&h.h3->tp_status));
403 return h.h3->tp_status;
404 default:
405 WARN(1, "TPACKET version not supported.\n");
406 BUG();
407 return 0;
408 }
409 }
410
tpacket_get_timestamp(struct sk_buff * skb,struct timespec * ts,unsigned int flags)411 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
412 unsigned int flags)
413 {
414 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
415
416 if (shhwtstamps &&
417 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
418 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
419 return TP_STATUS_TS_RAW_HARDWARE;
420
421 if (ktime_to_timespec_cond(skb->tstamp, ts))
422 return TP_STATUS_TS_SOFTWARE;
423
424 return 0;
425 }
426
__packet_set_timestamp(struct packet_sock * po,void * frame,struct sk_buff * skb)427 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
428 struct sk_buff *skb)
429 {
430 union tpacket_uhdr h;
431 struct timespec ts;
432 __u32 ts_status;
433
434 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
435 return 0;
436
437 h.raw = frame;
438 switch (po->tp_version) {
439 case TPACKET_V1:
440 h.h1->tp_sec = ts.tv_sec;
441 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
442 break;
443 case TPACKET_V2:
444 h.h2->tp_sec = ts.tv_sec;
445 h.h2->tp_nsec = ts.tv_nsec;
446 break;
447 case TPACKET_V3:
448 h.h3->tp_sec = ts.tv_sec;
449 h.h3->tp_nsec = ts.tv_nsec;
450 break;
451 default:
452 WARN(1, "TPACKET version not supported.\n");
453 BUG();
454 }
455
456 /* one flush is safe, as both fields always lie on the same cacheline */
457 flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
458 smp_wmb();
459
460 return ts_status;
461 }
462
packet_lookup_frame(const struct packet_sock * po,const struct packet_ring_buffer * rb,unsigned int position,int status)463 static void *packet_lookup_frame(const struct packet_sock *po,
464 const struct packet_ring_buffer *rb,
465 unsigned int position,
466 int status)
467 {
468 unsigned int pg_vec_pos, frame_offset;
469 union tpacket_uhdr h;
470
471 pg_vec_pos = position / rb->frames_per_block;
472 frame_offset = position % rb->frames_per_block;
473
474 h.raw = rb->pg_vec[pg_vec_pos].buffer +
475 (frame_offset * rb->frame_size);
476
477 if (status != __packet_get_status(po, h.raw))
478 return NULL;
479
480 return h.raw;
481 }
482
packet_current_frame(struct packet_sock * po,struct packet_ring_buffer * rb,int status)483 static void *packet_current_frame(struct packet_sock *po,
484 struct packet_ring_buffer *rb,
485 int status)
486 {
487 return packet_lookup_frame(po, rb, rb->head, status);
488 }
489
prb_del_retire_blk_timer(struct tpacket_kbdq_core * pkc)490 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
491 {
492 del_timer_sync(&pkc->retire_blk_timer);
493 }
494
prb_shutdown_retire_blk_timer(struct packet_sock * po,struct sk_buff_head * rb_queue)495 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
496 struct sk_buff_head *rb_queue)
497 {
498 struct tpacket_kbdq_core *pkc;
499
500 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
501
502 spin_lock_bh(&rb_queue->lock);
503 pkc->delete_blk_timer = 1;
504 spin_unlock_bh(&rb_queue->lock);
505
506 prb_del_retire_blk_timer(pkc);
507 }
508
prb_setup_retire_blk_timer(struct packet_sock * po)509 static void prb_setup_retire_blk_timer(struct packet_sock *po)
510 {
511 struct tpacket_kbdq_core *pkc;
512
513 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
514 timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired,
515 0);
516 pkc->retire_blk_timer.expires = jiffies;
517 }
518
prb_calc_retire_blk_tmo(struct packet_sock * po,int blk_size_in_bytes)519 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
520 int blk_size_in_bytes)
521 {
522 struct net_device *dev;
523 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
524 struct ethtool_link_ksettings ecmd;
525 int err;
526
527 rtnl_lock();
528 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
529 if (unlikely(!dev)) {
530 rtnl_unlock();
531 return DEFAULT_PRB_RETIRE_TOV;
532 }
533 err = __ethtool_get_link_ksettings(dev, &ecmd);
534 rtnl_unlock();
535 if (!err) {
536 /*
537 * If the link speed is so slow you don't really
538 * need to worry about perf anyways
539 */
540 if (ecmd.base.speed < SPEED_1000 ||
541 ecmd.base.speed == SPEED_UNKNOWN) {
542 return DEFAULT_PRB_RETIRE_TOV;
543 } else {
544 msec = 1;
545 div = ecmd.base.speed / 1000;
546 }
547 } else
548 return DEFAULT_PRB_RETIRE_TOV;
549
550 mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
551
552 if (div)
553 mbits /= div;
554
555 tmo = mbits * msec;
556
557 if (div)
558 return tmo+1;
559 return tmo;
560 }
561
prb_init_ft_ops(struct tpacket_kbdq_core * p1,union tpacket_req_u * req_u)562 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
563 union tpacket_req_u *req_u)
564 {
565 p1->feature_req_word = req_u->req3.tp_feature_req_word;
566 }
567
init_prb_bdqc(struct packet_sock * po,struct packet_ring_buffer * rb,struct pgv * pg_vec,union tpacket_req_u * req_u)568 static void init_prb_bdqc(struct packet_sock *po,
569 struct packet_ring_buffer *rb,
570 struct pgv *pg_vec,
571 union tpacket_req_u *req_u)
572 {
573 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
574 struct tpacket_block_desc *pbd;
575
576 memset(p1, 0x0, sizeof(*p1));
577
578 p1->knxt_seq_num = 1;
579 p1->pkbdq = pg_vec;
580 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
581 p1->pkblk_start = pg_vec[0].buffer;
582 p1->kblk_size = req_u->req3.tp_block_size;
583 p1->knum_blocks = req_u->req3.tp_block_nr;
584 p1->hdrlen = po->tp_hdrlen;
585 p1->version = po->tp_version;
586 p1->last_kactive_blk_num = 0;
587 po->stats.stats3.tp_freeze_q_cnt = 0;
588 if (req_u->req3.tp_retire_blk_tov)
589 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
590 else
591 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
592 req_u->req3.tp_block_size);
593 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
594 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
595
596 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
597 prb_init_ft_ops(p1, req_u);
598 prb_setup_retire_blk_timer(po);
599 prb_open_block(p1, pbd);
600 }
601
602 /* Do NOT update the last_blk_num first.
603 * Assumes sk_buff_head lock is held.
604 */
_prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core * pkc)605 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
606 {
607 mod_timer(&pkc->retire_blk_timer,
608 jiffies + pkc->tov_in_jiffies);
609 pkc->last_kactive_blk_num = pkc->kactive_blk_num;
610 }
611
612 /*
613 * Timer logic:
614 * 1) We refresh the timer only when we open a block.
615 * By doing this we don't waste cycles refreshing the timer
616 * on packet-by-packet basis.
617 *
618 * With a 1MB block-size, on a 1Gbps line, it will take
619 * i) ~8 ms to fill a block + ii) memcpy etc.
620 * In this cut we are not accounting for the memcpy time.
621 *
622 * So, if the user sets the 'tmo' to 10ms then the timer
623 * will never fire while the block is still getting filled
624 * (which is what we want). However, the user could choose
625 * to close a block early and that's fine.
626 *
627 * But when the timer does fire, we check whether or not to refresh it.
628 * Since the tmo granularity is in msecs, it is not too expensive
629 * to refresh the timer, lets say every '8' msecs.
630 * Either the user can set the 'tmo' or we can derive it based on
631 * a) line-speed and b) block-size.
632 * prb_calc_retire_blk_tmo() calculates the tmo.
633 *
634 */
prb_retire_rx_blk_timer_expired(struct timer_list * t)635 static void prb_retire_rx_blk_timer_expired(struct timer_list *t)
636 {
637 struct packet_sock *po =
638 from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer);
639 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
640 unsigned int frozen;
641 struct tpacket_block_desc *pbd;
642
643 spin_lock(&po->sk.sk_receive_queue.lock);
644
645 frozen = prb_queue_frozen(pkc);
646 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
647
648 if (unlikely(pkc->delete_blk_timer))
649 goto out;
650
651 /* We only need to plug the race when the block is partially filled.
652 * tpacket_rcv:
653 * lock(); increment BLOCK_NUM_PKTS; unlock()
654 * copy_bits() is in progress ...
655 * timer fires on other cpu:
656 * we can't retire the current block because copy_bits
657 * is in progress.
658 *
659 */
660 if (BLOCK_NUM_PKTS(pbd)) {
661 while (atomic_read(&pkc->blk_fill_in_prog)) {
662 /* Waiting for skb_copy_bits to finish... */
663 cpu_relax();
664 }
665 }
666
667 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
668 if (!frozen) {
669 if (!BLOCK_NUM_PKTS(pbd)) {
670 /* An empty block. Just refresh the timer. */
671 goto refresh_timer;
672 }
673 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
674 if (!prb_dispatch_next_block(pkc, po))
675 goto refresh_timer;
676 else
677 goto out;
678 } else {
679 /* Case 1. Queue was frozen because user-space was
680 * lagging behind.
681 */
682 if (prb_curr_blk_in_use(pbd)) {
683 /*
684 * Ok, user-space is still behind.
685 * So just refresh the timer.
686 */
687 goto refresh_timer;
688 } else {
689 /* Case 2. queue was frozen,user-space caught up,
690 * now the link went idle && the timer fired.
691 * We don't have a block to close.So we open this
692 * block and restart the timer.
693 * opening a block thaws the queue,restarts timer
694 * Thawing/timer-refresh is a side effect.
695 */
696 prb_open_block(pkc, pbd);
697 goto out;
698 }
699 }
700 }
701
702 refresh_timer:
703 _prb_refresh_rx_retire_blk_timer(pkc);
704
705 out:
706 spin_unlock(&po->sk.sk_receive_queue.lock);
707 }
708
prb_flush_block(struct tpacket_kbdq_core * pkc1,struct tpacket_block_desc * pbd1,__u32 status)709 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
710 struct tpacket_block_desc *pbd1, __u32 status)
711 {
712 /* Flush everything minus the block header */
713
714 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
715 u8 *start, *end;
716
717 start = (u8 *)pbd1;
718
719 /* Skip the block header(we know header WILL fit in 4K) */
720 start += PAGE_SIZE;
721
722 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
723 for (; start < end; start += PAGE_SIZE)
724 flush_dcache_page(pgv_to_page(start));
725
726 smp_wmb();
727 #endif
728
729 /* Now update the block status. */
730
731 BLOCK_STATUS(pbd1) = status;
732
733 /* Flush the block header */
734
735 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
736 start = (u8 *)pbd1;
737 flush_dcache_page(pgv_to_page(start));
738
739 smp_wmb();
740 #endif
741 }
742
743 /*
744 * Side effect:
745 *
746 * 1) flush the block
747 * 2) Increment active_blk_num
748 *
749 * Note:We DONT refresh the timer on purpose.
750 * Because almost always the next block will be opened.
751 */
prb_close_block(struct tpacket_kbdq_core * pkc1,struct tpacket_block_desc * pbd1,struct packet_sock * po,unsigned int stat)752 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
753 struct tpacket_block_desc *pbd1,
754 struct packet_sock *po, unsigned int stat)
755 {
756 __u32 status = TP_STATUS_USER | stat;
757
758 struct tpacket3_hdr *last_pkt;
759 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
760 struct sock *sk = &po->sk;
761
762 if (atomic_read(&po->tp_drops))
763 status |= TP_STATUS_LOSING;
764
765 last_pkt = (struct tpacket3_hdr *)pkc1->prev;
766 last_pkt->tp_next_offset = 0;
767
768 /* Get the ts of the last pkt */
769 if (BLOCK_NUM_PKTS(pbd1)) {
770 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
771 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
772 } else {
773 /* Ok, we tmo'd - so get the current time.
774 *
775 * It shouldn't really happen as we don't close empty
776 * blocks. See prb_retire_rx_blk_timer_expired().
777 */
778 struct timespec ts;
779 getnstimeofday(&ts);
780 h1->ts_last_pkt.ts_sec = ts.tv_sec;
781 h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
782 }
783
784 smp_wmb();
785
786 /* Flush the block */
787 prb_flush_block(pkc1, pbd1, status);
788
789 sk->sk_data_ready(sk);
790
791 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
792 }
793
prb_thaw_queue(struct tpacket_kbdq_core * pkc)794 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
795 {
796 pkc->reset_pending_on_curr_blk = 0;
797 }
798
799 /*
800 * Side effect of opening a block:
801 *
802 * 1) prb_queue is thawed.
803 * 2) retire_blk_timer is refreshed.
804 *
805 */
prb_open_block(struct tpacket_kbdq_core * pkc1,struct tpacket_block_desc * pbd1)806 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
807 struct tpacket_block_desc *pbd1)
808 {
809 struct timespec ts;
810 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
811
812 smp_rmb();
813
814 /* We could have just memset this but we will lose the
815 * flexibility of making the priv area sticky
816 */
817
818 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
819 BLOCK_NUM_PKTS(pbd1) = 0;
820 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
821
822 getnstimeofday(&ts);
823
824 h1->ts_first_pkt.ts_sec = ts.tv_sec;
825 h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
826
827 pkc1->pkblk_start = (char *)pbd1;
828 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
829
830 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
831 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
832
833 pbd1->version = pkc1->version;
834 pkc1->prev = pkc1->nxt_offset;
835 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
836
837 prb_thaw_queue(pkc1);
838 _prb_refresh_rx_retire_blk_timer(pkc1);
839
840 smp_wmb();
841 }
842
843 /*
844 * Queue freeze logic:
845 * 1) Assume tp_block_nr = 8 blocks.
846 * 2) At time 't0', user opens Rx ring.
847 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
848 * 4) user-space is either sleeping or processing block '0'.
849 * 5) tpacket_rcv is currently filling block '7', since there is no space left,
850 * it will close block-7,loop around and try to fill block '0'.
851 * call-flow:
852 * __packet_lookup_frame_in_block
853 * prb_retire_current_block()
854 * prb_dispatch_next_block()
855 * |->(BLOCK_STATUS == USER) evaluates to true
856 * 5.1) Since block-0 is currently in-use, we just freeze the queue.
857 * 6) Now there are two cases:
858 * 6.1) Link goes idle right after the queue is frozen.
859 * But remember, the last open_block() refreshed the timer.
860 * When this timer expires,it will refresh itself so that we can
861 * re-open block-0 in near future.
862 * 6.2) Link is busy and keeps on receiving packets. This is a simple
863 * case and __packet_lookup_frame_in_block will check if block-0
864 * is free and can now be re-used.
865 */
prb_freeze_queue(struct tpacket_kbdq_core * pkc,struct packet_sock * po)866 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
867 struct packet_sock *po)
868 {
869 pkc->reset_pending_on_curr_blk = 1;
870 po->stats.stats3.tp_freeze_q_cnt++;
871 }
872
873 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
874
875 /*
876 * If the next block is free then we will dispatch it
877 * and return a good offset.
878 * Else, we will freeze the queue.
879 * So, caller must check the return value.
880 */
prb_dispatch_next_block(struct tpacket_kbdq_core * pkc,struct packet_sock * po)881 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
882 struct packet_sock *po)
883 {
884 struct tpacket_block_desc *pbd;
885
886 smp_rmb();
887
888 /* 1. Get current block num */
889 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
890
891 /* 2. If this block is currently in_use then freeze the queue */
892 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
893 prb_freeze_queue(pkc, po);
894 return NULL;
895 }
896
897 /*
898 * 3.
899 * open this block and return the offset where the first packet
900 * needs to get stored.
901 */
902 prb_open_block(pkc, pbd);
903 return (void *)pkc->nxt_offset;
904 }
905
prb_retire_current_block(struct tpacket_kbdq_core * pkc,struct packet_sock * po,unsigned int status)906 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
907 struct packet_sock *po, unsigned int status)
908 {
909 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
910
911 /* retire/close the current block */
912 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
913 /*
914 * Plug the case where copy_bits() is in progress on
915 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
916 * have space to copy the pkt in the current block and
917 * called prb_retire_current_block()
918 *
919 * We don't need to worry about the TMO case because
920 * the timer-handler already handled this case.
921 */
922 if (!(status & TP_STATUS_BLK_TMO)) {
923 while (atomic_read(&pkc->blk_fill_in_prog)) {
924 /* Waiting for skb_copy_bits to finish... */
925 cpu_relax();
926 }
927 }
928 prb_close_block(pkc, pbd, po, status);
929 return;
930 }
931 }
932
prb_curr_blk_in_use(struct tpacket_block_desc * pbd)933 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd)
934 {
935 return TP_STATUS_USER & BLOCK_STATUS(pbd);
936 }
937
prb_queue_frozen(struct tpacket_kbdq_core * pkc)938 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
939 {
940 return pkc->reset_pending_on_curr_blk;
941 }
942
prb_clear_blk_fill_status(struct packet_ring_buffer * rb)943 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
944 {
945 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
946 atomic_dec(&pkc->blk_fill_in_prog);
947 }
948
prb_fill_rxhash(struct tpacket_kbdq_core * pkc,struct tpacket3_hdr * ppd)949 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
950 struct tpacket3_hdr *ppd)
951 {
952 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
953 }
954
prb_clear_rxhash(struct tpacket_kbdq_core * pkc,struct tpacket3_hdr * ppd)955 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
956 struct tpacket3_hdr *ppd)
957 {
958 ppd->hv1.tp_rxhash = 0;
959 }
960
prb_fill_vlan_info(struct tpacket_kbdq_core * pkc,struct tpacket3_hdr * ppd)961 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
962 struct tpacket3_hdr *ppd)
963 {
964 if (skb_vlan_tag_present(pkc->skb)) {
965 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
966 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
967 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
968 } else {
969 ppd->hv1.tp_vlan_tci = 0;
970 ppd->hv1.tp_vlan_tpid = 0;
971 ppd->tp_status = TP_STATUS_AVAILABLE;
972 }
973 }
974
prb_run_all_ft_ops(struct tpacket_kbdq_core * pkc,struct tpacket3_hdr * ppd)975 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
976 struct tpacket3_hdr *ppd)
977 {
978 ppd->hv1.tp_padding = 0;
979 prb_fill_vlan_info(pkc, ppd);
980
981 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
982 prb_fill_rxhash(pkc, ppd);
983 else
984 prb_clear_rxhash(pkc, ppd);
985 }
986
prb_fill_curr_block(char * curr,struct tpacket_kbdq_core * pkc,struct tpacket_block_desc * pbd,unsigned int len)987 static void prb_fill_curr_block(char *curr,
988 struct tpacket_kbdq_core *pkc,
989 struct tpacket_block_desc *pbd,
990 unsigned int len)
991 {
992 struct tpacket3_hdr *ppd;
993
994 ppd = (struct tpacket3_hdr *)curr;
995 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
996 pkc->prev = curr;
997 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
998 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
999 BLOCK_NUM_PKTS(pbd) += 1;
1000 atomic_inc(&pkc->blk_fill_in_prog);
1001 prb_run_all_ft_ops(pkc, ppd);
1002 }
1003
1004 /* Assumes caller has the sk->rx_queue.lock */
__packet_lookup_frame_in_block(struct packet_sock * po,struct sk_buff * skb,unsigned int len)1005 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1006 struct sk_buff *skb,
1007 unsigned int len
1008 )
1009 {
1010 struct tpacket_kbdq_core *pkc;
1011 struct tpacket_block_desc *pbd;
1012 char *curr, *end;
1013
1014 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1015 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1016
1017 /* Queue is frozen when user space is lagging behind */
1018 if (prb_queue_frozen(pkc)) {
1019 /*
1020 * Check if that last block which caused the queue to freeze,
1021 * is still in_use by user-space.
1022 */
1023 if (prb_curr_blk_in_use(pbd)) {
1024 /* Can't record this packet */
1025 return NULL;
1026 } else {
1027 /*
1028 * Ok, the block was released by user-space.
1029 * Now let's open that block.
1030 * opening a block also thaws the queue.
1031 * Thawing is a side effect.
1032 */
1033 prb_open_block(pkc, pbd);
1034 }
1035 }
1036
1037 smp_mb();
1038 curr = pkc->nxt_offset;
1039 pkc->skb = skb;
1040 end = (char *)pbd + pkc->kblk_size;
1041
1042 /* first try the current block */
1043 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1044 prb_fill_curr_block(curr, pkc, pbd, len);
1045 return (void *)curr;
1046 }
1047
1048 /* Ok, close the current block */
1049 prb_retire_current_block(pkc, po, 0);
1050
1051 /* Now, try to dispatch the next block */
1052 curr = (char *)prb_dispatch_next_block(pkc, po);
1053 if (curr) {
1054 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1055 prb_fill_curr_block(curr, pkc, pbd, len);
1056 return (void *)curr;
1057 }
1058
1059 /*
1060 * No free blocks are available.user_space hasn't caught up yet.
1061 * Queue was just frozen and now this packet will get dropped.
1062 */
1063 return NULL;
1064 }
1065
packet_current_rx_frame(struct packet_sock * po,struct sk_buff * skb,int status,unsigned int len)1066 static void *packet_current_rx_frame(struct packet_sock *po,
1067 struct sk_buff *skb,
1068 int status, unsigned int len)
1069 {
1070 char *curr = NULL;
1071 switch (po->tp_version) {
1072 case TPACKET_V1:
1073 case TPACKET_V2:
1074 curr = packet_lookup_frame(po, &po->rx_ring,
1075 po->rx_ring.head, status);
1076 return curr;
1077 case TPACKET_V3:
1078 return __packet_lookup_frame_in_block(po, skb, len);
1079 default:
1080 WARN(1, "TPACKET version not supported\n");
1081 BUG();
1082 return NULL;
1083 }
1084 }
1085
prb_lookup_block(const struct packet_sock * po,const struct packet_ring_buffer * rb,unsigned int idx,int status)1086 static void *prb_lookup_block(const struct packet_sock *po,
1087 const struct packet_ring_buffer *rb,
1088 unsigned int idx,
1089 int status)
1090 {
1091 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
1092 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1093
1094 if (status != BLOCK_STATUS(pbd))
1095 return NULL;
1096 return pbd;
1097 }
1098
prb_previous_blk_num(struct packet_ring_buffer * rb)1099 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1100 {
1101 unsigned int prev;
1102 if (rb->prb_bdqc.kactive_blk_num)
1103 prev = rb->prb_bdqc.kactive_blk_num-1;
1104 else
1105 prev = rb->prb_bdqc.knum_blocks-1;
1106 return prev;
1107 }
1108
1109 /* Assumes caller has held the rx_queue.lock */
__prb_previous_block(struct packet_sock * po,struct packet_ring_buffer * rb,int status)1110 static void *__prb_previous_block(struct packet_sock *po,
1111 struct packet_ring_buffer *rb,
1112 int status)
1113 {
1114 unsigned int previous = prb_previous_blk_num(rb);
1115 return prb_lookup_block(po, rb, previous, status);
1116 }
1117
packet_previous_rx_frame(struct packet_sock * po,struct packet_ring_buffer * rb,int status)1118 static void *packet_previous_rx_frame(struct packet_sock *po,
1119 struct packet_ring_buffer *rb,
1120 int status)
1121 {
1122 if (po->tp_version <= TPACKET_V2)
1123 return packet_previous_frame(po, rb, status);
1124
1125 return __prb_previous_block(po, rb, status);
1126 }
1127
packet_increment_rx_head(struct packet_sock * po,struct packet_ring_buffer * rb)1128 static void packet_increment_rx_head(struct packet_sock *po,
1129 struct packet_ring_buffer *rb)
1130 {
1131 switch (po->tp_version) {
1132 case TPACKET_V1:
1133 case TPACKET_V2:
1134 return packet_increment_head(rb);
1135 case TPACKET_V3:
1136 default:
1137 WARN(1, "TPACKET version not supported.\n");
1138 BUG();
1139 return;
1140 }
1141 }
1142
packet_previous_frame(struct packet_sock * po,struct packet_ring_buffer * rb,int status)1143 static void *packet_previous_frame(struct packet_sock *po,
1144 struct packet_ring_buffer *rb,
1145 int status)
1146 {
1147 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1148 return packet_lookup_frame(po, rb, previous, status);
1149 }
1150
packet_increment_head(struct packet_ring_buffer * buff)1151 static void packet_increment_head(struct packet_ring_buffer *buff)
1152 {
1153 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1154 }
1155
packet_inc_pending(struct packet_ring_buffer * rb)1156 static void packet_inc_pending(struct packet_ring_buffer *rb)
1157 {
1158 this_cpu_inc(*rb->pending_refcnt);
1159 }
1160
packet_dec_pending(struct packet_ring_buffer * rb)1161 static void packet_dec_pending(struct packet_ring_buffer *rb)
1162 {
1163 this_cpu_dec(*rb->pending_refcnt);
1164 }
1165
packet_read_pending(const struct packet_ring_buffer * rb)1166 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1167 {
1168 unsigned int refcnt = 0;
1169 int cpu;
1170
1171 /* We don't use pending refcount in rx_ring. */
1172 if (rb->pending_refcnt == NULL)
1173 return 0;
1174
1175 for_each_possible_cpu(cpu)
1176 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1177
1178 return refcnt;
1179 }
1180
packet_alloc_pending(struct packet_sock * po)1181 static int packet_alloc_pending(struct packet_sock *po)
1182 {
1183 po->rx_ring.pending_refcnt = NULL;
1184
1185 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1186 if (unlikely(po->tx_ring.pending_refcnt == NULL))
1187 return -ENOBUFS;
1188
1189 return 0;
1190 }
1191
packet_free_pending(struct packet_sock * po)1192 static void packet_free_pending(struct packet_sock *po)
1193 {
1194 free_percpu(po->tx_ring.pending_refcnt);
1195 }
1196
1197 #define ROOM_POW_OFF 2
1198 #define ROOM_NONE 0x0
1199 #define ROOM_LOW 0x1
1200 #define ROOM_NORMAL 0x2
1201
__tpacket_has_room(const struct packet_sock * po,int pow_off)1202 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off)
1203 {
1204 int idx, len;
1205
1206 len = READ_ONCE(po->rx_ring.frame_max) + 1;
1207 idx = READ_ONCE(po->rx_ring.head);
1208 if (pow_off)
1209 idx += len >> pow_off;
1210 if (idx >= len)
1211 idx -= len;
1212 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1213 }
1214
__tpacket_v3_has_room(const struct packet_sock * po,int pow_off)1215 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off)
1216 {
1217 int idx, len;
1218
1219 len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks);
1220 idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num);
1221 if (pow_off)
1222 idx += len >> pow_off;
1223 if (idx >= len)
1224 idx -= len;
1225 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1226 }
1227
__packet_rcv_has_room(const struct packet_sock * po,const struct sk_buff * skb)1228 static int __packet_rcv_has_room(const struct packet_sock *po,
1229 const struct sk_buff *skb)
1230 {
1231 const struct sock *sk = &po->sk;
1232 int ret = ROOM_NONE;
1233
1234 if (po->prot_hook.func != tpacket_rcv) {
1235 int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1236 int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1237 - (skb ? skb->truesize : 0);
1238
1239 if (avail > (rcvbuf >> ROOM_POW_OFF))
1240 return ROOM_NORMAL;
1241 else if (avail > 0)
1242 return ROOM_LOW;
1243 else
1244 return ROOM_NONE;
1245 }
1246
1247 if (po->tp_version == TPACKET_V3) {
1248 if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1249 ret = ROOM_NORMAL;
1250 else if (__tpacket_v3_has_room(po, 0))
1251 ret = ROOM_LOW;
1252 } else {
1253 if (__tpacket_has_room(po, ROOM_POW_OFF))
1254 ret = ROOM_NORMAL;
1255 else if (__tpacket_has_room(po, 0))
1256 ret = ROOM_LOW;
1257 }
1258
1259 return ret;
1260 }
1261
packet_rcv_has_room(struct packet_sock * po,struct sk_buff * skb)1262 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1263 {
1264 int pressure, ret;
1265
1266 ret = __packet_rcv_has_room(po, skb);
1267 pressure = ret != ROOM_NORMAL;
1268
1269 if (READ_ONCE(po->pressure) != pressure)
1270 WRITE_ONCE(po->pressure, pressure);
1271
1272 return ret;
1273 }
1274
packet_rcv_try_clear_pressure(struct packet_sock * po)1275 static void packet_rcv_try_clear_pressure(struct packet_sock *po)
1276 {
1277 if (READ_ONCE(po->pressure) &&
1278 __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
1279 WRITE_ONCE(po->pressure, 0);
1280 }
1281
packet_sock_destruct(struct sock * sk)1282 static void packet_sock_destruct(struct sock *sk)
1283 {
1284 skb_queue_purge(&sk->sk_error_queue);
1285
1286 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1287 WARN_ON(refcount_read(&sk->sk_wmem_alloc));
1288
1289 if (!sock_flag(sk, SOCK_DEAD)) {
1290 pr_err("Attempt to release alive packet socket: %p\n", sk);
1291 return;
1292 }
1293
1294 sk_refcnt_debug_dec(sk);
1295 }
1296
fanout_flow_is_huge(struct packet_sock * po,struct sk_buff * skb)1297 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1298 {
1299 u32 *history = po->rollover->history;
1300 u32 victim, rxhash;
1301 int i, count = 0;
1302
1303 rxhash = skb_get_hash(skb);
1304 for (i = 0; i < ROLLOVER_HLEN; i++)
1305 if (READ_ONCE(history[i]) == rxhash)
1306 count++;
1307
1308 victim = prandom_u32() % ROLLOVER_HLEN;
1309
1310 /* Avoid dirtying the cache line if possible */
1311 if (READ_ONCE(history[victim]) != rxhash)
1312 WRITE_ONCE(history[victim], rxhash);
1313
1314 return count > (ROLLOVER_HLEN >> 1);
1315 }
1316
fanout_demux_hash(struct packet_fanout * f,struct sk_buff * skb,unsigned int num)1317 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1318 struct sk_buff *skb,
1319 unsigned int num)
1320 {
1321 return reciprocal_scale(__skb_get_hash_symmetric(skb), num);
1322 }
1323
fanout_demux_lb(struct packet_fanout * f,struct sk_buff * skb,unsigned int num)1324 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1325 struct sk_buff *skb,
1326 unsigned int num)
1327 {
1328 unsigned int val = atomic_inc_return(&f->rr_cur);
1329
1330 return val % num;
1331 }
1332
fanout_demux_cpu(struct packet_fanout * f,struct sk_buff * skb,unsigned int num)1333 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1334 struct sk_buff *skb,
1335 unsigned int num)
1336 {
1337 return smp_processor_id() % num;
1338 }
1339
fanout_demux_rnd(struct packet_fanout * f,struct sk_buff * skb,unsigned int num)1340 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1341 struct sk_buff *skb,
1342 unsigned int num)
1343 {
1344 return prandom_u32_max(num);
1345 }
1346
fanout_demux_rollover(struct packet_fanout * f,struct sk_buff * skb,unsigned int idx,bool try_self,unsigned int num)1347 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1348 struct sk_buff *skb,
1349 unsigned int idx, bool try_self,
1350 unsigned int num)
1351 {
1352 struct packet_sock *po, *po_next, *po_skip = NULL;
1353 unsigned int i, j, room = ROOM_NONE;
1354
1355 po = pkt_sk(f->arr[idx]);
1356
1357 if (try_self) {
1358 room = packet_rcv_has_room(po, skb);
1359 if (room == ROOM_NORMAL ||
1360 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1361 return idx;
1362 po_skip = po;
1363 }
1364
1365 i = j = min_t(int, po->rollover->sock, num - 1);
1366 do {
1367 po_next = pkt_sk(f->arr[i]);
1368 if (po_next != po_skip && !READ_ONCE(po_next->pressure) &&
1369 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1370 if (i != j)
1371 po->rollover->sock = i;
1372 atomic_long_inc(&po->rollover->num);
1373 if (room == ROOM_LOW)
1374 atomic_long_inc(&po->rollover->num_huge);
1375 return i;
1376 }
1377
1378 if (++i == num)
1379 i = 0;
1380 } while (i != j);
1381
1382 atomic_long_inc(&po->rollover->num_failed);
1383 return idx;
1384 }
1385
fanout_demux_qm(struct packet_fanout * f,struct sk_buff * skb,unsigned int num)1386 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1387 struct sk_buff *skb,
1388 unsigned int num)
1389 {
1390 return skb_get_queue_mapping(skb) % num;
1391 }
1392
fanout_demux_bpf(struct packet_fanout * f,struct sk_buff * skb,unsigned int num)1393 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1394 struct sk_buff *skb,
1395 unsigned int num)
1396 {
1397 struct bpf_prog *prog;
1398 unsigned int ret = 0;
1399
1400 rcu_read_lock();
1401 prog = rcu_dereference(f->bpf_prog);
1402 if (prog)
1403 ret = bpf_prog_run_clear_cb(prog, skb) % num;
1404 rcu_read_unlock();
1405
1406 return ret;
1407 }
1408
fanout_has_flag(struct packet_fanout * f,u16 flag)1409 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1410 {
1411 return f->flags & (flag >> 8);
1412 }
1413
packet_rcv_fanout(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)1414 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1415 struct packet_type *pt, struct net_device *orig_dev)
1416 {
1417 struct packet_fanout *f = pt->af_packet_priv;
1418 unsigned int num = READ_ONCE(f->num_members);
1419 struct net *net = read_pnet(&f->net);
1420 struct packet_sock *po;
1421 unsigned int idx;
1422
1423 if (!net_eq(dev_net(dev), net) || !num) {
1424 kfree_skb(skb);
1425 return 0;
1426 }
1427
1428 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1429 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
1430 if (!skb)
1431 return 0;
1432 }
1433 switch (f->type) {
1434 case PACKET_FANOUT_HASH:
1435 default:
1436 idx = fanout_demux_hash(f, skb, num);
1437 break;
1438 case PACKET_FANOUT_LB:
1439 idx = fanout_demux_lb(f, skb, num);
1440 break;
1441 case PACKET_FANOUT_CPU:
1442 idx = fanout_demux_cpu(f, skb, num);
1443 break;
1444 case PACKET_FANOUT_RND:
1445 idx = fanout_demux_rnd(f, skb, num);
1446 break;
1447 case PACKET_FANOUT_QM:
1448 idx = fanout_demux_qm(f, skb, num);
1449 break;
1450 case PACKET_FANOUT_ROLLOVER:
1451 idx = fanout_demux_rollover(f, skb, 0, false, num);
1452 break;
1453 case PACKET_FANOUT_CBPF:
1454 case PACKET_FANOUT_EBPF:
1455 idx = fanout_demux_bpf(f, skb, num);
1456 break;
1457 }
1458
1459 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1460 idx = fanout_demux_rollover(f, skb, idx, true, num);
1461
1462 po = pkt_sk(f->arr[idx]);
1463 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1464 }
1465
1466 DEFINE_MUTEX(fanout_mutex);
1467 EXPORT_SYMBOL_GPL(fanout_mutex);
1468 static LIST_HEAD(fanout_list);
1469 static u16 fanout_next_id;
1470
__fanout_link(struct sock * sk,struct packet_sock * po)1471 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1472 {
1473 struct packet_fanout *f = po->fanout;
1474
1475 spin_lock(&f->lock);
1476 f->arr[f->num_members] = sk;
1477 smp_wmb();
1478 f->num_members++;
1479 if (f->num_members == 1)
1480 dev_add_pack(&f->prot_hook);
1481 spin_unlock(&f->lock);
1482 }
1483
__fanout_unlink(struct sock * sk,struct packet_sock * po)1484 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1485 {
1486 struct packet_fanout *f = po->fanout;
1487 int i;
1488
1489 spin_lock(&f->lock);
1490 for (i = 0; i < f->num_members; i++) {
1491 if (f->arr[i] == sk)
1492 break;
1493 }
1494 BUG_ON(i >= f->num_members);
1495 f->arr[i] = f->arr[f->num_members - 1];
1496 f->num_members--;
1497 if (f->num_members == 0)
1498 __dev_remove_pack(&f->prot_hook);
1499 spin_unlock(&f->lock);
1500 }
1501
match_fanout_group(struct packet_type * ptype,struct sock * sk)1502 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1503 {
1504 if (sk->sk_family != PF_PACKET)
1505 return false;
1506
1507 return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1508 }
1509
fanout_init_data(struct packet_fanout * f)1510 static void fanout_init_data(struct packet_fanout *f)
1511 {
1512 switch (f->type) {
1513 case PACKET_FANOUT_LB:
1514 atomic_set(&f->rr_cur, 0);
1515 break;
1516 case PACKET_FANOUT_CBPF:
1517 case PACKET_FANOUT_EBPF:
1518 RCU_INIT_POINTER(f->bpf_prog, NULL);
1519 break;
1520 }
1521 }
1522
__fanout_set_data_bpf(struct packet_fanout * f,struct bpf_prog * new)1523 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1524 {
1525 struct bpf_prog *old;
1526
1527 spin_lock(&f->lock);
1528 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1529 rcu_assign_pointer(f->bpf_prog, new);
1530 spin_unlock(&f->lock);
1531
1532 if (old) {
1533 synchronize_net();
1534 bpf_prog_destroy(old);
1535 }
1536 }
1537
fanout_set_data_cbpf(struct packet_sock * po,char __user * data,unsigned int len)1538 static int fanout_set_data_cbpf(struct packet_sock *po, char __user *data,
1539 unsigned int len)
1540 {
1541 struct bpf_prog *new;
1542 struct sock_fprog fprog;
1543 int ret;
1544
1545 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1546 return -EPERM;
1547 if (len != sizeof(fprog))
1548 return -EINVAL;
1549 if (copy_from_user(&fprog, data, len))
1550 return -EFAULT;
1551
1552 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
1553 if (ret)
1554 return ret;
1555
1556 __fanout_set_data_bpf(po->fanout, new);
1557 return 0;
1558 }
1559
fanout_set_data_ebpf(struct packet_sock * po,char __user * data,unsigned int len)1560 static int fanout_set_data_ebpf(struct packet_sock *po, char __user *data,
1561 unsigned int len)
1562 {
1563 struct bpf_prog *new;
1564 u32 fd;
1565
1566 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1567 return -EPERM;
1568 if (len != sizeof(fd))
1569 return -EINVAL;
1570 if (copy_from_user(&fd, data, len))
1571 return -EFAULT;
1572
1573 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER);
1574 if (IS_ERR(new))
1575 return PTR_ERR(new);
1576
1577 __fanout_set_data_bpf(po->fanout, new);
1578 return 0;
1579 }
1580
fanout_set_data(struct packet_sock * po,char __user * data,unsigned int len)1581 static int fanout_set_data(struct packet_sock *po, char __user *data,
1582 unsigned int len)
1583 {
1584 switch (po->fanout->type) {
1585 case PACKET_FANOUT_CBPF:
1586 return fanout_set_data_cbpf(po, data, len);
1587 case PACKET_FANOUT_EBPF:
1588 return fanout_set_data_ebpf(po, data, len);
1589 default:
1590 return -EINVAL;
1591 }
1592 }
1593
fanout_release_data(struct packet_fanout * f)1594 static void fanout_release_data(struct packet_fanout *f)
1595 {
1596 switch (f->type) {
1597 case PACKET_FANOUT_CBPF:
1598 case PACKET_FANOUT_EBPF:
1599 __fanout_set_data_bpf(f, NULL);
1600 }
1601 }
1602
__fanout_id_is_free(struct sock * sk,u16 candidate_id)1603 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id)
1604 {
1605 struct packet_fanout *f;
1606
1607 list_for_each_entry(f, &fanout_list, list) {
1608 if (f->id == candidate_id &&
1609 read_pnet(&f->net) == sock_net(sk)) {
1610 return false;
1611 }
1612 }
1613 return true;
1614 }
1615
fanout_find_new_id(struct sock * sk,u16 * new_id)1616 static bool fanout_find_new_id(struct sock *sk, u16 *new_id)
1617 {
1618 u16 id = fanout_next_id;
1619
1620 do {
1621 if (__fanout_id_is_free(sk, id)) {
1622 *new_id = id;
1623 fanout_next_id = id + 1;
1624 return true;
1625 }
1626
1627 id++;
1628 } while (id != fanout_next_id);
1629
1630 return false;
1631 }
1632
fanout_add(struct sock * sk,u16 id,u16 type_flags)1633 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1634 {
1635 struct packet_rollover *rollover = NULL;
1636 struct packet_sock *po = pkt_sk(sk);
1637 struct packet_fanout *f, *match;
1638 u8 type = type_flags & 0xff;
1639 u8 flags = type_flags >> 8;
1640 int err;
1641
1642 switch (type) {
1643 case PACKET_FANOUT_ROLLOVER:
1644 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1645 return -EINVAL;
1646 case PACKET_FANOUT_HASH:
1647 case PACKET_FANOUT_LB:
1648 case PACKET_FANOUT_CPU:
1649 case PACKET_FANOUT_RND:
1650 case PACKET_FANOUT_QM:
1651 case PACKET_FANOUT_CBPF:
1652 case PACKET_FANOUT_EBPF:
1653 break;
1654 default:
1655 return -EINVAL;
1656 }
1657
1658 mutex_lock(&fanout_mutex);
1659
1660 err = -EALREADY;
1661 if (po->fanout)
1662 goto out;
1663
1664 if (type == PACKET_FANOUT_ROLLOVER ||
1665 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1666 err = -ENOMEM;
1667 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
1668 if (!rollover)
1669 goto out;
1670 atomic_long_set(&rollover->num, 0);
1671 atomic_long_set(&rollover->num_huge, 0);
1672 atomic_long_set(&rollover->num_failed, 0);
1673 }
1674
1675 if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) {
1676 if (id != 0) {
1677 err = -EINVAL;
1678 goto out;
1679 }
1680 if (!fanout_find_new_id(sk, &id)) {
1681 err = -ENOMEM;
1682 goto out;
1683 }
1684 /* ephemeral flag for the first socket in the group: drop it */
1685 flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8);
1686 }
1687
1688 match = NULL;
1689 list_for_each_entry(f, &fanout_list, list) {
1690 if (f->id == id &&
1691 read_pnet(&f->net) == sock_net(sk)) {
1692 match = f;
1693 break;
1694 }
1695 }
1696 err = -EINVAL;
1697 if (match && match->flags != flags)
1698 goto out;
1699 if (!match) {
1700 err = -ENOMEM;
1701 match = kzalloc(sizeof(*match), GFP_KERNEL);
1702 if (!match)
1703 goto out;
1704 write_pnet(&match->net, sock_net(sk));
1705 match->id = id;
1706 match->type = type;
1707 match->flags = flags;
1708 INIT_LIST_HEAD(&match->list);
1709 spin_lock_init(&match->lock);
1710 refcount_set(&match->sk_ref, 0);
1711 fanout_init_data(match);
1712 match->prot_hook.type = po->prot_hook.type;
1713 match->prot_hook.dev = po->prot_hook.dev;
1714 match->prot_hook.func = packet_rcv_fanout;
1715 match->prot_hook.af_packet_priv = match;
1716 match->prot_hook.id_match = match_fanout_group;
1717 list_add(&match->list, &fanout_list);
1718 }
1719 err = -EINVAL;
1720
1721 spin_lock(&po->bind_lock);
1722 if (po->running &&
1723 match->type == type &&
1724 match->prot_hook.type == po->prot_hook.type &&
1725 match->prot_hook.dev == po->prot_hook.dev) {
1726 err = -ENOSPC;
1727 if (refcount_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1728 __dev_remove_pack(&po->prot_hook);
1729 po->fanout = match;
1730 po->rollover = rollover;
1731 rollover = NULL;
1732 refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1);
1733 __fanout_link(sk, po);
1734 err = 0;
1735 }
1736 }
1737 spin_unlock(&po->bind_lock);
1738
1739 if (err && !refcount_read(&match->sk_ref)) {
1740 list_del(&match->list);
1741 kfree(match);
1742 }
1743
1744 out:
1745 kfree(rollover);
1746 mutex_unlock(&fanout_mutex);
1747 return err;
1748 }
1749
1750 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
1751 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
1752 * It is the responsibility of the caller to call fanout_release_data() and
1753 * free the returned packet_fanout (after synchronize_net())
1754 */
fanout_release(struct sock * sk)1755 static struct packet_fanout *fanout_release(struct sock *sk)
1756 {
1757 struct packet_sock *po = pkt_sk(sk);
1758 struct packet_fanout *f;
1759
1760 mutex_lock(&fanout_mutex);
1761 f = po->fanout;
1762 if (f) {
1763 po->fanout = NULL;
1764
1765 if (refcount_dec_and_test(&f->sk_ref))
1766 list_del(&f->list);
1767 else
1768 f = NULL;
1769 }
1770 mutex_unlock(&fanout_mutex);
1771
1772 return f;
1773 }
1774
packet_extra_vlan_len_allowed(const struct net_device * dev,struct sk_buff * skb)1775 static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1776 struct sk_buff *skb)
1777 {
1778 /* Earlier code assumed this would be a VLAN pkt, double-check
1779 * this now that we have the actual packet in hand. We can only
1780 * do this check on Ethernet devices.
1781 */
1782 if (unlikely(dev->type != ARPHRD_ETHER))
1783 return false;
1784
1785 skb_reset_mac_header(skb);
1786 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1787 }
1788
1789 static const struct proto_ops packet_ops;
1790
1791 static const struct proto_ops packet_ops_spkt;
1792
packet_rcv_spkt(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)1793 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1794 struct packet_type *pt, struct net_device *orig_dev)
1795 {
1796 struct sock *sk;
1797 struct sockaddr_pkt *spkt;
1798
1799 /*
1800 * When we registered the protocol we saved the socket in the data
1801 * field for just this event.
1802 */
1803
1804 sk = pt->af_packet_priv;
1805
1806 /*
1807 * Yank back the headers [hope the device set this
1808 * right or kerboom...]
1809 *
1810 * Incoming packets have ll header pulled,
1811 * push it back.
1812 *
1813 * For outgoing ones skb->data == skb_mac_header(skb)
1814 * so that this procedure is noop.
1815 */
1816
1817 if (skb->pkt_type == PACKET_LOOPBACK)
1818 goto out;
1819
1820 if (!net_eq(dev_net(dev), sock_net(sk)))
1821 goto out;
1822
1823 skb = skb_share_check(skb, GFP_ATOMIC);
1824 if (skb == NULL)
1825 goto oom;
1826
1827 /* drop any routing info */
1828 skb_dst_drop(skb);
1829
1830 /* drop conntrack reference */
1831 nf_reset_ct(skb);
1832
1833 spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1834
1835 skb_push(skb, skb->data - skb_mac_header(skb));
1836
1837 /*
1838 * The SOCK_PACKET socket receives _all_ frames.
1839 */
1840
1841 spkt->spkt_family = dev->type;
1842 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1843 spkt->spkt_protocol = skb->protocol;
1844
1845 /*
1846 * Charge the memory to the socket. This is done specifically
1847 * to prevent sockets using all the memory up.
1848 */
1849
1850 if (sock_queue_rcv_skb(sk, skb) == 0)
1851 return 0;
1852
1853 out:
1854 kfree_skb(skb);
1855 oom:
1856 return 0;
1857 }
1858
packet_parse_headers(struct sk_buff * skb,struct socket * sock)1859 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock)
1860 {
1861 if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) &&
1862 sock->type == SOCK_RAW) {
1863 skb_reset_mac_header(skb);
1864 skb->protocol = dev_parse_header_protocol(skb);
1865 }
1866
1867 skb_probe_transport_header(skb);
1868 }
1869
1870 /*
1871 * Output a raw packet to a device layer. This bypasses all the other
1872 * protocol layers and you must therefore supply it with a complete frame
1873 */
1874
packet_sendmsg_spkt(struct socket * sock,struct msghdr * msg,size_t len)1875 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1876 size_t len)
1877 {
1878 struct sock *sk = sock->sk;
1879 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1880 struct sk_buff *skb = NULL;
1881 struct net_device *dev;
1882 struct sockcm_cookie sockc;
1883 __be16 proto = 0;
1884 int err;
1885 int extra_len = 0;
1886
1887 /*
1888 * Get and verify the address.
1889 */
1890
1891 if (saddr) {
1892 if (msg->msg_namelen < sizeof(struct sockaddr))
1893 return -EINVAL;
1894 if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1895 proto = saddr->spkt_protocol;
1896 } else
1897 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1898
1899 /*
1900 * Find the device first to size check it
1901 */
1902
1903 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1904 retry:
1905 rcu_read_lock();
1906 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1907 err = -ENODEV;
1908 if (dev == NULL)
1909 goto out_unlock;
1910
1911 err = -ENETDOWN;
1912 if (!(dev->flags & IFF_UP))
1913 goto out_unlock;
1914
1915 /*
1916 * You may not queue a frame bigger than the mtu. This is the lowest level
1917 * raw protocol and you must do your own fragmentation at this level.
1918 */
1919
1920 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1921 if (!netif_supports_nofcs(dev)) {
1922 err = -EPROTONOSUPPORT;
1923 goto out_unlock;
1924 }
1925 extra_len = 4; /* We're doing our own CRC */
1926 }
1927
1928 err = -EMSGSIZE;
1929 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1930 goto out_unlock;
1931
1932 if (!skb) {
1933 size_t reserved = LL_RESERVED_SPACE(dev);
1934 int tlen = dev->needed_tailroom;
1935 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1936
1937 rcu_read_unlock();
1938 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1939 if (skb == NULL)
1940 return -ENOBUFS;
1941 /* FIXME: Save some space for broken drivers that write a hard
1942 * header at transmission time by themselves. PPP is the notable
1943 * one here. This should really be fixed at the driver level.
1944 */
1945 skb_reserve(skb, reserved);
1946 skb_reset_network_header(skb);
1947
1948 /* Try to align data part correctly */
1949 if (hhlen) {
1950 skb->data -= hhlen;
1951 skb->tail -= hhlen;
1952 if (len < hhlen)
1953 skb_reset_network_header(skb);
1954 }
1955 err = memcpy_from_msg(skb_put(skb, len), msg, len);
1956 if (err)
1957 goto out_free;
1958 goto retry;
1959 }
1960
1961 if (!dev_validate_header(dev, skb->data, len)) {
1962 err = -EINVAL;
1963 goto out_unlock;
1964 }
1965 if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
1966 !packet_extra_vlan_len_allowed(dev, skb)) {
1967 err = -EMSGSIZE;
1968 goto out_unlock;
1969 }
1970
1971 sockcm_init(&sockc, sk);
1972 if (msg->msg_controllen) {
1973 err = sock_cmsg_send(sk, msg, &sockc);
1974 if (unlikely(err))
1975 goto out_unlock;
1976 }
1977
1978 skb->protocol = proto;
1979 skb->dev = dev;
1980 skb->priority = sk->sk_priority;
1981 skb->mark = sk->sk_mark;
1982 skb->tstamp = sockc.transmit_time;
1983
1984 skb_setup_tx_timestamp(skb, sockc.tsflags);
1985
1986 if (unlikely(extra_len == 4))
1987 skb->no_fcs = 1;
1988
1989 packet_parse_headers(skb, sock);
1990
1991 dev_queue_xmit(skb);
1992 rcu_read_unlock();
1993 return len;
1994
1995 out_unlock:
1996 rcu_read_unlock();
1997 out_free:
1998 kfree_skb(skb);
1999 return err;
2000 }
2001
run_filter(struct sk_buff * skb,const struct sock * sk,unsigned int res)2002 static unsigned int run_filter(struct sk_buff *skb,
2003 const struct sock *sk,
2004 unsigned int res)
2005 {
2006 struct sk_filter *filter;
2007
2008 rcu_read_lock();
2009 filter = rcu_dereference(sk->sk_filter);
2010 if (filter != NULL)
2011 res = bpf_prog_run_clear_cb(filter->prog, skb);
2012 rcu_read_unlock();
2013
2014 return res;
2015 }
2016
packet_rcv_vnet(struct msghdr * msg,const struct sk_buff * skb,size_t * len)2017 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
2018 size_t *len)
2019 {
2020 struct virtio_net_hdr vnet_hdr;
2021
2022 if (*len < sizeof(vnet_hdr))
2023 return -EINVAL;
2024 *len -= sizeof(vnet_hdr);
2025
2026 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0))
2027 return -EINVAL;
2028
2029 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr));
2030 }
2031
2032 /*
2033 * This function makes lazy skb cloning in hope that most of packets
2034 * are discarded by BPF.
2035 *
2036 * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2037 * and skb->cb are mangled. It works because (and until) packets
2038 * falling here are owned by current CPU. Output packets are cloned
2039 * by dev_queue_xmit_nit(), input packets are processed by net_bh
2040 * sequencially, so that if we return skb to original state on exit,
2041 * we will not harm anyone.
2042 */
2043
packet_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)2044 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2045 struct packet_type *pt, struct net_device *orig_dev)
2046 {
2047 struct sock *sk;
2048 struct sockaddr_ll *sll;
2049 struct packet_sock *po;
2050 u8 *skb_head = skb->data;
2051 int skb_len = skb->len;
2052 unsigned int snaplen, res;
2053 bool is_drop_n_account = false;
2054
2055 if (skb->pkt_type == PACKET_LOOPBACK)
2056 goto drop;
2057
2058 sk = pt->af_packet_priv;
2059 po = pkt_sk(sk);
2060
2061 if (!net_eq(dev_net(dev), sock_net(sk)))
2062 goto drop;
2063
2064 skb->dev = dev;
2065
2066 if (dev->header_ops) {
2067 /* The device has an explicit notion of ll header,
2068 * exported to higher levels.
2069 *
2070 * Otherwise, the device hides details of its frame
2071 * structure, so that corresponding packet head is
2072 * never delivered to user.
2073 */
2074 if (sk->sk_type != SOCK_DGRAM)
2075 skb_push(skb, skb->data - skb_mac_header(skb));
2076 else if (skb->pkt_type == PACKET_OUTGOING) {
2077 /* Special case: outgoing packets have ll header at head */
2078 skb_pull(skb, skb_network_offset(skb));
2079 }
2080 }
2081
2082 snaplen = skb->len;
2083
2084 res = run_filter(skb, sk, snaplen);
2085 if (!res)
2086 goto drop_n_restore;
2087 if (snaplen > res)
2088 snaplen = res;
2089
2090 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2091 goto drop_n_acct;
2092
2093 if (skb_shared(skb)) {
2094 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2095 if (nskb == NULL)
2096 goto drop_n_acct;
2097
2098 if (skb_head != skb->data) {
2099 skb->data = skb_head;
2100 skb->len = skb_len;
2101 }
2102 consume_skb(skb);
2103 skb = nskb;
2104 }
2105
2106 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2107
2108 sll = &PACKET_SKB_CB(skb)->sa.ll;
2109 sll->sll_hatype = dev->type;
2110 sll->sll_pkttype = skb->pkt_type;
2111 if (unlikely(po->origdev))
2112 sll->sll_ifindex = orig_dev->ifindex;
2113 else
2114 sll->sll_ifindex = dev->ifindex;
2115
2116 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2117
2118 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2119 * Use their space for storing the original skb length.
2120 */
2121 PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2122
2123 if (pskb_trim(skb, snaplen))
2124 goto drop_n_acct;
2125
2126 skb_set_owner_r(skb, sk);
2127 skb->dev = NULL;
2128 skb_dst_drop(skb);
2129
2130 /* drop conntrack reference */
2131 nf_reset_ct(skb);
2132
2133 spin_lock(&sk->sk_receive_queue.lock);
2134 po->stats.stats1.tp_packets++;
2135 sock_skb_set_dropcount(sk, skb);
2136 __skb_queue_tail(&sk->sk_receive_queue, skb);
2137 spin_unlock(&sk->sk_receive_queue.lock);
2138 sk->sk_data_ready(sk);
2139 return 0;
2140
2141 drop_n_acct:
2142 is_drop_n_account = true;
2143 atomic_inc(&po->tp_drops);
2144 atomic_inc(&sk->sk_drops);
2145
2146 drop_n_restore:
2147 if (skb_head != skb->data && skb_shared(skb)) {
2148 skb->data = skb_head;
2149 skb->len = skb_len;
2150 }
2151 drop:
2152 if (!is_drop_n_account)
2153 consume_skb(skb);
2154 else
2155 kfree_skb(skb);
2156 return 0;
2157 }
2158
tpacket_rcv(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)2159 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2160 struct packet_type *pt, struct net_device *orig_dev)
2161 {
2162 struct sock *sk;
2163 struct packet_sock *po;
2164 struct sockaddr_ll *sll;
2165 union tpacket_uhdr h;
2166 u8 *skb_head = skb->data;
2167 int skb_len = skb->len;
2168 unsigned int snaplen, res;
2169 unsigned long status = TP_STATUS_USER;
2170 unsigned short macoff, netoff, hdrlen;
2171 struct sk_buff *copy_skb = NULL;
2172 struct timespec ts;
2173 __u32 ts_status;
2174 bool is_drop_n_account = false;
2175 bool do_vnet = false;
2176
2177 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2178 * We may add members to them until current aligned size without forcing
2179 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2180 */
2181 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2182 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2183
2184 if (skb->pkt_type == PACKET_LOOPBACK)
2185 goto drop;
2186
2187 sk = pt->af_packet_priv;
2188 po = pkt_sk(sk);
2189
2190 if (!net_eq(dev_net(dev), sock_net(sk)))
2191 goto drop;
2192
2193 if (dev->header_ops) {
2194 if (sk->sk_type != SOCK_DGRAM)
2195 skb_push(skb, skb->data - skb_mac_header(skb));
2196 else if (skb->pkt_type == PACKET_OUTGOING) {
2197 /* Special case: outgoing packets have ll header at head */
2198 skb_pull(skb, skb_network_offset(skb));
2199 }
2200 }
2201
2202 snaplen = skb->len;
2203
2204 res = run_filter(skb, sk, snaplen);
2205 if (!res)
2206 goto drop_n_restore;
2207
2208 /* If we are flooded, just give up */
2209 if (__packet_rcv_has_room(po, skb) == ROOM_NONE) {
2210 atomic_inc(&po->tp_drops);
2211 goto drop_n_restore;
2212 }
2213
2214 if (skb->ip_summed == CHECKSUM_PARTIAL)
2215 status |= TP_STATUS_CSUMNOTREADY;
2216 else if (skb->pkt_type != PACKET_OUTGOING &&
2217 (skb->ip_summed == CHECKSUM_COMPLETE ||
2218 skb_csum_unnecessary(skb)))
2219 status |= TP_STATUS_CSUM_VALID;
2220
2221 if (snaplen > res)
2222 snaplen = res;
2223
2224 if (sk->sk_type == SOCK_DGRAM) {
2225 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2226 po->tp_reserve;
2227 } else {
2228 unsigned int maclen = skb_network_offset(skb);
2229 netoff = TPACKET_ALIGN(po->tp_hdrlen +
2230 (maclen < 16 ? 16 : maclen)) +
2231 po->tp_reserve;
2232 if (po->has_vnet_hdr) {
2233 netoff += sizeof(struct virtio_net_hdr);
2234 do_vnet = true;
2235 }
2236 macoff = netoff - maclen;
2237 }
2238 if (po->tp_version <= TPACKET_V2) {
2239 if (macoff + snaplen > po->rx_ring.frame_size) {
2240 if (po->copy_thresh &&
2241 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2242 if (skb_shared(skb)) {
2243 copy_skb = skb_clone(skb, GFP_ATOMIC);
2244 } else {
2245 copy_skb = skb_get(skb);
2246 skb_head = skb->data;
2247 }
2248 if (copy_skb)
2249 skb_set_owner_r(copy_skb, sk);
2250 }
2251 snaplen = po->rx_ring.frame_size - macoff;
2252 if ((int)snaplen < 0) {
2253 snaplen = 0;
2254 do_vnet = false;
2255 }
2256 }
2257 } else if (unlikely(macoff + snaplen >
2258 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2259 u32 nval;
2260
2261 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2262 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2263 snaplen, nval, macoff);
2264 snaplen = nval;
2265 if (unlikely((int)snaplen < 0)) {
2266 snaplen = 0;
2267 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2268 do_vnet = false;
2269 }
2270 }
2271 spin_lock(&sk->sk_receive_queue.lock);
2272 h.raw = packet_current_rx_frame(po, skb,
2273 TP_STATUS_KERNEL, (macoff+snaplen));
2274 if (!h.raw)
2275 goto drop_n_account;
2276 if (po->tp_version <= TPACKET_V2) {
2277 packet_increment_rx_head(po, &po->rx_ring);
2278 /*
2279 * LOSING will be reported till you read the stats,
2280 * because it's COR - Clear On Read.
2281 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2282 * at packet level.
2283 */
2284 if (atomic_read(&po->tp_drops))
2285 status |= TP_STATUS_LOSING;
2286 }
2287
2288 if (do_vnet &&
2289 virtio_net_hdr_from_skb(skb, h.raw + macoff -
2290 sizeof(struct virtio_net_hdr),
2291 vio_le(), true, 0))
2292 goto drop_n_account;
2293
2294 po->stats.stats1.tp_packets++;
2295 if (copy_skb) {
2296 status |= TP_STATUS_COPY;
2297 __skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2298 }
2299 spin_unlock(&sk->sk_receive_queue.lock);
2300
2301 skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2302
2303 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
2304 getnstimeofday(&ts);
2305
2306 status |= ts_status;
2307
2308 switch (po->tp_version) {
2309 case TPACKET_V1:
2310 h.h1->tp_len = skb->len;
2311 h.h1->tp_snaplen = snaplen;
2312 h.h1->tp_mac = macoff;
2313 h.h1->tp_net = netoff;
2314 h.h1->tp_sec = ts.tv_sec;
2315 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2316 hdrlen = sizeof(*h.h1);
2317 break;
2318 case TPACKET_V2:
2319 h.h2->tp_len = skb->len;
2320 h.h2->tp_snaplen = snaplen;
2321 h.h2->tp_mac = macoff;
2322 h.h2->tp_net = netoff;
2323 h.h2->tp_sec = ts.tv_sec;
2324 h.h2->tp_nsec = ts.tv_nsec;
2325 if (skb_vlan_tag_present(skb)) {
2326 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2327 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2328 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2329 } else {
2330 h.h2->tp_vlan_tci = 0;
2331 h.h2->tp_vlan_tpid = 0;
2332 }
2333 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2334 hdrlen = sizeof(*h.h2);
2335 break;
2336 case TPACKET_V3:
2337 /* tp_nxt_offset,vlan are already populated above.
2338 * So DONT clear those fields here
2339 */
2340 h.h3->tp_status |= status;
2341 h.h3->tp_len = skb->len;
2342 h.h3->tp_snaplen = snaplen;
2343 h.h3->tp_mac = macoff;
2344 h.h3->tp_net = netoff;
2345 h.h3->tp_sec = ts.tv_sec;
2346 h.h3->tp_nsec = ts.tv_nsec;
2347 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2348 hdrlen = sizeof(*h.h3);
2349 break;
2350 default:
2351 BUG();
2352 }
2353
2354 sll = h.raw + TPACKET_ALIGN(hdrlen);
2355 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2356 sll->sll_family = AF_PACKET;
2357 sll->sll_hatype = dev->type;
2358 sll->sll_protocol = skb->protocol;
2359 sll->sll_pkttype = skb->pkt_type;
2360 if (unlikely(po->origdev))
2361 sll->sll_ifindex = orig_dev->ifindex;
2362 else
2363 sll->sll_ifindex = dev->ifindex;
2364
2365 smp_mb();
2366
2367 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2368 if (po->tp_version <= TPACKET_V2) {
2369 u8 *start, *end;
2370
2371 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2372 macoff + snaplen);
2373
2374 for (start = h.raw; start < end; start += PAGE_SIZE)
2375 flush_dcache_page(pgv_to_page(start));
2376 }
2377 smp_wmb();
2378 #endif
2379
2380 if (po->tp_version <= TPACKET_V2) {
2381 __packet_set_status(po, h.raw, status);
2382 sk->sk_data_ready(sk);
2383 } else {
2384 prb_clear_blk_fill_status(&po->rx_ring);
2385 }
2386
2387 drop_n_restore:
2388 if (skb_head != skb->data && skb_shared(skb)) {
2389 skb->data = skb_head;
2390 skb->len = skb_len;
2391 }
2392 drop:
2393 if (!is_drop_n_account)
2394 consume_skb(skb);
2395 else
2396 kfree_skb(skb);
2397 return 0;
2398
2399 drop_n_account:
2400 spin_unlock(&sk->sk_receive_queue.lock);
2401 atomic_inc(&po->tp_drops);
2402 is_drop_n_account = true;
2403
2404 sk->sk_data_ready(sk);
2405 kfree_skb(copy_skb);
2406 goto drop_n_restore;
2407 }
2408
tpacket_destruct_skb(struct sk_buff * skb)2409 static void tpacket_destruct_skb(struct sk_buff *skb)
2410 {
2411 struct packet_sock *po = pkt_sk(skb->sk);
2412
2413 if (likely(po->tx_ring.pg_vec)) {
2414 void *ph;
2415 __u32 ts;
2416
2417 ph = skb_zcopy_get_nouarg(skb);
2418 packet_dec_pending(&po->tx_ring);
2419
2420 ts = __packet_set_timestamp(po, ph, skb);
2421 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2422
2423 if (!packet_read_pending(&po->tx_ring))
2424 complete(&po->skb_completion);
2425 }
2426
2427 sock_wfree(skb);
2428 }
2429
__packet_snd_vnet_parse(struct virtio_net_hdr * vnet_hdr,size_t len)2430 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2431 {
2432 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2433 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2434 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
2435 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
2436 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2437 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2438 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
2439
2440 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
2441 return -EINVAL;
2442
2443 return 0;
2444 }
2445
packet_snd_vnet_parse(struct msghdr * msg,size_t * len,struct virtio_net_hdr * vnet_hdr)2446 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2447 struct virtio_net_hdr *vnet_hdr)
2448 {
2449 if (*len < sizeof(*vnet_hdr))
2450 return -EINVAL;
2451 *len -= sizeof(*vnet_hdr);
2452
2453 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter))
2454 return -EFAULT;
2455
2456 return __packet_snd_vnet_parse(vnet_hdr, *len);
2457 }
2458
tpacket_fill_skb(struct packet_sock * po,struct sk_buff * skb,void * frame,struct net_device * dev,void * data,int tp_len,__be16 proto,unsigned char * addr,int hlen,int copylen,const struct sockcm_cookie * sockc)2459 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2460 void *frame, struct net_device *dev, void *data, int tp_len,
2461 __be16 proto, unsigned char *addr, int hlen, int copylen,
2462 const struct sockcm_cookie *sockc)
2463 {
2464 union tpacket_uhdr ph;
2465 int to_write, offset, len, nr_frags, len_max;
2466 struct socket *sock = po->sk.sk_socket;
2467 struct page *page;
2468 int err;
2469
2470 ph.raw = frame;
2471
2472 skb->protocol = proto;
2473 skb->dev = dev;
2474 skb->priority = po->sk.sk_priority;
2475 skb->mark = po->sk.sk_mark;
2476 skb->tstamp = sockc->transmit_time;
2477 skb_setup_tx_timestamp(skb, sockc->tsflags);
2478 skb_zcopy_set_nouarg(skb, ph.raw);
2479
2480 skb_reserve(skb, hlen);
2481 skb_reset_network_header(skb);
2482
2483 to_write = tp_len;
2484
2485 if (sock->type == SOCK_DGRAM) {
2486 err = dev_hard_header(skb, dev, ntohs(proto), addr,
2487 NULL, tp_len);
2488 if (unlikely(err < 0))
2489 return -EINVAL;
2490 } else if (copylen) {
2491 int hdrlen = min_t(int, copylen, tp_len);
2492
2493 skb_push(skb, dev->hard_header_len);
2494 skb_put(skb, copylen - dev->hard_header_len);
2495 err = skb_store_bits(skb, 0, data, hdrlen);
2496 if (unlikely(err))
2497 return err;
2498 if (!dev_validate_header(dev, skb->data, hdrlen))
2499 return -EINVAL;
2500
2501 data += hdrlen;
2502 to_write -= hdrlen;
2503 }
2504
2505 offset = offset_in_page(data);
2506 len_max = PAGE_SIZE - offset;
2507 len = ((to_write > len_max) ? len_max : to_write);
2508
2509 skb->data_len = to_write;
2510 skb->len += to_write;
2511 skb->truesize += to_write;
2512 refcount_add(to_write, &po->sk.sk_wmem_alloc);
2513
2514 while (likely(to_write)) {
2515 nr_frags = skb_shinfo(skb)->nr_frags;
2516
2517 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2518 pr_err("Packet exceed the number of skb frags(%lu)\n",
2519 MAX_SKB_FRAGS);
2520 return -EFAULT;
2521 }
2522
2523 page = pgv_to_page(data);
2524 data += len;
2525 flush_dcache_page(page);
2526 get_page(page);
2527 skb_fill_page_desc(skb, nr_frags, page, offset, len);
2528 to_write -= len;
2529 offset = 0;
2530 len_max = PAGE_SIZE;
2531 len = ((to_write > len_max) ? len_max : to_write);
2532 }
2533
2534 packet_parse_headers(skb, sock);
2535
2536 return tp_len;
2537 }
2538
tpacket_parse_header(struct packet_sock * po,void * frame,int size_max,void ** data)2539 static int tpacket_parse_header(struct packet_sock *po, void *frame,
2540 int size_max, void **data)
2541 {
2542 union tpacket_uhdr ph;
2543 int tp_len, off;
2544
2545 ph.raw = frame;
2546
2547 switch (po->tp_version) {
2548 case TPACKET_V3:
2549 if (ph.h3->tp_next_offset != 0) {
2550 pr_warn_once("variable sized slot not supported");
2551 return -EINVAL;
2552 }
2553 tp_len = ph.h3->tp_len;
2554 break;
2555 case TPACKET_V2:
2556 tp_len = ph.h2->tp_len;
2557 break;
2558 default:
2559 tp_len = ph.h1->tp_len;
2560 break;
2561 }
2562 if (unlikely(tp_len > size_max)) {
2563 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2564 return -EMSGSIZE;
2565 }
2566
2567 if (unlikely(po->tp_tx_has_off)) {
2568 int off_min, off_max;
2569
2570 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2571 off_max = po->tx_ring.frame_size - tp_len;
2572 if (po->sk.sk_type == SOCK_DGRAM) {
2573 switch (po->tp_version) {
2574 case TPACKET_V3:
2575 off = ph.h3->tp_net;
2576 break;
2577 case TPACKET_V2:
2578 off = ph.h2->tp_net;
2579 break;
2580 default:
2581 off = ph.h1->tp_net;
2582 break;
2583 }
2584 } else {
2585 switch (po->tp_version) {
2586 case TPACKET_V3:
2587 off = ph.h3->tp_mac;
2588 break;
2589 case TPACKET_V2:
2590 off = ph.h2->tp_mac;
2591 break;
2592 default:
2593 off = ph.h1->tp_mac;
2594 break;
2595 }
2596 }
2597 if (unlikely((off < off_min) || (off_max < off)))
2598 return -EINVAL;
2599 } else {
2600 off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2601 }
2602
2603 *data = frame + off;
2604 return tp_len;
2605 }
2606
tpacket_snd(struct packet_sock * po,struct msghdr * msg)2607 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2608 {
2609 struct sk_buff *skb = NULL;
2610 struct net_device *dev;
2611 struct virtio_net_hdr *vnet_hdr = NULL;
2612 struct sockcm_cookie sockc;
2613 __be16 proto;
2614 int err, reserve = 0;
2615 void *ph;
2616 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2617 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2618 unsigned char *addr = NULL;
2619 int tp_len, size_max;
2620 void *data;
2621 int len_sum = 0;
2622 int status = TP_STATUS_AVAILABLE;
2623 int hlen, tlen, copylen = 0;
2624 long timeo = 0;
2625
2626 mutex_lock(&po->pg_vec_lock);
2627
2628 /* packet_sendmsg() check on tx_ring.pg_vec was lockless,
2629 * we need to confirm it under protection of pg_vec_lock.
2630 */
2631 if (unlikely(!po->tx_ring.pg_vec)) {
2632 err = -EBUSY;
2633 goto out;
2634 }
2635 if (likely(saddr == NULL)) {
2636 dev = packet_cached_dev_get(po);
2637 proto = po->num;
2638 } else {
2639 err = -EINVAL;
2640 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2641 goto out;
2642 if (msg->msg_namelen < (saddr->sll_halen
2643 + offsetof(struct sockaddr_ll,
2644 sll_addr)))
2645 goto out;
2646 proto = saddr->sll_protocol;
2647 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2648 if (po->sk.sk_socket->type == SOCK_DGRAM) {
2649 if (dev && msg->msg_namelen < dev->addr_len +
2650 offsetof(struct sockaddr_ll, sll_addr))
2651 goto out_put;
2652 addr = saddr->sll_addr;
2653 }
2654 }
2655
2656 err = -ENXIO;
2657 if (unlikely(dev == NULL))
2658 goto out;
2659 err = -ENETDOWN;
2660 if (unlikely(!(dev->flags & IFF_UP)))
2661 goto out_put;
2662
2663 sockcm_init(&sockc, &po->sk);
2664 if (msg->msg_controllen) {
2665 err = sock_cmsg_send(&po->sk, msg, &sockc);
2666 if (unlikely(err))
2667 goto out_put;
2668 }
2669
2670 if (po->sk.sk_socket->type == SOCK_RAW)
2671 reserve = dev->hard_header_len;
2672 size_max = po->tx_ring.frame_size
2673 - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2674
2675 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr)
2676 size_max = dev->mtu + reserve + VLAN_HLEN;
2677
2678 reinit_completion(&po->skb_completion);
2679
2680 do {
2681 ph = packet_current_frame(po, &po->tx_ring,
2682 TP_STATUS_SEND_REQUEST);
2683 if (unlikely(ph == NULL)) {
2684 if (need_wait && skb) {
2685 timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT);
2686 timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo);
2687 if (timeo <= 0) {
2688 err = !timeo ? -ETIMEDOUT : -ERESTARTSYS;
2689 goto out_put;
2690 }
2691 }
2692 /* check for additional frames */
2693 continue;
2694 }
2695
2696 skb = NULL;
2697 tp_len = tpacket_parse_header(po, ph, size_max, &data);
2698 if (tp_len < 0)
2699 goto tpacket_error;
2700
2701 status = TP_STATUS_SEND_REQUEST;
2702 hlen = LL_RESERVED_SPACE(dev);
2703 tlen = dev->needed_tailroom;
2704 if (po->has_vnet_hdr) {
2705 vnet_hdr = data;
2706 data += sizeof(*vnet_hdr);
2707 tp_len -= sizeof(*vnet_hdr);
2708 if (tp_len < 0 ||
2709 __packet_snd_vnet_parse(vnet_hdr, tp_len)) {
2710 tp_len = -EINVAL;
2711 goto tpacket_error;
2712 }
2713 copylen = __virtio16_to_cpu(vio_le(),
2714 vnet_hdr->hdr_len);
2715 }
2716 copylen = max_t(int, copylen, dev->hard_header_len);
2717 skb = sock_alloc_send_skb(&po->sk,
2718 hlen + tlen + sizeof(struct sockaddr_ll) +
2719 (copylen - dev->hard_header_len),
2720 !need_wait, &err);
2721
2722 if (unlikely(skb == NULL)) {
2723 /* we assume the socket was initially writeable ... */
2724 if (likely(len_sum > 0))
2725 err = len_sum;
2726 goto out_status;
2727 }
2728 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
2729 addr, hlen, copylen, &sockc);
2730 if (likely(tp_len >= 0) &&
2731 tp_len > dev->mtu + reserve &&
2732 !po->has_vnet_hdr &&
2733 !packet_extra_vlan_len_allowed(dev, skb))
2734 tp_len = -EMSGSIZE;
2735
2736 if (unlikely(tp_len < 0)) {
2737 tpacket_error:
2738 if (po->tp_loss) {
2739 __packet_set_status(po, ph,
2740 TP_STATUS_AVAILABLE);
2741 packet_increment_head(&po->tx_ring);
2742 kfree_skb(skb);
2743 continue;
2744 } else {
2745 status = TP_STATUS_WRONG_FORMAT;
2746 err = tp_len;
2747 goto out_status;
2748 }
2749 }
2750
2751 if (po->has_vnet_hdr) {
2752 if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) {
2753 tp_len = -EINVAL;
2754 goto tpacket_error;
2755 }
2756 virtio_net_hdr_set_proto(skb, vnet_hdr);
2757 }
2758
2759 skb->destructor = tpacket_destruct_skb;
2760 __packet_set_status(po, ph, TP_STATUS_SENDING);
2761 packet_inc_pending(&po->tx_ring);
2762
2763 status = TP_STATUS_SEND_REQUEST;
2764 err = po->xmit(skb);
2765 if (unlikely(err > 0)) {
2766 err = net_xmit_errno(err);
2767 if (err && __packet_get_status(po, ph) ==
2768 TP_STATUS_AVAILABLE) {
2769 /* skb was destructed already */
2770 skb = NULL;
2771 goto out_status;
2772 }
2773 /*
2774 * skb was dropped but not destructed yet;
2775 * let's treat it like congestion or err < 0
2776 */
2777 err = 0;
2778 }
2779 packet_increment_head(&po->tx_ring);
2780 len_sum += tp_len;
2781 } while (likely((ph != NULL) ||
2782 /* Note: packet_read_pending() might be slow if we have
2783 * to call it as it's per_cpu variable, but in fast-path
2784 * we already short-circuit the loop with the first
2785 * condition, and luckily don't have to go that path
2786 * anyway.
2787 */
2788 (need_wait && packet_read_pending(&po->tx_ring))));
2789
2790 err = len_sum;
2791 goto out_put;
2792
2793 out_status:
2794 __packet_set_status(po, ph, status);
2795 kfree_skb(skb);
2796 out_put:
2797 dev_put(dev);
2798 out:
2799 mutex_unlock(&po->pg_vec_lock);
2800 return err;
2801 }
2802
packet_alloc_skb(struct sock * sk,size_t prepad,size_t reserve,size_t len,size_t linear,int noblock,int * err)2803 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2804 size_t reserve, size_t len,
2805 size_t linear, int noblock,
2806 int *err)
2807 {
2808 struct sk_buff *skb;
2809
2810 /* Under a page? Don't bother with paged skb. */
2811 if (prepad + len < PAGE_SIZE || !linear)
2812 linear = len;
2813
2814 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2815 err, 0);
2816 if (!skb)
2817 return NULL;
2818
2819 skb_reserve(skb, reserve);
2820 skb_put(skb, linear);
2821 skb->data_len = len - linear;
2822 skb->len += len - linear;
2823
2824 return skb;
2825 }
2826
packet_snd(struct socket * sock,struct msghdr * msg,size_t len)2827 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2828 {
2829 struct sock *sk = sock->sk;
2830 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2831 struct sk_buff *skb;
2832 struct net_device *dev;
2833 __be16 proto;
2834 unsigned char *addr = NULL;
2835 int err, reserve = 0;
2836 struct sockcm_cookie sockc;
2837 struct virtio_net_hdr vnet_hdr = { 0 };
2838 int offset = 0;
2839 struct packet_sock *po = pkt_sk(sk);
2840 bool has_vnet_hdr = false;
2841 int hlen, tlen, linear;
2842 int extra_len = 0;
2843
2844 /*
2845 * Get and verify the address.
2846 */
2847
2848 if (likely(saddr == NULL)) {
2849 dev = packet_cached_dev_get(po);
2850 proto = po->num;
2851 } else {
2852 err = -EINVAL;
2853 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2854 goto out;
2855 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2856 goto out;
2857 proto = saddr->sll_protocol;
2858 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2859 if (sock->type == SOCK_DGRAM) {
2860 if (dev && msg->msg_namelen < dev->addr_len +
2861 offsetof(struct sockaddr_ll, sll_addr))
2862 goto out_unlock;
2863 addr = saddr->sll_addr;
2864 }
2865 }
2866
2867 err = -ENXIO;
2868 if (unlikely(dev == NULL))
2869 goto out_unlock;
2870 err = -ENETDOWN;
2871 if (unlikely(!(dev->flags & IFF_UP)))
2872 goto out_unlock;
2873
2874 sockcm_init(&sockc, sk);
2875 sockc.mark = sk->sk_mark;
2876 if (msg->msg_controllen) {
2877 err = sock_cmsg_send(sk, msg, &sockc);
2878 if (unlikely(err))
2879 goto out_unlock;
2880 }
2881
2882 if (sock->type == SOCK_RAW)
2883 reserve = dev->hard_header_len;
2884 if (po->has_vnet_hdr) {
2885 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr);
2886 if (err)
2887 goto out_unlock;
2888 has_vnet_hdr = true;
2889 }
2890
2891 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2892 if (!netif_supports_nofcs(dev)) {
2893 err = -EPROTONOSUPPORT;
2894 goto out_unlock;
2895 }
2896 extra_len = 4; /* We're doing our own CRC */
2897 }
2898
2899 err = -EMSGSIZE;
2900 if (!vnet_hdr.gso_type &&
2901 (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2902 goto out_unlock;
2903
2904 err = -ENOBUFS;
2905 hlen = LL_RESERVED_SPACE(dev);
2906 tlen = dev->needed_tailroom;
2907 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len);
2908 linear = max(linear, min_t(int, len, dev->hard_header_len));
2909 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear,
2910 msg->msg_flags & MSG_DONTWAIT, &err);
2911 if (skb == NULL)
2912 goto out_unlock;
2913
2914 skb_reset_network_header(skb);
2915
2916 err = -EINVAL;
2917 if (sock->type == SOCK_DGRAM) {
2918 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2919 if (unlikely(offset < 0))
2920 goto out_free;
2921 } else if (reserve) {
2922 skb_reserve(skb, -reserve);
2923 if (len < reserve + sizeof(struct ipv6hdr) &&
2924 dev->min_header_len != dev->hard_header_len)
2925 skb_reset_network_header(skb);
2926 }
2927
2928 /* Returns -EFAULT on error */
2929 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2930 if (err)
2931 goto out_free;
2932
2933 if (sock->type == SOCK_RAW &&
2934 !dev_validate_header(dev, skb->data, len)) {
2935 err = -EINVAL;
2936 goto out_free;
2937 }
2938
2939 skb_setup_tx_timestamp(skb, sockc.tsflags);
2940
2941 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
2942 !packet_extra_vlan_len_allowed(dev, skb)) {
2943 err = -EMSGSIZE;
2944 goto out_free;
2945 }
2946
2947 skb->protocol = proto;
2948 skb->dev = dev;
2949 skb->priority = sk->sk_priority;
2950 skb->mark = sockc.mark;
2951 skb->tstamp = sockc.transmit_time;
2952
2953 if (has_vnet_hdr) {
2954 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le());
2955 if (err)
2956 goto out_free;
2957 len += sizeof(vnet_hdr);
2958 virtio_net_hdr_set_proto(skb, &vnet_hdr);
2959 }
2960
2961 packet_parse_headers(skb, sock);
2962
2963 if (unlikely(extra_len == 4))
2964 skb->no_fcs = 1;
2965
2966 err = po->xmit(skb);
2967 if (err > 0 && (err = net_xmit_errno(err)) != 0)
2968 goto out_unlock;
2969
2970 dev_put(dev);
2971
2972 return len;
2973
2974 out_free:
2975 kfree_skb(skb);
2976 out_unlock:
2977 if (dev)
2978 dev_put(dev);
2979 out:
2980 return err;
2981 }
2982
packet_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)2983 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2984 {
2985 struct sock *sk = sock->sk;
2986 struct packet_sock *po = pkt_sk(sk);
2987
2988 if (po->tx_ring.pg_vec)
2989 return tpacket_snd(po, msg);
2990 else
2991 return packet_snd(sock, msg, len);
2992 }
2993
2994 /*
2995 * Close a PACKET socket. This is fairly simple. We immediately go
2996 * to 'closed' state and remove our protocol entry in the device list.
2997 */
2998
packet_release(struct socket * sock)2999 static int packet_release(struct socket *sock)
3000 {
3001 struct sock *sk = sock->sk;
3002 struct packet_sock *po;
3003 struct packet_fanout *f;
3004 struct net *net;
3005 union tpacket_req_u req_u;
3006
3007 if (!sk)
3008 return 0;
3009
3010 net = sock_net(sk);
3011 po = pkt_sk(sk);
3012
3013 mutex_lock(&net->packet.sklist_lock);
3014 sk_del_node_init_rcu(sk);
3015 mutex_unlock(&net->packet.sklist_lock);
3016
3017 preempt_disable();
3018 sock_prot_inuse_add(net, sk->sk_prot, -1);
3019 preempt_enable();
3020
3021 spin_lock(&po->bind_lock);
3022 unregister_prot_hook(sk, false);
3023 packet_cached_dev_reset(po);
3024
3025 if (po->prot_hook.dev) {
3026 dev_put(po->prot_hook.dev);
3027 po->prot_hook.dev = NULL;
3028 }
3029 spin_unlock(&po->bind_lock);
3030
3031 packet_flush_mclist(sk);
3032
3033 lock_sock(sk);
3034 if (po->rx_ring.pg_vec) {
3035 memset(&req_u, 0, sizeof(req_u));
3036 packet_set_ring(sk, &req_u, 1, 0);
3037 }
3038
3039 if (po->tx_ring.pg_vec) {
3040 memset(&req_u, 0, sizeof(req_u));
3041 packet_set_ring(sk, &req_u, 1, 1);
3042 }
3043 release_sock(sk);
3044
3045 f = fanout_release(sk);
3046
3047 synchronize_net();
3048
3049 kfree(po->rollover);
3050 if (f) {
3051 fanout_release_data(f);
3052 kfree(f);
3053 }
3054 /*
3055 * Now the socket is dead. No more input will appear.
3056 */
3057 sock_orphan(sk);
3058 sock->sk = NULL;
3059
3060 /* Purge queues */
3061
3062 skb_queue_purge(&sk->sk_receive_queue);
3063 packet_free_pending(po);
3064 sk_refcnt_debug_release(sk);
3065
3066 sock_put(sk);
3067 return 0;
3068 }
3069
3070 /*
3071 * Attach a packet hook.
3072 */
3073
packet_do_bind(struct sock * sk,const char * name,int ifindex,__be16 proto)3074 static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
3075 __be16 proto)
3076 {
3077 struct packet_sock *po = pkt_sk(sk);
3078 struct net_device *dev_curr;
3079 __be16 proto_curr;
3080 bool need_rehook;
3081 struct net_device *dev = NULL;
3082 int ret = 0;
3083 bool unlisted = false;
3084
3085 lock_sock(sk);
3086 spin_lock(&po->bind_lock);
3087 rcu_read_lock();
3088
3089 if (po->fanout) {
3090 ret = -EINVAL;
3091 goto out_unlock;
3092 }
3093
3094 if (name) {
3095 dev = dev_get_by_name_rcu(sock_net(sk), name);
3096 if (!dev) {
3097 ret = -ENODEV;
3098 goto out_unlock;
3099 }
3100 } else if (ifindex) {
3101 dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3102 if (!dev) {
3103 ret = -ENODEV;
3104 goto out_unlock;
3105 }
3106 }
3107
3108 if (dev)
3109 dev_hold(dev);
3110
3111 proto_curr = po->prot_hook.type;
3112 dev_curr = po->prot_hook.dev;
3113
3114 need_rehook = proto_curr != proto || dev_curr != dev;
3115
3116 if (need_rehook) {
3117 if (po->running) {
3118 rcu_read_unlock();
3119 /* prevents packet_notifier() from calling
3120 * register_prot_hook()
3121 */
3122 po->num = 0;
3123 __unregister_prot_hook(sk, true);
3124 rcu_read_lock();
3125 dev_curr = po->prot_hook.dev;
3126 if (dev)
3127 unlisted = !dev_get_by_index_rcu(sock_net(sk),
3128 dev->ifindex);
3129 }
3130
3131 BUG_ON(po->running);
3132 po->num = proto;
3133 po->prot_hook.type = proto;
3134
3135 if (unlikely(unlisted)) {
3136 dev_put(dev);
3137 po->prot_hook.dev = NULL;
3138 po->ifindex = -1;
3139 packet_cached_dev_reset(po);
3140 } else {
3141 po->prot_hook.dev = dev;
3142 po->ifindex = dev ? dev->ifindex : 0;
3143 packet_cached_dev_assign(po, dev);
3144 }
3145 }
3146 if (dev_curr)
3147 dev_put(dev_curr);
3148
3149 if (proto == 0 || !need_rehook)
3150 goto out_unlock;
3151
3152 if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3153 register_prot_hook(sk);
3154 } else {
3155 sk->sk_err = ENETDOWN;
3156 if (!sock_flag(sk, SOCK_DEAD))
3157 sk->sk_error_report(sk);
3158 }
3159
3160 out_unlock:
3161 rcu_read_unlock();
3162 spin_unlock(&po->bind_lock);
3163 release_sock(sk);
3164 return ret;
3165 }
3166
3167 /*
3168 * Bind a packet socket to a device
3169 */
3170
packet_bind_spkt(struct socket * sock,struct sockaddr * uaddr,int addr_len)3171 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3172 int addr_len)
3173 {
3174 struct sock *sk = sock->sk;
3175 char name[sizeof(uaddr->sa_data) + 1];
3176
3177 /*
3178 * Check legality
3179 */
3180
3181 if (addr_len != sizeof(struct sockaddr))
3182 return -EINVAL;
3183 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be
3184 * zero-terminated.
3185 */
3186 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data));
3187 name[sizeof(uaddr->sa_data)] = 0;
3188
3189 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num);
3190 }
3191
packet_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3192 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3193 {
3194 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3195 struct sock *sk = sock->sk;
3196
3197 /*
3198 * Check legality
3199 */
3200
3201 if (addr_len < sizeof(struct sockaddr_ll))
3202 return -EINVAL;
3203 if (sll->sll_family != AF_PACKET)
3204 return -EINVAL;
3205
3206 return packet_do_bind(sk, NULL, sll->sll_ifindex,
3207 sll->sll_protocol ? : pkt_sk(sk)->num);
3208 }
3209
3210 static struct proto packet_proto = {
3211 .name = "PACKET",
3212 .owner = THIS_MODULE,
3213 .obj_size = sizeof(struct packet_sock),
3214 };
3215
3216 /*
3217 * Create a packet of type SOCK_PACKET.
3218 */
3219
packet_create(struct net * net,struct socket * sock,int protocol,int kern)3220 static int packet_create(struct net *net, struct socket *sock, int protocol,
3221 int kern)
3222 {
3223 struct sock *sk;
3224 struct packet_sock *po;
3225 __be16 proto = (__force __be16)protocol; /* weird, but documented */
3226 int err;
3227
3228 if (!ns_capable(net->user_ns, CAP_NET_RAW))
3229 return -EPERM;
3230 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3231 sock->type != SOCK_PACKET)
3232 return -ESOCKTNOSUPPORT;
3233
3234 sock->state = SS_UNCONNECTED;
3235
3236 err = -ENOBUFS;
3237 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3238 if (sk == NULL)
3239 goto out;
3240
3241 sock->ops = &packet_ops;
3242 if (sock->type == SOCK_PACKET)
3243 sock->ops = &packet_ops_spkt;
3244
3245 sock_init_data(sock, sk);
3246
3247 po = pkt_sk(sk);
3248 init_completion(&po->skb_completion);
3249 sk->sk_family = PF_PACKET;
3250 po->num = proto;
3251 po->xmit = dev_queue_xmit;
3252
3253 err = packet_alloc_pending(po);
3254 if (err)
3255 goto out2;
3256
3257 packet_cached_dev_reset(po);
3258
3259 sk->sk_destruct = packet_sock_destruct;
3260 sk_refcnt_debug_inc(sk);
3261
3262 /*
3263 * Attach a protocol block
3264 */
3265
3266 spin_lock_init(&po->bind_lock);
3267 mutex_init(&po->pg_vec_lock);
3268 po->rollover = NULL;
3269 po->prot_hook.func = packet_rcv;
3270
3271 if (sock->type == SOCK_PACKET)
3272 po->prot_hook.func = packet_rcv_spkt;
3273
3274 po->prot_hook.af_packet_priv = sk;
3275
3276 if (proto) {
3277 po->prot_hook.type = proto;
3278 __register_prot_hook(sk);
3279 }
3280
3281 mutex_lock(&net->packet.sklist_lock);
3282 sk_add_node_tail_rcu(sk, &net->packet.sklist);
3283 mutex_unlock(&net->packet.sklist_lock);
3284
3285 preempt_disable();
3286 sock_prot_inuse_add(net, &packet_proto, 1);
3287 preempt_enable();
3288
3289 return 0;
3290 out2:
3291 sk_free(sk);
3292 out:
3293 return err;
3294 }
3295
3296 /*
3297 * Pull a packet from our receive queue and hand it to the user.
3298 * If necessary we block.
3299 */
3300
packet_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)3301 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3302 int flags)
3303 {
3304 struct sock *sk = sock->sk;
3305 struct sk_buff *skb;
3306 int copied, err;
3307 int vnet_hdr_len = 0;
3308 unsigned int origlen = 0;
3309
3310 err = -EINVAL;
3311 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3312 goto out;
3313
3314 #if 0
3315 /* What error should we return now? EUNATTACH? */
3316 if (pkt_sk(sk)->ifindex < 0)
3317 return -ENODEV;
3318 #endif
3319
3320 if (flags & MSG_ERRQUEUE) {
3321 err = sock_recv_errqueue(sk, msg, len,
3322 SOL_PACKET, PACKET_TX_TIMESTAMP);
3323 goto out;
3324 }
3325
3326 /*
3327 * Call the generic datagram receiver. This handles all sorts
3328 * of horrible races and re-entrancy so we can forget about it
3329 * in the protocol layers.
3330 *
3331 * Now it will return ENETDOWN, if device have just gone down,
3332 * but then it will block.
3333 */
3334
3335 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3336
3337 /*
3338 * An error occurred so return it. Because skb_recv_datagram()
3339 * handles the blocking we don't see and worry about blocking
3340 * retries.
3341 */
3342
3343 if (skb == NULL)
3344 goto out;
3345
3346 packet_rcv_try_clear_pressure(pkt_sk(sk));
3347
3348 if (pkt_sk(sk)->has_vnet_hdr) {
3349 err = packet_rcv_vnet(msg, skb, &len);
3350 if (err)
3351 goto out_free;
3352 vnet_hdr_len = sizeof(struct virtio_net_hdr);
3353 }
3354
3355 /* You lose any data beyond the buffer you gave. If it worries
3356 * a user program they can ask the device for its MTU
3357 * anyway.
3358 */
3359 copied = skb->len;
3360 if (copied > len) {
3361 copied = len;
3362 msg->msg_flags |= MSG_TRUNC;
3363 }
3364
3365 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3366 if (err)
3367 goto out_free;
3368
3369 if (sock->type != SOCK_PACKET) {
3370 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3371
3372 /* Original length was stored in sockaddr_ll fields */
3373 origlen = PACKET_SKB_CB(skb)->sa.origlen;
3374 sll->sll_family = AF_PACKET;
3375 sll->sll_protocol = skb->protocol;
3376 }
3377
3378 sock_recv_ts_and_drops(msg, sk, skb);
3379
3380 if (msg->msg_name) {
3381 int copy_len;
3382
3383 /* If the address length field is there to be filled
3384 * in, we fill it in now.
3385 */
3386 if (sock->type == SOCK_PACKET) {
3387 __sockaddr_check_size(sizeof(struct sockaddr_pkt));
3388 msg->msg_namelen = sizeof(struct sockaddr_pkt);
3389 copy_len = msg->msg_namelen;
3390 } else {
3391 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3392
3393 msg->msg_namelen = sll->sll_halen +
3394 offsetof(struct sockaddr_ll, sll_addr);
3395 copy_len = msg->msg_namelen;
3396 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) {
3397 memset(msg->msg_name +
3398 offsetof(struct sockaddr_ll, sll_addr),
3399 0, sizeof(sll->sll_addr));
3400 msg->msg_namelen = sizeof(struct sockaddr_ll);
3401 }
3402 }
3403 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len);
3404 }
3405
3406 if (pkt_sk(sk)->auxdata) {
3407 struct tpacket_auxdata aux;
3408
3409 aux.tp_status = TP_STATUS_USER;
3410 if (skb->ip_summed == CHECKSUM_PARTIAL)
3411 aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3412 else if (skb->pkt_type != PACKET_OUTGOING &&
3413 (skb->ip_summed == CHECKSUM_COMPLETE ||
3414 skb_csum_unnecessary(skb)))
3415 aux.tp_status |= TP_STATUS_CSUM_VALID;
3416
3417 aux.tp_len = origlen;
3418 aux.tp_snaplen = skb->len;
3419 aux.tp_mac = 0;
3420 aux.tp_net = skb_network_offset(skb);
3421 if (skb_vlan_tag_present(skb)) {
3422 aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3423 aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3424 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3425 } else {
3426 aux.tp_vlan_tci = 0;
3427 aux.tp_vlan_tpid = 0;
3428 }
3429 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3430 }
3431
3432 /*
3433 * Free or return the buffer as appropriate. Again this
3434 * hides all the races and re-entrancy issues from us.
3435 */
3436 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3437
3438 out_free:
3439 skb_free_datagram(sk, skb);
3440 out:
3441 return err;
3442 }
3443
packet_getname_spkt(struct socket * sock,struct sockaddr * uaddr,int peer)3444 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3445 int peer)
3446 {
3447 struct net_device *dev;
3448 struct sock *sk = sock->sk;
3449
3450 if (peer)
3451 return -EOPNOTSUPP;
3452
3453 uaddr->sa_family = AF_PACKET;
3454 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3455 rcu_read_lock();
3456 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3457 if (dev)
3458 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3459 rcu_read_unlock();
3460
3461 return sizeof(*uaddr);
3462 }
3463
packet_getname(struct socket * sock,struct sockaddr * uaddr,int peer)3464 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3465 int peer)
3466 {
3467 struct net_device *dev;
3468 struct sock *sk = sock->sk;
3469 struct packet_sock *po = pkt_sk(sk);
3470 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3471
3472 if (peer)
3473 return -EOPNOTSUPP;
3474
3475 sll->sll_family = AF_PACKET;
3476 sll->sll_ifindex = po->ifindex;
3477 sll->sll_protocol = po->num;
3478 sll->sll_pkttype = 0;
3479 rcu_read_lock();
3480 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3481 if (dev) {
3482 sll->sll_hatype = dev->type;
3483 sll->sll_halen = dev->addr_len;
3484 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3485 } else {
3486 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
3487 sll->sll_halen = 0;
3488 }
3489 rcu_read_unlock();
3490
3491 return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3492 }
3493
packet_dev_mc(struct net_device * dev,struct packet_mclist * i,int what)3494 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3495 int what)
3496 {
3497 switch (i->type) {
3498 case PACKET_MR_MULTICAST:
3499 if (i->alen != dev->addr_len)
3500 return -EINVAL;
3501 if (what > 0)
3502 return dev_mc_add(dev, i->addr);
3503 else
3504 return dev_mc_del(dev, i->addr);
3505 break;
3506 case PACKET_MR_PROMISC:
3507 return dev_set_promiscuity(dev, what);
3508 case PACKET_MR_ALLMULTI:
3509 return dev_set_allmulti(dev, what);
3510 case PACKET_MR_UNICAST:
3511 if (i->alen != dev->addr_len)
3512 return -EINVAL;
3513 if (what > 0)
3514 return dev_uc_add(dev, i->addr);
3515 else
3516 return dev_uc_del(dev, i->addr);
3517 break;
3518 default:
3519 break;
3520 }
3521 return 0;
3522 }
3523
packet_dev_mclist_delete(struct net_device * dev,struct packet_mclist ** mlp)3524 static void packet_dev_mclist_delete(struct net_device *dev,
3525 struct packet_mclist **mlp)
3526 {
3527 struct packet_mclist *ml;
3528
3529 while ((ml = *mlp) != NULL) {
3530 if (ml->ifindex == dev->ifindex) {
3531 packet_dev_mc(dev, ml, -1);
3532 *mlp = ml->next;
3533 kfree(ml);
3534 } else
3535 mlp = &ml->next;
3536 }
3537 }
3538
packet_mc_add(struct sock * sk,struct packet_mreq_max * mreq)3539 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3540 {
3541 struct packet_sock *po = pkt_sk(sk);
3542 struct packet_mclist *ml, *i;
3543 struct net_device *dev;
3544 int err;
3545
3546 rtnl_lock();
3547
3548 err = -ENODEV;
3549 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3550 if (!dev)
3551 goto done;
3552
3553 err = -EINVAL;
3554 if (mreq->mr_alen > dev->addr_len)
3555 goto done;
3556
3557 err = -ENOBUFS;
3558 i = kmalloc(sizeof(*i), GFP_KERNEL);
3559 if (i == NULL)
3560 goto done;
3561
3562 err = 0;
3563 for (ml = po->mclist; ml; ml = ml->next) {
3564 if (ml->ifindex == mreq->mr_ifindex &&
3565 ml->type == mreq->mr_type &&
3566 ml->alen == mreq->mr_alen &&
3567 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3568 ml->count++;
3569 /* Free the new element ... */
3570 kfree(i);
3571 goto done;
3572 }
3573 }
3574
3575 i->type = mreq->mr_type;
3576 i->ifindex = mreq->mr_ifindex;
3577 i->alen = mreq->mr_alen;
3578 memcpy(i->addr, mreq->mr_address, i->alen);
3579 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen);
3580 i->count = 1;
3581 i->next = po->mclist;
3582 po->mclist = i;
3583 err = packet_dev_mc(dev, i, 1);
3584 if (err) {
3585 po->mclist = i->next;
3586 kfree(i);
3587 }
3588
3589 done:
3590 rtnl_unlock();
3591 return err;
3592 }
3593
packet_mc_drop(struct sock * sk,struct packet_mreq_max * mreq)3594 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3595 {
3596 struct packet_mclist *ml, **mlp;
3597
3598 rtnl_lock();
3599
3600 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3601 if (ml->ifindex == mreq->mr_ifindex &&
3602 ml->type == mreq->mr_type &&
3603 ml->alen == mreq->mr_alen &&
3604 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3605 if (--ml->count == 0) {
3606 struct net_device *dev;
3607 *mlp = ml->next;
3608 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3609 if (dev)
3610 packet_dev_mc(dev, ml, -1);
3611 kfree(ml);
3612 }
3613 break;
3614 }
3615 }
3616 rtnl_unlock();
3617 return 0;
3618 }
3619
packet_flush_mclist(struct sock * sk)3620 static void packet_flush_mclist(struct sock *sk)
3621 {
3622 struct packet_sock *po = pkt_sk(sk);
3623 struct packet_mclist *ml;
3624
3625 if (!po->mclist)
3626 return;
3627
3628 rtnl_lock();
3629 while ((ml = po->mclist) != NULL) {
3630 struct net_device *dev;
3631
3632 po->mclist = ml->next;
3633 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3634 if (dev != NULL)
3635 packet_dev_mc(dev, ml, -1);
3636 kfree(ml);
3637 }
3638 rtnl_unlock();
3639 }
3640
3641 static int
packet_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)3642 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3643 {
3644 struct sock *sk = sock->sk;
3645 struct packet_sock *po = pkt_sk(sk);
3646 int ret;
3647
3648 if (level != SOL_PACKET)
3649 return -ENOPROTOOPT;
3650
3651 switch (optname) {
3652 case PACKET_ADD_MEMBERSHIP:
3653 case PACKET_DROP_MEMBERSHIP:
3654 {
3655 struct packet_mreq_max mreq;
3656 int len = optlen;
3657 memset(&mreq, 0, sizeof(mreq));
3658 if (len < sizeof(struct packet_mreq))
3659 return -EINVAL;
3660 if (len > sizeof(mreq))
3661 len = sizeof(mreq);
3662 if (copy_from_user(&mreq, optval, len))
3663 return -EFAULT;
3664 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3665 return -EINVAL;
3666 if (optname == PACKET_ADD_MEMBERSHIP)
3667 ret = packet_mc_add(sk, &mreq);
3668 else
3669 ret = packet_mc_drop(sk, &mreq);
3670 return ret;
3671 }
3672
3673 case PACKET_RX_RING:
3674 case PACKET_TX_RING:
3675 {
3676 union tpacket_req_u req_u;
3677 int len;
3678
3679 lock_sock(sk);
3680 switch (po->tp_version) {
3681 case TPACKET_V1:
3682 case TPACKET_V2:
3683 len = sizeof(req_u.req);
3684 break;
3685 case TPACKET_V3:
3686 default:
3687 len = sizeof(req_u.req3);
3688 break;
3689 }
3690 if (optlen < len) {
3691 ret = -EINVAL;
3692 } else {
3693 if (copy_from_user(&req_u.req, optval, len))
3694 ret = -EFAULT;
3695 else
3696 ret = packet_set_ring(sk, &req_u, 0,
3697 optname == PACKET_TX_RING);
3698 }
3699 release_sock(sk);
3700 return ret;
3701 }
3702 case PACKET_COPY_THRESH:
3703 {
3704 int val;
3705
3706 if (optlen != sizeof(val))
3707 return -EINVAL;
3708 if (copy_from_user(&val, optval, sizeof(val)))
3709 return -EFAULT;
3710
3711 pkt_sk(sk)->copy_thresh = val;
3712 return 0;
3713 }
3714 case PACKET_VERSION:
3715 {
3716 int val;
3717
3718 if (optlen != sizeof(val))
3719 return -EINVAL;
3720 if (copy_from_user(&val, optval, sizeof(val)))
3721 return -EFAULT;
3722 switch (val) {
3723 case TPACKET_V1:
3724 case TPACKET_V2:
3725 case TPACKET_V3:
3726 break;
3727 default:
3728 return -EINVAL;
3729 }
3730 lock_sock(sk);
3731 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3732 ret = -EBUSY;
3733 } else {
3734 po->tp_version = val;
3735 ret = 0;
3736 }
3737 release_sock(sk);
3738 return ret;
3739 }
3740 case PACKET_RESERVE:
3741 {
3742 unsigned int val;
3743
3744 if (optlen != sizeof(val))
3745 return -EINVAL;
3746 if (copy_from_user(&val, optval, sizeof(val)))
3747 return -EFAULT;
3748 if (val > INT_MAX)
3749 return -EINVAL;
3750 lock_sock(sk);
3751 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3752 ret = -EBUSY;
3753 } else {
3754 po->tp_reserve = val;
3755 ret = 0;
3756 }
3757 release_sock(sk);
3758 return ret;
3759 }
3760 case PACKET_LOSS:
3761 {
3762 unsigned int val;
3763
3764 if (optlen != sizeof(val))
3765 return -EINVAL;
3766 if (copy_from_user(&val, optval, sizeof(val)))
3767 return -EFAULT;
3768
3769 lock_sock(sk);
3770 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3771 ret = -EBUSY;
3772 } else {
3773 po->tp_loss = !!val;
3774 ret = 0;
3775 }
3776 release_sock(sk);
3777 return ret;
3778 }
3779 case PACKET_AUXDATA:
3780 {
3781 int val;
3782
3783 if (optlen < sizeof(val))
3784 return -EINVAL;
3785 if (copy_from_user(&val, optval, sizeof(val)))
3786 return -EFAULT;
3787
3788 lock_sock(sk);
3789 po->auxdata = !!val;
3790 release_sock(sk);
3791 return 0;
3792 }
3793 case PACKET_ORIGDEV:
3794 {
3795 int val;
3796
3797 if (optlen < sizeof(val))
3798 return -EINVAL;
3799 if (copy_from_user(&val, optval, sizeof(val)))
3800 return -EFAULT;
3801
3802 lock_sock(sk);
3803 po->origdev = !!val;
3804 release_sock(sk);
3805 return 0;
3806 }
3807 case PACKET_VNET_HDR:
3808 {
3809 int val;
3810
3811 if (sock->type != SOCK_RAW)
3812 return -EINVAL;
3813 if (optlen < sizeof(val))
3814 return -EINVAL;
3815 if (copy_from_user(&val, optval, sizeof(val)))
3816 return -EFAULT;
3817
3818 lock_sock(sk);
3819 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3820 ret = -EBUSY;
3821 } else {
3822 po->has_vnet_hdr = !!val;
3823 ret = 0;
3824 }
3825 release_sock(sk);
3826 return ret;
3827 }
3828 case PACKET_TIMESTAMP:
3829 {
3830 int val;
3831
3832 if (optlen != sizeof(val))
3833 return -EINVAL;
3834 if (copy_from_user(&val, optval, sizeof(val)))
3835 return -EFAULT;
3836
3837 po->tp_tstamp = val;
3838 return 0;
3839 }
3840 case PACKET_FANOUT:
3841 {
3842 int val;
3843
3844 if (optlen != sizeof(val))
3845 return -EINVAL;
3846 if (copy_from_user(&val, optval, sizeof(val)))
3847 return -EFAULT;
3848
3849 return fanout_add(sk, val & 0xffff, val >> 16);
3850 }
3851 case PACKET_FANOUT_DATA:
3852 {
3853 if (!po->fanout)
3854 return -EINVAL;
3855
3856 return fanout_set_data(po, optval, optlen);
3857 }
3858 case PACKET_IGNORE_OUTGOING:
3859 {
3860 int val;
3861
3862 if (optlen != sizeof(val))
3863 return -EINVAL;
3864 if (copy_from_user(&val, optval, sizeof(val)))
3865 return -EFAULT;
3866 if (val < 0 || val > 1)
3867 return -EINVAL;
3868
3869 po->prot_hook.ignore_outgoing = !!val;
3870 return 0;
3871 }
3872 case PACKET_TX_HAS_OFF:
3873 {
3874 unsigned int val;
3875
3876 if (optlen != sizeof(val))
3877 return -EINVAL;
3878 if (copy_from_user(&val, optval, sizeof(val)))
3879 return -EFAULT;
3880
3881 lock_sock(sk);
3882 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3883 ret = -EBUSY;
3884 } else {
3885 po->tp_tx_has_off = !!val;
3886 ret = 0;
3887 }
3888 release_sock(sk);
3889 return 0;
3890 }
3891 case PACKET_QDISC_BYPASS:
3892 {
3893 int val;
3894
3895 if (optlen != sizeof(val))
3896 return -EINVAL;
3897 if (copy_from_user(&val, optval, sizeof(val)))
3898 return -EFAULT;
3899
3900 po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3901 return 0;
3902 }
3903 default:
3904 return -ENOPROTOOPT;
3905 }
3906 }
3907
packet_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)3908 static int packet_getsockopt(struct socket *sock, int level, int optname,
3909 char __user *optval, int __user *optlen)
3910 {
3911 int len;
3912 int val, lv = sizeof(val);
3913 struct sock *sk = sock->sk;
3914 struct packet_sock *po = pkt_sk(sk);
3915 void *data = &val;
3916 union tpacket_stats_u st;
3917 struct tpacket_rollover_stats rstats;
3918 int drops;
3919
3920 if (level != SOL_PACKET)
3921 return -ENOPROTOOPT;
3922
3923 if (get_user(len, optlen))
3924 return -EFAULT;
3925
3926 if (len < 0)
3927 return -EINVAL;
3928
3929 switch (optname) {
3930 case PACKET_STATISTICS:
3931 spin_lock_bh(&sk->sk_receive_queue.lock);
3932 memcpy(&st, &po->stats, sizeof(st));
3933 memset(&po->stats, 0, sizeof(po->stats));
3934 spin_unlock_bh(&sk->sk_receive_queue.lock);
3935 drops = atomic_xchg(&po->tp_drops, 0);
3936
3937 if (po->tp_version == TPACKET_V3) {
3938 lv = sizeof(struct tpacket_stats_v3);
3939 st.stats3.tp_drops = drops;
3940 st.stats3.tp_packets += drops;
3941 data = &st.stats3;
3942 } else {
3943 lv = sizeof(struct tpacket_stats);
3944 st.stats1.tp_drops = drops;
3945 st.stats1.tp_packets += drops;
3946 data = &st.stats1;
3947 }
3948
3949 break;
3950 case PACKET_AUXDATA:
3951 val = po->auxdata;
3952 break;
3953 case PACKET_ORIGDEV:
3954 val = po->origdev;
3955 break;
3956 case PACKET_VNET_HDR:
3957 val = po->has_vnet_hdr;
3958 break;
3959 case PACKET_VERSION:
3960 val = po->tp_version;
3961 break;
3962 case PACKET_HDRLEN:
3963 if (len > sizeof(int))
3964 len = sizeof(int);
3965 if (len < sizeof(int))
3966 return -EINVAL;
3967 if (copy_from_user(&val, optval, len))
3968 return -EFAULT;
3969 switch (val) {
3970 case TPACKET_V1:
3971 val = sizeof(struct tpacket_hdr);
3972 break;
3973 case TPACKET_V2:
3974 val = sizeof(struct tpacket2_hdr);
3975 break;
3976 case TPACKET_V3:
3977 val = sizeof(struct tpacket3_hdr);
3978 break;
3979 default:
3980 return -EINVAL;
3981 }
3982 break;
3983 case PACKET_RESERVE:
3984 val = po->tp_reserve;
3985 break;
3986 case PACKET_LOSS:
3987 val = po->tp_loss;
3988 break;
3989 case PACKET_TIMESTAMP:
3990 val = po->tp_tstamp;
3991 break;
3992 case PACKET_FANOUT:
3993 val = (po->fanout ?
3994 ((u32)po->fanout->id |
3995 ((u32)po->fanout->type << 16) |
3996 ((u32)po->fanout->flags << 24)) :
3997 0);
3998 break;
3999 case PACKET_IGNORE_OUTGOING:
4000 val = po->prot_hook.ignore_outgoing;
4001 break;
4002 case PACKET_ROLLOVER_STATS:
4003 if (!po->rollover)
4004 return -EINVAL;
4005 rstats.tp_all = atomic_long_read(&po->rollover->num);
4006 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
4007 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
4008 data = &rstats;
4009 lv = sizeof(rstats);
4010 break;
4011 case PACKET_TX_HAS_OFF:
4012 val = po->tp_tx_has_off;
4013 break;
4014 case PACKET_QDISC_BYPASS:
4015 val = packet_use_direct_xmit(po);
4016 break;
4017 default:
4018 return -ENOPROTOOPT;
4019 }
4020
4021 if (len > lv)
4022 len = lv;
4023 if (put_user(len, optlen))
4024 return -EFAULT;
4025 if (copy_to_user(optval, data, len))
4026 return -EFAULT;
4027 return 0;
4028 }
4029
4030
4031 #ifdef CONFIG_COMPAT
compat_packet_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)4032 static int compat_packet_setsockopt(struct socket *sock, int level, int optname,
4033 char __user *optval, unsigned int optlen)
4034 {
4035 struct packet_sock *po = pkt_sk(sock->sk);
4036
4037 if (level != SOL_PACKET)
4038 return -ENOPROTOOPT;
4039
4040 if (optname == PACKET_FANOUT_DATA &&
4041 po->fanout && po->fanout->type == PACKET_FANOUT_CBPF) {
4042 optval = (char __user *)get_compat_bpf_fprog(optval);
4043 if (!optval)
4044 return -EFAULT;
4045 optlen = sizeof(struct sock_fprog);
4046 }
4047
4048 return packet_setsockopt(sock, level, optname, optval, optlen);
4049 }
4050 #endif
4051
packet_notifier(struct notifier_block * this,unsigned long msg,void * ptr)4052 static int packet_notifier(struct notifier_block *this,
4053 unsigned long msg, void *ptr)
4054 {
4055 struct sock *sk;
4056 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4057 struct net *net = dev_net(dev);
4058
4059 rcu_read_lock();
4060 sk_for_each_rcu(sk, &net->packet.sklist) {
4061 struct packet_sock *po = pkt_sk(sk);
4062
4063 switch (msg) {
4064 case NETDEV_UNREGISTER:
4065 if (po->mclist)
4066 packet_dev_mclist_delete(dev, &po->mclist);
4067 /* fallthrough */
4068
4069 case NETDEV_DOWN:
4070 if (dev->ifindex == po->ifindex) {
4071 spin_lock(&po->bind_lock);
4072 if (po->running) {
4073 __unregister_prot_hook(sk, false);
4074 sk->sk_err = ENETDOWN;
4075 if (!sock_flag(sk, SOCK_DEAD))
4076 sk->sk_error_report(sk);
4077 }
4078 if (msg == NETDEV_UNREGISTER) {
4079 packet_cached_dev_reset(po);
4080 po->ifindex = -1;
4081 if (po->prot_hook.dev)
4082 dev_put(po->prot_hook.dev);
4083 po->prot_hook.dev = NULL;
4084 }
4085 spin_unlock(&po->bind_lock);
4086 }
4087 break;
4088 case NETDEV_UP:
4089 if (dev->ifindex == po->ifindex) {
4090 spin_lock(&po->bind_lock);
4091 if (po->num)
4092 register_prot_hook(sk);
4093 spin_unlock(&po->bind_lock);
4094 }
4095 break;
4096 }
4097 }
4098 rcu_read_unlock();
4099 return NOTIFY_DONE;
4100 }
4101
4102
packet_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)4103 static int packet_ioctl(struct socket *sock, unsigned int cmd,
4104 unsigned long arg)
4105 {
4106 struct sock *sk = sock->sk;
4107
4108 switch (cmd) {
4109 case SIOCOUTQ:
4110 {
4111 int amount = sk_wmem_alloc_get(sk);
4112
4113 return put_user(amount, (int __user *)arg);
4114 }
4115 case SIOCINQ:
4116 {
4117 struct sk_buff *skb;
4118 int amount = 0;
4119
4120 spin_lock_bh(&sk->sk_receive_queue.lock);
4121 skb = skb_peek(&sk->sk_receive_queue);
4122 if (skb)
4123 amount = skb->len;
4124 spin_unlock_bh(&sk->sk_receive_queue.lock);
4125 return put_user(amount, (int __user *)arg);
4126 }
4127 #ifdef CONFIG_INET
4128 case SIOCADDRT:
4129 case SIOCDELRT:
4130 case SIOCDARP:
4131 case SIOCGARP:
4132 case SIOCSARP:
4133 case SIOCGIFADDR:
4134 case SIOCSIFADDR:
4135 case SIOCGIFBRDADDR:
4136 case SIOCSIFBRDADDR:
4137 case SIOCGIFNETMASK:
4138 case SIOCSIFNETMASK:
4139 case SIOCGIFDSTADDR:
4140 case SIOCSIFDSTADDR:
4141 case SIOCSIFFLAGS:
4142 return inet_dgram_ops.ioctl(sock, cmd, arg);
4143 #endif
4144
4145 default:
4146 return -ENOIOCTLCMD;
4147 }
4148 return 0;
4149 }
4150
packet_poll(struct file * file,struct socket * sock,poll_table * wait)4151 static __poll_t packet_poll(struct file *file, struct socket *sock,
4152 poll_table *wait)
4153 {
4154 struct sock *sk = sock->sk;
4155 struct packet_sock *po = pkt_sk(sk);
4156 __poll_t mask = datagram_poll(file, sock, wait);
4157
4158 spin_lock_bh(&sk->sk_receive_queue.lock);
4159 if (po->rx_ring.pg_vec) {
4160 if (!packet_previous_rx_frame(po, &po->rx_ring,
4161 TP_STATUS_KERNEL))
4162 mask |= EPOLLIN | EPOLLRDNORM;
4163 }
4164 packet_rcv_try_clear_pressure(po);
4165 spin_unlock_bh(&sk->sk_receive_queue.lock);
4166 spin_lock_bh(&sk->sk_write_queue.lock);
4167 if (po->tx_ring.pg_vec) {
4168 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
4169 mask |= EPOLLOUT | EPOLLWRNORM;
4170 }
4171 spin_unlock_bh(&sk->sk_write_queue.lock);
4172 return mask;
4173 }
4174
4175
4176 /* Dirty? Well, I still did not learn better way to account
4177 * for user mmaps.
4178 */
4179
packet_mm_open(struct vm_area_struct * vma)4180 static void packet_mm_open(struct vm_area_struct *vma)
4181 {
4182 struct file *file = vma->vm_file;
4183 struct socket *sock = file->private_data;
4184 struct sock *sk = sock->sk;
4185
4186 if (sk)
4187 atomic_inc(&pkt_sk(sk)->mapped);
4188 }
4189
packet_mm_close(struct vm_area_struct * vma)4190 static void packet_mm_close(struct vm_area_struct *vma)
4191 {
4192 struct file *file = vma->vm_file;
4193 struct socket *sock = file->private_data;
4194 struct sock *sk = sock->sk;
4195
4196 if (sk)
4197 atomic_dec(&pkt_sk(sk)->mapped);
4198 }
4199
4200 static const struct vm_operations_struct packet_mmap_ops = {
4201 .open = packet_mm_open,
4202 .close = packet_mm_close,
4203 };
4204
free_pg_vec(struct pgv * pg_vec,unsigned int order,unsigned int len)4205 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4206 unsigned int len)
4207 {
4208 int i;
4209
4210 for (i = 0; i < len; i++) {
4211 if (likely(pg_vec[i].buffer)) {
4212 if (is_vmalloc_addr(pg_vec[i].buffer))
4213 vfree(pg_vec[i].buffer);
4214 else
4215 free_pages((unsigned long)pg_vec[i].buffer,
4216 order);
4217 pg_vec[i].buffer = NULL;
4218 }
4219 }
4220 kfree(pg_vec);
4221 }
4222
alloc_one_pg_vec_page(unsigned long order)4223 static char *alloc_one_pg_vec_page(unsigned long order)
4224 {
4225 char *buffer;
4226 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4227 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4228
4229 buffer = (char *) __get_free_pages(gfp_flags, order);
4230 if (buffer)
4231 return buffer;
4232
4233 /* __get_free_pages failed, fall back to vmalloc */
4234 buffer = vzalloc(array_size((1 << order), PAGE_SIZE));
4235 if (buffer)
4236 return buffer;
4237
4238 /* vmalloc failed, lets dig into swap here */
4239 gfp_flags &= ~__GFP_NORETRY;
4240 buffer = (char *) __get_free_pages(gfp_flags, order);
4241 if (buffer)
4242 return buffer;
4243
4244 /* complete and utter failure */
4245 return NULL;
4246 }
4247
alloc_pg_vec(struct tpacket_req * req,int order)4248 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4249 {
4250 unsigned int block_nr = req->tp_block_nr;
4251 struct pgv *pg_vec;
4252 int i;
4253
4254 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN);
4255 if (unlikely(!pg_vec))
4256 goto out;
4257
4258 for (i = 0; i < block_nr; i++) {
4259 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4260 if (unlikely(!pg_vec[i].buffer))
4261 goto out_free_pgvec;
4262 }
4263
4264 out:
4265 return pg_vec;
4266
4267 out_free_pgvec:
4268 free_pg_vec(pg_vec, order, block_nr);
4269 pg_vec = NULL;
4270 goto out;
4271 }
4272
packet_set_ring(struct sock * sk,union tpacket_req_u * req_u,int closing,int tx_ring)4273 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4274 int closing, int tx_ring)
4275 {
4276 struct pgv *pg_vec = NULL;
4277 struct packet_sock *po = pkt_sk(sk);
4278 int was_running, order = 0;
4279 struct packet_ring_buffer *rb;
4280 struct sk_buff_head *rb_queue;
4281 __be16 num;
4282 int err = -EINVAL;
4283 /* Added to avoid minimal code churn */
4284 struct tpacket_req *req = &req_u->req;
4285
4286 rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4287 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4288
4289 err = -EBUSY;
4290 if (!closing) {
4291 if (atomic_read(&po->mapped))
4292 goto out;
4293 if (packet_read_pending(rb))
4294 goto out;
4295 }
4296
4297 if (req->tp_block_nr) {
4298 unsigned int min_frame_size;
4299
4300 /* Sanity tests and some calculations */
4301 err = -EBUSY;
4302 if (unlikely(rb->pg_vec))
4303 goto out;
4304
4305 switch (po->tp_version) {
4306 case TPACKET_V1:
4307 po->tp_hdrlen = TPACKET_HDRLEN;
4308 break;
4309 case TPACKET_V2:
4310 po->tp_hdrlen = TPACKET2_HDRLEN;
4311 break;
4312 case TPACKET_V3:
4313 po->tp_hdrlen = TPACKET3_HDRLEN;
4314 break;
4315 }
4316
4317 err = -EINVAL;
4318 if (unlikely((int)req->tp_block_size <= 0))
4319 goto out;
4320 if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4321 goto out;
4322 min_frame_size = po->tp_hdrlen + po->tp_reserve;
4323 if (po->tp_version >= TPACKET_V3 &&
4324 req->tp_block_size <
4325 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size)
4326 goto out;
4327 if (unlikely(req->tp_frame_size < min_frame_size))
4328 goto out;
4329 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4330 goto out;
4331
4332 rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4333 if (unlikely(rb->frames_per_block == 0))
4334 goto out;
4335 if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr))
4336 goto out;
4337 if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4338 req->tp_frame_nr))
4339 goto out;
4340
4341 err = -ENOMEM;
4342 order = get_order(req->tp_block_size);
4343 pg_vec = alloc_pg_vec(req, order);
4344 if (unlikely(!pg_vec))
4345 goto out;
4346 switch (po->tp_version) {
4347 case TPACKET_V3:
4348 /* Block transmit is not supported yet */
4349 if (!tx_ring) {
4350 init_prb_bdqc(po, rb, pg_vec, req_u);
4351 } else {
4352 struct tpacket_req3 *req3 = &req_u->req3;
4353
4354 if (req3->tp_retire_blk_tov ||
4355 req3->tp_sizeof_priv ||
4356 req3->tp_feature_req_word) {
4357 err = -EINVAL;
4358 goto out_free_pg_vec;
4359 }
4360 }
4361 break;
4362 default:
4363 break;
4364 }
4365 }
4366 /* Done */
4367 else {
4368 err = -EINVAL;
4369 if (unlikely(req->tp_frame_nr))
4370 goto out;
4371 }
4372
4373
4374 /* Detach socket from network */
4375 spin_lock(&po->bind_lock);
4376 was_running = po->running;
4377 num = po->num;
4378 if (was_running) {
4379 po->num = 0;
4380 __unregister_prot_hook(sk, false);
4381 }
4382 spin_unlock(&po->bind_lock);
4383
4384 synchronize_net();
4385
4386 err = -EBUSY;
4387 mutex_lock(&po->pg_vec_lock);
4388 if (closing || atomic_read(&po->mapped) == 0) {
4389 err = 0;
4390 spin_lock_bh(&rb_queue->lock);
4391 swap(rb->pg_vec, pg_vec);
4392 rb->frame_max = (req->tp_frame_nr - 1);
4393 rb->head = 0;
4394 rb->frame_size = req->tp_frame_size;
4395 spin_unlock_bh(&rb_queue->lock);
4396
4397 swap(rb->pg_vec_order, order);
4398 swap(rb->pg_vec_len, req->tp_block_nr);
4399
4400 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4401 po->prot_hook.func = (po->rx_ring.pg_vec) ?
4402 tpacket_rcv : packet_rcv;
4403 skb_queue_purge(rb_queue);
4404 if (atomic_read(&po->mapped))
4405 pr_err("packet_mmap: vma is busy: %d\n",
4406 atomic_read(&po->mapped));
4407 }
4408 mutex_unlock(&po->pg_vec_lock);
4409
4410 spin_lock(&po->bind_lock);
4411 if (was_running) {
4412 po->num = num;
4413 register_prot_hook(sk);
4414 }
4415 spin_unlock(&po->bind_lock);
4416 if (pg_vec && (po->tp_version > TPACKET_V2)) {
4417 /* Because we don't support block-based V3 on tx-ring */
4418 if (!tx_ring)
4419 prb_shutdown_retire_blk_timer(po, rb_queue);
4420 }
4421
4422 out_free_pg_vec:
4423 if (pg_vec)
4424 free_pg_vec(pg_vec, order, req->tp_block_nr);
4425 out:
4426 return err;
4427 }
4428
packet_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)4429 static int packet_mmap(struct file *file, struct socket *sock,
4430 struct vm_area_struct *vma)
4431 {
4432 struct sock *sk = sock->sk;
4433 struct packet_sock *po = pkt_sk(sk);
4434 unsigned long size, expected_size;
4435 struct packet_ring_buffer *rb;
4436 unsigned long start;
4437 int err = -EINVAL;
4438 int i;
4439
4440 if (vma->vm_pgoff)
4441 return -EINVAL;
4442
4443 mutex_lock(&po->pg_vec_lock);
4444
4445 expected_size = 0;
4446 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4447 if (rb->pg_vec) {
4448 expected_size += rb->pg_vec_len
4449 * rb->pg_vec_pages
4450 * PAGE_SIZE;
4451 }
4452 }
4453
4454 if (expected_size == 0)
4455 goto out;
4456
4457 size = vma->vm_end - vma->vm_start;
4458 if (size != expected_size)
4459 goto out;
4460
4461 start = vma->vm_start;
4462 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4463 if (rb->pg_vec == NULL)
4464 continue;
4465
4466 for (i = 0; i < rb->pg_vec_len; i++) {
4467 struct page *page;
4468 void *kaddr = rb->pg_vec[i].buffer;
4469 int pg_num;
4470
4471 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4472 page = pgv_to_page(kaddr);
4473 err = vm_insert_page(vma, start, page);
4474 if (unlikely(err))
4475 goto out;
4476 start += PAGE_SIZE;
4477 kaddr += PAGE_SIZE;
4478 }
4479 }
4480 }
4481
4482 atomic_inc(&po->mapped);
4483 vma->vm_ops = &packet_mmap_ops;
4484 err = 0;
4485
4486 out:
4487 mutex_unlock(&po->pg_vec_lock);
4488 return err;
4489 }
4490
4491 static const struct proto_ops packet_ops_spkt = {
4492 .family = PF_PACKET,
4493 .owner = THIS_MODULE,
4494 .release = packet_release,
4495 .bind = packet_bind_spkt,
4496 .connect = sock_no_connect,
4497 .socketpair = sock_no_socketpair,
4498 .accept = sock_no_accept,
4499 .getname = packet_getname_spkt,
4500 .poll = datagram_poll,
4501 .ioctl = packet_ioctl,
4502 .gettstamp = sock_gettstamp,
4503 .listen = sock_no_listen,
4504 .shutdown = sock_no_shutdown,
4505 .setsockopt = sock_no_setsockopt,
4506 .getsockopt = sock_no_getsockopt,
4507 .sendmsg = packet_sendmsg_spkt,
4508 .recvmsg = packet_recvmsg,
4509 .mmap = sock_no_mmap,
4510 .sendpage = sock_no_sendpage,
4511 };
4512
4513 static const struct proto_ops packet_ops = {
4514 .family = PF_PACKET,
4515 .owner = THIS_MODULE,
4516 .release = packet_release,
4517 .bind = packet_bind,
4518 .connect = sock_no_connect,
4519 .socketpair = sock_no_socketpair,
4520 .accept = sock_no_accept,
4521 .getname = packet_getname,
4522 .poll = packet_poll,
4523 .ioctl = packet_ioctl,
4524 .gettstamp = sock_gettstamp,
4525 .listen = sock_no_listen,
4526 .shutdown = sock_no_shutdown,
4527 .setsockopt = packet_setsockopt,
4528 .getsockopt = packet_getsockopt,
4529 #ifdef CONFIG_COMPAT
4530 .compat_setsockopt = compat_packet_setsockopt,
4531 #endif
4532 .sendmsg = packet_sendmsg,
4533 .recvmsg = packet_recvmsg,
4534 .mmap = packet_mmap,
4535 .sendpage = sock_no_sendpage,
4536 };
4537
4538 static const struct net_proto_family packet_family_ops = {
4539 .family = PF_PACKET,
4540 .create = packet_create,
4541 .owner = THIS_MODULE,
4542 };
4543
4544 static struct notifier_block packet_netdev_notifier = {
4545 .notifier_call = packet_notifier,
4546 };
4547
4548 #ifdef CONFIG_PROC_FS
4549
packet_seq_start(struct seq_file * seq,loff_t * pos)4550 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4551 __acquires(RCU)
4552 {
4553 struct net *net = seq_file_net(seq);
4554
4555 rcu_read_lock();
4556 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4557 }
4558
packet_seq_next(struct seq_file * seq,void * v,loff_t * pos)4559 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4560 {
4561 struct net *net = seq_file_net(seq);
4562 return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4563 }
4564
packet_seq_stop(struct seq_file * seq,void * v)4565 static void packet_seq_stop(struct seq_file *seq, void *v)
4566 __releases(RCU)
4567 {
4568 rcu_read_unlock();
4569 }
4570
packet_seq_show(struct seq_file * seq,void * v)4571 static int packet_seq_show(struct seq_file *seq, void *v)
4572 {
4573 if (v == SEQ_START_TOKEN)
4574 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n");
4575 else {
4576 struct sock *s = sk_entry(v);
4577 const struct packet_sock *po = pkt_sk(s);
4578
4579 seq_printf(seq,
4580 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
4581 s,
4582 refcount_read(&s->sk_refcnt),
4583 s->sk_type,
4584 ntohs(po->num),
4585 po->ifindex,
4586 po->running,
4587 atomic_read(&s->sk_rmem_alloc),
4588 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4589 sock_i_ino(s));
4590 }
4591
4592 return 0;
4593 }
4594
4595 static const struct seq_operations packet_seq_ops = {
4596 .start = packet_seq_start,
4597 .next = packet_seq_next,
4598 .stop = packet_seq_stop,
4599 .show = packet_seq_show,
4600 };
4601 #endif
4602
packet_net_init(struct net * net)4603 static int __net_init packet_net_init(struct net *net)
4604 {
4605 mutex_init(&net->packet.sklist_lock);
4606 INIT_HLIST_HEAD(&net->packet.sklist);
4607
4608 if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops,
4609 sizeof(struct seq_net_private)))
4610 return -ENOMEM;
4611
4612 return 0;
4613 }
4614
packet_net_exit(struct net * net)4615 static void __net_exit packet_net_exit(struct net *net)
4616 {
4617 remove_proc_entry("packet", net->proc_net);
4618 WARN_ON_ONCE(!hlist_empty(&net->packet.sklist));
4619 }
4620
4621 static struct pernet_operations packet_net_ops = {
4622 .init = packet_net_init,
4623 .exit = packet_net_exit,
4624 };
4625
4626
packet_exit(void)4627 static void __exit packet_exit(void)
4628 {
4629 unregister_netdevice_notifier(&packet_netdev_notifier);
4630 unregister_pernet_subsys(&packet_net_ops);
4631 sock_unregister(PF_PACKET);
4632 proto_unregister(&packet_proto);
4633 }
4634
packet_init(void)4635 static int __init packet_init(void)
4636 {
4637 int rc;
4638
4639 rc = proto_register(&packet_proto, 0);
4640 if (rc)
4641 goto out;
4642 rc = sock_register(&packet_family_ops);
4643 if (rc)
4644 goto out_proto;
4645 rc = register_pernet_subsys(&packet_net_ops);
4646 if (rc)
4647 goto out_sock;
4648 rc = register_netdevice_notifier(&packet_netdev_notifier);
4649 if (rc)
4650 goto out_pernet;
4651
4652 return 0;
4653
4654 out_pernet:
4655 unregister_pernet_subsys(&packet_net_ops);
4656 out_sock:
4657 sock_unregister(PF_PACKET);
4658 out_proto:
4659 proto_unregister(&packet_proto);
4660 out:
4661 return rc;
4662 }
4663
4664 module_init(packet_init);
4665 module_exit(packet_exit);
4666 MODULE_LICENSE("GPL");
4667 MODULE_ALIAS_NETPROTO(PF_PACKET);
4668