• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2007, 2017 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/pagemap.h>
34 #include <linux/slab.h>
35 #include <linux/rbtree.h>
36 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
37 
38 #include "rds.h"
39 
40 /*
41  * XXX
42  *  - build with sparse
43  *  - should we detect duplicate keys on a socket?  hmm.
44  *  - an rdma is an mlock, apply rlimit?
45  */
46 
47 /*
48  * get the number of pages by looking at the page indices that the start and
49  * end addresses fall in.
50  *
51  * Returns 0 if the vec is invalid.  It is invalid if the number of bytes
52  * causes the address to wrap or overflows an unsigned int.  This comes
53  * from being stored in the 'length' member of 'struct scatterlist'.
54  */
rds_pages_in_vec(struct rds_iovec * vec)55 static unsigned int rds_pages_in_vec(struct rds_iovec *vec)
56 {
57 	if ((vec->addr + vec->bytes <= vec->addr) ||
58 	    (vec->bytes > (u64)UINT_MAX))
59 		return 0;
60 
61 	return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) -
62 		(vec->addr >> PAGE_SHIFT);
63 }
64 
rds_mr_tree_walk(struct rb_root * root,u64 key,struct rds_mr * insert)65 static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key,
66 				       struct rds_mr *insert)
67 {
68 	struct rb_node **p = &root->rb_node;
69 	struct rb_node *parent = NULL;
70 	struct rds_mr *mr;
71 
72 	while (*p) {
73 		parent = *p;
74 		mr = rb_entry(parent, struct rds_mr, r_rb_node);
75 
76 		if (key < mr->r_key)
77 			p = &(*p)->rb_left;
78 		else if (key > mr->r_key)
79 			p = &(*p)->rb_right;
80 		else
81 			return mr;
82 	}
83 
84 	if (insert) {
85 		rb_link_node(&insert->r_rb_node, parent, p);
86 		rb_insert_color(&insert->r_rb_node, root);
87 		refcount_inc(&insert->r_refcount);
88 	}
89 	return NULL;
90 }
91 
92 /*
93  * Destroy the transport-specific part of a MR.
94  */
rds_destroy_mr(struct rds_mr * mr)95 static void rds_destroy_mr(struct rds_mr *mr)
96 {
97 	struct rds_sock *rs = mr->r_sock;
98 	void *trans_private = NULL;
99 	unsigned long flags;
100 
101 	rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
102 			mr->r_key, refcount_read(&mr->r_refcount));
103 
104 	if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state))
105 		return;
106 
107 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
108 	if (!RB_EMPTY_NODE(&mr->r_rb_node))
109 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
110 	trans_private = mr->r_trans_private;
111 	mr->r_trans_private = NULL;
112 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
113 
114 	if (trans_private)
115 		mr->r_trans->free_mr(trans_private, mr->r_invalidate);
116 }
117 
__rds_put_mr_final(struct rds_mr * mr)118 void __rds_put_mr_final(struct rds_mr *mr)
119 {
120 	rds_destroy_mr(mr);
121 	kfree(mr);
122 }
123 
124 /*
125  * By the time this is called we can't have any more ioctls called on
126  * the socket so we don't need to worry about racing with others.
127  */
rds_rdma_drop_keys(struct rds_sock * rs)128 void rds_rdma_drop_keys(struct rds_sock *rs)
129 {
130 	struct rds_mr *mr;
131 	struct rb_node *node;
132 	unsigned long flags;
133 
134 	/* Release any MRs associated with this socket */
135 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
136 	while ((node = rb_first(&rs->rs_rdma_keys))) {
137 		mr = rb_entry(node, struct rds_mr, r_rb_node);
138 		if (mr->r_trans == rs->rs_transport)
139 			mr->r_invalidate = 0;
140 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
141 		RB_CLEAR_NODE(&mr->r_rb_node);
142 		spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
143 		rds_destroy_mr(mr);
144 		rds_mr_put(mr);
145 		spin_lock_irqsave(&rs->rs_rdma_lock, flags);
146 	}
147 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
148 
149 	if (rs->rs_transport && rs->rs_transport->flush_mrs)
150 		rs->rs_transport->flush_mrs();
151 }
152 
153 /*
154  * Helper function to pin user pages.
155  */
rds_pin_pages(unsigned long user_addr,unsigned int nr_pages,struct page ** pages,int write)156 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages,
157 			struct page **pages, int write)
158 {
159 	int ret;
160 
161 	ret = get_user_pages_fast(user_addr, nr_pages, write ? FOLL_WRITE : 0,
162 				  pages);
163 
164 	if (ret >= 0 && ret < nr_pages) {
165 		while (ret--)
166 			put_page(pages[ret]);
167 		ret = -EFAULT;
168 	}
169 
170 	return ret;
171 }
172 
__rds_rdma_map(struct rds_sock * rs,struct rds_get_mr_args * args,u64 * cookie_ret,struct rds_mr ** mr_ret,struct rds_conn_path * cp)173 static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args,
174 			  u64 *cookie_ret, struct rds_mr **mr_ret,
175 			  struct rds_conn_path *cp)
176 {
177 	struct rds_mr *mr = NULL, *found;
178 	unsigned int nr_pages;
179 	struct page **pages = NULL;
180 	struct scatterlist *sg;
181 	void *trans_private;
182 	unsigned long flags;
183 	rds_rdma_cookie_t cookie;
184 	unsigned int nents;
185 	long i;
186 	int ret;
187 
188 	if (ipv6_addr_any(&rs->rs_bound_addr) || !rs->rs_transport) {
189 		ret = -ENOTCONN; /* XXX not a great errno */
190 		goto out;
191 	}
192 
193 	if (!rs->rs_transport->get_mr) {
194 		ret = -EOPNOTSUPP;
195 		goto out;
196 	}
197 
198 	nr_pages = rds_pages_in_vec(&args->vec);
199 	if (nr_pages == 0) {
200 		ret = -EINVAL;
201 		goto out;
202 	}
203 
204 	/* Restrict the size of mr irrespective of underlying transport
205 	 * To account for unaligned mr regions, subtract one from nr_pages
206 	 */
207 	if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) {
208 		ret = -EMSGSIZE;
209 		goto out;
210 	}
211 
212 	rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
213 		args->vec.addr, args->vec.bytes, nr_pages);
214 
215 	/* XXX clamp nr_pages to limit the size of this alloc? */
216 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
217 	if (!pages) {
218 		ret = -ENOMEM;
219 		goto out;
220 	}
221 
222 	mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL);
223 	if (!mr) {
224 		ret = -ENOMEM;
225 		goto out;
226 	}
227 
228 	refcount_set(&mr->r_refcount, 1);
229 	RB_CLEAR_NODE(&mr->r_rb_node);
230 	mr->r_trans = rs->rs_transport;
231 	mr->r_sock = rs;
232 
233 	if (args->flags & RDS_RDMA_USE_ONCE)
234 		mr->r_use_once = 1;
235 	if (args->flags & RDS_RDMA_INVALIDATE)
236 		mr->r_invalidate = 1;
237 	if (args->flags & RDS_RDMA_READWRITE)
238 		mr->r_write = 1;
239 
240 	/*
241 	 * Pin the pages that make up the user buffer and transfer the page
242 	 * pointers to the mr's sg array.  We check to see if we've mapped
243 	 * the whole region after transferring the partial page references
244 	 * to the sg array so that we can have one page ref cleanup path.
245 	 *
246 	 * For now we have no flag that tells us whether the mapping is
247 	 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
248 	 * the zero page.
249 	 */
250 	ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1);
251 	if (ret < 0)
252 		goto out;
253 
254 	nents = ret;
255 	sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL);
256 	if (!sg) {
257 		ret = -ENOMEM;
258 		goto out;
259 	}
260 	WARN_ON(!nents);
261 	sg_init_table(sg, nents);
262 
263 	/* Stick all pages into the scatterlist */
264 	for (i = 0 ; i < nents; i++)
265 		sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
266 
267 	rdsdebug("RDS: trans_private nents is %u\n", nents);
268 
269 	/* Obtain a transport specific MR. If this succeeds, the
270 	 * s/g list is now owned by the MR.
271 	 * Note that dma_map() implies that pending writes are
272 	 * flushed to RAM, so no dma_sync is needed here. */
273 	trans_private = rs->rs_transport->get_mr(sg, nents, rs,
274 						 &mr->r_key,
275 						 cp ? cp->cp_conn : NULL);
276 
277 	if (IS_ERR(trans_private)) {
278 		for (i = 0 ; i < nents; i++)
279 			put_page(sg_page(&sg[i]));
280 		kfree(sg);
281 		ret = PTR_ERR(trans_private);
282 		goto out;
283 	}
284 
285 	mr->r_trans_private = trans_private;
286 
287 	rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
288 	       mr->r_key, (void *)(unsigned long) args->cookie_addr);
289 
290 	/* The user may pass us an unaligned address, but we can only
291 	 * map page aligned regions. So we keep the offset, and build
292 	 * a 64bit cookie containing <R_Key, offset> and pass that
293 	 * around. */
294 	cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK);
295 	if (cookie_ret)
296 		*cookie_ret = cookie;
297 
298 	if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) {
299 		ret = -EFAULT;
300 		goto out;
301 	}
302 
303 	/* Inserting the new MR into the rbtree bumps its
304 	 * reference count. */
305 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
306 	found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr);
307 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
308 
309 	BUG_ON(found && found != mr);
310 
311 	rdsdebug("RDS: get_mr key is %x\n", mr->r_key);
312 	if (mr_ret) {
313 		refcount_inc(&mr->r_refcount);
314 		*mr_ret = mr;
315 	}
316 
317 	ret = 0;
318 out:
319 	kfree(pages);
320 	if (mr)
321 		rds_mr_put(mr);
322 	return ret;
323 }
324 
rds_get_mr(struct rds_sock * rs,char __user * optval,int optlen)325 int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen)
326 {
327 	struct rds_get_mr_args args;
328 
329 	if (optlen != sizeof(struct rds_get_mr_args))
330 		return -EINVAL;
331 
332 	if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval,
333 			   sizeof(struct rds_get_mr_args)))
334 		return -EFAULT;
335 
336 	return __rds_rdma_map(rs, &args, NULL, NULL, NULL);
337 }
338 
rds_get_mr_for_dest(struct rds_sock * rs,char __user * optval,int optlen)339 int rds_get_mr_for_dest(struct rds_sock *rs, char __user *optval, int optlen)
340 {
341 	struct rds_get_mr_for_dest_args args;
342 	struct rds_get_mr_args new_args;
343 
344 	if (optlen != sizeof(struct rds_get_mr_for_dest_args))
345 		return -EINVAL;
346 
347 	if (copy_from_user(&args, (struct rds_get_mr_for_dest_args __user *)optval,
348 			   sizeof(struct rds_get_mr_for_dest_args)))
349 		return -EFAULT;
350 
351 	/*
352 	 * Initially, just behave like get_mr().
353 	 * TODO: Implement get_mr as wrapper around this
354 	 *	 and deprecate it.
355 	 */
356 	new_args.vec = args.vec;
357 	new_args.cookie_addr = args.cookie_addr;
358 	new_args.flags = args.flags;
359 
360 	return __rds_rdma_map(rs, &new_args, NULL, NULL, NULL);
361 }
362 
363 /*
364  * Free the MR indicated by the given R_Key
365  */
rds_free_mr(struct rds_sock * rs,char __user * optval,int optlen)366 int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen)
367 {
368 	struct rds_free_mr_args args;
369 	struct rds_mr *mr;
370 	unsigned long flags;
371 
372 	if (optlen != sizeof(struct rds_free_mr_args))
373 		return -EINVAL;
374 
375 	if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval,
376 			   sizeof(struct rds_free_mr_args)))
377 		return -EFAULT;
378 
379 	/* Special case - a null cookie means flush all unused MRs */
380 	if (args.cookie == 0) {
381 		if (!rs->rs_transport || !rs->rs_transport->flush_mrs)
382 			return -EINVAL;
383 		rs->rs_transport->flush_mrs();
384 		return 0;
385 	}
386 
387 	/* Look up the MR given its R_key and remove it from the rbtree
388 	 * so nobody else finds it.
389 	 * This should also prevent races with rds_rdma_unuse.
390 	 */
391 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
392 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL);
393 	if (mr) {
394 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
395 		RB_CLEAR_NODE(&mr->r_rb_node);
396 		if (args.flags & RDS_RDMA_INVALIDATE)
397 			mr->r_invalidate = 1;
398 	}
399 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
400 
401 	if (!mr)
402 		return -EINVAL;
403 
404 	/*
405 	 * call rds_destroy_mr() ourselves so that we're sure it's done by the time
406 	 * we return.  If we let rds_mr_put() do it it might not happen until
407 	 * someone else drops their ref.
408 	 */
409 	rds_destroy_mr(mr);
410 	rds_mr_put(mr);
411 	return 0;
412 }
413 
414 /*
415  * This is called when we receive an extension header that
416  * tells us this MR was used. It allows us to implement
417  * use_once semantics
418  */
rds_rdma_unuse(struct rds_sock * rs,u32 r_key,int force)419 void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force)
420 {
421 	struct rds_mr *mr;
422 	unsigned long flags;
423 	int zot_me = 0;
424 
425 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
426 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
427 	if (!mr) {
428 		pr_debug("rds: trying to unuse MR with unknown r_key %u!\n",
429 			 r_key);
430 		spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
431 		return;
432 	}
433 
434 	if (mr->r_use_once || force) {
435 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
436 		RB_CLEAR_NODE(&mr->r_rb_node);
437 		zot_me = 1;
438 	}
439 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
440 
441 	/* May have to issue a dma_sync on this memory region.
442 	 * Note we could avoid this if the operation was a RDMA READ,
443 	 * but at this point we can't tell. */
444 	if (mr->r_trans->sync_mr)
445 		mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE);
446 
447 	/* If the MR was marked as invalidate, this will
448 	 * trigger an async flush. */
449 	if (zot_me) {
450 		rds_destroy_mr(mr);
451 		rds_mr_put(mr);
452 	}
453 }
454 
rds_rdma_free_op(struct rm_rdma_op * ro)455 void rds_rdma_free_op(struct rm_rdma_op *ro)
456 {
457 	unsigned int i;
458 
459 	for (i = 0; i < ro->op_nents; i++) {
460 		struct page *page = sg_page(&ro->op_sg[i]);
461 
462 		/* Mark page dirty if it was possibly modified, which
463 		 * is the case for a RDMA_READ which copies from remote
464 		 * to local memory */
465 		if (!ro->op_write) {
466 			WARN_ON(!page->mapping && irqs_disabled());
467 			set_page_dirty(page);
468 		}
469 		put_page(page);
470 	}
471 
472 	kfree(ro->op_notifier);
473 	ro->op_notifier = NULL;
474 	ro->op_active = 0;
475 }
476 
rds_atomic_free_op(struct rm_atomic_op * ao)477 void rds_atomic_free_op(struct rm_atomic_op *ao)
478 {
479 	struct page *page = sg_page(ao->op_sg);
480 
481 	/* Mark page dirty if it was possibly modified, which
482 	 * is the case for a RDMA_READ which copies from remote
483 	 * to local memory */
484 	set_page_dirty(page);
485 	put_page(page);
486 
487 	kfree(ao->op_notifier);
488 	ao->op_notifier = NULL;
489 	ao->op_active = 0;
490 }
491 
492 
493 /*
494  * Count the number of pages needed to describe an incoming iovec array.
495  */
rds_rdma_pages(struct rds_iovec iov[],int nr_iovecs)496 static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs)
497 {
498 	int tot_pages = 0;
499 	unsigned int nr_pages;
500 	unsigned int i;
501 
502 	/* figure out the number of pages in the vector */
503 	for (i = 0; i < nr_iovecs; i++) {
504 		nr_pages = rds_pages_in_vec(&iov[i]);
505 		if (nr_pages == 0)
506 			return -EINVAL;
507 
508 		tot_pages += nr_pages;
509 
510 		/*
511 		 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
512 		 * so tot_pages cannot overflow without first going negative.
513 		 */
514 		if (tot_pages < 0)
515 			return -EINVAL;
516 	}
517 
518 	return tot_pages;
519 }
520 
rds_rdma_extra_size(struct rds_rdma_args * args,struct rds_iov_vector * iov)521 int rds_rdma_extra_size(struct rds_rdma_args *args,
522 			struct rds_iov_vector *iov)
523 {
524 	struct rds_iovec *vec;
525 	struct rds_iovec __user *local_vec;
526 	int tot_pages = 0;
527 	unsigned int nr_pages;
528 	unsigned int i;
529 
530 	local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr;
531 
532 	if (args->nr_local == 0)
533 		return -EINVAL;
534 
535 	iov->iov = kcalloc(args->nr_local,
536 			   sizeof(struct rds_iovec),
537 			   GFP_KERNEL);
538 	if (!iov->iov)
539 		return -ENOMEM;
540 
541 	vec = &iov->iov[0];
542 
543 	if (copy_from_user(vec, local_vec, args->nr_local *
544 			   sizeof(struct rds_iovec)))
545 		return -EFAULT;
546 	iov->len = args->nr_local;
547 
548 	/* figure out the number of pages in the vector */
549 	for (i = 0; i < args->nr_local; i++, vec++) {
550 
551 		nr_pages = rds_pages_in_vec(vec);
552 		if (nr_pages == 0)
553 			return -EINVAL;
554 
555 		tot_pages += nr_pages;
556 
557 		/*
558 		 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
559 		 * so tot_pages cannot overflow without first going negative.
560 		 */
561 		if (tot_pages < 0)
562 			return -EINVAL;
563 	}
564 
565 	return tot_pages * sizeof(struct scatterlist);
566 }
567 
568 /*
569  * The application asks for a RDMA transfer.
570  * Extract all arguments and set up the rdma_op
571  */
rds_cmsg_rdma_args(struct rds_sock * rs,struct rds_message * rm,struct cmsghdr * cmsg,struct rds_iov_vector * vec)572 int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm,
573 		       struct cmsghdr *cmsg,
574 		       struct rds_iov_vector *vec)
575 {
576 	struct rds_rdma_args *args;
577 	struct rm_rdma_op *op = &rm->rdma;
578 	int nr_pages;
579 	unsigned int nr_bytes;
580 	struct page **pages = NULL;
581 	struct rds_iovec *iovs;
582 	unsigned int i, j;
583 	int ret = 0;
584 
585 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args))
586 	    || rm->rdma.op_active)
587 		return -EINVAL;
588 
589 	args = CMSG_DATA(cmsg);
590 
591 	if (ipv6_addr_any(&rs->rs_bound_addr)) {
592 		ret = -ENOTCONN; /* XXX not a great errno */
593 		goto out_ret;
594 	}
595 
596 	if (args->nr_local > UIO_MAXIOV) {
597 		ret = -EMSGSIZE;
598 		goto out_ret;
599 	}
600 
601 	if (vec->len != args->nr_local) {
602 		ret = -EINVAL;
603 		goto out_ret;
604 	}
605 
606 	iovs = vec->iov;
607 
608 	nr_pages = rds_rdma_pages(iovs, args->nr_local);
609 	if (nr_pages < 0) {
610 		ret = -EINVAL;
611 		goto out_ret;
612 	}
613 
614 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
615 	if (!pages) {
616 		ret = -ENOMEM;
617 		goto out_ret;
618 	}
619 
620 	op->op_write = !!(args->flags & RDS_RDMA_READWRITE);
621 	op->op_fence = !!(args->flags & RDS_RDMA_FENCE);
622 	op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
623 	op->op_silent = !!(args->flags & RDS_RDMA_SILENT);
624 	op->op_active = 1;
625 	op->op_recverr = rs->rs_recverr;
626 	WARN_ON(!nr_pages);
627 	op->op_sg = rds_message_alloc_sgs(rm, nr_pages, &ret);
628 	if (!op->op_sg)
629 		goto out_pages;
630 
631 	if (op->op_notify || op->op_recverr) {
632 		/* We allocate an uninitialized notifier here, because
633 		 * we don't want to do that in the completion handler. We
634 		 * would have to use GFP_ATOMIC there, and don't want to deal
635 		 * with failed allocations.
636 		 */
637 		op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL);
638 		if (!op->op_notifier) {
639 			ret = -ENOMEM;
640 			goto out_pages;
641 		}
642 		op->op_notifier->n_user_token = args->user_token;
643 		op->op_notifier->n_status = RDS_RDMA_SUCCESS;
644 	}
645 
646 	/* The cookie contains the R_Key of the remote memory region, and
647 	 * optionally an offset into it. This is how we implement RDMA into
648 	 * unaligned memory.
649 	 * When setting up the RDMA, we need to add that offset to the
650 	 * destination address (which is really an offset into the MR)
651 	 * FIXME: We may want to move this into ib_rdma.c
652 	 */
653 	op->op_rkey = rds_rdma_cookie_key(args->cookie);
654 	op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie);
655 
656 	nr_bytes = 0;
657 
658 	rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
659 	       (unsigned long long)args->nr_local,
660 	       (unsigned long long)args->remote_vec.addr,
661 	       op->op_rkey);
662 
663 	for (i = 0; i < args->nr_local; i++) {
664 		struct rds_iovec *iov = &iovs[i];
665 		/* don't need to check, rds_rdma_pages() verified nr will be +nonzero */
666 		unsigned int nr = rds_pages_in_vec(iov);
667 
668 		rs->rs_user_addr = iov->addr;
669 		rs->rs_user_bytes = iov->bytes;
670 
671 		/* If it's a WRITE operation, we want to pin the pages for reading.
672 		 * If it's a READ operation, we need to pin the pages for writing.
673 		 */
674 		ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write);
675 		if (ret < 0)
676 			goto out_pages;
677 		else
678 			ret = 0;
679 
680 		rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n",
681 			 nr_bytes, nr, iov->bytes, iov->addr);
682 
683 		nr_bytes += iov->bytes;
684 
685 		for (j = 0; j < nr; j++) {
686 			unsigned int offset = iov->addr & ~PAGE_MASK;
687 			struct scatterlist *sg;
688 
689 			sg = &op->op_sg[op->op_nents + j];
690 			sg_set_page(sg, pages[j],
691 					min_t(unsigned int, iov->bytes, PAGE_SIZE - offset),
692 					offset);
693 
694 			rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n",
695 			       sg->offset, sg->length, iov->addr, iov->bytes);
696 
697 			iov->addr += sg->length;
698 			iov->bytes -= sg->length;
699 		}
700 
701 		op->op_nents += nr;
702 	}
703 
704 	if (nr_bytes > args->remote_vec.bytes) {
705 		rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
706 				nr_bytes,
707 				(unsigned int) args->remote_vec.bytes);
708 		ret = -EINVAL;
709 		goto out_pages;
710 	}
711 	op->op_bytes = nr_bytes;
712 
713 out_pages:
714 	kfree(pages);
715 out_ret:
716 	if (ret)
717 		rds_rdma_free_op(op);
718 	else
719 		rds_stats_inc(s_send_rdma);
720 
721 	return ret;
722 }
723 
724 /*
725  * The application wants us to pass an RDMA destination (aka MR)
726  * to the remote
727  */
rds_cmsg_rdma_dest(struct rds_sock * rs,struct rds_message * rm,struct cmsghdr * cmsg)728 int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm,
729 			  struct cmsghdr *cmsg)
730 {
731 	unsigned long flags;
732 	struct rds_mr *mr;
733 	u32 r_key;
734 	int err = 0;
735 
736 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) ||
737 	    rm->m_rdma_cookie != 0)
738 		return -EINVAL;
739 
740 	memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie));
741 
742 	/* We are reusing a previously mapped MR here. Most likely, the
743 	 * application has written to the buffer, so we need to explicitly
744 	 * flush those writes to RAM. Otherwise the HCA may not see them
745 	 * when doing a DMA from that buffer.
746 	 */
747 	r_key = rds_rdma_cookie_key(rm->m_rdma_cookie);
748 
749 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
750 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
751 	if (!mr)
752 		err = -EINVAL;	/* invalid r_key */
753 	else
754 		refcount_inc(&mr->r_refcount);
755 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
756 
757 	if (mr) {
758 		mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE);
759 		rm->rdma.op_rdma_mr = mr;
760 	}
761 	return err;
762 }
763 
764 /*
765  * The application passes us an address range it wants to enable RDMA
766  * to/from. We map the area, and save the <R_Key,offset> pair
767  * in rm->m_rdma_cookie. This causes it to be sent along to the peer
768  * in an extension header.
769  */
rds_cmsg_rdma_map(struct rds_sock * rs,struct rds_message * rm,struct cmsghdr * cmsg)770 int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm,
771 			  struct cmsghdr *cmsg)
772 {
773 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) ||
774 	    rm->m_rdma_cookie != 0)
775 		return -EINVAL;
776 
777 	return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie,
778 			      &rm->rdma.op_rdma_mr, rm->m_conn_path);
779 }
780 
781 /*
782  * Fill in rds_message for an atomic request.
783  */
rds_cmsg_atomic(struct rds_sock * rs,struct rds_message * rm,struct cmsghdr * cmsg)784 int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm,
785 		    struct cmsghdr *cmsg)
786 {
787 	struct page *page = NULL;
788 	struct rds_atomic_args *args;
789 	int ret = 0;
790 
791 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args))
792 	 || rm->atomic.op_active)
793 		return -EINVAL;
794 
795 	args = CMSG_DATA(cmsg);
796 
797 	/* Nonmasked & masked cmsg ops converted to masked hw ops */
798 	switch (cmsg->cmsg_type) {
799 	case RDS_CMSG_ATOMIC_FADD:
800 		rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
801 		rm->atomic.op_m_fadd.add = args->fadd.add;
802 		rm->atomic.op_m_fadd.nocarry_mask = 0;
803 		break;
804 	case RDS_CMSG_MASKED_ATOMIC_FADD:
805 		rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
806 		rm->atomic.op_m_fadd.add = args->m_fadd.add;
807 		rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask;
808 		break;
809 	case RDS_CMSG_ATOMIC_CSWP:
810 		rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
811 		rm->atomic.op_m_cswp.compare = args->cswp.compare;
812 		rm->atomic.op_m_cswp.swap = args->cswp.swap;
813 		rm->atomic.op_m_cswp.compare_mask = ~0;
814 		rm->atomic.op_m_cswp.swap_mask = ~0;
815 		break;
816 	case RDS_CMSG_MASKED_ATOMIC_CSWP:
817 		rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
818 		rm->atomic.op_m_cswp.compare = args->m_cswp.compare;
819 		rm->atomic.op_m_cswp.swap = args->m_cswp.swap;
820 		rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask;
821 		rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask;
822 		break;
823 	default:
824 		BUG(); /* should never happen */
825 	}
826 
827 	rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
828 	rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT);
829 	rm->atomic.op_active = 1;
830 	rm->atomic.op_recverr = rs->rs_recverr;
831 	rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1, &ret);
832 	if (!rm->atomic.op_sg)
833 		goto err;
834 
835 	/* verify 8 byte-aligned */
836 	if (args->local_addr & 0x7) {
837 		ret = -EFAULT;
838 		goto err;
839 	}
840 
841 	ret = rds_pin_pages(args->local_addr, 1, &page, 1);
842 	if (ret != 1)
843 		goto err;
844 	ret = 0;
845 
846 	sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr));
847 
848 	if (rm->atomic.op_notify || rm->atomic.op_recverr) {
849 		/* We allocate an uninitialized notifier here, because
850 		 * we don't want to do that in the completion handler. We
851 		 * would have to use GFP_ATOMIC there, and don't want to deal
852 		 * with failed allocations.
853 		 */
854 		rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL);
855 		if (!rm->atomic.op_notifier) {
856 			ret = -ENOMEM;
857 			goto err;
858 		}
859 
860 		rm->atomic.op_notifier->n_user_token = args->user_token;
861 		rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS;
862 	}
863 
864 	rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie);
865 	rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie);
866 
867 	return ret;
868 err:
869 	if (page)
870 		put_page(page);
871 	rm->atomic.op_active = 0;
872 	kfree(rm->atomic.op_notifier);
873 
874 	return ret;
875 }
876