1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3 * (C) Copyright IBM Corp. 2001, 2004
4 * Copyright (c) 1999-2000 Cisco, Inc.
5 * Copyright (c) 1999-2001 Motorola, Inc.
6 * Copyright (c) 2001 Intel Corp.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * This module provides the abstraction for an SCTP association.
12 *
13 * Please send any bug reports or fixes you make to the
14 * email address(es):
15 * lksctp developers <linux-sctp@vger.kernel.org>
16 *
17 * Written or modified by:
18 * La Monte H.P. Yarroll <piggy@acm.org>
19 * Karl Knutson <karl@athena.chicago.il.us>
20 * Jon Grimm <jgrimm@us.ibm.com>
21 * Xingang Guo <xingang.guo@intel.com>
22 * Hui Huang <hui.huang@nokia.com>
23 * Sridhar Samudrala <sri@us.ibm.com>
24 * Daisy Chang <daisyc@us.ibm.com>
25 * Ryan Layer <rmlayer@us.ibm.com>
26 * Kevin Gao <kevin.gao@intel.com>
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/poll.h>
34 #include <linux/init.h>
35
36 #include <linux/slab.h>
37 #include <linux/in.h>
38 #include <net/ipv6.h>
39 #include <net/sctp/sctp.h>
40 #include <net/sctp/sm.h>
41
42 /* Forward declarations for internal functions. */
43 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
44 static void sctp_assoc_bh_rcv(struct work_struct *work);
45 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
46 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
47
48 /* 1st Level Abstractions. */
49
50 /* Initialize a new association from provided memory. */
sctp_association_init(struct sctp_association * asoc,const struct sctp_endpoint * ep,const struct sock * sk,enum sctp_scope scope,gfp_t gfp)51 static struct sctp_association *sctp_association_init(
52 struct sctp_association *asoc,
53 const struct sctp_endpoint *ep,
54 const struct sock *sk,
55 enum sctp_scope scope, gfp_t gfp)
56 {
57 struct sctp_sock *sp;
58 struct sctp_paramhdr *p;
59 int i;
60
61 /* Retrieve the SCTP per socket area. */
62 sp = sctp_sk((struct sock *)sk);
63
64 /* Discarding const is appropriate here. */
65 asoc->ep = (struct sctp_endpoint *)ep;
66 asoc->base.sk = (struct sock *)sk;
67 asoc->base.net = sock_net(sk);
68
69 sctp_endpoint_hold(asoc->ep);
70 sock_hold(asoc->base.sk);
71
72 /* Initialize the common base substructure. */
73 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
74
75 /* Initialize the object handling fields. */
76 refcount_set(&asoc->base.refcnt, 1);
77
78 /* Initialize the bind addr area. */
79 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
80
81 asoc->state = SCTP_STATE_CLOSED;
82 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
83 asoc->user_frag = sp->user_frag;
84
85 /* Set the association max_retrans and RTO values from the
86 * socket values.
87 */
88 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
89 asoc->pf_retrans = sp->pf_retrans;
90
91 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
92 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
93 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
94
95 /* Initialize the association's heartbeat interval based on the
96 * sock configured value.
97 */
98 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
99
100 /* Initialize path max retrans value. */
101 asoc->pathmaxrxt = sp->pathmaxrxt;
102
103 asoc->flowlabel = sp->flowlabel;
104 asoc->dscp = sp->dscp;
105
106 /* Set association default SACK delay */
107 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
108 asoc->sackfreq = sp->sackfreq;
109
110 /* Set the association default flags controlling
111 * Heartbeat, SACK delay, and Path MTU Discovery.
112 */
113 asoc->param_flags = sp->param_flags;
114
115 /* Initialize the maximum number of new data packets that can be sent
116 * in a burst.
117 */
118 asoc->max_burst = sp->max_burst;
119
120 asoc->subscribe = sp->subscribe;
121
122 /* initialize association timers */
123 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
124 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
125 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
126
127 /* sctpimpguide Section 2.12.2
128 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
129 * recommended value of 5 times 'RTO.Max'.
130 */
131 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
132 = 5 * asoc->rto_max;
133
134 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
135 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
136
137 /* Initializes the timers */
138 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
139 timer_setup(&asoc->timers[i], sctp_timer_events[i], 0);
140
141 /* Pull default initialization values from the sock options.
142 * Note: This assumes that the values have already been
143 * validated in the sock.
144 */
145 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
146 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
147 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
148
149 asoc->max_init_timeo =
150 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
151
152 /* Set the local window size for receive.
153 * This is also the rcvbuf space per association.
154 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
155 * 1500 bytes in one SCTP packet.
156 */
157 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
158 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
159 else
160 asoc->rwnd = sk->sk_rcvbuf/2;
161
162 asoc->a_rwnd = asoc->rwnd;
163
164 /* Use my own max window until I learn something better. */
165 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
166
167 /* Initialize the receive memory counter */
168 atomic_set(&asoc->rmem_alloc, 0);
169
170 init_waitqueue_head(&asoc->wait);
171
172 asoc->c.my_vtag = sctp_generate_tag(ep);
173 asoc->c.my_port = ep->base.bind_addr.port;
174
175 asoc->c.initial_tsn = sctp_generate_tsn(ep);
176
177 asoc->next_tsn = asoc->c.initial_tsn;
178
179 asoc->ctsn_ack_point = asoc->next_tsn - 1;
180 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
181 asoc->highest_sacked = asoc->ctsn_ack_point;
182 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
183
184 /* ADDIP Section 4.1 Asconf Chunk Procedures
185 *
186 * When an endpoint has an ASCONF signaled change to be sent to the
187 * remote endpoint it should do the following:
188 * ...
189 * A2) a serial number should be assigned to the chunk. The serial
190 * number SHOULD be a monotonically increasing number. The serial
191 * numbers SHOULD be initialized at the start of the
192 * association to the same value as the initial TSN.
193 */
194 asoc->addip_serial = asoc->c.initial_tsn;
195 asoc->strreset_outseq = asoc->c.initial_tsn;
196
197 INIT_LIST_HEAD(&asoc->addip_chunk_list);
198 INIT_LIST_HEAD(&asoc->asconf_ack_list);
199
200 /* Make an empty list of remote transport addresses. */
201 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
202
203 /* RFC 2960 5.1 Normal Establishment of an Association
204 *
205 * After the reception of the first data chunk in an
206 * association the endpoint must immediately respond with a
207 * sack to acknowledge the data chunk. Subsequent
208 * acknowledgements should be done as described in Section
209 * 6.2.
210 *
211 * [We implement this by telling a new association that it
212 * already received one packet.]
213 */
214 asoc->peer.sack_needed = 1;
215 asoc->peer.sack_generation = 1;
216
217 /* Create an input queue. */
218 sctp_inq_init(&asoc->base.inqueue);
219 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
220
221 /* Create an output queue. */
222 sctp_outq_init(asoc, &asoc->outqueue);
223
224 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
225 goto fail_init;
226
227 if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams,
228 0, gfp))
229 goto fail_init;
230
231 /* Initialize default path MTU. */
232 asoc->pathmtu = sp->pathmtu;
233 sctp_assoc_update_frag_point(asoc);
234
235 /* Assume that peer would support both address types unless we are
236 * told otherwise.
237 */
238 asoc->peer.ipv4_address = 1;
239 if (asoc->base.sk->sk_family == PF_INET6)
240 asoc->peer.ipv6_address = 1;
241 INIT_LIST_HEAD(&asoc->asocs);
242
243 asoc->default_stream = sp->default_stream;
244 asoc->default_ppid = sp->default_ppid;
245 asoc->default_flags = sp->default_flags;
246 asoc->default_context = sp->default_context;
247 asoc->default_timetolive = sp->default_timetolive;
248 asoc->default_rcv_context = sp->default_rcv_context;
249
250 /* AUTH related initializations */
251 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
252 if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp))
253 goto stream_free;
254
255 asoc->active_key_id = ep->active_key_id;
256 asoc->strreset_enable = ep->strreset_enable;
257
258 /* Save the hmacs and chunks list into this association */
259 if (ep->auth_hmacs_list)
260 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
261 ntohs(ep->auth_hmacs_list->param_hdr.length));
262 if (ep->auth_chunk_list)
263 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
264 ntohs(ep->auth_chunk_list->param_hdr.length));
265
266 /* Get the AUTH random number for this association */
267 p = (struct sctp_paramhdr *)asoc->c.auth_random;
268 p->type = SCTP_PARAM_RANDOM;
269 p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH);
270 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
271
272 return asoc;
273
274 stream_free:
275 sctp_stream_free(&asoc->stream);
276 fail_init:
277 sock_put(asoc->base.sk);
278 sctp_endpoint_put(asoc->ep);
279 return NULL;
280 }
281
282 /* Allocate and initialize a new association */
sctp_association_new(const struct sctp_endpoint * ep,const struct sock * sk,enum sctp_scope scope,gfp_t gfp)283 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
284 const struct sock *sk,
285 enum sctp_scope scope, gfp_t gfp)
286 {
287 struct sctp_association *asoc;
288
289 asoc = kzalloc(sizeof(*asoc), gfp);
290 if (!asoc)
291 goto fail;
292
293 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
294 goto fail_init;
295
296 SCTP_DBG_OBJCNT_INC(assoc);
297
298 pr_debug("Created asoc %p\n", asoc);
299
300 return asoc;
301
302 fail_init:
303 kfree(asoc);
304 fail:
305 return NULL;
306 }
307
308 /* Free this association if possible. There may still be users, so
309 * the actual deallocation may be delayed.
310 */
sctp_association_free(struct sctp_association * asoc)311 void sctp_association_free(struct sctp_association *asoc)
312 {
313 struct sock *sk = asoc->base.sk;
314 struct sctp_transport *transport;
315 struct list_head *pos, *temp;
316 int i;
317
318 /* Only real associations count against the endpoint, so
319 * don't bother for if this is a temporary association.
320 */
321 if (!list_empty(&asoc->asocs)) {
322 list_del(&asoc->asocs);
323
324 /* Decrement the backlog value for a TCP-style listening
325 * socket.
326 */
327 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
328 sk->sk_ack_backlog--;
329 }
330
331 /* Mark as dead, so other users can know this structure is
332 * going away.
333 */
334 asoc->base.dead = true;
335
336 /* Dispose of any data lying around in the outqueue. */
337 sctp_outq_free(&asoc->outqueue);
338
339 /* Dispose of any pending messages for the upper layer. */
340 sctp_ulpq_free(&asoc->ulpq);
341
342 /* Dispose of any pending chunks on the inqueue. */
343 sctp_inq_free(&asoc->base.inqueue);
344
345 sctp_tsnmap_free(&asoc->peer.tsn_map);
346
347 /* Free stream information. */
348 sctp_stream_free(&asoc->stream);
349
350 if (asoc->strreset_chunk)
351 sctp_chunk_free(asoc->strreset_chunk);
352
353 /* Clean up the bound address list. */
354 sctp_bind_addr_free(&asoc->base.bind_addr);
355
356 /* Do we need to go through all of our timers and
357 * delete them? To be safe we will try to delete all, but we
358 * should be able to go through and make a guess based
359 * on our state.
360 */
361 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
362 if (del_timer(&asoc->timers[i]))
363 sctp_association_put(asoc);
364 }
365
366 /* Free peer's cached cookie. */
367 kfree(asoc->peer.cookie);
368 kfree(asoc->peer.peer_random);
369 kfree(asoc->peer.peer_chunks);
370 kfree(asoc->peer.peer_hmacs);
371
372 /* Release the transport structures. */
373 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
374 transport = list_entry(pos, struct sctp_transport, transports);
375 list_del_rcu(pos);
376 sctp_unhash_transport(transport);
377 sctp_transport_free(transport);
378 }
379
380 asoc->peer.transport_count = 0;
381
382 sctp_asconf_queue_teardown(asoc);
383
384 /* Free pending address space being deleted */
385 kfree(asoc->asconf_addr_del_pending);
386
387 /* AUTH - Free the endpoint shared keys */
388 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
389
390 /* AUTH - Free the association shared key */
391 sctp_auth_key_put(asoc->asoc_shared_key);
392
393 sctp_association_put(asoc);
394 }
395
396 /* Cleanup and free up an association. */
sctp_association_destroy(struct sctp_association * asoc)397 static void sctp_association_destroy(struct sctp_association *asoc)
398 {
399 if (unlikely(!asoc->base.dead)) {
400 WARN(1, "Attempt to destroy undead association %p!\n", asoc);
401 return;
402 }
403
404 sctp_endpoint_put(asoc->ep);
405 sock_put(asoc->base.sk);
406
407 if (asoc->assoc_id != 0) {
408 spin_lock_bh(&sctp_assocs_id_lock);
409 idr_remove(&sctp_assocs_id, asoc->assoc_id);
410 spin_unlock_bh(&sctp_assocs_id_lock);
411 }
412
413 WARN_ON(atomic_read(&asoc->rmem_alloc));
414
415 kfree_rcu(asoc, rcu);
416 SCTP_DBG_OBJCNT_DEC(assoc);
417 }
418
419 /* Change the primary destination address for the peer. */
sctp_assoc_set_primary(struct sctp_association * asoc,struct sctp_transport * transport)420 void sctp_assoc_set_primary(struct sctp_association *asoc,
421 struct sctp_transport *transport)
422 {
423 int changeover = 0;
424
425 /* it's a changeover only if we already have a primary path
426 * that we are changing
427 */
428 if (asoc->peer.primary_path != NULL &&
429 asoc->peer.primary_path != transport)
430 changeover = 1 ;
431
432 asoc->peer.primary_path = transport;
433
434 /* Set a default msg_name for events. */
435 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
436 sizeof(union sctp_addr));
437
438 /* If the primary path is changing, assume that the
439 * user wants to use this new path.
440 */
441 if ((transport->state == SCTP_ACTIVE) ||
442 (transport->state == SCTP_UNKNOWN))
443 asoc->peer.active_path = transport;
444
445 /*
446 * SFR-CACC algorithm:
447 * Upon the receipt of a request to change the primary
448 * destination address, on the data structure for the new
449 * primary destination, the sender MUST do the following:
450 *
451 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
452 * to this destination address earlier. The sender MUST set
453 * CYCLING_CHANGEOVER to indicate that this switch is a
454 * double switch to the same destination address.
455 *
456 * Really, only bother is we have data queued or outstanding on
457 * the association.
458 */
459 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
460 return;
461
462 if (transport->cacc.changeover_active)
463 transport->cacc.cycling_changeover = changeover;
464
465 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
466 * a changeover has occurred.
467 */
468 transport->cacc.changeover_active = changeover;
469
470 /* 3) The sender MUST store the next TSN to be sent in
471 * next_tsn_at_change.
472 */
473 transport->cacc.next_tsn_at_change = asoc->next_tsn;
474 }
475
476 /* Remove a transport from an association. */
sctp_assoc_rm_peer(struct sctp_association * asoc,struct sctp_transport * peer)477 void sctp_assoc_rm_peer(struct sctp_association *asoc,
478 struct sctp_transport *peer)
479 {
480 struct sctp_transport *transport;
481 struct list_head *pos;
482 struct sctp_chunk *ch;
483
484 pr_debug("%s: association:%p addr:%pISpc\n",
485 __func__, asoc, &peer->ipaddr.sa);
486
487 /* If we are to remove the current retran_path, update it
488 * to the next peer before removing this peer from the list.
489 */
490 if (asoc->peer.retran_path == peer)
491 sctp_assoc_update_retran_path(asoc);
492
493 /* Remove this peer from the list. */
494 list_del_rcu(&peer->transports);
495 /* Remove this peer from the transport hashtable */
496 sctp_unhash_transport(peer);
497
498 /* Get the first transport of asoc. */
499 pos = asoc->peer.transport_addr_list.next;
500 transport = list_entry(pos, struct sctp_transport, transports);
501
502 /* Update any entries that match the peer to be deleted. */
503 if (asoc->peer.primary_path == peer)
504 sctp_assoc_set_primary(asoc, transport);
505 if (asoc->peer.active_path == peer)
506 asoc->peer.active_path = transport;
507 if (asoc->peer.retran_path == peer)
508 asoc->peer.retran_path = transport;
509 if (asoc->peer.last_data_from == peer)
510 asoc->peer.last_data_from = transport;
511
512 if (asoc->strreset_chunk &&
513 asoc->strreset_chunk->transport == peer) {
514 asoc->strreset_chunk->transport = transport;
515 sctp_transport_reset_reconf_timer(transport);
516 }
517
518 /* If we remove the transport an INIT was last sent to, set it to
519 * NULL. Combined with the update of the retran path above, this
520 * will cause the next INIT to be sent to the next available
521 * transport, maintaining the cycle.
522 */
523 if (asoc->init_last_sent_to == peer)
524 asoc->init_last_sent_to = NULL;
525
526 /* If we remove the transport an SHUTDOWN was last sent to, set it
527 * to NULL. Combined with the update of the retran path above, this
528 * will cause the next SHUTDOWN to be sent to the next available
529 * transport, maintaining the cycle.
530 */
531 if (asoc->shutdown_last_sent_to == peer)
532 asoc->shutdown_last_sent_to = NULL;
533
534 /* If we remove the transport an ASCONF was last sent to, set it to
535 * NULL.
536 */
537 if (asoc->addip_last_asconf &&
538 asoc->addip_last_asconf->transport == peer)
539 asoc->addip_last_asconf->transport = NULL;
540
541 /* If we have something on the transmitted list, we have to
542 * save it off. The best place is the active path.
543 */
544 if (!list_empty(&peer->transmitted)) {
545 struct sctp_transport *active = asoc->peer.active_path;
546
547 /* Reset the transport of each chunk on this list */
548 list_for_each_entry(ch, &peer->transmitted,
549 transmitted_list) {
550 ch->transport = NULL;
551 ch->rtt_in_progress = 0;
552 }
553
554 list_splice_tail_init(&peer->transmitted,
555 &active->transmitted);
556
557 /* Start a T3 timer here in case it wasn't running so
558 * that these migrated packets have a chance to get
559 * retransmitted.
560 */
561 if (!timer_pending(&active->T3_rtx_timer))
562 if (!mod_timer(&active->T3_rtx_timer,
563 jiffies + active->rto))
564 sctp_transport_hold(active);
565 }
566
567 list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list)
568 if (ch->transport == peer)
569 ch->transport = NULL;
570
571 asoc->peer.transport_count--;
572
573 sctp_transport_free(peer);
574 }
575
576 /* Add a transport address to an association. */
sctp_assoc_add_peer(struct sctp_association * asoc,const union sctp_addr * addr,const gfp_t gfp,const int peer_state)577 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
578 const union sctp_addr *addr,
579 const gfp_t gfp,
580 const int peer_state)
581 {
582 struct net *net = sock_net(asoc->base.sk);
583 struct sctp_transport *peer;
584 struct sctp_sock *sp;
585 unsigned short port;
586
587 sp = sctp_sk(asoc->base.sk);
588
589 /* AF_INET and AF_INET6 share common port field. */
590 port = ntohs(addr->v4.sin_port);
591
592 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
593 asoc, &addr->sa, peer_state);
594
595 /* Set the port if it has not been set yet. */
596 if (0 == asoc->peer.port)
597 asoc->peer.port = port;
598
599 /* Check to see if this is a duplicate. */
600 peer = sctp_assoc_lookup_paddr(asoc, addr);
601 if (peer) {
602 /* An UNKNOWN state is only set on transports added by
603 * user in sctp_connectx() call. Such transports should be
604 * considered CONFIRMED per RFC 4960, Section 5.4.
605 */
606 if (peer->state == SCTP_UNKNOWN) {
607 peer->state = SCTP_ACTIVE;
608 }
609 return peer;
610 }
611
612 peer = sctp_transport_new(net, addr, gfp);
613 if (!peer)
614 return NULL;
615
616 sctp_transport_set_owner(peer, asoc);
617
618 /* Initialize the peer's heartbeat interval based on the
619 * association configured value.
620 */
621 peer->hbinterval = asoc->hbinterval;
622
623 /* Set the path max_retrans. */
624 peer->pathmaxrxt = asoc->pathmaxrxt;
625
626 /* And the partial failure retrans threshold */
627 peer->pf_retrans = asoc->pf_retrans;
628
629 /* Initialize the peer's SACK delay timeout based on the
630 * association configured value.
631 */
632 peer->sackdelay = asoc->sackdelay;
633 peer->sackfreq = asoc->sackfreq;
634
635 if (addr->sa.sa_family == AF_INET6) {
636 __be32 info = addr->v6.sin6_flowinfo;
637
638 if (info) {
639 peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK);
640 peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
641 } else {
642 peer->flowlabel = asoc->flowlabel;
643 }
644 }
645 peer->dscp = asoc->dscp;
646
647 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
648 * based on association setting.
649 */
650 peer->param_flags = asoc->param_flags;
651
652 /* Initialize the pmtu of the transport. */
653 sctp_transport_route(peer, NULL, sp);
654
655 /* If this is the first transport addr on this association,
656 * initialize the association PMTU to the peer's PMTU.
657 * If not and the current association PMTU is higher than the new
658 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
659 */
660 sctp_assoc_set_pmtu(asoc, asoc->pathmtu ?
661 min_t(int, peer->pathmtu, asoc->pathmtu) :
662 peer->pathmtu);
663
664 peer->pmtu_pending = 0;
665
666 /* The asoc->peer.port might not be meaningful yet, but
667 * initialize the packet structure anyway.
668 */
669 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
670 asoc->peer.port);
671
672 /* 7.2.1 Slow-Start
673 *
674 * o The initial cwnd before DATA transmission or after a sufficiently
675 * long idle period MUST be set to
676 * min(4*MTU, max(2*MTU, 4380 bytes))
677 *
678 * o The initial value of ssthresh MAY be arbitrarily high
679 * (for example, implementations MAY use the size of the
680 * receiver advertised window).
681 */
682 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
683
684 /* At this point, we may not have the receiver's advertised window,
685 * so initialize ssthresh to the default value and it will be set
686 * later when we process the INIT.
687 */
688 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
689
690 peer->partial_bytes_acked = 0;
691 peer->flight_size = 0;
692 peer->burst_limited = 0;
693
694 /* Set the transport's RTO.initial value */
695 peer->rto = asoc->rto_initial;
696 sctp_max_rto(asoc, peer);
697
698 /* Set the peer's active state. */
699 peer->state = peer_state;
700
701 /* Add this peer into the transport hashtable */
702 if (sctp_hash_transport(peer)) {
703 sctp_transport_free(peer);
704 return NULL;
705 }
706
707 /* Attach the remote transport to our asoc. */
708 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
709 asoc->peer.transport_count++;
710
711 /* If we do not yet have a primary path, set one. */
712 if (!asoc->peer.primary_path) {
713 sctp_assoc_set_primary(asoc, peer);
714 asoc->peer.retran_path = peer;
715 }
716
717 if (asoc->peer.active_path == asoc->peer.retran_path &&
718 peer->state != SCTP_UNCONFIRMED) {
719 asoc->peer.retran_path = peer;
720 }
721
722 return peer;
723 }
724
725 /* Delete a transport address from an association. */
sctp_assoc_del_peer(struct sctp_association * asoc,const union sctp_addr * addr)726 void sctp_assoc_del_peer(struct sctp_association *asoc,
727 const union sctp_addr *addr)
728 {
729 struct list_head *pos;
730 struct list_head *temp;
731 struct sctp_transport *transport;
732
733 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
734 transport = list_entry(pos, struct sctp_transport, transports);
735 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
736 /* Do book keeping for removing the peer and free it. */
737 sctp_assoc_rm_peer(asoc, transport);
738 break;
739 }
740 }
741 }
742
743 /* Lookup a transport by address. */
sctp_assoc_lookup_paddr(const struct sctp_association * asoc,const union sctp_addr * address)744 struct sctp_transport *sctp_assoc_lookup_paddr(
745 const struct sctp_association *asoc,
746 const union sctp_addr *address)
747 {
748 struct sctp_transport *t;
749
750 /* Cycle through all transports searching for a peer address. */
751
752 list_for_each_entry(t, &asoc->peer.transport_addr_list,
753 transports) {
754 if (sctp_cmp_addr_exact(address, &t->ipaddr))
755 return t;
756 }
757
758 return NULL;
759 }
760
761 /* Remove all transports except a give one */
sctp_assoc_del_nonprimary_peers(struct sctp_association * asoc,struct sctp_transport * primary)762 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
763 struct sctp_transport *primary)
764 {
765 struct sctp_transport *temp;
766 struct sctp_transport *t;
767
768 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
769 transports) {
770 /* if the current transport is not the primary one, delete it */
771 if (t != primary)
772 sctp_assoc_rm_peer(asoc, t);
773 }
774 }
775
776 /* Engage in transport control operations.
777 * Mark the transport up or down and send a notification to the user.
778 * Select and update the new active and retran paths.
779 */
sctp_assoc_control_transport(struct sctp_association * asoc,struct sctp_transport * transport,enum sctp_transport_cmd command,sctp_sn_error_t error)780 void sctp_assoc_control_transport(struct sctp_association *asoc,
781 struct sctp_transport *transport,
782 enum sctp_transport_cmd command,
783 sctp_sn_error_t error)
784 {
785 struct sctp_ulpevent *event;
786 struct sockaddr_storage addr;
787 int spc_state = 0;
788 bool ulp_notify = true;
789
790 /* Record the transition on the transport. */
791 switch (command) {
792 case SCTP_TRANSPORT_UP:
793 /* If we are moving from UNCONFIRMED state due
794 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
795 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
796 */
797 if (SCTP_UNCONFIRMED == transport->state &&
798 SCTP_HEARTBEAT_SUCCESS == error)
799 spc_state = SCTP_ADDR_CONFIRMED;
800 else
801 spc_state = SCTP_ADDR_AVAILABLE;
802 /* Don't inform ULP about transition from PF to
803 * active state and set cwnd to 1 MTU, see SCTP
804 * Quick failover draft section 5.1, point 5
805 */
806 if (transport->state == SCTP_PF) {
807 ulp_notify = false;
808 transport->cwnd = asoc->pathmtu;
809 }
810 transport->state = SCTP_ACTIVE;
811 break;
812
813 case SCTP_TRANSPORT_DOWN:
814 /* If the transport was never confirmed, do not transition it
815 * to inactive state. Also, release the cached route since
816 * there may be a better route next time.
817 */
818 if (transport->state != SCTP_UNCONFIRMED)
819 transport->state = SCTP_INACTIVE;
820 else {
821 sctp_transport_dst_release(transport);
822 ulp_notify = false;
823 }
824
825 spc_state = SCTP_ADDR_UNREACHABLE;
826 break;
827
828 case SCTP_TRANSPORT_PF:
829 transport->state = SCTP_PF;
830 ulp_notify = false;
831 break;
832
833 default:
834 return;
835 }
836
837 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification
838 * to the user.
839 */
840 if (ulp_notify) {
841 memset(&addr, 0, sizeof(struct sockaddr_storage));
842 memcpy(&addr, &transport->ipaddr,
843 transport->af_specific->sockaddr_len);
844
845 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
846 0, spc_state, error, GFP_ATOMIC);
847 if (event)
848 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
849 }
850
851 /* Select new active and retran paths. */
852 sctp_select_active_and_retran_path(asoc);
853 }
854
855 /* Hold a reference to an association. */
sctp_association_hold(struct sctp_association * asoc)856 void sctp_association_hold(struct sctp_association *asoc)
857 {
858 refcount_inc(&asoc->base.refcnt);
859 }
860
861 /* Release a reference to an association and cleanup
862 * if there are no more references.
863 */
sctp_association_put(struct sctp_association * asoc)864 void sctp_association_put(struct sctp_association *asoc)
865 {
866 if (refcount_dec_and_test(&asoc->base.refcnt))
867 sctp_association_destroy(asoc);
868 }
869
870 /* Allocate the next TSN, Transmission Sequence Number, for the given
871 * association.
872 */
sctp_association_get_next_tsn(struct sctp_association * asoc)873 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
874 {
875 /* From Section 1.6 Serial Number Arithmetic:
876 * Transmission Sequence Numbers wrap around when they reach
877 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
878 * after transmitting TSN = 2*32 - 1 is TSN = 0.
879 */
880 __u32 retval = asoc->next_tsn;
881 asoc->next_tsn++;
882 asoc->unack_data++;
883
884 return retval;
885 }
886
887 /* Compare two addresses to see if they match. Wildcard addresses
888 * only match themselves.
889 */
sctp_cmp_addr_exact(const union sctp_addr * ss1,const union sctp_addr * ss2)890 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
891 const union sctp_addr *ss2)
892 {
893 struct sctp_af *af;
894
895 af = sctp_get_af_specific(ss1->sa.sa_family);
896 if (unlikely(!af))
897 return 0;
898
899 return af->cmp_addr(ss1, ss2);
900 }
901
902 /* Return an ecne chunk to get prepended to a packet.
903 * Note: We are sly and return a shared, prealloced chunk. FIXME:
904 * No we don't, but we could/should.
905 */
sctp_get_ecne_prepend(struct sctp_association * asoc)906 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
907 {
908 if (!asoc->need_ecne)
909 return NULL;
910
911 /* Send ECNE if needed.
912 * Not being able to allocate a chunk here is not deadly.
913 */
914 return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
915 }
916
917 /*
918 * Find which transport this TSN was sent on.
919 */
sctp_assoc_lookup_tsn(struct sctp_association * asoc,__u32 tsn)920 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
921 __u32 tsn)
922 {
923 struct sctp_transport *active;
924 struct sctp_transport *match;
925 struct sctp_transport *transport;
926 struct sctp_chunk *chunk;
927 __be32 key = htonl(tsn);
928
929 match = NULL;
930
931 /*
932 * FIXME: In general, find a more efficient data structure for
933 * searching.
934 */
935
936 /*
937 * The general strategy is to search each transport's transmitted
938 * list. Return which transport this TSN lives on.
939 *
940 * Let's be hopeful and check the active_path first.
941 * Another optimization would be to know if there is only one
942 * outbound path and not have to look for the TSN at all.
943 *
944 */
945
946 active = asoc->peer.active_path;
947
948 list_for_each_entry(chunk, &active->transmitted,
949 transmitted_list) {
950
951 if (key == chunk->subh.data_hdr->tsn) {
952 match = active;
953 goto out;
954 }
955 }
956
957 /* If not found, go search all the other transports. */
958 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
959 transports) {
960
961 if (transport == active)
962 continue;
963 list_for_each_entry(chunk, &transport->transmitted,
964 transmitted_list) {
965 if (key == chunk->subh.data_hdr->tsn) {
966 match = transport;
967 goto out;
968 }
969 }
970 }
971 out:
972 return match;
973 }
974
975 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
sctp_assoc_bh_rcv(struct work_struct * work)976 static void sctp_assoc_bh_rcv(struct work_struct *work)
977 {
978 struct sctp_association *asoc =
979 container_of(work, struct sctp_association,
980 base.inqueue.immediate);
981 struct net *net = sock_net(asoc->base.sk);
982 union sctp_subtype subtype;
983 struct sctp_endpoint *ep;
984 struct sctp_chunk *chunk;
985 struct sctp_inq *inqueue;
986 int first_time = 1; /* is this the first time through the loop */
987 int error = 0;
988 int state;
989
990 /* The association should be held so we should be safe. */
991 ep = asoc->ep;
992
993 inqueue = &asoc->base.inqueue;
994 sctp_association_hold(asoc);
995 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
996 state = asoc->state;
997 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
998
999 /* If the first chunk in the packet is AUTH, do special
1000 * processing specified in Section 6.3 of SCTP-AUTH spec
1001 */
1002 if (first_time && subtype.chunk == SCTP_CID_AUTH) {
1003 struct sctp_chunkhdr *next_hdr;
1004
1005 next_hdr = sctp_inq_peek(inqueue);
1006 if (!next_hdr)
1007 goto normal;
1008
1009 /* If the next chunk is COOKIE-ECHO, skip the AUTH
1010 * chunk while saving a pointer to it so we can do
1011 * Authentication later (during cookie-echo
1012 * processing).
1013 */
1014 if (next_hdr->type == SCTP_CID_COOKIE_ECHO) {
1015 chunk->auth_chunk = skb_clone(chunk->skb,
1016 GFP_ATOMIC);
1017 chunk->auth = 1;
1018 continue;
1019 }
1020 }
1021
1022 normal:
1023 /* SCTP-AUTH, Section 6.3:
1024 * The receiver has a list of chunk types which it expects
1025 * to be received only after an AUTH-chunk. This list has
1026 * been sent to the peer during the association setup. It
1027 * MUST silently discard these chunks if they are not placed
1028 * after an AUTH chunk in the packet.
1029 */
1030 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1031 continue;
1032
1033 /* Remember where the last DATA chunk came from so we
1034 * know where to send the SACK.
1035 */
1036 if (sctp_chunk_is_data(chunk))
1037 asoc->peer.last_data_from = chunk->transport;
1038 else {
1039 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1040 asoc->stats.ictrlchunks++;
1041 if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1042 asoc->stats.isacks++;
1043 }
1044
1045 if (chunk->transport)
1046 chunk->transport->last_time_heard = ktime_get();
1047
1048 /* Run through the state machine. */
1049 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1050 state, ep, asoc, chunk, GFP_ATOMIC);
1051
1052 /* Check to see if the association is freed in response to
1053 * the incoming chunk. If so, get out of the while loop.
1054 */
1055 if (asoc->base.dead)
1056 break;
1057
1058 /* If there is an error on chunk, discard this packet. */
1059 if (error && chunk)
1060 chunk->pdiscard = 1;
1061
1062 if (first_time)
1063 first_time = 0;
1064 }
1065 sctp_association_put(asoc);
1066 }
1067
1068 /* This routine moves an association from its old sk to a new sk. */
sctp_assoc_migrate(struct sctp_association * assoc,struct sock * newsk)1069 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1070 {
1071 struct sctp_sock *newsp = sctp_sk(newsk);
1072 struct sock *oldsk = assoc->base.sk;
1073
1074 /* Delete the association from the old endpoint's list of
1075 * associations.
1076 */
1077 list_del_init(&assoc->asocs);
1078
1079 /* Decrement the backlog value for a TCP-style socket. */
1080 if (sctp_style(oldsk, TCP))
1081 oldsk->sk_ack_backlog--;
1082
1083 /* Release references to the old endpoint and the sock. */
1084 sctp_endpoint_put(assoc->ep);
1085 sock_put(assoc->base.sk);
1086
1087 /* Get a reference to the new endpoint. */
1088 assoc->ep = newsp->ep;
1089 sctp_endpoint_hold(assoc->ep);
1090
1091 /* Get a reference to the new sock. */
1092 assoc->base.sk = newsk;
1093 sock_hold(assoc->base.sk);
1094
1095 /* Add the association to the new endpoint's list of associations. */
1096 sctp_endpoint_add_asoc(newsp->ep, assoc);
1097 }
1098
1099 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
sctp_assoc_update(struct sctp_association * asoc,struct sctp_association * new)1100 int sctp_assoc_update(struct sctp_association *asoc,
1101 struct sctp_association *new)
1102 {
1103 struct sctp_transport *trans;
1104 struct list_head *pos, *temp;
1105
1106 /* Copy in new parameters of peer. */
1107 asoc->c = new->c;
1108 asoc->peer.rwnd = new->peer.rwnd;
1109 asoc->peer.sack_needed = new->peer.sack_needed;
1110 asoc->peer.auth_capable = new->peer.auth_capable;
1111 asoc->peer.i = new->peer.i;
1112
1113 if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1114 asoc->peer.i.initial_tsn, GFP_ATOMIC))
1115 return -ENOMEM;
1116
1117 /* Remove any peer addresses not present in the new association. */
1118 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1119 trans = list_entry(pos, struct sctp_transport, transports);
1120 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1121 sctp_assoc_rm_peer(asoc, trans);
1122 continue;
1123 }
1124
1125 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1126 sctp_transport_reset(trans);
1127 }
1128
1129 /* If the case is A (association restart), use
1130 * initial_tsn as next_tsn. If the case is B, use
1131 * current next_tsn in case data sent to peer
1132 * has been discarded and needs retransmission.
1133 */
1134 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1135 asoc->next_tsn = new->next_tsn;
1136 asoc->ctsn_ack_point = new->ctsn_ack_point;
1137 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1138
1139 /* Reinitialize SSN for both local streams
1140 * and peer's streams.
1141 */
1142 sctp_stream_clear(&asoc->stream);
1143
1144 /* Flush the ULP reassembly and ordered queue.
1145 * Any data there will now be stale and will
1146 * cause problems.
1147 */
1148 sctp_ulpq_flush(&asoc->ulpq);
1149
1150 /* reset the overall association error count so
1151 * that the restarted association doesn't get torn
1152 * down on the next retransmission timer.
1153 */
1154 asoc->overall_error_count = 0;
1155
1156 } else {
1157 /* Add any peer addresses from the new association. */
1158 list_for_each_entry(trans, &new->peer.transport_addr_list,
1159 transports)
1160 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr) &&
1161 !sctp_assoc_add_peer(asoc, &trans->ipaddr,
1162 GFP_ATOMIC, trans->state))
1163 return -ENOMEM;
1164
1165 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1166 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1167
1168 if (sctp_state(asoc, COOKIE_WAIT))
1169 sctp_stream_update(&asoc->stream, &new->stream);
1170
1171 /* get a new assoc id if we don't have one yet. */
1172 if (sctp_assoc_set_id(asoc, GFP_ATOMIC))
1173 return -ENOMEM;
1174 }
1175
1176 /* SCTP-AUTH: Save the peer parameters from the new associations
1177 * and also move the association shared keys over
1178 */
1179 kfree(asoc->peer.peer_random);
1180 asoc->peer.peer_random = new->peer.peer_random;
1181 new->peer.peer_random = NULL;
1182
1183 kfree(asoc->peer.peer_chunks);
1184 asoc->peer.peer_chunks = new->peer.peer_chunks;
1185 new->peer.peer_chunks = NULL;
1186
1187 kfree(asoc->peer.peer_hmacs);
1188 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1189 new->peer.peer_hmacs = NULL;
1190
1191 return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1192 }
1193
1194 /* Update the retran path for sending a retransmitted packet.
1195 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1196 *
1197 * When there is outbound data to send and the primary path
1198 * becomes inactive (e.g., due to failures), or where the
1199 * SCTP user explicitly requests to send data to an
1200 * inactive destination transport address, before reporting
1201 * an error to its ULP, the SCTP endpoint should try to send
1202 * the data to an alternate active destination transport
1203 * address if one exists.
1204 *
1205 * When retransmitting data that timed out, if the endpoint
1206 * is multihomed, it should consider each source-destination
1207 * address pair in its retransmission selection policy.
1208 * When retransmitting timed-out data, the endpoint should
1209 * attempt to pick the most divergent source-destination
1210 * pair from the original source-destination pair to which
1211 * the packet was transmitted.
1212 *
1213 * Note: Rules for picking the most divergent source-destination
1214 * pair are an implementation decision and are not specified
1215 * within this document.
1216 *
1217 * Our basic strategy is to round-robin transports in priorities
1218 * according to sctp_trans_score() e.g., if no such
1219 * transport with state SCTP_ACTIVE exists, round-robin through
1220 * SCTP_UNKNOWN, etc. You get the picture.
1221 */
sctp_trans_score(const struct sctp_transport * trans)1222 static u8 sctp_trans_score(const struct sctp_transport *trans)
1223 {
1224 switch (trans->state) {
1225 case SCTP_ACTIVE:
1226 return 3; /* best case */
1227 case SCTP_UNKNOWN:
1228 return 2;
1229 case SCTP_PF:
1230 return 1;
1231 default: /* case SCTP_INACTIVE */
1232 return 0; /* worst case */
1233 }
1234 }
1235
sctp_trans_elect_tie(struct sctp_transport * trans1,struct sctp_transport * trans2)1236 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1237 struct sctp_transport *trans2)
1238 {
1239 if (trans1->error_count > trans2->error_count) {
1240 return trans2;
1241 } else if (trans1->error_count == trans2->error_count &&
1242 ktime_after(trans2->last_time_heard,
1243 trans1->last_time_heard)) {
1244 return trans2;
1245 } else {
1246 return trans1;
1247 }
1248 }
1249
sctp_trans_elect_best(struct sctp_transport * curr,struct sctp_transport * best)1250 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1251 struct sctp_transport *best)
1252 {
1253 u8 score_curr, score_best;
1254
1255 if (best == NULL || curr == best)
1256 return curr;
1257
1258 score_curr = sctp_trans_score(curr);
1259 score_best = sctp_trans_score(best);
1260
1261 /* First, try a score-based selection if both transport states
1262 * differ. If we're in a tie, lets try to make a more clever
1263 * decision here based on error counts and last time heard.
1264 */
1265 if (score_curr > score_best)
1266 return curr;
1267 else if (score_curr == score_best)
1268 return sctp_trans_elect_tie(best, curr);
1269 else
1270 return best;
1271 }
1272
sctp_assoc_update_retran_path(struct sctp_association * asoc)1273 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1274 {
1275 struct sctp_transport *trans = asoc->peer.retran_path;
1276 struct sctp_transport *trans_next = NULL;
1277
1278 /* We're done as we only have the one and only path. */
1279 if (asoc->peer.transport_count == 1)
1280 return;
1281 /* If active_path and retran_path are the same and active,
1282 * then this is the only active path. Use it.
1283 */
1284 if (asoc->peer.active_path == asoc->peer.retran_path &&
1285 asoc->peer.active_path->state == SCTP_ACTIVE)
1286 return;
1287
1288 /* Iterate from retran_path's successor back to retran_path. */
1289 for (trans = list_next_entry(trans, transports); 1;
1290 trans = list_next_entry(trans, transports)) {
1291 /* Manually skip the head element. */
1292 if (&trans->transports == &asoc->peer.transport_addr_list)
1293 continue;
1294 if (trans->state == SCTP_UNCONFIRMED)
1295 continue;
1296 trans_next = sctp_trans_elect_best(trans, trans_next);
1297 /* Active is good enough for immediate return. */
1298 if (trans_next->state == SCTP_ACTIVE)
1299 break;
1300 /* We've reached the end, time to update path. */
1301 if (trans == asoc->peer.retran_path)
1302 break;
1303 }
1304
1305 asoc->peer.retran_path = trans_next;
1306
1307 pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1308 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1309 }
1310
sctp_select_active_and_retran_path(struct sctp_association * asoc)1311 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1312 {
1313 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1314 struct sctp_transport *trans_pf = NULL;
1315
1316 /* Look for the two most recently used active transports. */
1317 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1318 transports) {
1319 /* Skip uninteresting transports. */
1320 if (trans->state == SCTP_INACTIVE ||
1321 trans->state == SCTP_UNCONFIRMED)
1322 continue;
1323 /* Keep track of the best PF transport from our
1324 * list in case we don't find an active one.
1325 */
1326 if (trans->state == SCTP_PF) {
1327 trans_pf = sctp_trans_elect_best(trans, trans_pf);
1328 continue;
1329 }
1330 /* For active transports, pick the most recent ones. */
1331 if (trans_pri == NULL ||
1332 ktime_after(trans->last_time_heard,
1333 trans_pri->last_time_heard)) {
1334 trans_sec = trans_pri;
1335 trans_pri = trans;
1336 } else if (trans_sec == NULL ||
1337 ktime_after(trans->last_time_heard,
1338 trans_sec->last_time_heard)) {
1339 trans_sec = trans;
1340 }
1341 }
1342
1343 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1344 *
1345 * By default, an endpoint should always transmit to the primary
1346 * path, unless the SCTP user explicitly specifies the
1347 * destination transport address (and possibly source transport
1348 * address) to use. [If the primary is active but not most recent,
1349 * bump the most recently used transport.]
1350 */
1351 if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1352 asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1353 asoc->peer.primary_path != trans_pri) {
1354 trans_sec = trans_pri;
1355 trans_pri = asoc->peer.primary_path;
1356 }
1357
1358 /* We did not find anything useful for a possible retransmission
1359 * path; either primary path that we found is the the same as
1360 * the current one, or we didn't generally find an active one.
1361 */
1362 if (trans_sec == NULL)
1363 trans_sec = trans_pri;
1364
1365 /* If we failed to find a usable transport, just camp on the
1366 * active or pick a PF iff it's the better choice.
1367 */
1368 if (trans_pri == NULL) {
1369 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1370 trans_sec = trans_pri;
1371 }
1372
1373 /* Set the active and retran transports. */
1374 asoc->peer.active_path = trans_pri;
1375 asoc->peer.retran_path = trans_sec;
1376 }
1377
1378 struct sctp_transport *
sctp_assoc_choose_alter_transport(struct sctp_association * asoc,struct sctp_transport * last_sent_to)1379 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1380 struct sctp_transport *last_sent_to)
1381 {
1382 /* If this is the first time packet is sent, use the active path,
1383 * else use the retran path. If the last packet was sent over the
1384 * retran path, update the retran path and use it.
1385 */
1386 if (last_sent_to == NULL) {
1387 return asoc->peer.active_path;
1388 } else {
1389 if (last_sent_to == asoc->peer.retran_path)
1390 sctp_assoc_update_retran_path(asoc);
1391
1392 return asoc->peer.retran_path;
1393 }
1394 }
1395
sctp_assoc_update_frag_point(struct sctp_association * asoc)1396 void sctp_assoc_update_frag_point(struct sctp_association *asoc)
1397 {
1398 int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu,
1399 sctp_datachk_len(&asoc->stream));
1400
1401 if (asoc->user_frag)
1402 frag = min_t(int, frag, asoc->user_frag);
1403
1404 frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN -
1405 sctp_datachk_len(&asoc->stream));
1406
1407 asoc->frag_point = SCTP_TRUNC4(frag);
1408 }
1409
sctp_assoc_set_pmtu(struct sctp_association * asoc,__u32 pmtu)1410 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu)
1411 {
1412 if (asoc->pathmtu != pmtu) {
1413 asoc->pathmtu = pmtu;
1414 sctp_assoc_update_frag_point(asoc);
1415 }
1416
1417 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1418 asoc->pathmtu, asoc->frag_point);
1419 }
1420
1421 /* Update the association's pmtu and frag_point by going through all the
1422 * transports. This routine is called when a transport's PMTU has changed.
1423 */
sctp_assoc_sync_pmtu(struct sctp_association * asoc)1424 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1425 {
1426 struct sctp_transport *t;
1427 __u32 pmtu = 0;
1428
1429 if (!asoc)
1430 return;
1431
1432 /* Get the lowest pmtu of all the transports. */
1433 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
1434 if (t->pmtu_pending && t->dst) {
1435 sctp_transport_update_pmtu(t,
1436 atomic_read(&t->mtu_info));
1437 t->pmtu_pending = 0;
1438 }
1439 if (!pmtu || (t->pathmtu < pmtu))
1440 pmtu = t->pathmtu;
1441 }
1442
1443 sctp_assoc_set_pmtu(asoc, pmtu);
1444 }
1445
1446 /* Should we send a SACK to update our peer? */
sctp_peer_needs_update(struct sctp_association * asoc)1447 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1448 {
1449 struct net *net = sock_net(asoc->base.sk);
1450 switch (asoc->state) {
1451 case SCTP_STATE_ESTABLISHED:
1452 case SCTP_STATE_SHUTDOWN_PENDING:
1453 case SCTP_STATE_SHUTDOWN_RECEIVED:
1454 case SCTP_STATE_SHUTDOWN_SENT:
1455 if ((asoc->rwnd > asoc->a_rwnd) &&
1456 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1457 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1458 asoc->pathmtu)))
1459 return true;
1460 break;
1461 default:
1462 break;
1463 }
1464 return false;
1465 }
1466
1467 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
sctp_assoc_rwnd_increase(struct sctp_association * asoc,unsigned int len)1468 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1469 {
1470 struct sctp_chunk *sack;
1471 struct timer_list *timer;
1472
1473 if (asoc->rwnd_over) {
1474 if (asoc->rwnd_over >= len) {
1475 asoc->rwnd_over -= len;
1476 } else {
1477 asoc->rwnd += (len - asoc->rwnd_over);
1478 asoc->rwnd_over = 0;
1479 }
1480 } else {
1481 asoc->rwnd += len;
1482 }
1483
1484 /* If we had window pressure, start recovering it
1485 * once our rwnd had reached the accumulated pressure
1486 * threshold. The idea is to recover slowly, but up
1487 * to the initial advertised window.
1488 */
1489 if (asoc->rwnd_press) {
1490 int change = min(asoc->pathmtu, asoc->rwnd_press);
1491 asoc->rwnd += change;
1492 asoc->rwnd_press -= change;
1493 }
1494
1495 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1496 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1497 asoc->a_rwnd);
1498
1499 /* Send a window update SACK if the rwnd has increased by at least the
1500 * minimum of the association's PMTU and half of the receive buffer.
1501 * The algorithm used is similar to the one described in
1502 * Section 4.2.3.3 of RFC 1122.
1503 */
1504 if (sctp_peer_needs_update(asoc)) {
1505 asoc->a_rwnd = asoc->rwnd;
1506
1507 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1508 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1509 asoc->a_rwnd);
1510
1511 sack = sctp_make_sack(asoc);
1512 if (!sack)
1513 return;
1514
1515 asoc->peer.sack_needed = 0;
1516
1517 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1518
1519 /* Stop the SACK timer. */
1520 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1521 if (del_timer(timer))
1522 sctp_association_put(asoc);
1523 }
1524 }
1525
1526 /* Decrease asoc's rwnd by len. */
sctp_assoc_rwnd_decrease(struct sctp_association * asoc,unsigned int len)1527 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1528 {
1529 int rx_count;
1530 int over = 0;
1531
1532 if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1533 pr_debug("%s: association:%p has asoc->rwnd:%u, "
1534 "asoc->rwnd_over:%u!\n", __func__, asoc,
1535 asoc->rwnd, asoc->rwnd_over);
1536
1537 if (asoc->ep->rcvbuf_policy)
1538 rx_count = atomic_read(&asoc->rmem_alloc);
1539 else
1540 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1541
1542 /* If we've reached or overflowed our receive buffer, announce
1543 * a 0 rwnd if rwnd would still be positive. Store the
1544 * the potential pressure overflow so that the window can be restored
1545 * back to original value.
1546 */
1547 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1548 over = 1;
1549
1550 if (asoc->rwnd >= len) {
1551 asoc->rwnd -= len;
1552 if (over) {
1553 asoc->rwnd_press += asoc->rwnd;
1554 asoc->rwnd = 0;
1555 }
1556 } else {
1557 asoc->rwnd_over += len - asoc->rwnd;
1558 asoc->rwnd = 0;
1559 }
1560
1561 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1562 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1563 asoc->rwnd_press);
1564 }
1565
1566 /* Build the bind address list for the association based on info from the
1567 * local endpoint and the remote peer.
1568 */
sctp_assoc_set_bind_addr_from_ep(struct sctp_association * asoc,enum sctp_scope scope,gfp_t gfp)1569 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1570 enum sctp_scope scope, gfp_t gfp)
1571 {
1572 int flags;
1573
1574 /* Use scoping rules to determine the subset of addresses from
1575 * the endpoint.
1576 */
1577 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1578 if (asoc->peer.ipv4_address)
1579 flags |= SCTP_ADDR4_PEERSUPP;
1580 if (asoc->peer.ipv6_address)
1581 flags |= SCTP_ADDR6_PEERSUPP;
1582
1583 return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1584 &asoc->base.bind_addr,
1585 &asoc->ep->base.bind_addr,
1586 scope, gfp, flags);
1587 }
1588
1589 /* Build the association's bind address list from the cookie. */
sctp_assoc_set_bind_addr_from_cookie(struct sctp_association * asoc,struct sctp_cookie * cookie,gfp_t gfp)1590 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1591 struct sctp_cookie *cookie,
1592 gfp_t gfp)
1593 {
1594 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1595 int var_size3 = cookie->raw_addr_list_len;
1596 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1597
1598 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1599 asoc->ep->base.bind_addr.port, gfp);
1600 }
1601
1602 /* Lookup laddr in the bind address list of an association. */
sctp_assoc_lookup_laddr(struct sctp_association * asoc,const union sctp_addr * laddr)1603 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1604 const union sctp_addr *laddr)
1605 {
1606 int found = 0;
1607
1608 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1609 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1610 sctp_sk(asoc->base.sk)))
1611 found = 1;
1612
1613 return found;
1614 }
1615
1616 /* Set an association id for a given association */
sctp_assoc_set_id(struct sctp_association * asoc,gfp_t gfp)1617 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1618 {
1619 bool preload = gfpflags_allow_blocking(gfp);
1620 int ret;
1621
1622 /* If the id is already assigned, keep it. */
1623 if (asoc->assoc_id)
1624 return 0;
1625
1626 if (preload)
1627 idr_preload(gfp);
1628 spin_lock_bh(&sctp_assocs_id_lock);
1629 /* 0, 1, 2 are used as SCTP_FUTURE_ASSOC, SCTP_CURRENT_ASSOC and
1630 * SCTP_ALL_ASSOC, so an available id must be > SCTP_ALL_ASSOC.
1631 */
1632 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, SCTP_ALL_ASSOC + 1, 0,
1633 GFP_NOWAIT);
1634 spin_unlock_bh(&sctp_assocs_id_lock);
1635 if (preload)
1636 idr_preload_end();
1637 if (ret < 0)
1638 return ret;
1639
1640 asoc->assoc_id = (sctp_assoc_t)ret;
1641 return 0;
1642 }
1643
1644 /* Free the ASCONF queue */
sctp_assoc_free_asconf_queue(struct sctp_association * asoc)1645 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1646 {
1647 struct sctp_chunk *asconf;
1648 struct sctp_chunk *tmp;
1649
1650 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1651 list_del_init(&asconf->list);
1652 sctp_chunk_free(asconf);
1653 }
1654 }
1655
1656 /* Free asconf_ack cache */
sctp_assoc_free_asconf_acks(struct sctp_association * asoc)1657 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1658 {
1659 struct sctp_chunk *ack;
1660 struct sctp_chunk *tmp;
1661
1662 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1663 transmitted_list) {
1664 list_del_init(&ack->transmitted_list);
1665 sctp_chunk_free(ack);
1666 }
1667 }
1668
1669 /* Clean up the ASCONF_ACK queue */
sctp_assoc_clean_asconf_ack_cache(const struct sctp_association * asoc)1670 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1671 {
1672 struct sctp_chunk *ack;
1673 struct sctp_chunk *tmp;
1674
1675 /* We can remove all the entries from the queue up to
1676 * the "Peer-Sequence-Number".
1677 */
1678 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1679 transmitted_list) {
1680 if (ack->subh.addip_hdr->serial ==
1681 htonl(asoc->peer.addip_serial))
1682 break;
1683
1684 list_del_init(&ack->transmitted_list);
1685 sctp_chunk_free(ack);
1686 }
1687 }
1688
1689 /* Find the ASCONF_ACK whose serial number matches ASCONF */
sctp_assoc_lookup_asconf_ack(const struct sctp_association * asoc,__be32 serial)1690 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1691 const struct sctp_association *asoc,
1692 __be32 serial)
1693 {
1694 struct sctp_chunk *ack;
1695
1696 /* Walk through the list of cached ASCONF-ACKs and find the
1697 * ack chunk whose serial number matches that of the request.
1698 */
1699 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1700 if (sctp_chunk_pending(ack))
1701 continue;
1702 if (ack->subh.addip_hdr->serial == serial) {
1703 sctp_chunk_hold(ack);
1704 return ack;
1705 }
1706 }
1707
1708 return NULL;
1709 }
1710
sctp_asconf_queue_teardown(struct sctp_association * asoc)1711 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1712 {
1713 /* Free any cached ASCONF_ACK chunk. */
1714 sctp_assoc_free_asconf_acks(asoc);
1715
1716 /* Free the ASCONF queue. */
1717 sctp_assoc_free_asconf_queue(asoc);
1718
1719 /* Free any cached ASCONF chunk. */
1720 if (asoc->addip_last_asconf)
1721 sctp_chunk_free(asoc->addip_last_asconf);
1722 }
1723