1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/tls.h>
45
46 MODULE_AUTHOR("Mellanox Technologies");
47 MODULE_DESCRIPTION("Transport Layer Security Support");
48 MODULE_LICENSE("Dual BSD/GPL");
49 MODULE_ALIAS_TCP_ULP("tls");
50
51 enum {
52 TLSV4,
53 TLSV6,
54 TLS_NUM_PROTS,
55 };
56
57 static struct proto *saved_tcpv6_prot;
58 static DEFINE_MUTEX(tcpv6_prot_mutex);
59 static struct proto *saved_tcpv4_prot;
60 static DEFINE_MUTEX(tcpv4_prot_mutex);
61 static LIST_HEAD(device_list);
62 static DEFINE_SPINLOCK(device_spinlock);
63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64 static struct proto_ops tls_sw_proto_ops;
65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66 struct proto *base);
67
update_sk_prot(struct sock * sk,struct tls_context * ctx)68 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69 {
70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
73 }
74
wait_on_pending_writer(struct sock * sk,long * timeo)75 int wait_on_pending_writer(struct sock *sk, long *timeo)
76 {
77 int rc = 0;
78 DEFINE_WAIT_FUNC(wait, woken_wake_function);
79
80 add_wait_queue(sk_sleep(sk), &wait);
81 while (1) {
82 if (!*timeo) {
83 rc = -EAGAIN;
84 break;
85 }
86
87 if (signal_pending(current)) {
88 rc = sock_intr_errno(*timeo);
89 break;
90 }
91
92 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
93 break;
94 }
95 remove_wait_queue(sk_sleep(sk), &wait);
96 return rc;
97 }
98
tls_push_sg(struct sock * sk,struct tls_context * ctx,struct scatterlist * sg,u16 first_offset,int flags)99 int tls_push_sg(struct sock *sk,
100 struct tls_context *ctx,
101 struct scatterlist *sg,
102 u16 first_offset,
103 int flags)
104 {
105 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
106 int ret = 0;
107 struct page *p;
108 size_t size;
109 int offset = first_offset;
110
111 size = sg->length - offset;
112 offset += sg->offset;
113
114 ctx->in_tcp_sendpages = true;
115 while (1) {
116 if (sg_is_last(sg))
117 sendpage_flags = flags;
118
119 /* is sending application-limited? */
120 tcp_rate_check_app_limited(sk);
121 p = sg_page(sg);
122 retry:
123 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
124
125 if (ret != size) {
126 if (ret > 0) {
127 offset += ret;
128 size -= ret;
129 goto retry;
130 }
131
132 offset -= sg->offset;
133 ctx->partially_sent_offset = offset;
134 ctx->partially_sent_record = (void *)sg;
135 ctx->in_tcp_sendpages = false;
136 return ret;
137 }
138
139 put_page(p);
140 sk_mem_uncharge(sk, sg->length);
141 sg = sg_next(sg);
142 if (!sg)
143 break;
144
145 offset = sg->offset;
146 size = sg->length;
147 }
148
149 ctx->in_tcp_sendpages = false;
150
151 return 0;
152 }
153
tls_handle_open_record(struct sock * sk,int flags)154 static int tls_handle_open_record(struct sock *sk, int flags)
155 {
156 struct tls_context *ctx = tls_get_ctx(sk);
157
158 if (tls_is_pending_open_record(ctx))
159 return ctx->push_pending_record(sk, flags);
160
161 return 0;
162 }
163
tls_proccess_cmsg(struct sock * sk,struct msghdr * msg,unsigned char * record_type)164 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
165 unsigned char *record_type)
166 {
167 struct cmsghdr *cmsg;
168 int rc = -EINVAL;
169
170 for_each_cmsghdr(cmsg, msg) {
171 if (!CMSG_OK(msg, cmsg))
172 return -EINVAL;
173 if (cmsg->cmsg_level != SOL_TLS)
174 continue;
175
176 switch (cmsg->cmsg_type) {
177 case TLS_SET_RECORD_TYPE:
178 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
179 return -EINVAL;
180
181 if (msg->msg_flags & MSG_MORE)
182 return -EINVAL;
183
184 rc = tls_handle_open_record(sk, msg->msg_flags);
185 if (rc)
186 return rc;
187
188 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
189 rc = 0;
190 break;
191 default:
192 return -EINVAL;
193 }
194 }
195
196 return rc;
197 }
198
tls_push_partial_record(struct sock * sk,struct tls_context * ctx,int flags)199 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
200 int flags)
201 {
202 struct scatterlist *sg;
203 u16 offset;
204
205 sg = ctx->partially_sent_record;
206 offset = ctx->partially_sent_offset;
207
208 ctx->partially_sent_record = NULL;
209 return tls_push_sg(sk, ctx, sg, offset, flags);
210 }
211
tls_free_partial_record(struct sock * sk,struct tls_context * ctx)212 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
213 {
214 struct scatterlist *sg;
215
216 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
217 put_page(sg_page(sg));
218 sk_mem_uncharge(sk, sg->length);
219 }
220 ctx->partially_sent_record = NULL;
221 }
222
tls_write_space(struct sock * sk)223 static void tls_write_space(struct sock *sk)
224 {
225 struct tls_context *ctx = tls_get_ctx(sk);
226
227 /* If in_tcp_sendpages call lower protocol write space handler
228 * to ensure we wake up any waiting operations there. For example
229 * if do_tcp_sendpages where to call sk_wait_event.
230 */
231 if (ctx->in_tcp_sendpages) {
232 ctx->sk_write_space(sk);
233 return;
234 }
235
236 #ifdef CONFIG_TLS_DEVICE
237 if (ctx->tx_conf == TLS_HW)
238 tls_device_write_space(sk, ctx);
239 else
240 #endif
241 tls_sw_write_space(sk, ctx);
242
243 ctx->sk_write_space(sk);
244 }
245
246 /**
247 * tls_ctx_free() - free TLS ULP context
248 * @sk: socket to with @ctx is attached
249 * @ctx: TLS context structure
250 *
251 * Free TLS context. If @sk is %NULL caller guarantees that the socket
252 * to which @ctx was attached has no outstanding references.
253 */
tls_ctx_free(struct sock * sk,struct tls_context * ctx)254 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
255 {
256 if (!ctx)
257 return;
258
259 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
260 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
261 mutex_destroy(&ctx->tx_lock);
262
263 if (sk)
264 kfree_rcu(ctx, rcu);
265 else
266 kfree(ctx);
267 }
268
tls_sk_proto_cleanup(struct sock * sk,struct tls_context * ctx,long timeo)269 static void tls_sk_proto_cleanup(struct sock *sk,
270 struct tls_context *ctx, long timeo)
271 {
272 if (unlikely(sk->sk_write_pending) &&
273 !wait_on_pending_writer(sk, &timeo))
274 tls_handle_open_record(sk, 0);
275
276 /* We need these for tls_sw_fallback handling of other packets */
277 if (ctx->tx_conf == TLS_SW) {
278 kfree(ctx->tx.rec_seq);
279 kfree(ctx->tx.iv);
280 tls_sw_release_resources_tx(sk);
281 } else if (ctx->tx_conf == TLS_HW) {
282 tls_device_free_resources_tx(sk);
283 }
284
285 if (ctx->rx_conf == TLS_SW)
286 tls_sw_release_resources_rx(sk);
287 else if (ctx->rx_conf == TLS_HW)
288 tls_device_offload_cleanup_rx(sk);
289 }
290
tls_sk_proto_close(struct sock * sk,long timeout)291 static void tls_sk_proto_close(struct sock *sk, long timeout)
292 {
293 struct inet_connection_sock *icsk = inet_csk(sk);
294 struct tls_context *ctx = tls_get_ctx(sk);
295 long timeo = sock_sndtimeo(sk, 0);
296 bool free_ctx;
297
298 if (ctx->tx_conf == TLS_SW)
299 tls_sw_cancel_work_tx(ctx);
300
301 lock_sock(sk);
302 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
303
304 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
305 tls_sk_proto_cleanup(sk, ctx, timeo);
306
307 write_lock_bh(&sk->sk_callback_lock);
308 if (free_ctx)
309 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
310 sk->sk_prot = ctx->sk_proto;
311 if (sk->sk_write_space == tls_write_space)
312 sk->sk_write_space = ctx->sk_write_space;
313 write_unlock_bh(&sk->sk_callback_lock);
314 release_sock(sk);
315 if (ctx->tx_conf == TLS_SW)
316 tls_sw_free_ctx_tx(ctx);
317 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
318 tls_sw_strparser_done(ctx);
319 if (ctx->rx_conf == TLS_SW)
320 tls_sw_free_ctx_rx(ctx);
321 ctx->sk_proto->close(sk, timeout);
322
323 if (free_ctx)
324 tls_ctx_free(sk, ctx);
325 }
326
do_tls_getsockopt_tx(struct sock * sk,char __user * optval,int __user * optlen)327 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
328 int __user *optlen)
329 {
330 int rc = 0;
331 struct tls_context *ctx = tls_get_ctx(sk);
332 struct tls_crypto_info *crypto_info;
333 int len;
334
335 if (get_user(len, optlen))
336 return -EFAULT;
337
338 if (!optval || (len < sizeof(*crypto_info))) {
339 rc = -EINVAL;
340 goto out;
341 }
342
343 if (!ctx) {
344 rc = -EBUSY;
345 goto out;
346 }
347
348 /* get user crypto info */
349 crypto_info = &ctx->crypto_send.info;
350
351 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
352 rc = -EBUSY;
353 goto out;
354 }
355
356 if (len == sizeof(*crypto_info)) {
357 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
358 rc = -EFAULT;
359 goto out;
360 }
361
362 switch (crypto_info->cipher_type) {
363 case TLS_CIPHER_AES_GCM_128: {
364 struct tls12_crypto_info_aes_gcm_128 *
365 crypto_info_aes_gcm_128 =
366 container_of(crypto_info,
367 struct tls12_crypto_info_aes_gcm_128,
368 info);
369
370 if (len != sizeof(*crypto_info_aes_gcm_128)) {
371 rc = -EINVAL;
372 goto out;
373 }
374 lock_sock(sk);
375 memcpy(crypto_info_aes_gcm_128->iv,
376 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
377 TLS_CIPHER_AES_GCM_128_IV_SIZE);
378 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
379 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
380 release_sock(sk);
381 if (copy_to_user(optval,
382 crypto_info_aes_gcm_128,
383 sizeof(*crypto_info_aes_gcm_128)))
384 rc = -EFAULT;
385 break;
386 }
387 case TLS_CIPHER_AES_GCM_256: {
388 struct tls12_crypto_info_aes_gcm_256 *
389 crypto_info_aes_gcm_256 =
390 container_of(crypto_info,
391 struct tls12_crypto_info_aes_gcm_256,
392 info);
393
394 if (len != sizeof(*crypto_info_aes_gcm_256)) {
395 rc = -EINVAL;
396 goto out;
397 }
398 lock_sock(sk);
399 memcpy(crypto_info_aes_gcm_256->iv,
400 ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
401 TLS_CIPHER_AES_GCM_256_IV_SIZE);
402 memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
403 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
404 release_sock(sk);
405 if (copy_to_user(optval,
406 crypto_info_aes_gcm_256,
407 sizeof(*crypto_info_aes_gcm_256)))
408 rc = -EFAULT;
409 break;
410 }
411 default:
412 rc = -EINVAL;
413 }
414
415 out:
416 return rc;
417 }
418
do_tls_getsockopt(struct sock * sk,int optname,char __user * optval,int __user * optlen)419 static int do_tls_getsockopt(struct sock *sk, int optname,
420 char __user *optval, int __user *optlen)
421 {
422 int rc = 0;
423
424 switch (optname) {
425 case TLS_TX:
426 rc = do_tls_getsockopt_tx(sk, optval, optlen);
427 break;
428 default:
429 rc = -ENOPROTOOPT;
430 break;
431 }
432 return rc;
433 }
434
tls_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)435 static int tls_getsockopt(struct sock *sk, int level, int optname,
436 char __user *optval, int __user *optlen)
437 {
438 struct tls_context *ctx = tls_get_ctx(sk);
439
440 if (level != SOL_TLS)
441 return ctx->sk_proto->getsockopt(sk, level,
442 optname, optval, optlen);
443
444 return do_tls_getsockopt(sk, optname, optval, optlen);
445 }
446
do_tls_setsockopt_conf(struct sock * sk,char __user * optval,unsigned int optlen,int tx)447 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
448 unsigned int optlen, int tx)
449 {
450 struct tls_crypto_info *crypto_info;
451 struct tls_crypto_info *alt_crypto_info;
452 struct tls_context *ctx = tls_get_ctx(sk);
453 size_t optsize;
454 int rc = 0;
455 int conf;
456
457 if (!optval || (optlen < sizeof(*crypto_info))) {
458 rc = -EINVAL;
459 goto out;
460 }
461
462 if (tx) {
463 crypto_info = &ctx->crypto_send.info;
464 alt_crypto_info = &ctx->crypto_recv.info;
465 } else {
466 crypto_info = &ctx->crypto_recv.info;
467 alt_crypto_info = &ctx->crypto_send.info;
468 }
469
470 /* Currently we don't support set crypto info more than one time */
471 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
472 rc = -EBUSY;
473 goto out;
474 }
475
476 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
477 if (rc) {
478 rc = -EFAULT;
479 goto err_crypto_info;
480 }
481
482 /* check version */
483 if (crypto_info->version != TLS_1_2_VERSION &&
484 crypto_info->version != TLS_1_3_VERSION) {
485 rc = -EINVAL;
486 goto err_crypto_info;
487 }
488
489 /* Ensure that TLS version and ciphers are same in both directions */
490 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
491 if (alt_crypto_info->version != crypto_info->version ||
492 alt_crypto_info->cipher_type != crypto_info->cipher_type) {
493 rc = -EINVAL;
494 goto err_crypto_info;
495 }
496 }
497
498 switch (crypto_info->cipher_type) {
499 case TLS_CIPHER_AES_GCM_128:
500 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
501 break;
502 case TLS_CIPHER_AES_GCM_256: {
503 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
504 break;
505 }
506 case TLS_CIPHER_AES_CCM_128:
507 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
508 break;
509 default:
510 rc = -EINVAL;
511 goto err_crypto_info;
512 }
513
514 if (optlen != optsize) {
515 rc = -EINVAL;
516 goto err_crypto_info;
517 }
518
519 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
520 optlen - sizeof(*crypto_info));
521 if (rc) {
522 rc = -EFAULT;
523 goto err_crypto_info;
524 }
525
526 if (tx) {
527 rc = tls_set_device_offload(sk, ctx);
528 conf = TLS_HW;
529 if (rc) {
530 rc = tls_set_sw_offload(sk, ctx, 1);
531 if (rc)
532 goto err_crypto_info;
533 conf = TLS_SW;
534 }
535 } else {
536 rc = tls_set_device_offload_rx(sk, ctx);
537 conf = TLS_HW;
538 if (rc) {
539 rc = tls_set_sw_offload(sk, ctx, 0);
540 if (rc)
541 goto err_crypto_info;
542 conf = TLS_SW;
543 }
544 tls_sw_strparser_arm(sk, ctx);
545 }
546
547 if (tx)
548 ctx->tx_conf = conf;
549 else
550 ctx->rx_conf = conf;
551 update_sk_prot(sk, ctx);
552 if (tx) {
553 ctx->sk_write_space = sk->sk_write_space;
554 sk->sk_write_space = tls_write_space;
555 } else {
556 sk->sk_socket->ops = &tls_sw_proto_ops;
557 }
558 goto out;
559
560 err_crypto_info:
561 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
562 out:
563 return rc;
564 }
565
do_tls_setsockopt(struct sock * sk,int optname,char __user * optval,unsigned int optlen)566 static int do_tls_setsockopt(struct sock *sk, int optname,
567 char __user *optval, unsigned int optlen)
568 {
569 int rc = 0;
570
571 switch (optname) {
572 case TLS_TX:
573 case TLS_RX:
574 lock_sock(sk);
575 rc = do_tls_setsockopt_conf(sk, optval, optlen,
576 optname == TLS_TX);
577 release_sock(sk);
578 break;
579 default:
580 rc = -ENOPROTOOPT;
581 break;
582 }
583 return rc;
584 }
585
tls_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)586 static int tls_setsockopt(struct sock *sk, int level, int optname,
587 char __user *optval, unsigned int optlen)
588 {
589 struct tls_context *ctx = tls_get_ctx(sk);
590
591 if (level != SOL_TLS)
592 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
593 optlen);
594
595 return do_tls_setsockopt(sk, optname, optval, optlen);
596 }
597
create_ctx(struct sock * sk)598 static struct tls_context *create_ctx(struct sock *sk)
599 {
600 struct inet_connection_sock *icsk = inet_csk(sk);
601 struct tls_context *ctx;
602
603 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
604 if (!ctx)
605 return NULL;
606
607 mutex_init(&ctx->tx_lock);
608 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
609 ctx->sk_proto = sk->sk_prot;
610 return ctx;
611 }
612
tls_build_proto(struct sock * sk)613 static void tls_build_proto(struct sock *sk)
614 {
615 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
616
617 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
618 if (ip_ver == TLSV6 &&
619 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
620 mutex_lock(&tcpv6_prot_mutex);
621 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
622 build_protos(tls_prots[TLSV6], sk->sk_prot);
623 smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
624 }
625 mutex_unlock(&tcpv6_prot_mutex);
626 }
627
628 if (ip_ver == TLSV4 &&
629 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
630 mutex_lock(&tcpv4_prot_mutex);
631 if (likely(sk->sk_prot != saved_tcpv4_prot)) {
632 build_protos(tls_prots[TLSV4], sk->sk_prot);
633 smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
634 }
635 mutex_unlock(&tcpv4_prot_mutex);
636 }
637 }
638
tls_hw_sk_destruct(struct sock * sk)639 static void tls_hw_sk_destruct(struct sock *sk)
640 {
641 struct tls_context *ctx = tls_get_ctx(sk);
642 struct inet_connection_sock *icsk = inet_csk(sk);
643
644 ctx->sk_destruct(sk);
645 /* Free ctx */
646 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
647 tls_ctx_free(sk, ctx);
648 }
649
tls_hw_prot(struct sock * sk)650 static int tls_hw_prot(struct sock *sk)
651 {
652 struct tls_context *ctx;
653 struct tls_device *dev;
654 int rc = 0;
655
656 spin_lock_bh(&device_spinlock);
657 list_for_each_entry(dev, &device_list, dev_list) {
658 if (dev->feature && dev->feature(dev)) {
659 ctx = create_ctx(sk);
660 if (!ctx)
661 goto out;
662
663 spin_unlock_bh(&device_spinlock);
664 tls_build_proto(sk);
665 ctx->sk_destruct = sk->sk_destruct;
666 sk->sk_destruct = tls_hw_sk_destruct;
667 ctx->rx_conf = TLS_HW_RECORD;
668 ctx->tx_conf = TLS_HW_RECORD;
669 update_sk_prot(sk, ctx);
670 spin_lock_bh(&device_spinlock);
671 rc = 1;
672 break;
673 }
674 }
675 out:
676 spin_unlock_bh(&device_spinlock);
677 return rc;
678 }
679
tls_hw_unhash(struct sock * sk)680 static void tls_hw_unhash(struct sock *sk)
681 {
682 struct tls_context *ctx = tls_get_ctx(sk);
683 struct tls_device *dev;
684
685 spin_lock_bh(&device_spinlock);
686 list_for_each_entry(dev, &device_list, dev_list) {
687 if (dev->unhash) {
688 kref_get(&dev->kref);
689 spin_unlock_bh(&device_spinlock);
690 dev->unhash(dev, sk);
691 kref_put(&dev->kref, dev->release);
692 spin_lock_bh(&device_spinlock);
693 }
694 }
695 spin_unlock_bh(&device_spinlock);
696 ctx->sk_proto->unhash(sk);
697 }
698
tls_hw_hash(struct sock * sk)699 static int tls_hw_hash(struct sock *sk)
700 {
701 struct tls_context *ctx = tls_get_ctx(sk);
702 struct tls_device *dev;
703 int err;
704
705 err = ctx->sk_proto->hash(sk);
706 spin_lock_bh(&device_spinlock);
707 list_for_each_entry(dev, &device_list, dev_list) {
708 if (dev->hash) {
709 kref_get(&dev->kref);
710 spin_unlock_bh(&device_spinlock);
711 err |= dev->hash(dev, sk);
712 kref_put(&dev->kref, dev->release);
713 spin_lock_bh(&device_spinlock);
714 }
715 }
716 spin_unlock_bh(&device_spinlock);
717
718 if (err)
719 tls_hw_unhash(sk);
720 return err;
721 }
722
build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],struct proto * base)723 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
724 struct proto *base)
725 {
726 prot[TLS_BASE][TLS_BASE] = *base;
727 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
728 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
729 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
730
731 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
732 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
733 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
734
735 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
736 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
737 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
738 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
739
740 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
741 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
742 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
743 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
744
745 #ifdef CONFIG_TLS_DEVICE
746 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
747 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
748 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
749
750 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
751 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
752 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
753
754 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
755
756 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
757
758 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
759 #endif
760
761 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
762 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash;
763 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash;
764 }
765
tls_init(struct sock * sk)766 static int tls_init(struct sock *sk)
767 {
768 struct tls_context *ctx;
769 int rc = 0;
770
771 if (tls_hw_prot(sk))
772 return 0;
773
774 /* The TLS ulp is currently supported only for TCP sockets
775 * in ESTABLISHED state.
776 * Supporting sockets in LISTEN state will require us
777 * to modify the accept implementation to clone rather then
778 * share the ulp context.
779 */
780 if (sk->sk_state != TCP_ESTABLISHED)
781 return -ENOTCONN;
782
783 tls_build_proto(sk);
784
785 /* allocate tls context */
786 write_lock_bh(&sk->sk_callback_lock);
787 ctx = create_ctx(sk);
788 if (!ctx) {
789 rc = -ENOMEM;
790 goto out;
791 }
792
793 ctx->tx_conf = TLS_BASE;
794 ctx->rx_conf = TLS_BASE;
795 update_sk_prot(sk, ctx);
796 out:
797 write_unlock_bh(&sk->sk_callback_lock);
798 return rc;
799 }
800
tls_update(struct sock * sk,struct proto * p,void (* write_space)(struct sock * sk))801 static void tls_update(struct sock *sk, struct proto *p,
802 void (*write_space)(struct sock *sk))
803 {
804 struct tls_context *ctx;
805
806 ctx = tls_get_ctx(sk);
807 if (likely(ctx)) {
808 ctx->sk_write_space = write_space;
809 ctx->sk_proto = p;
810 } else {
811 sk->sk_prot = p;
812 sk->sk_write_space = write_space;
813 }
814 }
815
tls_get_info(const struct sock * sk,struct sk_buff * skb)816 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
817 {
818 u16 version, cipher_type;
819 struct tls_context *ctx;
820 struct nlattr *start;
821 int err;
822
823 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
824 if (!start)
825 return -EMSGSIZE;
826
827 rcu_read_lock();
828 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
829 if (!ctx) {
830 err = 0;
831 goto nla_failure;
832 }
833 version = ctx->prot_info.version;
834 if (version) {
835 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
836 if (err)
837 goto nla_failure;
838 }
839 cipher_type = ctx->prot_info.cipher_type;
840 if (cipher_type) {
841 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
842 if (err)
843 goto nla_failure;
844 }
845 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
846 if (err)
847 goto nla_failure;
848
849 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
850 if (err)
851 goto nla_failure;
852
853 rcu_read_unlock();
854 nla_nest_end(skb, start);
855 return 0;
856
857 nla_failure:
858 rcu_read_unlock();
859 nla_nest_cancel(skb, start);
860 return err;
861 }
862
tls_get_info_size(const struct sock * sk)863 static size_t tls_get_info_size(const struct sock *sk)
864 {
865 size_t size = 0;
866
867 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
868 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
869 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
870 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
871 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
872 0;
873
874 return size;
875 }
876
tls_register_device(struct tls_device * device)877 void tls_register_device(struct tls_device *device)
878 {
879 spin_lock_bh(&device_spinlock);
880 list_add_tail(&device->dev_list, &device_list);
881 spin_unlock_bh(&device_spinlock);
882 }
883 EXPORT_SYMBOL(tls_register_device);
884
tls_unregister_device(struct tls_device * device)885 void tls_unregister_device(struct tls_device *device)
886 {
887 spin_lock_bh(&device_spinlock);
888 list_del(&device->dev_list);
889 spin_unlock_bh(&device_spinlock);
890 }
891 EXPORT_SYMBOL(tls_unregister_device);
892
893 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
894 .name = "tls",
895 .owner = THIS_MODULE,
896 .init = tls_init,
897 .update = tls_update,
898 .get_info = tls_get_info,
899 .get_info_size = tls_get_info_size,
900 };
901
tls_register(void)902 static int __init tls_register(void)
903 {
904 tls_sw_proto_ops = inet_stream_ops;
905 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
906 tls_sw_proto_ops.sendpage_locked = tls_sw_sendpage_locked,
907
908 tls_device_init();
909 tcp_register_ulp(&tcp_tls_ulp_ops);
910
911 return 0;
912 }
913
tls_unregister(void)914 static void __exit tls_unregister(void)
915 {
916 tcp_unregister_ulp(&tcp_tls_ulp_ops);
917 tls_device_cleanup();
918 }
919
920 module_init(tls_register);
921 module_exit(tls_unregister);
922