• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37 
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
41 
42 #include <net/strparser.h>
43 #include <net/tls.h>
44 
__skb_nsg(struct sk_buff * skb,int offset,int len,unsigned int recursion_level)45 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
46                      unsigned int recursion_level)
47 {
48         int start = skb_headlen(skb);
49         int i, chunk = start - offset;
50         struct sk_buff *frag_iter;
51         int elt = 0;
52 
53         if (unlikely(recursion_level >= 24))
54                 return -EMSGSIZE;
55 
56         if (chunk > 0) {
57                 if (chunk > len)
58                         chunk = len;
59                 elt++;
60                 len -= chunk;
61                 if (len == 0)
62                         return elt;
63                 offset += chunk;
64         }
65 
66         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
67                 int end;
68 
69                 WARN_ON(start > offset + len);
70 
71                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
72                 chunk = end - offset;
73                 if (chunk > 0) {
74                         if (chunk > len)
75                                 chunk = len;
76                         elt++;
77                         len -= chunk;
78                         if (len == 0)
79                                 return elt;
80                         offset += chunk;
81                 }
82                 start = end;
83         }
84 
85         if (unlikely(skb_has_frag_list(skb))) {
86                 skb_walk_frags(skb, frag_iter) {
87                         int end, ret;
88 
89                         WARN_ON(start > offset + len);
90 
91                         end = start + frag_iter->len;
92                         chunk = end - offset;
93                         if (chunk > 0) {
94                                 if (chunk > len)
95                                         chunk = len;
96                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
97                                                 recursion_level + 1);
98                                 if (unlikely(ret < 0))
99                                         return ret;
100                                 elt += ret;
101                                 len -= chunk;
102                                 if (len == 0)
103                                         return elt;
104                                 offset += chunk;
105                         }
106                         start = end;
107                 }
108         }
109         BUG_ON(len);
110         return elt;
111 }
112 
113 /* Return the number of scatterlist elements required to completely map the
114  * skb, or -EMSGSIZE if the recursion depth is exceeded.
115  */
skb_nsg(struct sk_buff * skb,int offset,int len)116 static int skb_nsg(struct sk_buff *skb, int offset, int len)
117 {
118         return __skb_nsg(skb, offset, len, 0);
119 }
120 
padding_length(struct tls_sw_context_rx * ctx,struct tls_prot_info * prot,struct sk_buff * skb)121 static int padding_length(struct tls_sw_context_rx *ctx,
122 			  struct tls_prot_info *prot, struct sk_buff *skb)
123 {
124 	struct strp_msg *rxm = strp_msg(skb);
125 	int sub = 0;
126 
127 	/* Determine zero-padding length */
128 	if (prot->version == TLS_1_3_VERSION) {
129 		char content_type = 0;
130 		int err;
131 		int back = 17;
132 
133 		while (content_type == 0) {
134 			if (back > rxm->full_len - prot->prepend_size)
135 				return -EBADMSG;
136 			err = skb_copy_bits(skb,
137 					    rxm->offset + rxm->full_len - back,
138 					    &content_type, 1);
139 			if (err)
140 				return err;
141 			if (content_type)
142 				break;
143 			sub++;
144 			back++;
145 		}
146 		ctx->control = content_type;
147 	}
148 	return sub;
149 }
150 
tls_decrypt_done(struct crypto_async_request * req,int err)151 static void tls_decrypt_done(struct crypto_async_request *req, int err)
152 {
153 	struct aead_request *aead_req = (struct aead_request *)req;
154 	struct scatterlist *sgout = aead_req->dst;
155 	struct scatterlist *sgin = aead_req->src;
156 	struct tls_sw_context_rx *ctx;
157 	struct tls_context *tls_ctx;
158 	struct tls_prot_info *prot;
159 	struct scatterlist *sg;
160 	struct sk_buff *skb;
161 	unsigned int pages;
162 	int pending;
163 
164 	skb = (struct sk_buff *)req->data;
165 	tls_ctx = tls_get_ctx(skb->sk);
166 	ctx = tls_sw_ctx_rx(tls_ctx);
167 	prot = &tls_ctx->prot_info;
168 
169 	/* Propagate if there was an err */
170 	if (err) {
171 		ctx->async_wait.err = err;
172 		tls_err_abort(skb->sk, err);
173 	} else {
174 		struct strp_msg *rxm = strp_msg(skb);
175 		int pad;
176 
177 		pad = padding_length(ctx, prot, skb);
178 		if (pad < 0) {
179 			ctx->async_wait.err = pad;
180 			tls_err_abort(skb->sk, pad);
181 		} else {
182 			rxm->full_len -= pad;
183 			rxm->offset += prot->prepend_size;
184 			rxm->full_len -= prot->overhead_size;
185 		}
186 	}
187 
188 	/* After using skb->sk to propagate sk through crypto async callback
189 	 * we need to NULL it again.
190 	 */
191 	skb->sk = NULL;
192 
193 
194 	/* Free the destination pages if skb was not decrypted inplace */
195 	if (sgout != sgin) {
196 		/* Skip the first S/G entry as it points to AAD */
197 		for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
198 			if (!sg)
199 				break;
200 			put_page(sg_page(sg));
201 		}
202 	}
203 
204 	kfree(aead_req);
205 
206 	pending = atomic_dec_return(&ctx->decrypt_pending);
207 
208 	if (!pending && READ_ONCE(ctx->async_notify))
209 		complete(&ctx->async_wait.completion);
210 }
211 
tls_do_decryption(struct sock * sk,struct sk_buff * skb,struct scatterlist * sgin,struct scatterlist * sgout,char * iv_recv,size_t data_len,struct aead_request * aead_req,bool async)212 static int tls_do_decryption(struct sock *sk,
213 			     struct sk_buff *skb,
214 			     struct scatterlist *sgin,
215 			     struct scatterlist *sgout,
216 			     char *iv_recv,
217 			     size_t data_len,
218 			     struct aead_request *aead_req,
219 			     bool async)
220 {
221 	struct tls_context *tls_ctx = tls_get_ctx(sk);
222 	struct tls_prot_info *prot = &tls_ctx->prot_info;
223 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
224 	int ret;
225 
226 	aead_request_set_tfm(aead_req, ctx->aead_recv);
227 	aead_request_set_ad(aead_req, prot->aad_size);
228 	aead_request_set_crypt(aead_req, sgin, sgout,
229 			       data_len + prot->tag_size,
230 			       (u8 *)iv_recv);
231 
232 	if (async) {
233 		/* Using skb->sk to push sk through to crypto async callback
234 		 * handler. This allows propagating errors up to the socket
235 		 * if needed. It _must_ be cleared in the async handler
236 		 * before consume_skb is called. We _know_ skb->sk is NULL
237 		 * because it is a clone from strparser.
238 		 */
239 		skb->sk = sk;
240 		aead_request_set_callback(aead_req,
241 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
242 					  tls_decrypt_done, skb);
243 		atomic_inc(&ctx->decrypt_pending);
244 	} else {
245 		aead_request_set_callback(aead_req,
246 					  CRYPTO_TFM_REQ_MAY_BACKLOG,
247 					  crypto_req_done, &ctx->async_wait);
248 	}
249 
250 	ret = crypto_aead_decrypt(aead_req);
251 	if (ret == -EINPROGRESS) {
252 		if (async)
253 			return ret;
254 
255 		ret = crypto_wait_req(ret, &ctx->async_wait);
256 	}
257 
258 	if (async)
259 		atomic_dec(&ctx->decrypt_pending);
260 
261 	return ret;
262 }
263 
tls_trim_both_msgs(struct sock * sk,int target_size)264 static void tls_trim_both_msgs(struct sock *sk, int target_size)
265 {
266 	struct tls_context *tls_ctx = tls_get_ctx(sk);
267 	struct tls_prot_info *prot = &tls_ctx->prot_info;
268 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
269 	struct tls_rec *rec = ctx->open_rec;
270 
271 	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
272 	if (target_size > 0)
273 		target_size += prot->overhead_size;
274 	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
275 }
276 
tls_alloc_encrypted_msg(struct sock * sk,int len)277 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
278 {
279 	struct tls_context *tls_ctx = tls_get_ctx(sk);
280 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
281 	struct tls_rec *rec = ctx->open_rec;
282 	struct sk_msg *msg_en = &rec->msg_encrypted;
283 
284 	return sk_msg_alloc(sk, msg_en, len, 0);
285 }
286 
tls_clone_plaintext_msg(struct sock * sk,int required)287 static int tls_clone_plaintext_msg(struct sock *sk, int required)
288 {
289 	struct tls_context *tls_ctx = tls_get_ctx(sk);
290 	struct tls_prot_info *prot = &tls_ctx->prot_info;
291 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
292 	struct tls_rec *rec = ctx->open_rec;
293 	struct sk_msg *msg_pl = &rec->msg_plaintext;
294 	struct sk_msg *msg_en = &rec->msg_encrypted;
295 	int skip, len;
296 
297 	/* We add page references worth len bytes from encrypted sg
298 	 * at the end of plaintext sg. It is guaranteed that msg_en
299 	 * has enough required room (ensured by caller).
300 	 */
301 	len = required - msg_pl->sg.size;
302 
303 	/* Skip initial bytes in msg_en's data to be able to use
304 	 * same offset of both plain and encrypted data.
305 	 */
306 	skip = prot->prepend_size + msg_pl->sg.size;
307 
308 	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
309 }
310 
tls_get_rec(struct sock * sk)311 static struct tls_rec *tls_get_rec(struct sock *sk)
312 {
313 	struct tls_context *tls_ctx = tls_get_ctx(sk);
314 	struct tls_prot_info *prot = &tls_ctx->prot_info;
315 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
316 	struct sk_msg *msg_pl, *msg_en;
317 	struct tls_rec *rec;
318 	int mem_size;
319 
320 	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
321 
322 	rec = kzalloc(mem_size, sk->sk_allocation);
323 	if (!rec)
324 		return NULL;
325 
326 	msg_pl = &rec->msg_plaintext;
327 	msg_en = &rec->msg_encrypted;
328 
329 	sk_msg_init(msg_pl);
330 	sk_msg_init(msg_en);
331 
332 	sg_init_table(rec->sg_aead_in, 2);
333 	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
334 	sg_unmark_end(&rec->sg_aead_in[1]);
335 
336 	sg_init_table(rec->sg_aead_out, 2);
337 	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
338 	sg_unmark_end(&rec->sg_aead_out[1]);
339 
340 	return rec;
341 }
342 
tls_free_rec(struct sock * sk,struct tls_rec * rec)343 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
344 {
345 	sk_msg_free(sk, &rec->msg_encrypted);
346 	sk_msg_free(sk, &rec->msg_plaintext);
347 	kfree(rec);
348 }
349 
tls_free_open_rec(struct sock * sk)350 static void tls_free_open_rec(struct sock *sk)
351 {
352 	struct tls_context *tls_ctx = tls_get_ctx(sk);
353 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
354 	struct tls_rec *rec = ctx->open_rec;
355 
356 	if (rec) {
357 		tls_free_rec(sk, rec);
358 		ctx->open_rec = NULL;
359 	}
360 }
361 
tls_tx_records(struct sock * sk,int flags)362 int tls_tx_records(struct sock *sk, int flags)
363 {
364 	struct tls_context *tls_ctx = tls_get_ctx(sk);
365 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
366 	struct tls_rec *rec, *tmp;
367 	struct sk_msg *msg_en;
368 	int tx_flags, rc = 0;
369 
370 	if (tls_is_partially_sent_record(tls_ctx)) {
371 		rec = list_first_entry(&ctx->tx_list,
372 				       struct tls_rec, list);
373 
374 		if (flags == -1)
375 			tx_flags = rec->tx_flags;
376 		else
377 			tx_flags = flags;
378 
379 		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
380 		if (rc)
381 			goto tx_err;
382 
383 		/* Full record has been transmitted.
384 		 * Remove the head of tx_list
385 		 */
386 		list_del(&rec->list);
387 		sk_msg_free(sk, &rec->msg_plaintext);
388 		kfree(rec);
389 	}
390 
391 	/* Tx all ready records */
392 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
393 		if (READ_ONCE(rec->tx_ready)) {
394 			if (flags == -1)
395 				tx_flags = rec->tx_flags;
396 			else
397 				tx_flags = flags;
398 
399 			msg_en = &rec->msg_encrypted;
400 			rc = tls_push_sg(sk, tls_ctx,
401 					 &msg_en->sg.data[msg_en->sg.curr],
402 					 0, tx_flags);
403 			if (rc)
404 				goto tx_err;
405 
406 			list_del(&rec->list);
407 			sk_msg_free(sk, &rec->msg_plaintext);
408 			kfree(rec);
409 		} else {
410 			break;
411 		}
412 	}
413 
414 tx_err:
415 	if (rc < 0 && rc != -EAGAIN)
416 		tls_err_abort(sk, EBADMSG);
417 
418 	return rc;
419 }
420 
tls_encrypt_done(struct crypto_async_request * req,int err)421 static void tls_encrypt_done(struct crypto_async_request *req, int err)
422 {
423 	struct aead_request *aead_req = (struct aead_request *)req;
424 	struct sock *sk = req->data;
425 	struct tls_context *tls_ctx = tls_get_ctx(sk);
426 	struct tls_prot_info *prot = &tls_ctx->prot_info;
427 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
428 	struct scatterlist *sge;
429 	struct sk_msg *msg_en;
430 	struct tls_rec *rec;
431 	bool ready = false;
432 	int pending;
433 
434 	rec = container_of(aead_req, struct tls_rec, aead_req);
435 	msg_en = &rec->msg_encrypted;
436 
437 	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
438 	sge->offset -= prot->prepend_size;
439 	sge->length += prot->prepend_size;
440 
441 	/* Check if error is previously set on socket */
442 	if (err || sk->sk_err) {
443 		rec = NULL;
444 
445 		/* If err is already set on socket, return the same code */
446 		if (sk->sk_err) {
447 			ctx->async_wait.err = sk->sk_err;
448 		} else {
449 			ctx->async_wait.err = err;
450 			tls_err_abort(sk, err);
451 		}
452 	}
453 
454 	if (rec) {
455 		struct tls_rec *first_rec;
456 
457 		/* Mark the record as ready for transmission */
458 		smp_store_mb(rec->tx_ready, true);
459 
460 		/* If received record is at head of tx_list, schedule tx */
461 		first_rec = list_first_entry(&ctx->tx_list,
462 					     struct tls_rec, list);
463 		if (rec == first_rec)
464 			ready = true;
465 	}
466 
467 	pending = atomic_dec_return(&ctx->encrypt_pending);
468 
469 	if (!pending && READ_ONCE(ctx->async_notify))
470 		complete(&ctx->async_wait.completion);
471 
472 	if (!ready)
473 		return;
474 
475 	/* Schedule the transmission */
476 	if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
477 		schedule_delayed_work(&ctx->tx_work.work, 1);
478 }
479 
tls_do_encryption(struct sock * sk,struct tls_context * tls_ctx,struct tls_sw_context_tx * ctx,struct aead_request * aead_req,size_t data_len,u32 start)480 static int tls_do_encryption(struct sock *sk,
481 			     struct tls_context *tls_ctx,
482 			     struct tls_sw_context_tx *ctx,
483 			     struct aead_request *aead_req,
484 			     size_t data_len, u32 start)
485 {
486 	struct tls_prot_info *prot = &tls_ctx->prot_info;
487 	struct tls_rec *rec = ctx->open_rec;
488 	struct sk_msg *msg_en = &rec->msg_encrypted;
489 	struct scatterlist *sge = sk_msg_elem(msg_en, start);
490 	int rc, iv_offset = 0;
491 
492 	/* For CCM based ciphers, first byte of IV is a constant */
493 	if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
494 		rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
495 		iv_offset = 1;
496 	}
497 
498 	memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
499 	       prot->iv_size + prot->salt_size);
500 
501 	xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq);
502 
503 	sge->offset += prot->prepend_size;
504 	sge->length -= prot->prepend_size;
505 
506 	msg_en->sg.curr = start;
507 
508 	aead_request_set_tfm(aead_req, ctx->aead_send);
509 	aead_request_set_ad(aead_req, prot->aad_size);
510 	aead_request_set_crypt(aead_req, rec->sg_aead_in,
511 			       rec->sg_aead_out,
512 			       data_len, rec->iv_data);
513 
514 	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
515 				  tls_encrypt_done, sk);
516 
517 	/* Add the record in tx_list */
518 	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
519 	atomic_inc(&ctx->encrypt_pending);
520 
521 	rc = crypto_aead_encrypt(aead_req);
522 	if (!rc || rc != -EINPROGRESS) {
523 		atomic_dec(&ctx->encrypt_pending);
524 		sge->offset -= prot->prepend_size;
525 		sge->length += prot->prepend_size;
526 	}
527 
528 	if (!rc) {
529 		WRITE_ONCE(rec->tx_ready, true);
530 	} else if (rc != -EINPROGRESS) {
531 		list_del(&rec->list);
532 		return rc;
533 	}
534 
535 	/* Unhook the record from context if encryption is not failure */
536 	ctx->open_rec = NULL;
537 	tls_advance_record_sn(sk, prot, &tls_ctx->tx);
538 	return rc;
539 }
540 
tls_split_open_record(struct sock * sk,struct tls_rec * from,struct tls_rec ** to,struct sk_msg * msg_opl,struct sk_msg * msg_oen,u32 split_point,u32 tx_overhead_size,u32 * orig_end)541 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
542 				 struct tls_rec **to, struct sk_msg *msg_opl,
543 				 struct sk_msg *msg_oen, u32 split_point,
544 				 u32 tx_overhead_size, u32 *orig_end)
545 {
546 	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
547 	struct scatterlist *sge, *osge, *nsge;
548 	u32 orig_size = msg_opl->sg.size;
549 	struct scatterlist tmp = { };
550 	struct sk_msg *msg_npl;
551 	struct tls_rec *new;
552 	int ret;
553 
554 	new = tls_get_rec(sk);
555 	if (!new)
556 		return -ENOMEM;
557 	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
558 			   tx_overhead_size, 0);
559 	if (ret < 0) {
560 		tls_free_rec(sk, new);
561 		return ret;
562 	}
563 
564 	*orig_end = msg_opl->sg.end;
565 	i = msg_opl->sg.start;
566 	sge = sk_msg_elem(msg_opl, i);
567 	while (apply && sge->length) {
568 		if (sge->length > apply) {
569 			u32 len = sge->length - apply;
570 
571 			get_page(sg_page(sge));
572 			sg_set_page(&tmp, sg_page(sge), len,
573 				    sge->offset + apply);
574 			sge->length = apply;
575 			bytes += apply;
576 			apply = 0;
577 		} else {
578 			apply -= sge->length;
579 			bytes += sge->length;
580 		}
581 
582 		sk_msg_iter_var_next(i);
583 		if (i == msg_opl->sg.end)
584 			break;
585 		sge = sk_msg_elem(msg_opl, i);
586 	}
587 
588 	msg_opl->sg.end = i;
589 	msg_opl->sg.curr = i;
590 	msg_opl->sg.copybreak = 0;
591 	msg_opl->apply_bytes = 0;
592 	msg_opl->sg.size = bytes;
593 
594 	msg_npl = &new->msg_plaintext;
595 	msg_npl->apply_bytes = apply;
596 	msg_npl->sg.size = orig_size - bytes;
597 
598 	j = msg_npl->sg.start;
599 	nsge = sk_msg_elem(msg_npl, j);
600 	if (tmp.length) {
601 		memcpy(nsge, &tmp, sizeof(*nsge));
602 		sk_msg_iter_var_next(j);
603 		nsge = sk_msg_elem(msg_npl, j);
604 	}
605 
606 	osge = sk_msg_elem(msg_opl, i);
607 	while (osge->length) {
608 		memcpy(nsge, osge, sizeof(*nsge));
609 		sg_unmark_end(nsge);
610 		sk_msg_iter_var_next(i);
611 		sk_msg_iter_var_next(j);
612 		if (i == *orig_end)
613 			break;
614 		osge = sk_msg_elem(msg_opl, i);
615 		nsge = sk_msg_elem(msg_npl, j);
616 	}
617 
618 	msg_npl->sg.end = j;
619 	msg_npl->sg.curr = j;
620 	msg_npl->sg.copybreak = 0;
621 
622 	*to = new;
623 	return 0;
624 }
625 
tls_merge_open_record(struct sock * sk,struct tls_rec * to,struct tls_rec * from,u32 orig_end)626 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
627 				  struct tls_rec *from, u32 orig_end)
628 {
629 	struct sk_msg *msg_npl = &from->msg_plaintext;
630 	struct sk_msg *msg_opl = &to->msg_plaintext;
631 	struct scatterlist *osge, *nsge;
632 	u32 i, j;
633 
634 	i = msg_opl->sg.end;
635 	sk_msg_iter_var_prev(i);
636 	j = msg_npl->sg.start;
637 
638 	osge = sk_msg_elem(msg_opl, i);
639 	nsge = sk_msg_elem(msg_npl, j);
640 
641 	if (sg_page(osge) == sg_page(nsge) &&
642 	    osge->offset + osge->length == nsge->offset) {
643 		osge->length += nsge->length;
644 		put_page(sg_page(nsge));
645 	}
646 
647 	msg_opl->sg.end = orig_end;
648 	msg_opl->sg.curr = orig_end;
649 	msg_opl->sg.copybreak = 0;
650 	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
651 	msg_opl->sg.size += msg_npl->sg.size;
652 
653 	sk_msg_free(sk, &to->msg_encrypted);
654 	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
655 
656 	kfree(from);
657 }
658 
tls_push_record(struct sock * sk,int flags,unsigned char record_type)659 static int tls_push_record(struct sock *sk, int flags,
660 			   unsigned char record_type)
661 {
662 	struct tls_context *tls_ctx = tls_get_ctx(sk);
663 	struct tls_prot_info *prot = &tls_ctx->prot_info;
664 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
665 	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
666 	u32 i, split_point, uninitialized_var(orig_end);
667 	struct sk_msg *msg_pl, *msg_en;
668 	struct aead_request *req;
669 	bool split;
670 	int rc;
671 
672 	if (!rec)
673 		return 0;
674 
675 	msg_pl = &rec->msg_plaintext;
676 	msg_en = &rec->msg_encrypted;
677 
678 	split_point = msg_pl->apply_bytes;
679 	split = split_point && split_point < msg_pl->sg.size;
680 	if (unlikely((!split &&
681 		      msg_pl->sg.size +
682 		      prot->overhead_size > msg_en->sg.size) ||
683 		     (split &&
684 		      split_point +
685 		      prot->overhead_size > msg_en->sg.size))) {
686 		split = true;
687 		split_point = msg_en->sg.size;
688 	}
689 	if (split) {
690 		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
691 					   split_point, prot->overhead_size,
692 					   &orig_end);
693 		if (rc < 0)
694 			return rc;
695 		/* This can happen if above tls_split_open_record allocates
696 		 * a single large encryption buffer instead of two smaller
697 		 * ones. In this case adjust pointers and continue without
698 		 * split.
699 		 */
700 		if (!msg_pl->sg.size) {
701 			tls_merge_open_record(sk, rec, tmp, orig_end);
702 			msg_pl = &rec->msg_plaintext;
703 			msg_en = &rec->msg_encrypted;
704 			split = false;
705 		}
706 		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
707 			    prot->overhead_size);
708 	}
709 
710 	rec->tx_flags = flags;
711 	req = &rec->aead_req;
712 
713 	i = msg_pl->sg.end;
714 	sk_msg_iter_var_prev(i);
715 
716 	rec->content_type = record_type;
717 	if (prot->version == TLS_1_3_VERSION) {
718 		/* Add content type to end of message.  No padding added */
719 		sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
720 		sg_mark_end(&rec->sg_content_type);
721 		sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
722 			 &rec->sg_content_type);
723 	} else {
724 		sg_mark_end(sk_msg_elem(msg_pl, i));
725 	}
726 
727 	if (msg_pl->sg.end < msg_pl->sg.start) {
728 		sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
729 			 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
730 			 msg_pl->sg.data);
731 	}
732 
733 	i = msg_pl->sg.start;
734 	sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
735 
736 	i = msg_en->sg.end;
737 	sk_msg_iter_var_prev(i);
738 	sg_mark_end(sk_msg_elem(msg_en, i));
739 
740 	i = msg_en->sg.start;
741 	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
742 
743 	tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
744 		     tls_ctx->tx.rec_seq, prot->rec_seq_size,
745 		     record_type, prot->version);
746 
747 	tls_fill_prepend(tls_ctx,
748 			 page_address(sg_page(&msg_en->sg.data[i])) +
749 			 msg_en->sg.data[i].offset,
750 			 msg_pl->sg.size + prot->tail_size,
751 			 record_type, prot->version);
752 
753 	tls_ctx->pending_open_record_frags = false;
754 
755 	rc = tls_do_encryption(sk, tls_ctx, ctx, req,
756 			       msg_pl->sg.size + prot->tail_size, i);
757 	if (rc < 0) {
758 		if (rc != -EINPROGRESS) {
759 			tls_err_abort(sk, EBADMSG);
760 			if (split) {
761 				tls_ctx->pending_open_record_frags = true;
762 				tls_merge_open_record(sk, rec, tmp, orig_end);
763 			}
764 		}
765 		ctx->async_capable = 1;
766 		return rc;
767 	} else if (split) {
768 		msg_pl = &tmp->msg_plaintext;
769 		msg_en = &tmp->msg_encrypted;
770 		sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
771 		tls_ctx->pending_open_record_frags = true;
772 		ctx->open_rec = tmp;
773 	}
774 
775 	return tls_tx_records(sk, flags);
776 }
777 
bpf_exec_tx_verdict(struct sk_msg * msg,struct sock * sk,bool full_record,u8 record_type,size_t * copied,int flags)778 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
779 			       bool full_record, u8 record_type,
780 			       size_t *copied, int flags)
781 {
782 	struct tls_context *tls_ctx = tls_get_ctx(sk);
783 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
784 	struct sk_msg msg_redir = { };
785 	struct sk_psock *psock;
786 	struct sock *sk_redir;
787 	struct tls_rec *rec;
788 	bool enospc, policy;
789 	int err = 0, send;
790 	u32 delta = 0;
791 
792 	policy = !(flags & MSG_SENDPAGE_NOPOLICY);
793 	psock = sk_psock_get(sk);
794 	if (!psock || !policy) {
795 		err = tls_push_record(sk, flags, record_type);
796 		if (err && err != -EINPROGRESS) {
797 			*copied -= sk_msg_free(sk, msg);
798 			tls_free_open_rec(sk);
799 		}
800 		return err;
801 	}
802 more_data:
803 	enospc = sk_msg_full(msg);
804 	if (psock->eval == __SK_NONE) {
805 		delta = msg->sg.size;
806 		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
807 		delta -= msg->sg.size;
808 	}
809 	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
810 	    !enospc && !full_record) {
811 		err = -ENOSPC;
812 		goto out_err;
813 	}
814 	msg->cork_bytes = 0;
815 	send = msg->sg.size;
816 	if (msg->apply_bytes && msg->apply_bytes < send)
817 		send = msg->apply_bytes;
818 
819 	switch (psock->eval) {
820 	case __SK_PASS:
821 		err = tls_push_record(sk, flags, record_type);
822 		if (err && err != -EINPROGRESS) {
823 			*copied -= sk_msg_free(sk, msg);
824 			tls_free_open_rec(sk);
825 			goto out_err;
826 		}
827 		break;
828 	case __SK_REDIRECT:
829 		sk_redir = psock->sk_redir;
830 		memcpy(&msg_redir, msg, sizeof(*msg));
831 		if (msg->apply_bytes < send)
832 			msg->apply_bytes = 0;
833 		else
834 			msg->apply_bytes -= send;
835 		sk_msg_return_zero(sk, msg, send);
836 		msg->sg.size -= send;
837 		release_sock(sk);
838 		err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
839 		lock_sock(sk);
840 		if (err < 0) {
841 			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
842 			msg->sg.size = 0;
843 		}
844 		if (msg->sg.size == 0)
845 			tls_free_open_rec(sk);
846 		break;
847 	case __SK_DROP:
848 	default:
849 		sk_msg_free_partial(sk, msg, send);
850 		if (msg->apply_bytes < send)
851 			msg->apply_bytes = 0;
852 		else
853 			msg->apply_bytes -= send;
854 		if (msg->sg.size == 0)
855 			tls_free_open_rec(sk);
856 		*copied -= (send + delta);
857 		err = -EACCES;
858 	}
859 
860 	if (likely(!err)) {
861 		bool reset_eval = !ctx->open_rec;
862 
863 		rec = ctx->open_rec;
864 		if (rec) {
865 			msg = &rec->msg_plaintext;
866 			if (!msg->apply_bytes)
867 				reset_eval = true;
868 		}
869 		if (reset_eval) {
870 			psock->eval = __SK_NONE;
871 			if (psock->sk_redir) {
872 				sock_put(psock->sk_redir);
873 				psock->sk_redir = NULL;
874 			}
875 		}
876 		if (rec)
877 			goto more_data;
878 	}
879  out_err:
880 	sk_psock_put(sk, psock);
881 	return err;
882 }
883 
tls_sw_push_pending_record(struct sock * sk,int flags)884 static int tls_sw_push_pending_record(struct sock *sk, int flags)
885 {
886 	struct tls_context *tls_ctx = tls_get_ctx(sk);
887 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
888 	struct tls_rec *rec = ctx->open_rec;
889 	struct sk_msg *msg_pl;
890 	size_t copied;
891 
892 	if (!rec)
893 		return 0;
894 
895 	msg_pl = &rec->msg_plaintext;
896 	copied = msg_pl->sg.size;
897 	if (!copied)
898 		return 0;
899 
900 	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
901 				   &copied, flags);
902 }
903 
tls_sw_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)904 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
905 {
906 	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
907 	struct tls_context *tls_ctx = tls_get_ctx(sk);
908 	struct tls_prot_info *prot = &tls_ctx->prot_info;
909 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
910 	bool async_capable = ctx->async_capable;
911 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
912 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
913 	bool eor = !(msg->msg_flags & MSG_MORE);
914 	size_t try_to_copy, copied = 0;
915 	struct sk_msg *msg_pl, *msg_en;
916 	struct tls_rec *rec;
917 	int required_size;
918 	int num_async = 0;
919 	bool full_record;
920 	int record_room;
921 	int num_zc = 0;
922 	int orig_size;
923 	int ret = 0;
924 
925 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
926 		return -EOPNOTSUPP;
927 
928 	mutex_lock(&tls_ctx->tx_lock);
929 	lock_sock(sk);
930 
931 	if (unlikely(msg->msg_controllen)) {
932 		ret = tls_proccess_cmsg(sk, msg, &record_type);
933 		if (ret) {
934 			if (ret == -EINPROGRESS)
935 				num_async++;
936 			else if (ret != -EAGAIN)
937 				goto send_end;
938 		}
939 	}
940 
941 	while (msg_data_left(msg)) {
942 		if (sk->sk_err) {
943 			ret = -sk->sk_err;
944 			goto send_end;
945 		}
946 
947 		if (ctx->open_rec)
948 			rec = ctx->open_rec;
949 		else
950 			rec = ctx->open_rec = tls_get_rec(sk);
951 		if (!rec) {
952 			ret = -ENOMEM;
953 			goto send_end;
954 		}
955 
956 		msg_pl = &rec->msg_plaintext;
957 		msg_en = &rec->msg_encrypted;
958 
959 		orig_size = msg_pl->sg.size;
960 		full_record = false;
961 		try_to_copy = msg_data_left(msg);
962 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
963 		if (try_to_copy >= record_room) {
964 			try_to_copy = record_room;
965 			full_record = true;
966 		}
967 
968 		required_size = msg_pl->sg.size + try_to_copy +
969 				prot->overhead_size;
970 
971 		if (!sk_stream_memory_free(sk))
972 			goto wait_for_sndbuf;
973 
974 alloc_encrypted:
975 		ret = tls_alloc_encrypted_msg(sk, required_size);
976 		if (ret) {
977 			if (ret != -ENOSPC)
978 				goto wait_for_memory;
979 
980 			/* Adjust try_to_copy according to the amount that was
981 			 * actually allocated. The difference is due
982 			 * to max sg elements limit
983 			 */
984 			try_to_copy -= required_size - msg_en->sg.size;
985 			full_record = true;
986 		}
987 
988 		if (!is_kvec && (full_record || eor) && !async_capable) {
989 			u32 first = msg_pl->sg.end;
990 
991 			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
992 							msg_pl, try_to_copy);
993 			if (ret)
994 				goto fallback_to_reg_send;
995 
996 			num_zc++;
997 			copied += try_to_copy;
998 
999 			sk_msg_sg_copy_set(msg_pl, first);
1000 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1001 						  record_type, &copied,
1002 						  msg->msg_flags);
1003 			if (ret) {
1004 				if (ret == -EINPROGRESS)
1005 					num_async++;
1006 				else if (ret == -ENOMEM)
1007 					goto wait_for_memory;
1008 				else if (ctx->open_rec && ret == -ENOSPC)
1009 					goto rollback_iter;
1010 				else if (ret != -EAGAIN)
1011 					goto send_end;
1012 			}
1013 			continue;
1014 rollback_iter:
1015 			copied -= try_to_copy;
1016 			sk_msg_sg_copy_clear(msg_pl, first);
1017 			iov_iter_revert(&msg->msg_iter,
1018 					msg_pl->sg.size - orig_size);
1019 fallback_to_reg_send:
1020 			sk_msg_trim(sk, msg_pl, orig_size);
1021 		}
1022 
1023 		required_size = msg_pl->sg.size + try_to_copy;
1024 
1025 		ret = tls_clone_plaintext_msg(sk, required_size);
1026 		if (ret) {
1027 			if (ret != -ENOSPC)
1028 				goto send_end;
1029 
1030 			/* Adjust try_to_copy according to the amount that was
1031 			 * actually allocated. The difference is due
1032 			 * to max sg elements limit
1033 			 */
1034 			try_to_copy -= required_size - msg_pl->sg.size;
1035 			full_record = true;
1036 			sk_msg_trim(sk, msg_en,
1037 				    msg_pl->sg.size + prot->overhead_size);
1038 		}
1039 
1040 		if (try_to_copy) {
1041 			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1042 						       msg_pl, try_to_copy);
1043 			if (ret < 0)
1044 				goto trim_sgl;
1045 		}
1046 
1047 		/* Open records defined only if successfully copied, otherwise
1048 		 * we would trim the sg but not reset the open record frags.
1049 		 */
1050 		tls_ctx->pending_open_record_frags = true;
1051 		copied += try_to_copy;
1052 		if (full_record || eor) {
1053 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1054 						  record_type, &copied,
1055 						  msg->msg_flags);
1056 			if (ret) {
1057 				if (ret == -EINPROGRESS)
1058 					num_async++;
1059 				else if (ret == -ENOMEM)
1060 					goto wait_for_memory;
1061 				else if (ret != -EAGAIN) {
1062 					if (ret == -ENOSPC)
1063 						ret = 0;
1064 					goto send_end;
1065 				}
1066 			}
1067 		}
1068 
1069 		continue;
1070 
1071 wait_for_sndbuf:
1072 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1073 wait_for_memory:
1074 		ret = sk_stream_wait_memory(sk, &timeo);
1075 		if (ret) {
1076 trim_sgl:
1077 			if (ctx->open_rec)
1078 				tls_trim_both_msgs(sk, orig_size);
1079 			goto send_end;
1080 		}
1081 
1082 		if (ctx->open_rec && msg_en->sg.size < required_size)
1083 			goto alloc_encrypted;
1084 	}
1085 
1086 	if (!num_async) {
1087 		goto send_end;
1088 	} else if (num_zc) {
1089 		/* Wait for pending encryptions to get completed */
1090 		smp_store_mb(ctx->async_notify, true);
1091 
1092 		if (atomic_read(&ctx->encrypt_pending))
1093 			crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1094 		else
1095 			reinit_completion(&ctx->async_wait.completion);
1096 
1097 		WRITE_ONCE(ctx->async_notify, false);
1098 
1099 		if (ctx->async_wait.err) {
1100 			ret = ctx->async_wait.err;
1101 			copied = 0;
1102 		}
1103 	}
1104 
1105 	/* Transmit if any encryptions have completed */
1106 	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1107 		cancel_delayed_work(&ctx->tx_work.work);
1108 		tls_tx_records(sk, msg->msg_flags);
1109 	}
1110 
1111 send_end:
1112 	ret = sk_stream_error(sk, msg->msg_flags, ret);
1113 
1114 	release_sock(sk);
1115 	mutex_unlock(&tls_ctx->tx_lock);
1116 	return copied ? copied : ret;
1117 }
1118 
tls_sw_do_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1119 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1120 			      int offset, size_t size, int flags)
1121 {
1122 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1123 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1124 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1125 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1126 	unsigned char record_type = TLS_RECORD_TYPE_DATA;
1127 	struct sk_msg *msg_pl;
1128 	struct tls_rec *rec;
1129 	int num_async = 0;
1130 	size_t copied = 0;
1131 	bool full_record;
1132 	int record_room;
1133 	int ret = 0;
1134 	bool eor;
1135 
1136 	eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1137 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1138 
1139 	/* Call the sk_stream functions to manage the sndbuf mem. */
1140 	while (size > 0) {
1141 		size_t copy, required_size;
1142 
1143 		if (sk->sk_err) {
1144 			ret = -sk->sk_err;
1145 			goto sendpage_end;
1146 		}
1147 
1148 		if (ctx->open_rec)
1149 			rec = ctx->open_rec;
1150 		else
1151 			rec = ctx->open_rec = tls_get_rec(sk);
1152 		if (!rec) {
1153 			ret = -ENOMEM;
1154 			goto sendpage_end;
1155 		}
1156 
1157 		msg_pl = &rec->msg_plaintext;
1158 
1159 		full_record = false;
1160 		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1161 		copy = size;
1162 		if (copy >= record_room) {
1163 			copy = record_room;
1164 			full_record = true;
1165 		}
1166 
1167 		required_size = msg_pl->sg.size + copy + prot->overhead_size;
1168 
1169 		if (!sk_stream_memory_free(sk))
1170 			goto wait_for_sndbuf;
1171 alloc_payload:
1172 		ret = tls_alloc_encrypted_msg(sk, required_size);
1173 		if (ret) {
1174 			if (ret != -ENOSPC)
1175 				goto wait_for_memory;
1176 
1177 			/* Adjust copy according to the amount that was
1178 			 * actually allocated. The difference is due
1179 			 * to max sg elements limit
1180 			 */
1181 			copy -= required_size - msg_pl->sg.size;
1182 			full_record = true;
1183 		}
1184 
1185 		sk_msg_page_add(msg_pl, page, copy, offset);
1186 		sk_mem_charge(sk, copy);
1187 
1188 		offset += copy;
1189 		size -= copy;
1190 		copied += copy;
1191 
1192 		tls_ctx->pending_open_record_frags = true;
1193 		if (full_record || eor || sk_msg_full(msg_pl)) {
1194 			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1195 						  record_type, &copied, flags);
1196 			if (ret) {
1197 				if (ret == -EINPROGRESS)
1198 					num_async++;
1199 				else if (ret == -ENOMEM)
1200 					goto wait_for_memory;
1201 				else if (ret != -EAGAIN) {
1202 					if (ret == -ENOSPC)
1203 						ret = 0;
1204 					goto sendpage_end;
1205 				}
1206 			}
1207 		}
1208 		continue;
1209 wait_for_sndbuf:
1210 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1211 wait_for_memory:
1212 		ret = sk_stream_wait_memory(sk, &timeo);
1213 		if (ret) {
1214 			if (ctx->open_rec)
1215 				tls_trim_both_msgs(sk, msg_pl->sg.size);
1216 			goto sendpage_end;
1217 		}
1218 
1219 		if (ctx->open_rec)
1220 			goto alloc_payload;
1221 	}
1222 
1223 	if (num_async) {
1224 		/* Transmit if any encryptions have completed */
1225 		if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1226 			cancel_delayed_work(&ctx->tx_work.work);
1227 			tls_tx_records(sk, flags);
1228 		}
1229 	}
1230 sendpage_end:
1231 	ret = sk_stream_error(sk, flags, ret);
1232 	return copied ? copied : ret;
1233 }
1234 
tls_sw_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1235 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1236 			   int offset, size_t size, int flags)
1237 {
1238 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1239 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1240 		      MSG_NO_SHARED_FRAGS))
1241 		return -EOPNOTSUPP;
1242 
1243 	return tls_sw_do_sendpage(sk, page, offset, size, flags);
1244 }
1245 
tls_sw_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1246 int tls_sw_sendpage(struct sock *sk, struct page *page,
1247 		    int offset, size_t size, int flags)
1248 {
1249 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1250 	int ret;
1251 
1252 	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1253 		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1254 		return -EOPNOTSUPP;
1255 
1256 	mutex_lock(&tls_ctx->tx_lock);
1257 	lock_sock(sk);
1258 	ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1259 	release_sock(sk);
1260 	mutex_unlock(&tls_ctx->tx_lock);
1261 	return ret;
1262 }
1263 
tls_wait_data(struct sock * sk,struct sk_psock * psock,int flags,long timeo,int * err)1264 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1265 				     int flags, long timeo, int *err)
1266 {
1267 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1268 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1269 	struct sk_buff *skb;
1270 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1271 
1272 	while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1273 		if (sk->sk_err) {
1274 			*err = sock_error(sk);
1275 			return NULL;
1276 		}
1277 
1278 		if (sk->sk_shutdown & RCV_SHUTDOWN)
1279 			return NULL;
1280 
1281 		if (sock_flag(sk, SOCK_DONE))
1282 			return NULL;
1283 
1284 		if ((flags & MSG_DONTWAIT) || !timeo) {
1285 			*err = -EAGAIN;
1286 			return NULL;
1287 		}
1288 
1289 		add_wait_queue(sk_sleep(sk), &wait);
1290 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1291 		sk_wait_event(sk, &timeo,
1292 			      ctx->recv_pkt != skb ||
1293 			      !sk_psock_queue_empty(psock),
1294 			      &wait);
1295 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1296 		remove_wait_queue(sk_sleep(sk), &wait);
1297 
1298 		/* Handle signals */
1299 		if (signal_pending(current)) {
1300 			*err = sock_intr_errno(timeo);
1301 			return NULL;
1302 		}
1303 	}
1304 
1305 	return skb;
1306 }
1307 
tls_setup_from_iter(struct sock * sk,struct iov_iter * from,int length,int * pages_used,unsigned int * size_used,struct scatterlist * to,int to_max_pages)1308 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1309 			       int length, int *pages_used,
1310 			       unsigned int *size_used,
1311 			       struct scatterlist *to,
1312 			       int to_max_pages)
1313 {
1314 	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1315 	struct page *pages[MAX_SKB_FRAGS];
1316 	unsigned int size = *size_used;
1317 	ssize_t copied, use;
1318 	size_t offset;
1319 
1320 	while (length > 0) {
1321 		i = 0;
1322 		maxpages = to_max_pages - num_elem;
1323 		if (maxpages == 0) {
1324 			rc = -EFAULT;
1325 			goto out;
1326 		}
1327 		copied = iov_iter_get_pages(from, pages,
1328 					    length,
1329 					    maxpages, &offset);
1330 		if (copied <= 0) {
1331 			rc = -EFAULT;
1332 			goto out;
1333 		}
1334 
1335 		iov_iter_advance(from, copied);
1336 
1337 		length -= copied;
1338 		size += copied;
1339 		while (copied) {
1340 			use = min_t(int, copied, PAGE_SIZE - offset);
1341 
1342 			sg_set_page(&to[num_elem],
1343 				    pages[i], use, offset);
1344 			sg_unmark_end(&to[num_elem]);
1345 			/* We do not uncharge memory from this API */
1346 
1347 			offset = 0;
1348 			copied -= use;
1349 
1350 			i++;
1351 			num_elem++;
1352 		}
1353 	}
1354 	/* Mark the end in the last sg entry if newly added */
1355 	if (num_elem > *pages_used)
1356 		sg_mark_end(&to[num_elem - 1]);
1357 out:
1358 	if (rc)
1359 		iov_iter_revert(from, size - *size_used);
1360 	*size_used = size;
1361 	*pages_used = num_elem;
1362 
1363 	return rc;
1364 }
1365 
1366 /* This function decrypts the input skb into either out_iov or in out_sg
1367  * or in skb buffers itself. The input parameter 'zc' indicates if
1368  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1369  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1370  * NULL, then the decryption happens inside skb buffers itself, i.e.
1371  * zero-copy gets disabled and 'zc' is updated.
1372  */
1373 
decrypt_internal(struct sock * sk,struct sk_buff * skb,struct iov_iter * out_iov,struct scatterlist * out_sg,int * chunk,bool * zc,bool async)1374 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1375 			    struct iov_iter *out_iov,
1376 			    struct scatterlist *out_sg,
1377 			    int *chunk, bool *zc, bool async)
1378 {
1379 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1380 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1381 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1382 	struct strp_msg *rxm = strp_msg(skb);
1383 	int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1384 	struct aead_request *aead_req;
1385 	struct sk_buff *unused;
1386 	u8 *aad, *iv, *mem = NULL;
1387 	struct scatterlist *sgin = NULL;
1388 	struct scatterlist *sgout = NULL;
1389 	const int data_len = rxm->full_len - prot->overhead_size +
1390 			     prot->tail_size;
1391 	int iv_offset = 0;
1392 
1393 	if (*zc && (out_iov || out_sg)) {
1394 		if (out_iov)
1395 			n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1396 		else
1397 			n_sgout = sg_nents(out_sg);
1398 		n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1399 				 rxm->full_len - prot->prepend_size);
1400 	} else {
1401 		n_sgout = 0;
1402 		*zc = false;
1403 		n_sgin = skb_cow_data(skb, 0, &unused);
1404 	}
1405 
1406 	if (n_sgin < 1)
1407 		return -EBADMSG;
1408 
1409 	/* Increment to accommodate AAD */
1410 	n_sgin = n_sgin + 1;
1411 
1412 	nsg = n_sgin + n_sgout;
1413 
1414 	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1415 	mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1416 	mem_size = mem_size + prot->aad_size;
1417 	mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1418 
1419 	/* Allocate a single block of memory which contains
1420 	 * aead_req || sgin[] || sgout[] || aad || iv.
1421 	 * This order achieves correct alignment for aead_req, sgin, sgout.
1422 	 */
1423 	mem = kmalloc(mem_size, sk->sk_allocation);
1424 	if (!mem)
1425 		return -ENOMEM;
1426 
1427 	/* Segment the allocated memory */
1428 	aead_req = (struct aead_request *)mem;
1429 	sgin = (struct scatterlist *)(mem + aead_size);
1430 	sgout = sgin + n_sgin;
1431 	aad = (u8 *)(sgout + n_sgout);
1432 	iv = aad + prot->aad_size;
1433 
1434 	/* For CCM based ciphers, first byte of nonce+iv is always '2' */
1435 	if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1436 		iv[0] = 2;
1437 		iv_offset = 1;
1438 	}
1439 
1440 	/* Prepare IV */
1441 	err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1442 			    iv + iv_offset + prot->salt_size,
1443 			    prot->iv_size);
1444 	if (err < 0) {
1445 		kfree(mem);
1446 		return err;
1447 	}
1448 	if (prot->version == TLS_1_3_VERSION)
1449 		memcpy(iv + iv_offset, tls_ctx->rx.iv,
1450 		       crypto_aead_ivsize(ctx->aead_recv));
1451 	else
1452 		memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1453 
1454 	xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
1455 
1456 	/* Prepare AAD */
1457 	tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1458 		     prot->tail_size,
1459 		     tls_ctx->rx.rec_seq, prot->rec_seq_size,
1460 		     ctx->control, prot->version);
1461 
1462 	/* Prepare sgin */
1463 	sg_init_table(sgin, n_sgin);
1464 	sg_set_buf(&sgin[0], aad, prot->aad_size);
1465 	err = skb_to_sgvec(skb, &sgin[1],
1466 			   rxm->offset + prot->prepend_size,
1467 			   rxm->full_len - prot->prepend_size);
1468 	if (err < 0) {
1469 		kfree(mem);
1470 		return err;
1471 	}
1472 
1473 	if (n_sgout) {
1474 		if (out_iov) {
1475 			sg_init_table(sgout, n_sgout);
1476 			sg_set_buf(&sgout[0], aad, prot->aad_size);
1477 
1478 			*chunk = 0;
1479 			err = tls_setup_from_iter(sk, out_iov, data_len,
1480 						  &pages, chunk, &sgout[1],
1481 						  (n_sgout - 1));
1482 			if (err < 0)
1483 				goto fallback_to_reg_recv;
1484 		} else if (out_sg) {
1485 			memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1486 		} else {
1487 			goto fallback_to_reg_recv;
1488 		}
1489 	} else {
1490 fallback_to_reg_recv:
1491 		sgout = sgin;
1492 		pages = 0;
1493 		*chunk = data_len;
1494 		*zc = false;
1495 	}
1496 
1497 	/* Prepare and submit AEAD request */
1498 	err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1499 				data_len, aead_req, async);
1500 	if (err == -EINPROGRESS)
1501 		return err;
1502 
1503 	/* Release the pages in case iov was mapped to pages */
1504 	for (; pages > 0; pages--)
1505 		put_page(sg_page(&sgout[pages]));
1506 
1507 	kfree(mem);
1508 	return err;
1509 }
1510 
decrypt_skb_update(struct sock * sk,struct sk_buff * skb,struct iov_iter * dest,int * chunk,bool * zc,bool async)1511 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1512 			      struct iov_iter *dest, int *chunk, bool *zc,
1513 			      bool async)
1514 {
1515 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1516 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1517 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1518 	struct strp_msg *rxm = strp_msg(skb);
1519 	int pad, err = 0;
1520 
1521 	if (!ctx->decrypted) {
1522 		if (tls_ctx->rx_conf == TLS_HW) {
1523 			err = tls_device_decrypted(sk, skb);
1524 			if (err < 0)
1525 				return err;
1526 		}
1527 
1528 		/* Still not decrypted after tls_device */
1529 		if (!ctx->decrypted) {
1530 			err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1531 					       async);
1532 			if (err < 0) {
1533 				if (err == -EINPROGRESS)
1534 					tls_advance_record_sn(sk, prot,
1535 							      &tls_ctx->rx);
1536 
1537 				return err;
1538 			}
1539 		} else {
1540 			*zc = false;
1541 		}
1542 
1543 		pad = padding_length(ctx, prot, skb);
1544 		if (pad < 0)
1545 			return pad;
1546 
1547 		rxm->full_len -= pad;
1548 		rxm->offset += prot->prepend_size;
1549 		rxm->full_len -= prot->overhead_size;
1550 		tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1551 		ctx->decrypted = true;
1552 		ctx->saved_data_ready(sk);
1553 	} else {
1554 		*zc = false;
1555 	}
1556 
1557 	return err;
1558 }
1559 
decrypt_skb(struct sock * sk,struct sk_buff * skb,struct scatterlist * sgout)1560 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1561 		struct scatterlist *sgout)
1562 {
1563 	bool zc = true;
1564 	int chunk;
1565 
1566 	return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1567 }
1568 
tls_sw_advance_skb(struct sock * sk,struct sk_buff * skb,unsigned int len)1569 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1570 			       unsigned int len)
1571 {
1572 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1573 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1574 
1575 	if (skb) {
1576 		struct strp_msg *rxm = strp_msg(skb);
1577 
1578 		if (len < rxm->full_len) {
1579 			rxm->offset += len;
1580 			rxm->full_len -= len;
1581 			return false;
1582 		}
1583 		consume_skb(skb);
1584 	}
1585 
1586 	/* Finished with message */
1587 	ctx->recv_pkt = NULL;
1588 	__strp_unpause(&ctx->strp);
1589 
1590 	return true;
1591 }
1592 
1593 /* This function traverses the rx_list in tls receive context to copies the
1594  * decrypted records into the buffer provided by caller zero copy is not
1595  * true. Further, the records are removed from the rx_list if it is not a peek
1596  * case and the record has been consumed completely.
1597  */
process_rx_list(struct tls_sw_context_rx * ctx,struct msghdr * msg,u8 * control,bool * cmsg,size_t skip,size_t len,bool zc,bool is_peek)1598 static int process_rx_list(struct tls_sw_context_rx *ctx,
1599 			   struct msghdr *msg,
1600 			   u8 *control,
1601 			   bool *cmsg,
1602 			   size_t skip,
1603 			   size_t len,
1604 			   bool zc,
1605 			   bool is_peek)
1606 {
1607 	struct sk_buff *skb = skb_peek(&ctx->rx_list);
1608 	u8 ctrl = *control;
1609 	u8 msgc = *cmsg;
1610 	struct tls_msg *tlm;
1611 	ssize_t copied = 0;
1612 
1613 	/* Set the record type in 'control' if caller didn't pass it */
1614 	if (!ctrl && skb) {
1615 		tlm = tls_msg(skb);
1616 		ctrl = tlm->control;
1617 	}
1618 
1619 	while (skip && skb) {
1620 		struct strp_msg *rxm = strp_msg(skb);
1621 		tlm = tls_msg(skb);
1622 
1623 		/* Cannot process a record of different type */
1624 		if (ctrl != tlm->control)
1625 			return 0;
1626 
1627 		if (skip < rxm->full_len)
1628 			break;
1629 
1630 		skip = skip - rxm->full_len;
1631 		skb = skb_peek_next(skb, &ctx->rx_list);
1632 	}
1633 
1634 	while (len && skb) {
1635 		struct sk_buff *next_skb;
1636 		struct strp_msg *rxm = strp_msg(skb);
1637 		int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1638 
1639 		tlm = tls_msg(skb);
1640 
1641 		/* Cannot process a record of different type */
1642 		if (ctrl != tlm->control)
1643 			return 0;
1644 
1645 		/* Set record type if not already done. For a non-data record,
1646 		 * do not proceed if record type could not be copied.
1647 		 */
1648 		if (!msgc) {
1649 			int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1650 					    sizeof(ctrl), &ctrl);
1651 			msgc = true;
1652 			if (ctrl != TLS_RECORD_TYPE_DATA) {
1653 				if (cerr || msg->msg_flags & MSG_CTRUNC)
1654 					return -EIO;
1655 
1656 				*cmsg = msgc;
1657 			}
1658 		}
1659 
1660 		if (!zc || (rxm->full_len - skip) > len) {
1661 			int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1662 						    msg, chunk);
1663 			if (err < 0)
1664 				return err;
1665 		}
1666 
1667 		len = len - chunk;
1668 		copied = copied + chunk;
1669 
1670 		/* Consume the data from record if it is non-peek case*/
1671 		if (!is_peek) {
1672 			rxm->offset = rxm->offset + chunk;
1673 			rxm->full_len = rxm->full_len - chunk;
1674 
1675 			/* Return if there is unconsumed data in the record */
1676 			if (rxm->full_len - skip)
1677 				break;
1678 		}
1679 
1680 		/* The remaining skip-bytes must lie in 1st record in rx_list.
1681 		 * So from the 2nd record, 'skip' should be 0.
1682 		 */
1683 		skip = 0;
1684 
1685 		if (msg)
1686 			msg->msg_flags |= MSG_EOR;
1687 
1688 		next_skb = skb_peek_next(skb, &ctx->rx_list);
1689 
1690 		if (!is_peek) {
1691 			skb_unlink(skb, &ctx->rx_list);
1692 			consume_skb(skb);
1693 		}
1694 
1695 		skb = next_skb;
1696 	}
1697 
1698 	*control = ctrl;
1699 	return copied;
1700 }
1701 
tls_sw_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)1702 int tls_sw_recvmsg(struct sock *sk,
1703 		   struct msghdr *msg,
1704 		   size_t len,
1705 		   int nonblock,
1706 		   int flags,
1707 		   int *addr_len)
1708 {
1709 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1710 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1711 	struct tls_prot_info *prot = &tls_ctx->prot_info;
1712 	struct sk_psock *psock;
1713 	unsigned char control = 0;
1714 	ssize_t decrypted = 0;
1715 	struct strp_msg *rxm;
1716 	struct tls_msg *tlm;
1717 	struct sk_buff *skb;
1718 	ssize_t copied = 0;
1719 	bool cmsg = false;
1720 	int target, err = 0;
1721 	long timeo;
1722 	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1723 	bool is_peek = flags & MSG_PEEK;
1724 	int num_async = 0;
1725 
1726 	flags |= nonblock;
1727 
1728 	if (unlikely(flags & MSG_ERRQUEUE))
1729 		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1730 
1731 	psock = sk_psock_get(sk);
1732 	lock_sock(sk);
1733 
1734 	/* Process pending decrypted records. It must be non-zero-copy */
1735 	err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1736 			      is_peek);
1737 	if (err < 0) {
1738 		tls_err_abort(sk, err);
1739 		goto end;
1740 	} else {
1741 		copied = err;
1742 	}
1743 
1744 	if (len <= copied)
1745 		goto recv_end;
1746 
1747 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1748 	len = len - copied;
1749 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1750 
1751 	while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1752 		bool retain_skb = false;
1753 		bool zc = false;
1754 		int to_decrypt;
1755 		int chunk = 0;
1756 		bool async_capable;
1757 		bool async = false;
1758 
1759 		skb = tls_wait_data(sk, psock, flags, timeo, &err);
1760 		if (!skb) {
1761 			if (psock) {
1762 				int ret = __tcp_bpf_recvmsg(sk, psock,
1763 							    msg, len, flags);
1764 
1765 				if (ret > 0) {
1766 					decrypted += ret;
1767 					len -= ret;
1768 					continue;
1769 				}
1770 			}
1771 			goto recv_end;
1772 		} else {
1773 			tlm = tls_msg(skb);
1774 			if (prot->version == TLS_1_3_VERSION)
1775 				tlm->control = 0;
1776 			else
1777 				tlm->control = ctx->control;
1778 		}
1779 
1780 		rxm = strp_msg(skb);
1781 
1782 		to_decrypt = rxm->full_len - prot->overhead_size;
1783 
1784 		if (to_decrypt <= len && !is_kvec && !is_peek &&
1785 		    ctx->control == TLS_RECORD_TYPE_DATA &&
1786 		    prot->version != TLS_1_3_VERSION)
1787 			zc = true;
1788 
1789 		/* Do not use async mode if record is non-data */
1790 		if (ctx->control == TLS_RECORD_TYPE_DATA)
1791 			async_capable = ctx->async_capable;
1792 		else
1793 			async_capable = false;
1794 
1795 		err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1796 					 &chunk, &zc, async_capable);
1797 		if (err < 0 && err != -EINPROGRESS) {
1798 			tls_err_abort(sk, EBADMSG);
1799 			goto recv_end;
1800 		}
1801 
1802 		if (err == -EINPROGRESS) {
1803 			async = true;
1804 			num_async++;
1805 		} else if (prot->version == TLS_1_3_VERSION) {
1806 			tlm->control = ctx->control;
1807 		}
1808 
1809 		/* If the type of records being processed is not known yet,
1810 		 * set it to record type just dequeued. If it is already known,
1811 		 * but does not match the record type just dequeued, go to end.
1812 		 * We always get record type here since for tls1.2, record type
1813 		 * is known just after record is dequeued from stream parser.
1814 		 * For tls1.3, we disable async.
1815 		 */
1816 
1817 		if (!control)
1818 			control = tlm->control;
1819 		else if (control != tlm->control)
1820 			goto recv_end;
1821 
1822 		if (!cmsg) {
1823 			int cerr;
1824 
1825 			cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1826 					sizeof(control), &control);
1827 			cmsg = true;
1828 			if (control != TLS_RECORD_TYPE_DATA) {
1829 				if (cerr || msg->msg_flags & MSG_CTRUNC) {
1830 					err = -EIO;
1831 					goto recv_end;
1832 				}
1833 			}
1834 		}
1835 
1836 		if (async)
1837 			goto pick_next_record;
1838 
1839 		if (!zc) {
1840 			if (rxm->full_len > len) {
1841 				retain_skb = true;
1842 				chunk = len;
1843 			} else {
1844 				chunk = rxm->full_len;
1845 			}
1846 
1847 			err = skb_copy_datagram_msg(skb, rxm->offset,
1848 						    msg, chunk);
1849 			if (err < 0)
1850 				goto recv_end;
1851 
1852 			if (!is_peek) {
1853 				rxm->offset = rxm->offset + chunk;
1854 				rxm->full_len = rxm->full_len - chunk;
1855 			}
1856 		}
1857 
1858 pick_next_record:
1859 		if (chunk > len)
1860 			chunk = len;
1861 
1862 		decrypted += chunk;
1863 		len -= chunk;
1864 
1865 		/* For async or peek case, queue the current skb */
1866 		if (async || is_peek || retain_skb) {
1867 			skb_queue_tail(&ctx->rx_list, skb);
1868 			skb = NULL;
1869 		}
1870 
1871 		if (tls_sw_advance_skb(sk, skb, chunk)) {
1872 			/* Return full control message to
1873 			 * userspace before trying to parse
1874 			 * another message type
1875 			 */
1876 			msg->msg_flags |= MSG_EOR;
1877 			if (ctx->control != TLS_RECORD_TYPE_DATA)
1878 				goto recv_end;
1879 		} else {
1880 			break;
1881 		}
1882 	}
1883 
1884 recv_end:
1885 	if (num_async) {
1886 		/* Wait for all previously submitted records to be decrypted */
1887 		smp_store_mb(ctx->async_notify, true);
1888 		if (atomic_read(&ctx->decrypt_pending)) {
1889 			err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1890 			if (err) {
1891 				/* one of async decrypt failed */
1892 				tls_err_abort(sk, err);
1893 				copied = 0;
1894 				decrypted = 0;
1895 				goto end;
1896 			}
1897 		} else {
1898 			reinit_completion(&ctx->async_wait.completion);
1899 		}
1900 		WRITE_ONCE(ctx->async_notify, false);
1901 
1902 		/* Drain records from the rx_list & copy if required */
1903 		if (is_peek || is_kvec)
1904 			err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1905 					      decrypted, false, is_peek);
1906 		else
1907 			err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1908 					      decrypted, true, is_peek);
1909 		if (err < 0) {
1910 			tls_err_abort(sk, err);
1911 			copied = 0;
1912 			goto end;
1913 		}
1914 	}
1915 
1916 	copied += decrypted;
1917 
1918 end:
1919 	release_sock(sk);
1920 	if (psock)
1921 		sk_psock_put(sk, psock);
1922 	return copied ? : err;
1923 }
1924 
tls_sw_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1925 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1926 			   struct pipe_inode_info *pipe,
1927 			   size_t len, unsigned int flags)
1928 {
1929 	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1930 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1931 	struct strp_msg *rxm = NULL;
1932 	struct sock *sk = sock->sk;
1933 	struct sk_buff *skb;
1934 	ssize_t copied = 0;
1935 	int err = 0;
1936 	long timeo;
1937 	int chunk;
1938 	bool zc = false;
1939 
1940 	lock_sock(sk);
1941 
1942 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1943 
1944 	skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1945 	if (!skb)
1946 		goto splice_read_end;
1947 
1948 	if (!ctx->decrypted) {
1949 		err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
1950 
1951 		/* splice does not support reading control messages */
1952 		if (ctx->control != TLS_RECORD_TYPE_DATA) {
1953 			err = -EINVAL;
1954 			goto splice_read_end;
1955 		}
1956 
1957 		if (err < 0) {
1958 			tls_err_abort(sk, EBADMSG);
1959 			goto splice_read_end;
1960 		}
1961 		ctx->decrypted = true;
1962 	}
1963 	rxm = strp_msg(skb);
1964 
1965 	chunk = min_t(unsigned int, rxm->full_len, len);
1966 	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1967 	if (copied < 0)
1968 		goto splice_read_end;
1969 
1970 	if (likely(!(flags & MSG_PEEK)))
1971 		tls_sw_advance_skb(sk, skb, copied);
1972 
1973 splice_read_end:
1974 	release_sock(sk);
1975 	return copied ? : err;
1976 }
1977 
tls_sw_stream_read(const struct sock * sk)1978 bool tls_sw_stream_read(const struct sock *sk)
1979 {
1980 	struct tls_context *tls_ctx = tls_get_ctx(sk);
1981 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1982 	bool ingress_empty = true;
1983 	struct sk_psock *psock;
1984 
1985 	rcu_read_lock();
1986 	psock = sk_psock(sk);
1987 	if (psock)
1988 		ingress_empty = list_empty(&psock->ingress_msg);
1989 	rcu_read_unlock();
1990 
1991 	return !ingress_empty || ctx->recv_pkt ||
1992 		!skb_queue_empty(&ctx->rx_list);
1993 }
1994 
tls_read_size(struct strparser * strp,struct sk_buff * skb)1995 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1996 {
1997 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1998 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1999 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2000 	char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2001 	struct strp_msg *rxm = strp_msg(skb);
2002 	size_t cipher_overhead;
2003 	size_t data_len = 0;
2004 	int ret;
2005 
2006 	/* Verify that we have a full TLS header, or wait for more data */
2007 	if (rxm->offset + prot->prepend_size > skb->len)
2008 		return 0;
2009 
2010 	/* Sanity-check size of on-stack buffer. */
2011 	if (WARN_ON(prot->prepend_size > sizeof(header))) {
2012 		ret = -EINVAL;
2013 		goto read_failure;
2014 	}
2015 
2016 	/* Linearize header to local buffer */
2017 	ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2018 
2019 	if (ret < 0)
2020 		goto read_failure;
2021 
2022 	ctx->control = header[0];
2023 
2024 	data_len = ((header[4] & 0xFF) | (header[3] << 8));
2025 
2026 	cipher_overhead = prot->tag_size;
2027 	if (prot->version != TLS_1_3_VERSION)
2028 		cipher_overhead += prot->iv_size;
2029 
2030 	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2031 	    prot->tail_size) {
2032 		ret = -EMSGSIZE;
2033 		goto read_failure;
2034 	}
2035 	if (data_len < cipher_overhead) {
2036 		ret = -EBADMSG;
2037 		goto read_failure;
2038 	}
2039 
2040 	/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2041 	if (header[1] != TLS_1_2_VERSION_MINOR ||
2042 	    header[2] != TLS_1_2_VERSION_MAJOR) {
2043 		ret = -EINVAL;
2044 		goto read_failure;
2045 	}
2046 
2047 	tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2048 				     TCP_SKB_CB(skb)->seq + rxm->offset);
2049 	return data_len + TLS_HEADER_SIZE;
2050 
2051 read_failure:
2052 	tls_err_abort(strp->sk, ret);
2053 
2054 	return ret;
2055 }
2056 
tls_queue(struct strparser * strp,struct sk_buff * skb)2057 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2058 {
2059 	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2060 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2061 
2062 	ctx->decrypted = false;
2063 
2064 	ctx->recv_pkt = skb;
2065 	strp_pause(strp);
2066 
2067 	ctx->saved_data_ready(strp->sk);
2068 }
2069 
tls_data_ready(struct sock * sk)2070 static void tls_data_ready(struct sock *sk)
2071 {
2072 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2073 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2074 	struct sk_psock *psock;
2075 
2076 	strp_data_ready(&ctx->strp);
2077 
2078 	psock = sk_psock_get(sk);
2079 	if (psock && !list_empty(&psock->ingress_msg)) {
2080 		ctx->saved_data_ready(sk);
2081 		sk_psock_put(sk, psock);
2082 	}
2083 }
2084 
tls_sw_cancel_work_tx(struct tls_context * tls_ctx)2085 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2086 {
2087 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2088 
2089 	set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2090 	set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2091 	cancel_delayed_work_sync(&ctx->tx_work.work);
2092 }
2093 
tls_sw_release_resources_tx(struct sock * sk)2094 void tls_sw_release_resources_tx(struct sock *sk)
2095 {
2096 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2097 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2098 	struct tls_rec *rec, *tmp;
2099 
2100 	/* Wait for any pending async encryptions to complete */
2101 	smp_store_mb(ctx->async_notify, true);
2102 	if (atomic_read(&ctx->encrypt_pending))
2103 		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2104 
2105 	tls_tx_records(sk, -1);
2106 
2107 	/* Free up un-sent records in tx_list. First, free
2108 	 * the partially sent record if any at head of tx_list.
2109 	 */
2110 	if (tls_ctx->partially_sent_record) {
2111 		tls_free_partial_record(sk, tls_ctx);
2112 		rec = list_first_entry(&ctx->tx_list,
2113 				       struct tls_rec, list);
2114 		list_del(&rec->list);
2115 		sk_msg_free(sk, &rec->msg_plaintext);
2116 		kfree(rec);
2117 	}
2118 
2119 	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2120 		list_del(&rec->list);
2121 		sk_msg_free(sk, &rec->msg_encrypted);
2122 		sk_msg_free(sk, &rec->msg_plaintext);
2123 		kfree(rec);
2124 	}
2125 
2126 	crypto_free_aead(ctx->aead_send);
2127 	tls_free_open_rec(sk);
2128 }
2129 
tls_sw_free_ctx_tx(struct tls_context * tls_ctx)2130 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2131 {
2132 	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2133 
2134 	kfree(ctx);
2135 }
2136 
tls_sw_release_resources_rx(struct sock * sk)2137 void tls_sw_release_resources_rx(struct sock *sk)
2138 {
2139 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2140 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2141 
2142 	kfree(tls_ctx->rx.rec_seq);
2143 	kfree(tls_ctx->rx.iv);
2144 
2145 	if (ctx->aead_recv) {
2146 		kfree_skb(ctx->recv_pkt);
2147 		ctx->recv_pkt = NULL;
2148 		skb_queue_purge(&ctx->rx_list);
2149 		crypto_free_aead(ctx->aead_recv);
2150 		strp_stop(&ctx->strp);
2151 		/* If tls_sw_strparser_arm() was not called (cleanup paths)
2152 		 * we still want to strp_stop(), but sk->sk_data_ready was
2153 		 * never swapped.
2154 		 */
2155 		if (ctx->saved_data_ready) {
2156 			write_lock_bh(&sk->sk_callback_lock);
2157 			sk->sk_data_ready = ctx->saved_data_ready;
2158 			write_unlock_bh(&sk->sk_callback_lock);
2159 		}
2160 	}
2161 }
2162 
tls_sw_strparser_done(struct tls_context * tls_ctx)2163 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2164 {
2165 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2166 
2167 	strp_done(&ctx->strp);
2168 }
2169 
tls_sw_free_ctx_rx(struct tls_context * tls_ctx)2170 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2171 {
2172 	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2173 
2174 	kfree(ctx);
2175 }
2176 
tls_sw_free_resources_rx(struct sock * sk)2177 void tls_sw_free_resources_rx(struct sock *sk)
2178 {
2179 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2180 
2181 	tls_sw_release_resources_rx(sk);
2182 	tls_sw_free_ctx_rx(tls_ctx);
2183 }
2184 
2185 /* The work handler to transmitt the encrypted records in tx_list */
tx_work_handler(struct work_struct * work)2186 static void tx_work_handler(struct work_struct *work)
2187 {
2188 	struct delayed_work *delayed_work = to_delayed_work(work);
2189 	struct tx_work *tx_work = container_of(delayed_work,
2190 					       struct tx_work, work);
2191 	struct sock *sk = tx_work->sk;
2192 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2193 	struct tls_sw_context_tx *ctx;
2194 
2195 	if (unlikely(!tls_ctx))
2196 		return;
2197 
2198 	ctx = tls_sw_ctx_tx(tls_ctx);
2199 	if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2200 		return;
2201 
2202 	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2203 		return;
2204 	mutex_lock(&tls_ctx->tx_lock);
2205 	lock_sock(sk);
2206 	tls_tx_records(sk, -1);
2207 	release_sock(sk);
2208 	mutex_unlock(&tls_ctx->tx_lock);
2209 }
2210 
tls_sw_write_space(struct sock * sk,struct tls_context * ctx)2211 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2212 {
2213 	struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2214 
2215 	/* Schedule the transmission if tx list is ready */
2216 	if (is_tx_ready(tx_ctx) &&
2217 	    !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2218 		schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2219 }
2220 
tls_sw_strparser_arm(struct sock * sk,struct tls_context * tls_ctx)2221 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2222 {
2223 	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2224 
2225 	write_lock_bh(&sk->sk_callback_lock);
2226 	rx_ctx->saved_data_ready = sk->sk_data_ready;
2227 	sk->sk_data_ready = tls_data_ready;
2228 	write_unlock_bh(&sk->sk_callback_lock);
2229 
2230 	strp_check_rcv(&rx_ctx->strp);
2231 }
2232 
tls_set_sw_offload(struct sock * sk,struct tls_context * ctx,int tx)2233 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2234 {
2235 	struct tls_context *tls_ctx = tls_get_ctx(sk);
2236 	struct tls_prot_info *prot = &tls_ctx->prot_info;
2237 	struct tls_crypto_info *crypto_info;
2238 	struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2239 	struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2240 	struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2241 	struct tls_sw_context_tx *sw_ctx_tx = NULL;
2242 	struct tls_sw_context_rx *sw_ctx_rx = NULL;
2243 	struct cipher_context *cctx;
2244 	struct crypto_aead **aead;
2245 	struct strp_callbacks cb;
2246 	u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2247 	struct crypto_tfm *tfm;
2248 	char *iv, *rec_seq, *key, *salt, *cipher_name;
2249 	size_t keysize;
2250 	int rc = 0;
2251 
2252 	if (!ctx) {
2253 		rc = -EINVAL;
2254 		goto out;
2255 	}
2256 
2257 	if (tx) {
2258 		if (!ctx->priv_ctx_tx) {
2259 			sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2260 			if (!sw_ctx_tx) {
2261 				rc = -ENOMEM;
2262 				goto out;
2263 			}
2264 			ctx->priv_ctx_tx = sw_ctx_tx;
2265 		} else {
2266 			sw_ctx_tx =
2267 				(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2268 		}
2269 	} else {
2270 		if (!ctx->priv_ctx_rx) {
2271 			sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2272 			if (!sw_ctx_rx) {
2273 				rc = -ENOMEM;
2274 				goto out;
2275 			}
2276 			ctx->priv_ctx_rx = sw_ctx_rx;
2277 		} else {
2278 			sw_ctx_rx =
2279 				(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2280 		}
2281 	}
2282 
2283 	if (tx) {
2284 		crypto_init_wait(&sw_ctx_tx->async_wait);
2285 		crypto_info = &ctx->crypto_send.info;
2286 		cctx = &ctx->tx;
2287 		aead = &sw_ctx_tx->aead_send;
2288 		INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2289 		INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2290 		sw_ctx_tx->tx_work.sk = sk;
2291 	} else {
2292 		crypto_init_wait(&sw_ctx_rx->async_wait);
2293 		crypto_info = &ctx->crypto_recv.info;
2294 		cctx = &ctx->rx;
2295 		skb_queue_head_init(&sw_ctx_rx->rx_list);
2296 		aead = &sw_ctx_rx->aead_recv;
2297 	}
2298 
2299 	switch (crypto_info->cipher_type) {
2300 	case TLS_CIPHER_AES_GCM_128: {
2301 		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2302 		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2303 		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2304 		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2305 		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2306 		rec_seq =
2307 		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2308 		gcm_128_info =
2309 			(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2310 		keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2311 		key = gcm_128_info->key;
2312 		salt = gcm_128_info->salt;
2313 		salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2314 		cipher_name = "gcm(aes)";
2315 		break;
2316 	}
2317 	case TLS_CIPHER_AES_GCM_256: {
2318 		nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2319 		tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2320 		iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2321 		iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2322 		rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2323 		rec_seq =
2324 		 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2325 		gcm_256_info =
2326 			(struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2327 		keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2328 		key = gcm_256_info->key;
2329 		salt = gcm_256_info->salt;
2330 		salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2331 		cipher_name = "gcm(aes)";
2332 		break;
2333 	}
2334 	case TLS_CIPHER_AES_CCM_128: {
2335 		nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2336 		tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2337 		iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2338 		iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2339 		rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2340 		rec_seq =
2341 		((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2342 		ccm_128_info =
2343 		(struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2344 		keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2345 		key = ccm_128_info->key;
2346 		salt = ccm_128_info->salt;
2347 		salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2348 		cipher_name = "ccm(aes)";
2349 		break;
2350 	}
2351 	default:
2352 		rc = -EINVAL;
2353 		goto free_priv;
2354 	}
2355 
2356 	/* Sanity-check the sizes for stack allocations. */
2357 	if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2358 	    rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2359 		rc = -EINVAL;
2360 		goto free_priv;
2361 	}
2362 
2363 	if (crypto_info->version == TLS_1_3_VERSION) {
2364 		nonce_size = 0;
2365 		prot->aad_size = TLS_HEADER_SIZE;
2366 		prot->tail_size = 1;
2367 	} else {
2368 		prot->aad_size = TLS_AAD_SPACE_SIZE;
2369 		prot->tail_size = 0;
2370 	}
2371 
2372 	prot->version = crypto_info->version;
2373 	prot->cipher_type = crypto_info->cipher_type;
2374 	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2375 	prot->tag_size = tag_size;
2376 	prot->overhead_size = prot->prepend_size +
2377 			      prot->tag_size + prot->tail_size;
2378 	prot->iv_size = iv_size;
2379 	prot->salt_size = salt_size;
2380 	cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2381 	if (!cctx->iv) {
2382 		rc = -ENOMEM;
2383 		goto free_priv;
2384 	}
2385 	/* Note: 128 & 256 bit salt are the same size */
2386 	prot->rec_seq_size = rec_seq_size;
2387 	memcpy(cctx->iv, salt, salt_size);
2388 	memcpy(cctx->iv + salt_size, iv, iv_size);
2389 	cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2390 	if (!cctx->rec_seq) {
2391 		rc = -ENOMEM;
2392 		goto free_iv;
2393 	}
2394 
2395 	if (!*aead) {
2396 		*aead = crypto_alloc_aead(cipher_name, 0, 0);
2397 		if (IS_ERR(*aead)) {
2398 			rc = PTR_ERR(*aead);
2399 			*aead = NULL;
2400 			goto free_rec_seq;
2401 		}
2402 	}
2403 
2404 	ctx->push_pending_record = tls_sw_push_pending_record;
2405 
2406 	rc = crypto_aead_setkey(*aead, key, keysize);
2407 
2408 	if (rc)
2409 		goto free_aead;
2410 
2411 	rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2412 	if (rc)
2413 		goto free_aead;
2414 
2415 	if (sw_ctx_rx) {
2416 		tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2417 
2418 		if (crypto_info->version == TLS_1_3_VERSION)
2419 			sw_ctx_rx->async_capable = false;
2420 		else
2421 			sw_ctx_rx->async_capable =
2422 				tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
2423 
2424 		/* Set up strparser */
2425 		memset(&cb, 0, sizeof(cb));
2426 		cb.rcv_msg = tls_queue;
2427 		cb.parse_msg = tls_read_size;
2428 
2429 		strp_init(&sw_ctx_rx->strp, sk, &cb);
2430 	}
2431 
2432 	goto out;
2433 
2434 free_aead:
2435 	crypto_free_aead(*aead);
2436 	*aead = NULL;
2437 free_rec_seq:
2438 	kfree(cctx->rec_seq);
2439 	cctx->rec_seq = NULL;
2440 free_iv:
2441 	kfree(cctx->iv);
2442 	cctx->iv = NULL;
2443 free_priv:
2444 	if (tx) {
2445 		kfree(ctx->priv_ctx_tx);
2446 		ctx->priv_ctx_tx = NULL;
2447 	} else {
2448 		kfree(ctx->priv_ctx_rx);
2449 		ctx->priv_ctx_rx = NULL;
2450 	}
2451 out:
2452 	return rc;
2453 }
2454