1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
41
42 #include <net/strparser.h>
43 #include <net/tls.h>
44
__skb_nsg(struct sk_buff * skb,int offset,int len,unsigned int recursion_level)45 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
46 unsigned int recursion_level)
47 {
48 int start = skb_headlen(skb);
49 int i, chunk = start - offset;
50 struct sk_buff *frag_iter;
51 int elt = 0;
52
53 if (unlikely(recursion_level >= 24))
54 return -EMSGSIZE;
55
56 if (chunk > 0) {
57 if (chunk > len)
58 chunk = len;
59 elt++;
60 len -= chunk;
61 if (len == 0)
62 return elt;
63 offset += chunk;
64 }
65
66 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
67 int end;
68
69 WARN_ON(start > offset + len);
70
71 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
72 chunk = end - offset;
73 if (chunk > 0) {
74 if (chunk > len)
75 chunk = len;
76 elt++;
77 len -= chunk;
78 if (len == 0)
79 return elt;
80 offset += chunk;
81 }
82 start = end;
83 }
84
85 if (unlikely(skb_has_frag_list(skb))) {
86 skb_walk_frags(skb, frag_iter) {
87 int end, ret;
88
89 WARN_ON(start > offset + len);
90
91 end = start + frag_iter->len;
92 chunk = end - offset;
93 if (chunk > 0) {
94 if (chunk > len)
95 chunk = len;
96 ret = __skb_nsg(frag_iter, offset - start, chunk,
97 recursion_level + 1);
98 if (unlikely(ret < 0))
99 return ret;
100 elt += ret;
101 len -= chunk;
102 if (len == 0)
103 return elt;
104 offset += chunk;
105 }
106 start = end;
107 }
108 }
109 BUG_ON(len);
110 return elt;
111 }
112
113 /* Return the number of scatterlist elements required to completely map the
114 * skb, or -EMSGSIZE if the recursion depth is exceeded.
115 */
skb_nsg(struct sk_buff * skb,int offset,int len)116 static int skb_nsg(struct sk_buff *skb, int offset, int len)
117 {
118 return __skb_nsg(skb, offset, len, 0);
119 }
120
padding_length(struct tls_sw_context_rx * ctx,struct tls_prot_info * prot,struct sk_buff * skb)121 static int padding_length(struct tls_sw_context_rx *ctx,
122 struct tls_prot_info *prot, struct sk_buff *skb)
123 {
124 struct strp_msg *rxm = strp_msg(skb);
125 int sub = 0;
126
127 /* Determine zero-padding length */
128 if (prot->version == TLS_1_3_VERSION) {
129 char content_type = 0;
130 int err;
131 int back = 17;
132
133 while (content_type == 0) {
134 if (back > rxm->full_len - prot->prepend_size)
135 return -EBADMSG;
136 err = skb_copy_bits(skb,
137 rxm->offset + rxm->full_len - back,
138 &content_type, 1);
139 if (err)
140 return err;
141 if (content_type)
142 break;
143 sub++;
144 back++;
145 }
146 ctx->control = content_type;
147 }
148 return sub;
149 }
150
tls_decrypt_done(struct crypto_async_request * req,int err)151 static void tls_decrypt_done(struct crypto_async_request *req, int err)
152 {
153 struct aead_request *aead_req = (struct aead_request *)req;
154 struct scatterlist *sgout = aead_req->dst;
155 struct scatterlist *sgin = aead_req->src;
156 struct tls_sw_context_rx *ctx;
157 struct tls_context *tls_ctx;
158 struct tls_prot_info *prot;
159 struct scatterlist *sg;
160 struct sk_buff *skb;
161 unsigned int pages;
162 int pending;
163
164 skb = (struct sk_buff *)req->data;
165 tls_ctx = tls_get_ctx(skb->sk);
166 ctx = tls_sw_ctx_rx(tls_ctx);
167 prot = &tls_ctx->prot_info;
168
169 /* Propagate if there was an err */
170 if (err) {
171 ctx->async_wait.err = err;
172 tls_err_abort(skb->sk, err);
173 } else {
174 struct strp_msg *rxm = strp_msg(skb);
175 int pad;
176
177 pad = padding_length(ctx, prot, skb);
178 if (pad < 0) {
179 ctx->async_wait.err = pad;
180 tls_err_abort(skb->sk, pad);
181 } else {
182 rxm->full_len -= pad;
183 rxm->offset += prot->prepend_size;
184 rxm->full_len -= prot->overhead_size;
185 }
186 }
187
188 /* After using skb->sk to propagate sk through crypto async callback
189 * we need to NULL it again.
190 */
191 skb->sk = NULL;
192
193
194 /* Free the destination pages if skb was not decrypted inplace */
195 if (sgout != sgin) {
196 /* Skip the first S/G entry as it points to AAD */
197 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
198 if (!sg)
199 break;
200 put_page(sg_page(sg));
201 }
202 }
203
204 kfree(aead_req);
205
206 pending = atomic_dec_return(&ctx->decrypt_pending);
207
208 if (!pending && READ_ONCE(ctx->async_notify))
209 complete(&ctx->async_wait.completion);
210 }
211
tls_do_decryption(struct sock * sk,struct sk_buff * skb,struct scatterlist * sgin,struct scatterlist * sgout,char * iv_recv,size_t data_len,struct aead_request * aead_req,bool async)212 static int tls_do_decryption(struct sock *sk,
213 struct sk_buff *skb,
214 struct scatterlist *sgin,
215 struct scatterlist *sgout,
216 char *iv_recv,
217 size_t data_len,
218 struct aead_request *aead_req,
219 bool async)
220 {
221 struct tls_context *tls_ctx = tls_get_ctx(sk);
222 struct tls_prot_info *prot = &tls_ctx->prot_info;
223 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
224 int ret;
225
226 aead_request_set_tfm(aead_req, ctx->aead_recv);
227 aead_request_set_ad(aead_req, prot->aad_size);
228 aead_request_set_crypt(aead_req, sgin, sgout,
229 data_len + prot->tag_size,
230 (u8 *)iv_recv);
231
232 if (async) {
233 /* Using skb->sk to push sk through to crypto async callback
234 * handler. This allows propagating errors up to the socket
235 * if needed. It _must_ be cleared in the async handler
236 * before consume_skb is called. We _know_ skb->sk is NULL
237 * because it is a clone from strparser.
238 */
239 skb->sk = sk;
240 aead_request_set_callback(aead_req,
241 CRYPTO_TFM_REQ_MAY_BACKLOG,
242 tls_decrypt_done, skb);
243 atomic_inc(&ctx->decrypt_pending);
244 } else {
245 aead_request_set_callback(aead_req,
246 CRYPTO_TFM_REQ_MAY_BACKLOG,
247 crypto_req_done, &ctx->async_wait);
248 }
249
250 ret = crypto_aead_decrypt(aead_req);
251 if (ret == -EINPROGRESS) {
252 if (async)
253 return ret;
254
255 ret = crypto_wait_req(ret, &ctx->async_wait);
256 }
257
258 if (async)
259 atomic_dec(&ctx->decrypt_pending);
260
261 return ret;
262 }
263
tls_trim_both_msgs(struct sock * sk,int target_size)264 static void tls_trim_both_msgs(struct sock *sk, int target_size)
265 {
266 struct tls_context *tls_ctx = tls_get_ctx(sk);
267 struct tls_prot_info *prot = &tls_ctx->prot_info;
268 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
269 struct tls_rec *rec = ctx->open_rec;
270
271 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
272 if (target_size > 0)
273 target_size += prot->overhead_size;
274 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
275 }
276
tls_alloc_encrypted_msg(struct sock * sk,int len)277 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
278 {
279 struct tls_context *tls_ctx = tls_get_ctx(sk);
280 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
281 struct tls_rec *rec = ctx->open_rec;
282 struct sk_msg *msg_en = &rec->msg_encrypted;
283
284 return sk_msg_alloc(sk, msg_en, len, 0);
285 }
286
tls_clone_plaintext_msg(struct sock * sk,int required)287 static int tls_clone_plaintext_msg(struct sock *sk, int required)
288 {
289 struct tls_context *tls_ctx = tls_get_ctx(sk);
290 struct tls_prot_info *prot = &tls_ctx->prot_info;
291 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
292 struct tls_rec *rec = ctx->open_rec;
293 struct sk_msg *msg_pl = &rec->msg_plaintext;
294 struct sk_msg *msg_en = &rec->msg_encrypted;
295 int skip, len;
296
297 /* We add page references worth len bytes from encrypted sg
298 * at the end of plaintext sg. It is guaranteed that msg_en
299 * has enough required room (ensured by caller).
300 */
301 len = required - msg_pl->sg.size;
302
303 /* Skip initial bytes in msg_en's data to be able to use
304 * same offset of both plain and encrypted data.
305 */
306 skip = prot->prepend_size + msg_pl->sg.size;
307
308 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
309 }
310
tls_get_rec(struct sock * sk)311 static struct tls_rec *tls_get_rec(struct sock *sk)
312 {
313 struct tls_context *tls_ctx = tls_get_ctx(sk);
314 struct tls_prot_info *prot = &tls_ctx->prot_info;
315 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
316 struct sk_msg *msg_pl, *msg_en;
317 struct tls_rec *rec;
318 int mem_size;
319
320 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
321
322 rec = kzalloc(mem_size, sk->sk_allocation);
323 if (!rec)
324 return NULL;
325
326 msg_pl = &rec->msg_plaintext;
327 msg_en = &rec->msg_encrypted;
328
329 sk_msg_init(msg_pl);
330 sk_msg_init(msg_en);
331
332 sg_init_table(rec->sg_aead_in, 2);
333 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
334 sg_unmark_end(&rec->sg_aead_in[1]);
335
336 sg_init_table(rec->sg_aead_out, 2);
337 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
338 sg_unmark_end(&rec->sg_aead_out[1]);
339
340 return rec;
341 }
342
tls_free_rec(struct sock * sk,struct tls_rec * rec)343 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
344 {
345 sk_msg_free(sk, &rec->msg_encrypted);
346 sk_msg_free(sk, &rec->msg_plaintext);
347 kfree(rec);
348 }
349
tls_free_open_rec(struct sock * sk)350 static void tls_free_open_rec(struct sock *sk)
351 {
352 struct tls_context *tls_ctx = tls_get_ctx(sk);
353 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
354 struct tls_rec *rec = ctx->open_rec;
355
356 if (rec) {
357 tls_free_rec(sk, rec);
358 ctx->open_rec = NULL;
359 }
360 }
361
tls_tx_records(struct sock * sk,int flags)362 int tls_tx_records(struct sock *sk, int flags)
363 {
364 struct tls_context *tls_ctx = tls_get_ctx(sk);
365 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
366 struct tls_rec *rec, *tmp;
367 struct sk_msg *msg_en;
368 int tx_flags, rc = 0;
369
370 if (tls_is_partially_sent_record(tls_ctx)) {
371 rec = list_first_entry(&ctx->tx_list,
372 struct tls_rec, list);
373
374 if (flags == -1)
375 tx_flags = rec->tx_flags;
376 else
377 tx_flags = flags;
378
379 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
380 if (rc)
381 goto tx_err;
382
383 /* Full record has been transmitted.
384 * Remove the head of tx_list
385 */
386 list_del(&rec->list);
387 sk_msg_free(sk, &rec->msg_plaintext);
388 kfree(rec);
389 }
390
391 /* Tx all ready records */
392 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
393 if (READ_ONCE(rec->tx_ready)) {
394 if (flags == -1)
395 tx_flags = rec->tx_flags;
396 else
397 tx_flags = flags;
398
399 msg_en = &rec->msg_encrypted;
400 rc = tls_push_sg(sk, tls_ctx,
401 &msg_en->sg.data[msg_en->sg.curr],
402 0, tx_flags);
403 if (rc)
404 goto tx_err;
405
406 list_del(&rec->list);
407 sk_msg_free(sk, &rec->msg_plaintext);
408 kfree(rec);
409 } else {
410 break;
411 }
412 }
413
414 tx_err:
415 if (rc < 0 && rc != -EAGAIN)
416 tls_err_abort(sk, EBADMSG);
417
418 return rc;
419 }
420
tls_encrypt_done(struct crypto_async_request * req,int err)421 static void tls_encrypt_done(struct crypto_async_request *req, int err)
422 {
423 struct aead_request *aead_req = (struct aead_request *)req;
424 struct sock *sk = req->data;
425 struct tls_context *tls_ctx = tls_get_ctx(sk);
426 struct tls_prot_info *prot = &tls_ctx->prot_info;
427 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
428 struct scatterlist *sge;
429 struct sk_msg *msg_en;
430 struct tls_rec *rec;
431 bool ready = false;
432 int pending;
433
434 rec = container_of(aead_req, struct tls_rec, aead_req);
435 msg_en = &rec->msg_encrypted;
436
437 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
438 sge->offset -= prot->prepend_size;
439 sge->length += prot->prepend_size;
440
441 /* Check if error is previously set on socket */
442 if (err || sk->sk_err) {
443 rec = NULL;
444
445 /* If err is already set on socket, return the same code */
446 if (sk->sk_err) {
447 ctx->async_wait.err = sk->sk_err;
448 } else {
449 ctx->async_wait.err = err;
450 tls_err_abort(sk, err);
451 }
452 }
453
454 if (rec) {
455 struct tls_rec *first_rec;
456
457 /* Mark the record as ready for transmission */
458 smp_store_mb(rec->tx_ready, true);
459
460 /* If received record is at head of tx_list, schedule tx */
461 first_rec = list_first_entry(&ctx->tx_list,
462 struct tls_rec, list);
463 if (rec == first_rec)
464 ready = true;
465 }
466
467 pending = atomic_dec_return(&ctx->encrypt_pending);
468
469 if (!pending && READ_ONCE(ctx->async_notify))
470 complete(&ctx->async_wait.completion);
471
472 if (!ready)
473 return;
474
475 /* Schedule the transmission */
476 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
477 schedule_delayed_work(&ctx->tx_work.work, 1);
478 }
479
tls_do_encryption(struct sock * sk,struct tls_context * tls_ctx,struct tls_sw_context_tx * ctx,struct aead_request * aead_req,size_t data_len,u32 start)480 static int tls_do_encryption(struct sock *sk,
481 struct tls_context *tls_ctx,
482 struct tls_sw_context_tx *ctx,
483 struct aead_request *aead_req,
484 size_t data_len, u32 start)
485 {
486 struct tls_prot_info *prot = &tls_ctx->prot_info;
487 struct tls_rec *rec = ctx->open_rec;
488 struct sk_msg *msg_en = &rec->msg_encrypted;
489 struct scatterlist *sge = sk_msg_elem(msg_en, start);
490 int rc, iv_offset = 0;
491
492 /* For CCM based ciphers, first byte of IV is a constant */
493 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
494 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
495 iv_offset = 1;
496 }
497
498 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
499 prot->iv_size + prot->salt_size);
500
501 xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq);
502
503 sge->offset += prot->prepend_size;
504 sge->length -= prot->prepend_size;
505
506 msg_en->sg.curr = start;
507
508 aead_request_set_tfm(aead_req, ctx->aead_send);
509 aead_request_set_ad(aead_req, prot->aad_size);
510 aead_request_set_crypt(aead_req, rec->sg_aead_in,
511 rec->sg_aead_out,
512 data_len, rec->iv_data);
513
514 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
515 tls_encrypt_done, sk);
516
517 /* Add the record in tx_list */
518 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
519 atomic_inc(&ctx->encrypt_pending);
520
521 rc = crypto_aead_encrypt(aead_req);
522 if (!rc || rc != -EINPROGRESS) {
523 atomic_dec(&ctx->encrypt_pending);
524 sge->offset -= prot->prepend_size;
525 sge->length += prot->prepend_size;
526 }
527
528 if (!rc) {
529 WRITE_ONCE(rec->tx_ready, true);
530 } else if (rc != -EINPROGRESS) {
531 list_del(&rec->list);
532 return rc;
533 }
534
535 /* Unhook the record from context if encryption is not failure */
536 ctx->open_rec = NULL;
537 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
538 return rc;
539 }
540
tls_split_open_record(struct sock * sk,struct tls_rec * from,struct tls_rec ** to,struct sk_msg * msg_opl,struct sk_msg * msg_oen,u32 split_point,u32 tx_overhead_size,u32 * orig_end)541 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
542 struct tls_rec **to, struct sk_msg *msg_opl,
543 struct sk_msg *msg_oen, u32 split_point,
544 u32 tx_overhead_size, u32 *orig_end)
545 {
546 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
547 struct scatterlist *sge, *osge, *nsge;
548 u32 orig_size = msg_opl->sg.size;
549 struct scatterlist tmp = { };
550 struct sk_msg *msg_npl;
551 struct tls_rec *new;
552 int ret;
553
554 new = tls_get_rec(sk);
555 if (!new)
556 return -ENOMEM;
557 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
558 tx_overhead_size, 0);
559 if (ret < 0) {
560 tls_free_rec(sk, new);
561 return ret;
562 }
563
564 *orig_end = msg_opl->sg.end;
565 i = msg_opl->sg.start;
566 sge = sk_msg_elem(msg_opl, i);
567 while (apply && sge->length) {
568 if (sge->length > apply) {
569 u32 len = sge->length - apply;
570
571 get_page(sg_page(sge));
572 sg_set_page(&tmp, sg_page(sge), len,
573 sge->offset + apply);
574 sge->length = apply;
575 bytes += apply;
576 apply = 0;
577 } else {
578 apply -= sge->length;
579 bytes += sge->length;
580 }
581
582 sk_msg_iter_var_next(i);
583 if (i == msg_opl->sg.end)
584 break;
585 sge = sk_msg_elem(msg_opl, i);
586 }
587
588 msg_opl->sg.end = i;
589 msg_opl->sg.curr = i;
590 msg_opl->sg.copybreak = 0;
591 msg_opl->apply_bytes = 0;
592 msg_opl->sg.size = bytes;
593
594 msg_npl = &new->msg_plaintext;
595 msg_npl->apply_bytes = apply;
596 msg_npl->sg.size = orig_size - bytes;
597
598 j = msg_npl->sg.start;
599 nsge = sk_msg_elem(msg_npl, j);
600 if (tmp.length) {
601 memcpy(nsge, &tmp, sizeof(*nsge));
602 sk_msg_iter_var_next(j);
603 nsge = sk_msg_elem(msg_npl, j);
604 }
605
606 osge = sk_msg_elem(msg_opl, i);
607 while (osge->length) {
608 memcpy(nsge, osge, sizeof(*nsge));
609 sg_unmark_end(nsge);
610 sk_msg_iter_var_next(i);
611 sk_msg_iter_var_next(j);
612 if (i == *orig_end)
613 break;
614 osge = sk_msg_elem(msg_opl, i);
615 nsge = sk_msg_elem(msg_npl, j);
616 }
617
618 msg_npl->sg.end = j;
619 msg_npl->sg.curr = j;
620 msg_npl->sg.copybreak = 0;
621
622 *to = new;
623 return 0;
624 }
625
tls_merge_open_record(struct sock * sk,struct tls_rec * to,struct tls_rec * from,u32 orig_end)626 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
627 struct tls_rec *from, u32 orig_end)
628 {
629 struct sk_msg *msg_npl = &from->msg_plaintext;
630 struct sk_msg *msg_opl = &to->msg_plaintext;
631 struct scatterlist *osge, *nsge;
632 u32 i, j;
633
634 i = msg_opl->sg.end;
635 sk_msg_iter_var_prev(i);
636 j = msg_npl->sg.start;
637
638 osge = sk_msg_elem(msg_opl, i);
639 nsge = sk_msg_elem(msg_npl, j);
640
641 if (sg_page(osge) == sg_page(nsge) &&
642 osge->offset + osge->length == nsge->offset) {
643 osge->length += nsge->length;
644 put_page(sg_page(nsge));
645 }
646
647 msg_opl->sg.end = orig_end;
648 msg_opl->sg.curr = orig_end;
649 msg_opl->sg.copybreak = 0;
650 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
651 msg_opl->sg.size += msg_npl->sg.size;
652
653 sk_msg_free(sk, &to->msg_encrypted);
654 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
655
656 kfree(from);
657 }
658
tls_push_record(struct sock * sk,int flags,unsigned char record_type)659 static int tls_push_record(struct sock *sk, int flags,
660 unsigned char record_type)
661 {
662 struct tls_context *tls_ctx = tls_get_ctx(sk);
663 struct tls_prot_info *prot = &tls_ctx->prot_info;
664 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
665 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
666 u32 i, split_point, uninitialized_var(orig_end);
667 struct sk_msg *msg_pl, *msg_en;
668 struct aead_request *req;
669 bool split;
670 int rc;
671
672 if (!rec)
673 return 0;
674
675 msg_pl = &rec->msg_plaintext;
676 msg_en = &rec->msg_encrypted;
677
678 split_point = msg_pl->apply_bytes;
679 split = split_point && split_point < msg_pl->sg.size;
680 if (unlikely((!split &&
681 msg_pl->sg.size +
682 prot->overhead_size > msg_en->sg.size) ||
683 (split &&
684 split_point +
685 prot->overhead_size > msg_en->sg.size))) {
686 split = true;
687 split_point = msg_en->sg.size;
688 }
689 if (split) {
690 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
691 split_point, prot->overhead_size,
692 &orig_end);
693 if (rc < 0)
694 return rc;
695 /* This can happen if above tls_split_open_record allocates
696 * a single large encryption buffer instead of two smaller
697 * ones. In this case adjust pointers and continue without
698 * split.
699 */
700 if (!msg_pl->sg.size) {
701 tls_merge_open_record(sk, rec, tmp, orig_end);
702 msg_pl = &rec->msg_plaintext;
703 msg_en = &rec->msg_encrypted;
704 split = false;
705 }
706 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
707 prot->overhead_size);
708 }
709
710 rec->tx_flags = flags;
711 req = &rec->aead_req;
712
713 i = msg_pl->sg.end;
714 sk_msg_iter_var_prev(i);
715
716 rec->content_type = record_type;
717 if (prot->version == TLS_1_3_VERSION) {
718 /* Add content type to end of message. No padding added */
719 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
720 sg_mark_end(&rec->sg_content_type);
721 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
722 &rec->sg_content_type);
723 } else {
724 sg_mark_end(sk_msg_elem(msg_pl, i));
725 }
726
727 if (msg_pl->sg.end < msg_pl->sg.start) {
728 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
729 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
730 msg_pl->sg.data);
731 }
732
733 i = msg_pl->sg.start;
734 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
735
736 i = msg_en->sg.end;
737 sk_msg_iter_var_prev(i);
738 sg_mark_end(sk_msg_elem(msg_en, i));
739
740 i = msg_en->sg.start;
741 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
742
743 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
744 tls_ctx->tx.rec_seq, prot->rec_seq_size,
745 record_type, prot->version);
746
747 tls_fill_prepend(tls_ctx,
748 page_address(sg_page(&msg_en->sg.data[i])) +
749 msg_en->sg.data[i].offset,
750 msg_pl->sg.size + prot->tail_size,
751 record_type, prot->version);
752
753 tls_ctx->pending_open_record_frags = false;
754
755 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
756 msg_pl->sg.size + prot->tail_size, i);
757 if (rc < 0) {
758 if (rc != -EINPROGRESS) {
759 tls_err_abort(sk, EBADMSG);
760 if (split) {
761 tls_ctx->pending_open_record_frags = true;
762 tls_merge_open_record(sk, rec, tmp, orig_end);
763 }
764 }
765 ctx->async_capable = 1;
766 return rc;
767 } else if (split) {
768 msg_pl = &tmp->msg_plaintext;
769 msg_en = &tmp->msg_encrypted;
770 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
771 tls_ctx->pending_open_record_frags = true;
772 ctx->open_rec = tmp;
773 }
774
775 return tls_tx_records(sk, flags);
776 }
777
bpf_exec_tx_verdict(struct sk_msg * msg,struct sock * sk,bool full_record,u8 record_type,size_t * copied,int flags)778 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
779 bool full_record, u8 record_type,
780 size_t *copied, int flags)
781 {
782 struct tls_context *tls_ctx = tls_get_ctx(sk);
783 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
784 struct sk_msg msg_redir = { };
785 struct sk_psock *psock;
786 struct sock *sk_redir;
787 struct tls_rec *rec;
788 bool enospc, policy;
789 int err = 0, send;
790 u32 delta = 0;
791
792 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
793 psock = sk_psock_get(sk);
794 if (!psock || !policy) {
795 err = tls_push_record(sk, flags, record_type);
796 if (err && err != -EINPROGRESS) {
797 *copied -= sk_msg_free(sk, msg);
798 tls_free_open_rec(sk);
799 }
800 return err;
801 }
802 more_data:
803 enospc = sk_msg_full(msg);
804 if (psock->eval == __SK_NONE) {
805 delta = msg->sg.size;
806 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
807 delta -= msg->sg.size;
808 }
809 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
810 !enospc && !full_record) {
811 err = -ENOSPC;
812 goto out_err;
813 }
814 msg->cork_bytes = 0;
815 send = msg->sg.size;
816 if (msg->apply_bytes && msg->apply_bytes < send)
817 send = msg->apply_bytes;
818
819 switch (psock->eval) {
820 case __SK_PASS:
821 err = tls_push_record(sk, flags, record_type);
822 if (err && err != -EINPROGRESS) {
823 *copied -= sk_msg_free(sk, msg);
824 tls_free_open_rec(sk);
825 goto out_err;
826 }
827 break;
828 case __SK_REDIRECT:
829 sk_redir = psock->sk_redir;
830 memcpy(&msg_redir, msg, sizeof(*msg));
831 if (msg->apply_bytes < send)
832 msg->apply_bytes = 0;
833 else
834 msg->apply_bytes -= send;
835 sk_msg_return_zero(sk, msg, send);
836 msg->sg.size -= send;
837 release_sock(sk);
838 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
839 lock_sock(sk);
840 if (err < 0) {
841 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
842 msg->sg.size = 0;
843 }
844 if (msg->sg.size == 0)
845 tls_free_open_rec(sk);
846 break;
847 case __SK_DROP:
848 default:
849 sk_msg_free_partial(sk, msg, send);
850 if (msg->apply_bytes < send)
851 msg->apply_bytes = 0;
852 else
853 msg->apply_bytes -= send;
854 if (msg->sg.size == 0)
855 tls_free_open_rec(sk);
856 *copied -= (send + delta);
857 err = -EACCES;
858 }
859
860 if (likely(!err)) {
861 bool reset_eval = !ctx->open_rec;
862
863 rec = ctx->open_rec;
864 if (rec) {
865 msg = &rec->msg_plaintext;
866 if (!msg->apply_bytes)
867 reset_eval = true;
868 }
869 if (reset_eval) {
870 psock->eval = __SK_NONE;
871 if (psock->sk_redir) {
872 sock_put(psock->sk_redir);
873 psock->sk_redir = NULL;
874 }
875 }
876 if (rec)
877 goto more_data;
878 }
879 out_err:
880 sk_psock_put(sk, psock);
881 return err;
882 }
883
tls_sw_push_pending_record(struct sock * sk,int flags)884 static int tls_sw_push_pending_record(struct sock *sk, int flags)
885 {
886 struct tls_context *tls_ctx = tls_get_ctx(sk);
887 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
888 struct tls_rec *rec = ctx->open_rec;
889 struct sk_msg *msg_pl;
890 size_t copied;
891
892 if (!rec)
893 return 0;
894
895 msg_pl = &rec->msg_plaintext;
896 copied = msg_pl->sg.size;
897 if (!copied)
898 return 0;
899
900 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
901 &copied, flags);
902 }
903
tls_sw_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)904 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
905 {
906 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
907 struct tls_context *tls_ctx = tls_get_ctx(sk);
908 struct tls_prot_info *prot = &tls_ctx->prot_info;
909 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
910 bool async_capable = ctx->async_capable;
911 unsigned char record_type = TLS_RECORD_TYPE_DATA;
912 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
913 bool eor = !(msg->msg_flags & MSG_MORE);
914 size_t try_to_copy, copied = 0;
915 struct sk_msg *msg_pl, *msg_en;
916 struct tls_rec *rec;
917 int required_size;
918 int num_async = 0;
919 bool full_record;
920 int record_room;
921 int num_zc = 0;
922 int orig_size;
923 int ret = 0;
924
925 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
926 return -EOPNOTSUPP;
927
928 mutex_lock(&tls_ctx->tx_lock);
929 lock_sock(sk);
930
931 if (unlikely(msg->msg_controllen)) {
932 ret = tls_proccess_cmsg(sk, msg, &record_type);
933 if (ret) {
934 if (ret == -EINPROGRESS)
935 num_async++;
936 else if (ret != -EAGAIN)
937 goto send_end;
938 }
939 }
940
941 while (msg_data_left(msg)) {
942 if (sk->sk_err) {
943 ret = -sk->sk_err;
944 goto send_end;
945 }
946
947 if (ctx->open_rec)
948 rec = ctx->open_rec;
949 else
950 rec = ctx->open_rec = tls_get_rec(sk);
951 if (!rec) {
952 ret = -ENOMEM;
953 goto send_end;
954 }
955
956 msg_pl = &rec->msg_plaintext;
957 msg_en = &rec->msg_encrypted;
958
959 orig_size = msg_pl->sg.size;
960 full_record = false;
961 try_to_copy = msg_data_left(msg);
962 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
963 if (try_to_copy >= record_room) {
964 try_to_copy = record_room;
965 full_record = true;
966 }
967
968 required_size = msg_pl->sg.size + try_to_copy +
969 prot->overhead_size;
970
971 if (!sk_stream_memory_free(sk))
972 goto wait_for_sndbuf;
973
974 alloc_encrypted:
975 ret = tls_alloc_encrypted_msg(sk, required_size);
976 if (ret) {
977 if (ret != -ENOSPC)
978 goto wait_for_memory;
979
980 /* Adjust try_to_copy according to the amount that was
981 * actually allocated. The difference is due
982 * to max sg elements limit
983 */
984 try_to_copy -= required_size - msg_en->sg.size;
985 full_record = true;
986 }
987
988 if (!is_kvec && (full_record || eor) && !async_capable) {
989 u32 first = msg_pl->sg.end;
990
991 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
992 msg_pl, try_to_copy);
993 if (ret)
994 goto fallback_to_reg_send;
995
996 num_zc++;
997 copied += try_to_copy;
998
999 sk_msg_sg_copy_set(msg_pl, first);
1000 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1001 record_type, &copied,
1002 msg->msg_flags);
1003 if (ret) {
1004 if (ret == -EINPROGRESS)
1005 num_async++;
1006 else if (ret == -ENOMEM)
1007 goto wait_for_memory;
1008 else if (ctx->open_rec && ret == -ENOSPC)
1009 goto rollback_iter;
1010 else if (ret != -EAGAIN)
1011 goto send_end;
1012 }
1013 continue;
1014 rollback_iter:
1015 copied -= try_to_copy;
1016 sk_msg_sg_copy_clear(msg_pl, first);
1017 iov_iter_revert(&msg->msg_iter,
1018 msg_pl->sg.size - orig_size);
1019 fallback_to_reg_send:
1020 sk_msg_trim(sk, msg_pl, orig_size);
1021 }
1022
1023 required_size = msg_pl->sg.size + try_to_copy;
1024
1025 ret = tls_clone_plaintext_msg(sk, required_size);
1026 if (ret) {
1027 if (ret != -ENOSPC)
1028 goto send_end;
1029
1030 /* Adjust try_to_copy according to the amount that was
1031 * actually allocated. The difference is due
1032 * to max sg elements limit
1033 */
1034 try_to_copy -= required_size - msg_pl->sg.size;
1035 full_record = true;
1036 sk_msg_trim(sk, msg_en,
1037 msg_pl->sg.size + prot->overhead_size);
1038 }
1039
1040 if (try_to_copy) {
1041 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1042 msg_pl, try_to_copy);
1043 if (ret < 0)
1044 goto trim_sgl;
1045 }
1046
1047 /* Open records defined only if successfully copied, otherwise
1048 * we would trim the sg but not reset the open record frags.
1049 */
1050 tls_ctx->pending_open_record_frags = true;
1051 copied += try_to_copy;
1052 if (full_record || eor) {
1053 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1054 record_type, &copied,
1055 msg->msg_flags);
1056 if (ret) {
1057 if (ret == -EINPROGRESS)
1058 num_async++;
1059 else if (ret == -ENOMEM)
1060 goto wait_for_memory;
1061 else if (ret != -EAGAIN) {
1062 if (ret == -ENOSPC)
1063 ret = 0;
1064 goto send_end;
1065 }
1066 }
1067 }
1068
1069 continue;
1070
1071 wait_for_sndbuf:
1072 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1073 wait_for_memory:
1074 ret = sk_stream_wait_memory(sk, &timeo);
1075 if (ret) {
1076 trim_sgl:
1077 if (ctx->open_rec)
1078 tls_trim_both_msgs(sk, orig_size);
1079 goto send_end;
1080 }
1081
1082 if (ctx->open_rec && msg_en->sg.size < required_size)
1083 goto alloc_encrypted;
1084 }
1085
1086 if (!num_async) {
1087 goto send_end;
1088 } else if (num_zc) {
1089 /* Wait for pending encryptions to get completed */
1090 smp_store_mb(ctx->async_notify, true);
1091
1092 if (atomic_read(&ctx->encrypt_pending))
1093 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1094 else
1095 reinit_completion(&ctx->async_wait.completion);
1096
1097 WRITE_ONCE(ctx->async_notify, false);
1098
1099 if (ctx->async_wait.err) {
1100 ret = ctx->async_wait.err;
1101 copied = 0;
1102 }
1103 }
1104
1105 /* Transmit if any encryptions have completed */
1106 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1107 cancel_delayed_work(&ctx->tx_work.work);
1108 tls_tx_records(sk, msg->msg_flags);
1109 }
1110
1111 send_end:
1112 ret = sk_stream_error(sk, msg->msg_flags, ret);
1113
1114 release_sock(sk);
1115 mutex_unlock(&tls_ctx->tx_lock);
1116 return copied ? copied : ret;
1117 }
1118
tls_sw_do_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1119 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1120 int offset, size_t size, int flags)
1121 {
1122 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1123 struct tls_context *tls_ctx = tls_get_ctx(sk);
1124 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1125 struct tls_prot_info *prot = &tls_ctx->prot_info;
1126 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1127 struct sk_msg *msg_pl;
1128 struct tls_rec *rec;
1129 int num_async = 0;
1130 size_t copied = 0;
1131 bool full_record;
1132 int record_room;
1133 int ret = 0;
1134 bool eor;
1135
1136 eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1137 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1138
1139 /* Call the sk_stream functions to manage the sndbuf mem. */
1140 while (size > 0) {
1141 size_t copy, required_size;
1142
1143 if (sk->sk_err) {
1144 ret = -sk->sk_err;
1145 goto sendpage_end;
1146 }
1147
1148 if (ctx->open_rec)
1149 rec = ctx->open_rec;
1150 else
1151 rec = ctx->open_rec = tls_get_rec(sk);
1152 if (!rec) {
1153 ret = -ENOMEM;
1154 goto sendpage_end;
1155 }
1156
1157 msg_pl = &rec->msg_plaintext;
1158
1159 full_record = false;
1160 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1161 copy = size;
1162 if (copy >= record_room) {
1163 copy = record_room;
1164 full_record = true;
1165 }
1166
1167 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1168
1169 if (!sk_stream_memory_free(sk))
1170 goto wait_for_sndbuf;
1171 alloc_payload:
1172 ret = tls_alloc_encrypted_msg(sk, required_size);
1173 if (ret) {
1174 if (ret != -ENOSPC)
1175 goto wait_for_memory;
1176
1177 /* Adjust copy according to the amount that was
1178 * actually allocated. The difference is due
1179 * to max sg elements limit
1180 */
1181 copy -= required_size - msg_pl->sg.size;
1182 full_record = true;
1183 }
1184
1185 sk_msg_page_add(msg_pl, page, copy, offset);
1186 sk_mem_charge(sk, copy);
1187
1188 offset += copy;
1189 size -= copy;
1190 copied += copy;
1191
1192 tls_ctx->pending_open_record_frags = true;
1193 if (full_record || eor || sk_msg_full(msg_pl)) {
1194 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1195 record_type, &copied, flags);
1196 if (ret) {
1197 if (ret == -EINPROGRESS)
1198 num_async++;
1199 else if (ret == -ENOMEM)
1200 goto wait_for_memory;
1201 else if (ret != -EAGAIN) {
1202 if (ret == -ENOSPC)
1203 ret = 0;
1204 goto sendpage_end;
1205 }
1206 }
1207 }
1208 continue;
1209 wait_for_sndbuf:
1210 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1211 wait_for_memory:
1212 ret = sk_stream_wait_memory(sk, &timeo);
1213 if (ret) {
1214 if (ctx->open_rec)
1215 tls_trim_both_msgs(sk, msg_pl->sg.size);
1216 goto sendpage_end;
1217 }
1218
1219 if (ctx->open_rec)
1220 goto alloc_payload;
1221 }
1222
1223 if (num_async) {
1224 /* Transmit if any encryptions have completed */
1225 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1226 cancel_delayed_work(&ctx->tx_work.work);
1227 tls_tx_records(sk, flags);
1228 }
1229 }
1230 sendpage_end:
1231 ret = sk_stream_error(sk, flags, ret);
1232 return copied ? copied : ret;
1233 }
1234
tls_sw_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1235 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1236 int offset, size_t size, int flags)
1237 {
1238 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1239 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1240 MSG_NO_SHARED_FRAGS))
1241 return -EOPNOTSUPP;
1242
1243 return tls_sw_do_sendpage(sk, page, offset, size, flags);
1244 }
1245
tls_sw_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1246 int tls_sw_sendpage(struct sock *sk, struct page *page,
1247 int offset, size_t size, int flags)
1248 {
1249 struct tls_context *tls_ctx = tls_get_ctx(sk);
1250 int ret;
1251
1252 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1253 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1254 return -EOPNOTSUPP;
1255
1256 mutex_lock(&tls_ctx->tx_lock);
1257 lock_sock(sk);
1258 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1259 release_sock(sk);
1260 mutex_unlock(&tls_ctx->tx_lock);
1261 return ret;
1262 }
1263
tls_wait_data(struct sock * sk,struct sk_psock * psock,int flags,long timeo,int * err)1264 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1265 int flags, long timeo, int *err)
1266 {
1267 struct tls_context *tls_ctx = tls_get_ctx(sk);
1268 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1269 struct sk_buff *skb;
1270 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1271
1272 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1273 if (sk->sk_err) {
1274 *err = sock_error(sk);
1275 return NULL;
1276 }
1277
1278 if (sk->sk_shutdown & RCV_SHUTDOWN)
1279 return NULL;
1280
1281 if (sock_flag(sk, SOCK_DONE))
1282 return NULL;
1283
1284 if ((flags & MSG_DONTWAIT) || !timeo) {
1285 *err = -EAGAIN;
1286 return NULL;
1287 }
1288
1289 add_wait_queue(sk_sleep(sk), &wait);
1290 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1291 sk_wait_event(sk, &timeo,
1292 ctx->recv_pkt != skb ||
1293 !sk_psock_queue_empty(psock),
1294 &wait);
1295 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1296 remove_wait_queue(sk_sleep(sk), &wait);
1297
1298 /* Handle signals */
1299 if (signal_pending(current)) {
1300 *err = sock_intr_errno(timeo);
1301 return NULL;
1302 }
1303 }
1304
1305 return skb;
1306 }
1307
tls_setup_from_iter(struct sock * sk,struct iov_iter * from,int length,int * pages_used,unsigned int * size_used,struct scatterlist * to,int to_max_pages)1308 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1309 int length, int *pages_used,
1310 unsigned int *size_used,
1311 struct scatterlist *to,
1312 int to_max_pages)
1313 {
1314 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1315 struct page *pages[MAX_SKB_FRAGS];
1316 unsigned int size = *size_used;
1317 ssize_t copied, use;
1318 size_t offset;
1319
1320 while (length > 0) {
1321 i = 0;
1322 maxpages = to_max_pages - num_elem;
1323 if (maxpages == 0) {
1324 rc = -EFAULT;
1325 goto out;
1326 }
1327 copied = iov_iter_get_pages(from, pages,
1328 length,
1329 maxpages, &offset);
1330 if (copied <= 0) {
1331 rc = -EFAULT;
1332 goto out;
1333 }
1334
1335 iov_iter_advance(from, copied);
1336
1337 length -= copied;
1338 size += copied;
1339 while (copied) {
1340 use = min_t(int, copied, PAGE_SIZE - offset);
1341
1342 sg_set_page(&to[num_elem],
1343 pages[i], use, offset);
1344 sg_unmark_end(&to[num_elem]);
1345 /* We do not uncharge memory from this API */
1346
1347 offset = 0;
1348 copied -= use;
1349
1350 i++;
1351 num_elem++;
1352 }
1353 }
1354 /* Mark the end in the last sg entry if newly added */
1355 if (num_elem > *pages_used)
1356 sg_mark_end(&to[num_elem - 1]);
1357 out:
1358 if (rc)
1359 iov_iter_revert(from, size - *size_used);
1360 *size_used = size;
1361 *pages_used = num_elem;
1362
1363 return rc;
1364 }
1365
1366 /* This function decrypts the input skb into either out_iov or in out_sg
1367 * or in skb buffers itself. The input parameter 'zc' indicates if
1368 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1369 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1370 * NULL, then the decryption happens inside skb buffers itself, i.e.
1371 * zero-copy gets disabled and 'zc' is updated.
1372 */
1373
decrypt_internal(struct sock * sk,struct sk_buff * skb,struct iov_iter * out_iov,struct scatterlist * out_sg,int * chunk,bool * zc,bool async)1374 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1375 struct iov_iter *out_iov,
1376 struct scatterlist *out_sg,
1377 int *chunk, bool *zc, bool async)
1378 {
1379 struct tls_context *tls_ctx = tls_get_ctx(sk);
1380 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1381 struct tls_prot_info *prot = &tls_ctx->prot_info;
1382 struct strp_msg *rxm = strp_msg(skb);
1383 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1384 struct aead_request *aead_req;
1385 struct sk_buff *unused;
1386 u8 *aad, *iv, *mem = NULL;
1387 struct scatterlist *sgin = NULL;
1388 struct scatterlist *sgout = NULL;
1389 const int data_len = rxm->full_len - prot->overhead_size +
1390 prot->tail_size;
1391 int iv_offset = 0;
1392
1393 if (*zc && (out_iov || out_sg)) {
1394 if (out_iov)
1395 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1396 else
1397 n_sgout = sg_nents(out_sg);
1398 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1399 rxm->full_len - prot->prepend_size);
1400 } else {
1401 n_sgout = 0;
1402 *zc = false;
1403 n_sgin = skb_cow_data(skb, 0, &unused);
1404 }
1405
1406 if (n_sgin < 1)
1407 return -EBADMSG;
1408
1409 /* Increment to accommodate AAD */
1410 n_sgin = n_sgin + 1;
1411
1412 nsg = n_sgin + n_sgout;
1413
1414 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1415 mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1416 mem_size = mem_size + prot->aad_size;
1417 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1418
1419 /* Allocate a single block of memory which contains
1420 * aead_req || sgin[] || sgout[] || aad || iv.
1421 * This order achieves correct alignment for aead_req, sgin, sgout.
1422 */
1423 mem = kmalloc(mem_size, sk->sk_allocation);
1424 if (!mem)
1425 return -ENOMEM;
1426
1427 /* Segment the allocated memory */
1428 aead_req = (struct aead_request *)mem;
1429 sgin = (struct scatterlist *)(mem + aead_size);
1430 sgout = sgin + n_sgin;
1431 aad = (u8 *)(sgout + n_sgout);
1432 iv = aad + prot->aad_size;
1433
1434 /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1435 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1436 iv[0] = 2;
1437 iv_offset = 1;
1438 }
1439
1440 /* Prepare IV */
1441 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1442 iv + iv_offset + prot->salt_size,
1443 prot->iv_size);
1444 if (err < 0) {
1445 kfree(mem);
1446 return err;
1447 }
1448 if (prot->version == TLS_1_3_VERSION)
1449 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1450 crypto_aead_ivsize(ctx->aead_recv));
1451 else
1452 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1453
1454 xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
1455
1456 /* Prepare AAD */
1457 tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1458 prot->tail_size,
1459 tls_ctx->rx.rec_seq, prot->rec_seq_size,
1460 ctx->control, prot->version);
1461
1462 /* Prepare sgin */
1463 sg_init_table(sgin, n_sgin);
1464 sg_set_buf(&sgin[0], aad, prot->aad_size);
1465 err = skb_to_sgvec(skb, &sgin[1],
1466 rxm->offset + prot->prepend_size,
1467 rxm->full_len - prot->prepend_size);
1468 if (err < 0) {
1469 kfree(mem);
1470 return err;
1471 }
1472
1473 if (n_sgout) {
1474 if (out_iov) {
1475 sg_init_table(sgout, n_sgout);
1476 sg_set_buf(&sgout[0], aad, prot->aad_size);
1477
1478 *chunk = 0;
1479 err = tls_setup_from_iter(sk, out_iov, data_len,
1480 &pages, chunk, &sgout[1],
1481 (n_sgout - 1));
1482 if (err < 0)
1483 goto fallback_to_reg_recv;
1484 } else if (out_sg) {
1485 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1486 } else {
1487 goto fallback_to_reg_recv;
1488 }
1489 } else {
1490 fallback_to_reg_recv:
1491 sgout = sgin;
1492 pages = 0;
1493 *chunk = data_len;
1494 *zc = false;
1495 }
1496
1497 /* Prepare and submit AEAD request */
1498 err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1499 data_len, aead_req, async);
1500 if (err == -EINPROGRESS)
1501 return err;
1502
1503 /* Release the pages in case iov was mapped to pages */
1504 for (; pages > 0; pages--)
1505 put_page(sg_page(&sgout[pages]));
1506
1507 kfree(mem);
1508 return err;
1509 }
1510
decrypt_skb_update(struct sock * sk,struct sk_buff * skb,struct iov_iter * dest,int * chunk,bool * zc,bool async)1511 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1512 struct iov_iter *dest, int *chunk, bool *zc,
1513 bool async)
1514 {
1515 struct tls_context *tls_ctx = tls_get_ctx(sk);
1516 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1517 struct tls_prot_info *prot = &tls_ctx->prot_info;
1518 struct strp_msg *rxm = strp_msg(skb);
1519 int pad, err = 0;
1520
1521 if (!ctx->decrypted) {
1522 if (tls_ctx->rx_conf == TLS_HW) {
1523 err = tls_device_decrypted(sk, skb);
1524 if (err < 0)
1525 return err;
1526 }
1527
1528 /* Still not decrypted after tls_device */
1529 if (!ctx->decrypted) {
1530 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1531 async);
1532 if (err < 0) {
1533 if (err == -EINPROGRESS)
1534 tls_advance_record_sn(sk, prot,
1535 &tls_ctx->rx);
1536
1537 return err;
1538 }
1539 } else {
1540 *zc = false;
1541 }
1542
1543 pad = padding_length(ctx, prot, skb);
1544 if (pad < 0)
1545 return pad;
1546
1547 rxm->full_len -= pad;
1548 rxm->offset += prot->prepend_size;
1549 rxm->full_len -= prot->overhead_size;
1550 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1551 ctx->decrypted = true;
1552 ctx->saved_data_ready(sk);
1553 } else {
1554 *zc = false;
1555 }
1556
1557 return err;
1558 }
1559
decrypt_skb(struct sock * sk,struct sk_buff * skb,struct scatterlist * sgout)1560 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1561 struct scatterlist *sgout)
1562 {
1563 bool zc = true;
1564 int chunk;
1565
1566 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1567 }
1568
tls_sw_advance_skb(struct sock * sk,struct sk_buff * skb,unsigned int len)1569 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1570 unsigned int len)
1571 {
1572 struct tls_context *tls_ctx = tls_get_ctx(sk);
1573 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1574
1575 if (skb) {
1576 struct strp_msg *rxm = strp_msg(skb);
1577
1578 if (len < rxm->full_len) {
1579 rxm->offset += len;
1580 rxm->full_len -= len;
1581 return false;
1582 }
1583 consume_skb(skb);
1584 }
1585
1586 /* Finished with message */
1587 ctx->recv_pkt = NULL;
1588 __strp_unpause(&ctx->strp);
1589
1590 return true;
1591 }
1592
1593 /* This function traverses the rx_list in tls receive context to copies the
1594 * decrypted records into the buffer provided by caller zero copy is not
1595 * true. Further, the records are removed from the rx_list if it is not a peek
1596 * case and the record has been consumed completely.
1597 */
process_rx_list(struct tls_sw_context_rx * ctx,struct msghdr * msg,u8 * control,bool * cmsg,size_t skip,size_t len,bool zc,bool is_peek)1598 static int process_rx_list(struct tls_sw_context_rx *ctx,
1599 struct msghdr *msg,
1600 u8 *control,
1601 bool *cmsg,
1602 size_t skip,
1603 size_t len,
1604 bool zc,
1605 bool is_peek)
1606 {
1607 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1608 u8 ctrl = *control;
1609 u8 msgc = *cmsg;
1610 struct tls_msg *tlm;
1611 ssize_t copied = 0;
1612
1613 /* Set the record type in 'control' if caller didn't pass it */
1614 if (!ctrl && skb) {
1615 tlm = tls_msg(skb);
1616 ctrl = tlm->control;
1617 }
1618
1619 while (skip && skb) {
1620 struct strp_msg *rxm = strp_msg(skb);
1621 tlm = tls_msg(skb);
1622
1623 /* Cannot process a record of different type */
1624 if (ctrl != tlm->control)
1625 return 0;
1626
1627 if (skip < rxm->full_len)
1628 break;
1629
1630 skip = skip - rxm->full_len;
1631 skb = skb_peek_next(skb, &ctx->rx_list);
1632 }
1633
1634 while (len && skb) {
1635 struct sk_buff *next_skb;
1636 struct strp_msg *rxm = strp_msg(skb);
1637 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1638
1639 tlm = tls_msg(skb);
1640
1641 /* Cannot process a record of different type */
1642 if (ctrl != tlm->control)
1643 return 0;
1644
1645 /* Set record type if not already done. For a non-data record,
1646 * do not proceed if record type could not be copied.
1647 */
1648 if (!msgc) {
1649 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1650 sizeof(ctrl), &ctrl);
1651 msgc = true;
1652 if (ctrl != TLS_RECORD_TYPE_DATA) {
1653 if (cerr || msg->msg_flags & MSG_CTRUNC)
1654 return -EIO;
1655
1656 *cmsg = msgc;
1657 }
1658 }
1659
1660 if (!zc || (rxm->full_len - skip) > len) {
1661 int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1662 msg, chunk);
1663 if (err < 0)
1664 return err;
1665 }
1666
1667 len = len - chunk;
1668 copied = copied + chunk;
1669
1670 /* Consume the data from record if it is non-peek case*/
1671 if (!is_peek) {
1672 rxm->offset = rxm->offset + chunk;
1673 rxm->full_len = rxm->full_len - chunk;
1674
1675 /* Return if there is unconsumed data in the record */
1676 if (rxm->full_len - skip)
1677 break;
1678 }
1679
1680 /* The remaining skip-bytes must lie in 1st record in rx_list.
1681 * So from the 2nd record, 'skip' should be 0.
1682 */
1683 skip = 0;
1684
1685 if (msg)
1686 msg->msg_flags |= MSG_EOR;
1687
1688 next_skb = skb_peek_next(skb, &ctx->rx_list);
1689
1690 if (!is_peek) {
1691 skb_unlink(skb, &ctx->rx_list);
1692 consume_skb(skb);
1693 }
1694
1695 skb = next_skb;
1696 }
1697
1698 *control = ctrl;
1699 return copied;
1700 }
1701
tls_sw_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)1702 int tls_sw_recvmsg(struct sock *sk,
1703 struct msghdr *msg,
1704 size_t len,
1705 int nonblock,
1706 int flags,
1707 int *addr_len)
1708 {
1709 struct tls_context *tls_ctx = tls_get_ctx(sk);
1710 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1711 struct tls_prot_info *prot = &tls_ctx->prot_info;
1712 struct sk_psock *psock;
1713 unsigned char control = 0;
1714 ssize_t decrypted = 0;
1715 struct strp_msg *rxm;
1716 struct tls_msg *tlm;
1717 struct sk_buff *skb;
1718 ssize_t copied = 0;
1719 bool cmsg = false;
1720 int target, err = 0;
1721 long timeo;
1722 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1723 bool is_peek = flags & MSG_PEEK;
1724 int num_async = 0;
1725
1726 flags |= nonblock;
1727
1728 if (unlikely(flags & MSG_ERRQUEUE))
1729 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1730
1731 psock = sk_psock_get(sk);
1732 lock_sock(sk);
1733
1734 /* Process pending decrypted records. It must be non-zero-copy */
1735 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1736 is_peek);
1737 if (err < 0) {
1738 tls_err_abort(sk, err);
1739 goto end;
1740 } else {
1741 copied = err;
1742 }
1743
1744 if (len <= copied)
1745 goto recv_end;
1746
1747 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1748 len = len - copied;
1749 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1750
1751 while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1752 bool retain_skb = false;
1753 bool zc = false;
1754 int to_decrypt;
1755 int chunk = 0;
1756 bool async_capable;
1757 bool async = false;
1758
1759 skb = tls_wait_data(sk, psock, flags, timeo, &err);
1760 if (!skb) {
1761 if (psock) {
1762 int ret = __tcp_bpf_recvmsg(sk, psock,
1763 msg, len, flags);
1764
1765 if (ret > 0) {
1766 decrypted += ret;
1767 len -= ret;
1768 continue;
1769 }
1770 }
1771 goto recv_end;
1772 } else {
1773 tlm = tls_msg(skb);
1774 if (prot->version == TLS_1_3_VERSION)
1775 tlm->control = 0;
1776 else
1777 tlm->control = ctx->control;
1778 }
1779
1780 rxm = strp_msg(skb);
1781
1782 to_decrypt = rxm->full_len - prot->overhead_size;
1783
1784 if (to_decrypt <= len && !is_kvec && !is_peek &&
1785 ctx->control == TLS_RECORD_TYPE_DATA &&
1786 prot->version != TLS_1_3_VERSION)
1787 zc = true;
1788
1789 /* Do not use async mode if record is non-data */
1790 if (ctx->control == TLS_RECORD_TYPE_DATA)
1791 async_capable = ctx->async_capable;
1792 else
1793 async_capable = false;
1794
1795 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1796 &chunk, &zc, async_capable);
1797 if (err < 0 && err != -EINPROGRESS) {
1798 tls_err_abort(sk, EBADMSG);
1799 goto recv_end;
1800 }
1801
1802 if (err == -EINPROGRESS) {
1803 async = true;
1804 num_async++;
1805 } else if (prot->version == TLS_1_3_VERSION) {
1806 tlm->control = ctx->control;
1807 }
1808
1809 /* If the type of records being processed is not known yet,
1810 * set it to record type just dequeued. If it is already known,
1811 * but does not match the record type just dequeued, go to end.
1812 * We always get record type here since for tls1.2, record type
1813 * is known just after record is dequeued from stream parser.
1814 * For tls1.3, we disable async.
1815 */
1816
1817 if (!control)
1818 control = tlm->control;
1819 else if (control != tlm->control)
1820 goto recv_end;
1821
1822 if (!cmsg) {
1823 int cerr;
1824
1825 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1826 sizeof(control), &control);
1827 cmsg = true;
1828 if (control != TLS_RECORD_TYPE_DATA) {
1829 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1830 err = -EIO;
1831 goto recv_end;
1832 }
1833 }
1834 }
1835
1836 if (async)
1837 goto pick_next_record;
1838
1839 if (!zc) {
1840 if (rxm->full_len > len) {
1841 retain_skb = true;
1842 chunk = len;
1843 } else {
1844 chunk = rxm->full_len;
1845 }
1846
1847 err = skb_copy_datagram_msg(skb, rxm->offset,
1848 msg, chunk);
1849 if (err < 0)
1850 goto recv_end;
1851
1852 if (!is_peek) {
1853 rxm->offset = rxm->offset + chunk;
1854 rxm->full_len = rxm->full_len - chunk;
1855 }
1856 }
1857
1858 pick_next_record:
1859 if (chunk > len)
1860 chunk = len;
1861
1862 decrypted += chunk;
1863 len -= chunk;
1864
1865 /* For async or peek case, queue the current skb */
1866 if (async || is_peek || retain_skb) {
1867 skb_queue_tail(&ctx->rx_list, skb);
1868 skb = NULL;
1869 }
1870
1871 if (tls_sw_advance_skb(sk, skb, chunk)) {
1872 /* Return full control message to
1873 * userspace before trying to parse
1874 * another message type
1875 */
1876 msg->msg_flags |= MSG_EOR;
1877 if (ctx->control != TLS_RECORD_TYPE_DATA)
1878 goto recv_end;
1879 } else {
1880 break;
1881 }
1882 }
1883
1884 recv_end:
1885 if (num_async) {
1886 /* Wait for all previously submitted records to be decrypted */
1887 smp_store_mb(ctx->async_notify, true);
1888 if (atomic_read(&ctx->decrypt_pending)) {
1889 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1890 if (err) {
1891 /* one of async decrypt failed */
1892 tls_err_abort(sk, err);
1893 copied = 0;
1894 decrypted = 0;
1895 goto end;
1896 }
1897 } else {
1898 reinit_completion(&ctx->async_wait.completion);
1899 }
1900 WRITE_ONCE(ctx->async_notify, false);
1901
1902 /* Drain records from the rx_list & copy if required */
1903 if (is_peek || is_kvec)
1904 err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1905 decrypted, false, is_peek);
1906 else
1907 err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1908 decrypted, true, is_peek);
1909 if (err < 0) {
1910 tls_err_abort(sk, err);
1911 copied = 0;
1912 goto end;
1913 }
1914 }
1915
1916 copied += decrypted;
1917
1918 end:
1919 release_sock(sk);
1920 if (psock)
1921 sk_psock_put(sk, psock);
1922 return copied ? : err;
1923 }
1924
tls_sw_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1925 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
1926 struct pipe_inode_info *pipe,
1927 size_t len, unsigned int flags)
1928 {
1929 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1930 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1931 struct strp_msg *rxm = NULL;
1932 struct sock *sk = sock->sk;
1933 struct sk_buff *skb;
1934 ssize_t copied = 0;
1935 int err = 0;
1936 long timeo;
1937 int chunk;
1938 bool zc = false;
1939
1940 lock_sock(sk);
1941
1942 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1943
1944 skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1945 if (!skb)
1946 goto splice_read_end;
1947
1948 if (!ctx->decrypted) {
1949 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
1950
1951 /* splice does not support reading control messages */
1952 if (ctx->control != TLS_RECORD_TYPE_DATA) {
1953 err = -EINVAL;
1954 goto splice_read_end;
1955 }
1956
1957 if (err < 0) {
1958 tls_err_abort(sk, EBADMSG);
1959 goto splice_read_end;
1960 }
1961 ctx->decrypted = true;
1962 }
1963 rxm = strp_msg(skb);
1964
1965 chunk = min_t(unsigned int, rxm->full_len, len);
1966 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1967 if (copied < 0)
1968 goto splice_read_end;
1969
1970 if (likely(!(flags & MSG_PEEK)))
1971 tls_sw_advance_skb(sk, skb, copied);
1972
1973 splice_read_end:
1974 release_sock(sk);
1975 return copied ? : err;
1976 }
1977
tls_sw_stream_read(const struct sock * sk)1978 bool tls_sw_stream_read(const struct sock *sk)
1979 {
1980 struct tls_context *tls_ctx = tls_get_ctx(sk);
1981 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1982 bool ingress_empty = true;
1983 struct sk_psock *psock;
1984
1985 rcu_read_lock();
1986 psock = sk_psock(sk);
1987 if (psock)
1988 ingress_empty = list_empty(&psock->ingress_msg);
1989 rcu_read_unlock();
1990
1991 return !ingress_empty || ctx->recv_pkt ||
1992 !skb_queue_empty(&ctx->rx_list);
1993 }
1994
tls_read_size(struct strparser * strp,struct sk_buff * skb)1995 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1996 {
1997 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1998 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1999 struct tls_prot_info *prot = &tls_ctx->prot_info;
2000 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2001 struct strp_msg *rxm = strp_msg(skb);
2002 size_t cipher_overhead;
2003 size_t data_len = 0;
2004 int ret;
2005
2006 /* Verify that we have a full TLS header, or wait for more data */
2007 if (rxm->offset + prot->prepend_size > skb->len)
2008 return 0;
2009
2010 /* Sanity-check size of on-stack buffer. */
2011 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2012 ret = -EINVAL;
2013 goto read_failure;
2014 }
2015
2016 /* Linearize header to local buffer */
2017 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2018
2019 if (ret < 0)
2020 goto read_failure;
2021
2022 ctx->control = header[0];
2023
2024 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2025
2026 cipher_overhead = prot->tag_size;
2027 if (prot->version != TLS_1_3_VERSION)
2028 cipher_overhead += prot->iv_size;
2029
2030 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2031 prot->tail_size) {
2032 ret = -EMSGSIZE;
2033 goto read_failure;
2034 }
2035 if (data_len < cipher_overhead) {
2036 ret = -EBADMSG;
2037 goto read_failure;
2038 }
2039
2040 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2041 if (header[1] != TLS_1_2_VERSION_MINOR ||
2042 header[2] != TLS_1_2_VERSION_MAJOR) {
2043 ret = -EINVAL;
2044 goto read_failure;
2045 }
2046
2047 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2048 TCP_SKB_CB(skb)->seq + rxm->offset);
2049 return data_len + TLS_HEADER_SIZE;
2050
2051 read_failure:
2052 tls_err_abort(strp->sk, ret);
2053
2054 return ret;
2055 }
2056
tls_queue(struct strparser * strp,struct sk_buff * skb)2057 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2058 {
2059 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2060 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2061
2062 ctx->decrypted = false;
2063
2064 ctx->recv_pkt = skb;
2065 strp_pause(strp);
2066
2067 ctx->saved_data_ready(strp->sk);
2068 }
2069
tls_data_ready(struct sock * sk)2070 static void tls_data_ready(struct sock *sk)
2071 {
2072 struct tls_context *tls_ctx = tls_get_ctx(sk);
2073 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2074 struct sk_psock *psock;
2075
2076 strp_data_ready(&ctx->strp);
2077
2078 psock = sk_psock_get(sk);
2079 if (psock && !list_empty(&psock->ingress_msg)) {
2080 ctx->saved_data_ready(sk);
2081 sk_psock_put(sk, psock);
2082 }
2083 }
2084
tls_sw_cancel_work_tx(struct tls_context * tls_ctx)2085 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2086 {
2087 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2088
2089 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2090 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2091 cancel_delayed_work_sync(&ctx->tx_work.work);
2092 }
2093
tls_sw_release_resources_tx(struct sock * sk)2094 void tls_sw_release_resources_tx(struct sock *sk)
2095 {
2096 struct tls_context *tls_ctx = tls_get_ctx(sk);
2097 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2098 struct tls_rec *rec, *tmp;
2099
2100 /* Wait for any pending async encryptions to complete */
2101 smp_store_mb(ctx->async_notify, true);
2102 if (atomic_read(&ctx->encrypt_pending))
2103 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2104
2105 tls_tx_records(sk, -1);
2106
2107 /* Free up un-sent records in tx_list. First, free
2108 * the partially sent record if any at head of tx_list.
2109 */
2110 if (tls_ctx->partially_sent_record) {
2111 tls_free_partial_record(sk, tls_ctx);
2112 rec = list_first_entry(&ctx->tx_list,
2113 struct tls_rec, list);
2114 list_del(&rec->list);
2115 sk_msg_free(sk, &rec->msg_plaintext);
2116 kfree(rec);
2117 }
2118
2119 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2120 list_del(&rec->list);
2121 sk_msg_free(sk, &rec->msg_encrypted);
2122 sk_msg_free(sk, &rec->msg_plaintext);
2123 kfree(rec);
2124 }
2125
2126 crypto_free_aead(ctx->aead_send);
2127 tls_free_open_rec(sk);
2128 }
2129
tls_sw_free_ctx_tx(struct tls_context * tls_ctx)2130 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2131 {
2132 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2133
2134 kfree(ctx);
2135 }
2136
tls_sw_release_resources_rx(struct sock * sk)2137 void tls_sw_release_resources_rx(struct sock *sk)
2138 {
2139 struct tls_context *tls_ctx = tls_get_ctx(sk);
2140 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2141
2142 kfree(tls_ctx->rx.rec_seq);
2143 kfree(tls_ctx->rx.iv);
2144
2145 if (ctx->aead_recv) {
2146 kfree_skb(ctx->recv_pkt);
2147 ctx->recv_pkt = NULL;
2148 skb_queue_purge(&ctx->rx_list);
2149 crypto_free_aead(ctx->aead_recv);
2150 strp_stop(&ctx->strp);
2151 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2152 * we still want to strp_stop(), but sk->sk_data_ready was
2153 * never swapped.
2154 */
2155 if (ctx->saved_data_ready) {
2156 write_lock_bh(&sk->sk_callback_lock);
2157 sk->sk_data_ready = ctx->saved_data_ready;
2158 write_unlock_bh(&sk->sk_callback_lock);
2159 }
2160 }
2161 }
2162
tls_sw_strparser_done(struct tls_context * tls_ctx)2163 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2164 {
2165 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2166
2167 strp_done(&ctx->strp);
2168 }
2169
tls_sw_free_ctx_rx(struct tls_context * tls_ctx)2170 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2171 {
2172 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2173
2174 kfree(ctx);
2175 }
2176
tls_sw_free_resources_rx(struct sock * sk)2177 void tls_sw_free_resources_rx(struct sock *sk)
2178 {
2179 struct tls_context *tls_ctx = tls_get_ctx(sk);
2180
2181 tls_sw_release_resources_rx(sk);
2182 tls_sw_free_ctx_rx(tls_ctx);
2183 }
2184
2185 /* The work handler to transmitt the encrypted records in tx_list */
tx_work_handler(struct work_struct * work)2186 static void tx_work_handler(struct work_struct *work)
2187 {
2188 struct delayed_work *delayed_work = to_delayed_work(work);
2189 struct tx_work *tx_work = container_of(delayed_work,
2190 struct tx_work, work);
2191 struct sock *sk = tx_work->sk;
2192 struct tls_context *tls_ctx = tls_get_ctx(sk);
2193 struct tls_sw_context_tx *ctx;
2194
2195 if (unlikely(!tls_ctx))
2196 return;
2197
2198 ctx = tls_sw_ctx_tx(tls_ctx);
2199 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2200 return;
2201
2202 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2203 return;
2204 mutex_lock(&tls_ctx->tx_lock);
2205 lock_sock(sk);
2206 tls_tx_records(sk, -1);
2207 release_sock(sk);
2208 mutex_unlock(&tls_ctx->tx_lock);
2209 }
2210
tls_sw_write_space(struct sock * sk,struct tls_context * ctx)2211 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2212 {
2213 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2214
2215 /* Schedule the transmission if tx list is ready */
2216 if (is_tx_ready(tx_ctx) &&
2217 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2218 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2219 }
2220
tls_sw_strparser_arm(struct sock * sk,struct tls_context * tls_ctx)2221 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2222 {
2223 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2224
2225 write_lock_bh(&sk->sk_callback_lock);
2226 rx_ctx->saved_data_ready = sk->sk_data_ready;
2227 sk->sk_data_ready = tls_data_ready;
2228 write_unlock_bh(&sk->sk_callback_lock);
2229
2230 strp_check_rcv(&rx_ctx->strp);
2231 }
2232
tls_set_sw_offload(struct sock * sk,struct tls_context * ctx,int tx)2233 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2234 {
2235 struct tls_context *tls_ctx = tls_get_ctx(sk);
2236 struct tls_prot_info *prot = &tls_ctx->prot_info;
2237 struct tls_crypto_info *crypto_info;
2238 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2239 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2240 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2241 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2242 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2243 struct cipher_context *cctx;
2244 struct crypto_aead **aead;
2245 struct strp_callbacks cb;
2246 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2247 struct crypto_tfm *tfm;
2248 char *iv, *rec_seq, *key, *salt, *cipher_name;
2249 size_t keysize;
2250 int rc = 0;
2251
2252 if (!ctx) {
2253 rc = -EINVAL;
2254 goto out;
2255 }
2256
2257 if (tx) {
2258 if (!ctx->priv_ctx_tx) {
2259 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2260 if (!sw_ctx_tx) {
2261 rc = -ENOMEM;
2262 goto out;
2263 }
2264 ctx->priv_ctx_tx = sw_ctx_tx;
2265 } else {
2266 sw_ctx_tx =
2267 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2268 }
2269 } else {
2270 if (!ctx->priv_ctx_rx) {
2271 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2272 if (!sw_ctx_rx) {
2273 rc = -ENOMEM;
2274 goto out;
2275 }
2276 ctx->priv_ctx_rx = sw_ctx_rx;
2277 } else {
2278 sw_ctx_rx =
2279 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2280 }
2281 }
2282
2283 if (tx) {
2284 crypto_init_wait(&sw_ctx_tx->async_wait);
2285 crypto_info = &ctx->crypto_send.info;
2286 cctx = &ctx->tx;
2287 aead = &sw_ctx_tx->aead_send;
2288 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2289 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2290 sw_ctx_tx->tx_work.sk = sk;
2291 } else {
2292 crypto_init_wait(&sw_ctx_rx->async_wait);
2293 crypto_info = &ctx->crypto_recv.info;
2294 cctx = &ctx->rx;
2295 skb_queue_head_init(&sw_ctx_rx->rx_list);
2296 aead = &sw_ctx_rx->aead_recv;
2297 }
2298
2299 switch (crypto_info->cipher_type) {
2300 case TLS_CIPHER_AES_GCM_128: {
2301 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2302 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2303 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2304 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2305 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2306 rec_seq =
2307 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2308 gcm_128_info =
2309 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2310 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2311 key = gcm_128_info->key;
2312 salt = gcm_128_info->salt;
2313 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2314 cipher_name = "gcm(aes)";
2315 break;
2316 }
2317 case TLS_CIPHER_AES_GCM_256: {
2318 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2319 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2320 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2321 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2322 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2323 rec_seq =
2324 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2325 gcm_256_info =
2326 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2327 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2328 key = gcm_256_info->key;
2329 salt = gcm_256_info->salt;
2330 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2331 cipher_name = "gcm(aes)";
2332 break;
2333 }
2334 case TLS_CIPHER_AES_CCM_128: {
2335 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2336 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2337 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2338 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2339 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2340 rec_seq =
2341 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2342 ccm_128_info =
2343 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2344 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2345 key = ccm_128_info->key;
2346 salt = ccm_128_info->salt;
2347 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2348 cipher_name = "ccm(aes)";
2349 break;
2350 }
2351 default:
2352 rc = -EINVAL;
2353 goto free_priv;
2354 }
2355
2356 /* Sanity-check the sizes for stack allocations. */
2357 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2358 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2359 rc = -EINVAL;
2360 goto free_priv;
2361 }
2362
2363 if (crypto_info->version == TLS_1_3_VERSION) {
2364 nonce_size = 0;
2365 prot->aad_size = TLS_HEADER_SIZE;
2366 prot->tail_size = 1;
2367 } else {
2368 prot->aad_size = TLS_AAD_SPACE_SIZE;
2369 prot->tail_size = 0;
2370 }
2371
2372 prot->version = crypto_info->version;
2373 prot->cipher_type = crypto_info->cipher_type;
2374 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2375 prot->tag_size = tag_size;
2376 prot->overhead_size = prot->prepend_size +
2377 prot->tag_size + prot->tail_size;
2378 prot->iv_size = iv_size;
2379 prot->salt_size = salt_size;
2380 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2381 if (!cctx->iv) {
2382 rc = -ENOMEM;
2383 goto free_priv;
2384 }
2385 /* Note: 128 & 256 bit salt are the same size */
2386 prot->rec_seq_size = rec_seq_size;
2387 memcpy(cctx->iv, salt, salt_size);
2388 memcpy(cctx->iv + salt_size, iv, iv_size);
2389 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2390 if (!cctx->rec_seq) {
2391 rc = -ENOMEM;
2392 goto free_iv;
2393 }
2394
2395 if (!*aead) {
2396 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2397 if (IS_ERR(*aead)) {
2398 rc = PTR_ERR(*aead);
2399 *aead = NULL;
2400 goto free_rec_seq;
2401 }
2402 }
2403
2404 ctx->push_pending_record = tls_sw_push_pending_record;
2405
2406 rc = crypto_aead_setkey(*aead, key, keysize);
2407
2408 if (rc)
2409 goto free_aead;
2410
2411 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2412 if (rc)
2413 goto free_aead;
2414
2415 if (sw_ctx_rx) {
2416 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2417
2418 if (crypto_info->version == TLS_1_3_VERSION)
2419 sw_ctx_rx->async_capable = false;
2420 else
2421 sw_ctx_rx->async_capable =
2422 tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
2423
2424 /* Set up strparser */
2425 memset(&cb, 0, sizeof(cb));
2426 cb.rcv_msg = tls_queue;
2427 cb.parse_msg = tls_read_size;
2428
2429 strp_init(&sw_ctx_rx->strp, sk, &cb);
2430 }
2431
2432 goto out;
2433
2434 free_aead:
2435 crypto_free_aead(*aead);
2436 *aead = NULL;
2437 free_rec_seq:
2438 kfree(cctx->rec_seq);
2439 cctx->rec_seq = NULL;
2440 free_iv:
2441 kfree(cctx->iv);
2442 cctx->iv = NULL;
2443 free_priv:
2444 if (tx) {
2445 kfree(ctx->priv_ctx_tx);
2446 ctx->priv_ctx_tx = NULL;
2447 } else {
2448 kfree(ctx->priv_ctx_rx);
2449 ctx->priv_ctx_rx = NULL;
2450 }
2451 out:
2452 return rc;
2453 }
2454