• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2010 IBM Corporation
4  *
5  * Author:
6  * David Safford <safford@us.ibm.com>
7  *
8  * See Documentation/security/keys/trusted-encrypted.rst
9  */
10 
11 #include <crypto/hash_info.h>
12 #include <linux/uaccess.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/parser.h>
17 #include <linux/string.h>
18 #include <linux/err.h>
19 #include <keys/user-type.h>
20 #include <keys/trusted-type.h>
21 #include <linux/key-type.h>
22 #include <linux/rcupdate.h>
23 #include <linux/crypto.h>
24 #include <crypto/hash.h>
25 #include <crypto/sha.h>
26 #include <linux/capability.h>
27 #include <linux/tpm.h>
28 #include <linux/tpm_command.h>
29 
30 #include <keys/trusted.h>
31 
32 static const char hmac_alg[] = "hmac(sha1)";
33 static const char hash_alg[] = "sha1";
34 static struct tpm_chip *chip;
35 static struct tpm_digest *digests;
36 
37 struct sdesc {
38 	struct shash_desc shash;
39 	char ctx[];
40 };
41 
42 static struct crypto_shash *hashalg;
43 static struct crypto_shash *hmacalg;
44 
init_sdesc(struct crypto_shash * alg)45 static struct sdesc *init_sdesc(struct crypto_shash *alg)
46 {
47 	struct sdesc *sdesc;
48 	int size;
49 
50 	size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
51 	sdesc = kmalloc(size, GFP_KERNEL);
52 	if (!sdesc)
53 		return ERR_PTR(-ENOMEM);
54 	sdesc->shash.tfm = alg;
55 	return sdesc;
56 }
57 
TSS_sha1(const unsigned char * data,unsigned int datalen,unsigned char * digest)58 static int TSS_sha1(const unsigned char *data, unsigned int datalen,
59 		    unsigned char *digest)
60 {
61 	struct sdesc *sdesc;
62 	int ret;
63 
64 	sdesc = init_sdesc(hashalg);
65 	if (IS_ERR(sdesc)) {
66 		pr_info("trusted_key: can't alloc %s\n", hash_alg);
67 		return PTR_ERR(sdesc);
68 	}
69 
70 	ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest);
71 	kzfree(sdesc);
72 	return ret;
73 }
74 
TSS_rawhmac(unsigned char * digest,const unsigned char * key,unsigned int keylen,...)75 static int TSS_rawhmac(unsigned char *digest, const unsigned char *key,
76 		       unsigned int keylen, ...)
77 {
78 	struct sdesc *sdesc;
79 	va_list argp;
80 	unsigned int dlen;
81 	unsigned char *data;
82 	int ret;
83 
84 	sdesc = init_sdesc(hmacalg);
85 	if (IS_ERR(sdesc)) {
86 		pr_info("trusted_key: can't alloc %s\n", hmac_alg);
87 		return PTR_ERR(sdesc);
88 	}
89 
90 	ret = crypto_shash_setkey(hmacalg, key, keylen);
91 	if (ret < 0)
92 		goto out;
93 	ret = crypto_shash_init(&sdesc->shash);
94 	if (ret < 0)
95 		goto out;
96 
97 	va_start(argp, keylen);
98 	for (;;) {
99 		dlen = va_arg(argp, unsigned int);
100 		if (dlen == 0)
101 			break;
102 		data = va_arg(argp, unsigned char *);
103 		if (data == NULL) {
104 			ret = -EINVAL;
105 			break;
106 		}
107 		ret = crypto_shash_update(&sdesc->shash, data, dlen);
108 		if (ret < 0)
109 			break;
110 	}
111 	va_end(argp);
112 	if (!ret)
113 		ret = crypto_shash_final(&sdesc->shash, digest);
114 out:
115 	kzfree(sdesc);
116 	return ret;
117 }
118 
119 /*
120  * calculate authorization info fields to send to TPM
121  */
TSS_authhmac(unsigned char * digest,const unsigned char * key,unsigned int keylen,unsigned char * h1,unsigned char * h2,unsigned int h3,...)122 int TSS_authhmac(unsigned char *digest, const unsigned char *key,
123 			unsigned int keylen, unsigned char *h1,
124 			unsigned char *h2, unsigned int h3, ...)
125 {
126 	unsigned char paramdigest[SHA1_DIGEST_SIZE];
127 	struct sdesc *sdesc;
128 	unsigned int dlen;
129 	unsigned char *data;
130 	unsigned char c;
131 	int ret;
132 	va_list argp;
133 
134 	if (!chip)
135 		return -ENODEV;
136 
137 	sdesc = init_sdesc(hashalg);
138 	if (IS_ERR(sdesc)) {
139 		pr_info("trusted_key: can't alloc %s\n", hash_alg);
140 		return PTR_ERR(sdesc);
141 	}
142 
143 	c = !!h3;
144 	ret = crypto_shash_init(&sdesc->shash);
145 	if (ret < 0)
146 		goto out;
147 	va_start(argp, h3);
148 	for (;;) {
149 		dlen = va_arg(argp, unsigned int);
150 		if (dlen == 0)
151 			break;
152 		data = va_arg(argp, unsigned char *);
153 		if (!data) {
154 			ret = -EINVAL;
155 			break;
156 		}
157 		ret = crypto_shash_update(&sdesc->shash, data, dlen);
158 		if (ret < 0)
159 			break;
160 	}
161 	va_end(argp);
162 	if (!ret)
163 		ret = crypto_shash_final(&sdesc->shash, paramdigest);
164 	if (!ret)
165 		ret = TSS_rawhmac(digest, key, keylen, SHA1_DIGEST_SIZE,
166 				  paramdigest, TPM_NONCE_SIZE, h1,
167 				  TPM_NONCE_SIZE, h2, 1, &c, 0, 0);
168 out:
169 	kzfree(sdesc);
170 	return ret;
171 }
172 EXPORT_SYMBOL_GPL(TSS_authhmac);
173 
174 /*
175  * verify the AUTH1_COMMAND (Seal) result from TPM
176  */
TSS_checkhmac1(unsigned char * buffer,const uint32_t command,const unsigned char * ononce,const unsigned char * key,unsigned int keylen,...)177 int TSS_checkhmac1(unsigned char *buffer,
178 			  const uint32_t command,
179 			  const unsigned char *ononce,
180 			  const unsigned char *key,
181 			  unsigned int keylen, ...)
182 {
183 	uint32_t bufsize;
184 	uint16_t tag;
185 	uint32_t ordinal;
186 	uint32_t result;
187 	unsigned char *enonce;
188 	unsigned char *continueflag;
189 	unsigned char *authdata;
190 	unsigned char testhmac[SHA1_DIGEST_SIZE];
191 	unsigned char paramdigest[SHA1_DIGEST_SIZE];
192 	struct sdesc *sdesc;
193 	unsigned int dlen;
194 	unsigned int dpos;
195 	va_list argp;
196 	int ret;
197 
198 	if (!chip)
199 		return -ENODEV;
200 
201 	bufsize = LOAD32(buffer, TPM_SIZE_OFFSET);
202 	tag = LOAD16(buffer, 0);
203 	ordinal = command;
204 	result = LOAD32N(buffer, TPM_RETURN_OFFSET);
205 	if (tag == TPM_TAG_RSP_COMMAND)
206 		return 0;
207 	if (tag != TPM_TAG_RSP_AUTH1_COMMAND)
208 		return -EINVAL;
209 	authdata = buffer + bufsize - SHA1_DIGEST_SIZE;
210 	continueflag = authdata - 1;
211 	enonce = continueflag - TPM_NONCE_SIZE;
212 
213 	sdesc = init_sdesc(hashalg);
214 	if (IS_ERR(sdesc)) {
215 		pr_info("trusted_key: can't alloc %s\n", hash_alg);
216 		return PTR_ERR(sdesc);
217 	}
218 	ret = crypto_shash_init(&sdesc->shash);
219 	if (ret < 0)
220 		goto out;
221 	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result,
222 				  sizeof result);
223 	if (ret < 0)
224 		goto out;
225 	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal,
226 				  sizeof ordinal);
227 	if (ret < 0)
228 		goto out;
229 	va_start(argp, keylen);
230 	for (;;) {
231 		dlen = va_arg(argp, unsigned int);
232 		if (dlen == 0)
233 			break;
234 		dpos = va_arg(argp, unsigned int);
235 		ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen);
236 		if (ret < 0)
237 			break;
238 	}
239 	va_end(argp);
240 	if (!ret)
241 		ret = crypto_shash_final(&sdesc->shash, paramdigest);
242 	if (ret < 0)
243 		goto out;
244 
245 	ret = TSS_rawhmac(testhmac, key, keylen, SHA1_DIGEST_SIZE, paramdigest,
246 			  TPM_NONCE_SIZE, enonce, TPM_NONCE_SIZE, ononce,
247 			  1, continueflag, 0, 0);
248 	if (ret < 0)
249 		goto out;
250 
251 	if (memcmp(testhmac, authdata, SHA1_DIGEST_SIZE))
252 		ret = -EINVAL;
253 out:
254 	kzfree(sdesc);
255 	return ret;
256 }
257 EXPORT_SYMBOL_GPL(TSS_checkhmac1);
258 
259 /*
260  * verify the AUTH2_COMMAND (unseal) result from TPM
261  */
TSS_checkhmac2(unsigned char * buffer,const uint32_t command,const unsigned char * ononce,const unsigned char * key1,unsigned int keylen1,const unsigned char * key2,unsigned int keylen2,...)262 static int TSS_checkhmac2(unsigned char *buffer,
263 			  const uint32_t command,
264 			  const unsigned char *ononce,
265 			  const unsigned char *key1,
266 			  unsigned int keylen1,
267 			  const unsigned char *key2,
268 			  unsigned int keylen2, ...)
269 {
270 	uint32_t bufsize;
271 	uint16_t tag;
272 	uint32_t ordinal;
273 	uint32_t result;
274 	unsigned char *enonce1;
275 	unsigned char *continueflag1;
276 	unsigned char *authdata1;
277 	unsigned char *enonce2;
278 	unsigned char *continueflag2;
279 	unsigned char *authdata2;
280 	unsigned char testhmac1[SHA1_DIGEST_SIZE];
281 	unsigned char testhmac2[SHA1_DIGEST_SIZE];
282 	unsigned char paramdigest[SHA1_DIGEST_SIZE];
283 	struct sdesc *sdesc;
284 	unsigned int dlen;
285 	unsigned int dpos;
286 	va_list argp;
287 	int ret;
288 
289 	bufsize = LOAD32(buffer, TPM_SIZE_OFFSET);
290 	tag = LOAD16(buffer, 0);
291 	ordinal = command;
292 	result = LOAD32N(buffer, TPM_RETURN_OFFSET);
293 
294 	if (tag == TPM_TAG_RSP_COMMAND)
295 		return 0;
296 	if (tag != TPM_TAG_RSP_AUTH2_COMMAND)
297 		return -EINVAL;
298 	authdata1 = buffer + bufsize - (SHA1_DIGEST_SIZE + 1
299 			+ SHA1_DIGEST_SIZE + SHA1_DIGEST_SIZE);
300 	authdata2 = buffer + bufsize - (SHA1_DIGEST_SIZE);
301 	continueflag1 = authdata1 - 1;
302 	continueflag2 = authdata2 - 1;
303 	enonce1 = continueflag1 - TPM_NONCE_SIZE;
304 	enonce2 = continueflag2 - TPM_NONCE_SIZE;
305 
306 	sdesc = init_sdesc(hashalg);
307 	if (IS_ERR(sdesc)) {
308 		pr_info("trusted_key: can't alloc %s\n", hash_alg);
309 		return PTR_ERR(sdesc);
310 	}
311 	ret = crypto_shash_init(&sdesc->shash);
312 	if (ret < 0)
313 		goto out;
314 	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result,
315 				  sizeof result);
316 	if (ret < 0)
317 		goto out;
318 	ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal,
319 				  sizeof ordinal);
320 	if (ret < 0)
321 		goto out;
322 
323 	va_start(argp, keylen2);
324 	for (;;) {
325 		dlen = va_arg(argp, unsigned int);
326 		if (dlen == 0)
327 			break;
328 		dpos = va_arg(argp, unsigned int);
329 		ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen);
330 		if (ret < 0)
331 			break;
332 	}
333 	va_end(argp);
334 	if (!ret)
335 		ret = crypto_shash_final(&sdesc->shash, paramdigest);
336 	if (ret < 0)
337 		goto out;
338 
339 	ret = TSS_rawhmac(testhmac1, key1, keylen1, SHA1_DIGEST_SIZE,
340 			  paramdigest, TPM_NONCE_SIZE, enonce1,
341 			  TPM_NONCE_SIZE, ononce, 1, continueflag1, 0, 0);
342 	if (ret < 0)
343 		goto out;
344 	if (memcmp(testhmac1, authdata1, SHA1_DIGEST_SIZE)) {
345 		ret = -EINVAL;
346 		goto out;
347 	}
348 	ret = TSS_rawhmac(testhmac2, key2, keylen2, SHA1_DIGEST_SIZE,
349 			  paramdigest, TPM_NONCE_SIZE, enonce2,
350 			  TPM_NONCE_SIZE, ononce, 1, continueflag2, 0, 0);
351 	if (ret < 0)
352 		goto out;
353 	if (memcmp(testhmac2, authdata2, SHA1_DIGEST_SIZE))
354 		ret = -EINVAL;
355 out:
356 	kzfree(sdesc);
357 	return ret;
358 }
359 
360 /*
361  * For key specific tpm requests, we will generate and send our
362  * own TPM command packets using the drivers send function.
363  */
trusted_tpm_send(unsigned char * cmd,size_t buflen)364 int trusted_tpm_send(unsigned char *cmd, size_t buflen)
365 {
366 	int rc;
367 
368 	if (!chip)
369 		return -ENODEV;
370 
371 	dump_tpm_buf(cmd);
372 	rc = tpm_send(chip, cmd, buflen);
373 	dump_tpm_buf(cmd);
374 	if (rc > 0)
375 		/* Can't return positive return codes values to keyctl */
376 		rc = -EPERM;
377 	return rc;
378 }
379 EXPORT_SYMBOL_GPL(trusted_tpm_send);
380 
381 /*
382  * Lock a trusted key, by extending a selected PCR.
383  *
384  * Prevents a trusted key that is sealed to PCRs from being accessed.
385  * This uses the tpm driver's extend function.
386  */
pcrlock(const int pcrnum)387 static int pcrlock(const int pcrnum)
388 {
389 	if (!capable(CAP_SYS_ADMIN))
390 		return -EPERM;
391 
392 	return tpm_pcr_extend(chip, pcrnum, digests) ? -EINVAL : 0;
393 }
394 
395 /*
396  * Create an object specific authorisation protocol (OSAP) session
397  */
osap(struct tpm_buf * tb,struct osapsess * s,const unsigned char * key,uint16_t type,uint32_t handle)398 static int osap(struct tpm_buf *tb, struct osapsess *s,
399 		const unsigned char *key, uint16_t type, uint32_t handle)
400 {
401 	unsigned char enonce[TPM_NONCE_SIZE];
402 	unsigned char ononce[TPM_NONCE_SIZE];
403 	int ret;
404 
405 	ret = tpm_get_random(chip, ononce, TPM_NONCE_SIZE);
406 	if (ret != TPM_NONCE_SIZE)
407 		return ret;
408 
409 	INIT_BUF(tb);
410 	store16(tb, TPM_TAG_RQU_COMMAND);
411 	store32(tb, TPM_OSAP_SIZE);
412 	store32(tb, TPM_ORD_OSAP);
413 	store16(tb, type);
414 	store32(tb, handle);
415 	storebytes(tb, ononce, TPM_NONCE_SIZE);
416 
417 	ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
418 	if (ret < 0)
419 		return ret;
420 
421 	s->handle = LOAD32(tb->data, TPM_DATA_OFFSET);
422 	memcpy(s->enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)]),
423 	       TPM_NONCE_SIZE);
424 	memcpy(enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t) +
425 				  TPM_NONCE_SIZE]), TPM_NONCE_SIZE);
426 	return TSS_rawhmac(s->secret, key, SHA1_DIGEST_SIZE, TPM_NONCE_SIZE,
427 			   enonce, TPM_NONCE_SIZE, ononce, 0, 0);
428 }
429 
430 /*
431  * Create an object independent authorisation protocol (oiap) session
432  */
oiap(struct tpm_buf * tb,uint32_t * handle,unsigned char * nonce)433 int oiap(struct tpm_buf *tb, uint32_t *handle, unsigned char *nonce)
434 {
435 	int ret;
436 
437 	if (!chip)
438 		return -ENODEV;
439 
440 	INIT_BUF(tb);
441 	store16(tb, TPM_TAG_RQU_COMMAND);
442 	store32(tb, TPM_OIAP_SIZE);
443 	store32(tb, TPM_ORD_OIAP);
444 	ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
445 	if (ret < 0)
446 		return ret;
447 
448 	*handle = LOAD32(tb->data, TPM_DATA_OFFSET);
449 	memcpy(nonce, &tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)],
450 	       TPM_NONCE_SIZE);
451 	return 0;
452 }
453 EXPORT_SYMBOL_GPL(oiap);
454 
455 struct tpm_digests {
456 	unsigned char encauth[SHA1_DIGEST_SIZE];
457 	unsigned char pubauth[SHA1_DIGEST_SIZE];
458 	unsigned char xorwork[SHA1_DIGEST_SIZE * 2];
459 	unsigned char xorhash[SHA1_DIGEST_SIZE];
460 	unsigned char nonceodd[TPM_NONCE_SIZE];
461 };
462 
463 /*
464  * Have the TPM seal(encrypt) the trusted key, possibly based on
465  * Platform Configuration Registers (PCRs). AUTH1 for sealing key.
466  */
tpm_seal(struct tpm_buf * tb,uint16_t keytype,uint32_t keyhandle,const unsigned char * keyauth,const unsigned char * data,uint32_t datalen,unsigned char * blob,uint32_t * bloblen,const unsigned char * blobauth,const unsigned char * pcrinfo,uint32_t pcrinfosize)467 static int tpm_seal(struct tpm_buf *tb, uint16_t keytype,
468 		    uint32_t keyhandle, const unsigned char *keyauth,
469 		    const unsigned char *data, uint32_t datalen,
470 		    unsigned char *blob, uint32_t *bloblen,
471 		    const unsigned char *blobauth,
472 		    const unsigned char *pcrinfo, uint32_t pcrinfosize)
473 {
474 	struct osapsess sess;
475 	struct tpm_digests *td;
476 	unsigned char cont;
477 	uint32_t ordinal;
478 	uint32_t pcrsize;
479 	uint32_t datsize;
480 	int sealinfosize;
481 	int encdatasize;
482 	int storedsize;
483 	int ret;
484 	int i;
485 
486 	/* alloc some work space for all the hashes */
487 	td = kmalloc(sizeof *td, GFP_KERNEL);
488 	if (!td)
489 		return -ENOMEM;
490 
491 	/* get session for sealing key */
492 	ret = osap(tb, &sess, keyauth, keytype, keyhandle);
493 	if (ret < 0)
494 		goto out;
495 	dump_sess(&sess);
496 
497 	/* calculate encrypted authorization value */
498 	memcpy(td->xorwork, sess.secret, SHA1_DIGEST_SIZE);
499 	memcpy(td->xorwork + SHA1_DIGEST_SIZE, sess.enonce, SHA1_DIGEST_SIZE);
500 	ret = TSS_sha1(td->xorwork, SHA1_DIGEST_SIZE * 2, td->xorhash);
501 	if (ret < 0)
502 		goto out;
503 
504 	ret = tpm_get_random(chip, td->nonceodd, TPM_NONCE_SIZE);
505 	if (ret != TPM_NONCE_SIZE)
506 		goto out;
507 	ordinal = htonl(TPM_ORD_SEAL);
508 	datsize = htonl(datalen);
509 	pcrsize = htonl(pcrinfosize);
510 	cont = 0;
511 
512 	/* encrypt data authorization key */
513 	for (i = 0; i < SHA1_DIGEST_SIZE; ++i)
514 		td->encauth[i] = td->xorhash[i] ^ blobauth[i];
515 
516 	/* calculate authorization HMAC value */
517 	if (pcrinfosize == 0) {
518 		/* no pcr info specified */
519 		ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE,
520 				   sess.enonce, td->nonceodd, cont,
521 				   sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE,
522 				   td->encauth, sizeof(uint32_t), &pcrsize,
523 				   sizeof(uint32_t), &datsize, datalen, data, 0,
524 				   0);
525 	} else {
526 		/* pcr info specified */
527 		ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE,
528 				   sess.enonce, td->nonceodd, cont,
529 				   sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE,
530 				   td->encauth, sizeof(uint32_t), &pcrsize,
531 				   pcrinfosize, pcrinfo, sizeof(uint32_t),
532 				   &datsize, datalen, data, 0, 0);
533 	}
534 	if (ret < 0)
535 		goto out;
536 
537 	/* build and send the TPM request packet */
538 	INIT_BUF(tb);
539 	store16(tb, TPM_TAG_RQU_AUTH1_COMMAND);
540 	store32(tb, TPM_SEAL_SIZE + pcrinfosize + datalen);
541 	store32(tb, TPM_ORD_SEAL);
542 	store32(tb, keyhandle);
543 	storebytes(tb, td->encauth, SHA1_DIGEST_SIZE);
544 	store32(tb, pcrinfosize);
545 	storebytes(tb, pcrinfo, pcrinfosize);
546 	store32(tb, datalen);
547 	storebytes(tb, data, datalen);
548 	store32(tb, sess.handle);
549 	storebytes(tb, td->nonceodd, TPM_NONCE_SIZE);
550 	store8(tb, cont);
551 	storebytes(tb, td->pubauth, SHA1_DIGEST_SIZE);
552 
553 	ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
554 	if (ret < 0)
555 		goto out;
556 
557 	/* calculate the size of the returned Blob */
558 	sealinfosize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t));
559 	encdatasize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t) +
560 			     sizeof(uint32_t) + sealinfosize);
561 	storedsize = sizeof(uint32_t) + sizeof(uint32_t) + sealinfosize +
562 	    sizeof(uint32_t) + encdatasize;
563 
564 	/* check the HMAC in the response */
565 	ret = TSS_checkhmac1(tb->data, ordinal, td->nonceodd, sess.secret,
566 			     SHA1_DIGEST_SIZE, storedsize, TPM_DATA_OFFSET, 0,
567 			     0);
568 
569 	/* copy the returned blob to caller */
570 	if (!ret) {
571 		memcpy(blob, tb->data + TPM_DATA_OFFSET, storedsize);
572 		*bloblen = storedsize;
573 	}
574 out:
575 	kzfree(td);
576 	return ret;
577 }
578 
579 /*
580  * use the AUTH2_COMMAND form of unseal, to authorize both key and blob
581  */
tpm_unseal(struct tpm_buf * tb,uint32_t keyhandle,const unsigned char * keyauth,const unsigned char * blob,int bloblen,const unsigned char * blobauth,unsigned char * data,unsigned int * datalen)582 static int tpm_unseal(struct tpm_buf *tb,
583 		      uint32_t keyhandle, const unsigned char *keyauth,
584 		      const unsigned char *blob, int bloblen,
585 		      const unsigned char *blobauth,
586 		      unsigned char *data, unsigned int *datalen)
587 {
588 	unsigned char nonceodd[TPM_NONCE_SIZE];
589 	unsigned char enonce1[TPM_NONCE_SIZE];
590 	unsigned char enonce2[TPM_NONCE_SIZE];
591 	unsigned char authdata1[SHA1_DIGEST_SIZE];
592 	unsigned char authdata2[SHA1_DIGEST_SIZE];
593 	uint32_t authhandle1 = 0;
594 	uint32_t authhandle2 = 0;
595 	unsigned char cont = 0;
596 	uint32_t ordinal;
597 	uint32_t keyhndl;
598 	int ret;
599 
600 	/* sessions for unsealing key and data */
601 	ret = oiap(tb, &authhandle1, enonce1);
602 	if (ret < 0) {
603 		pr_info("trusted_key: oiap failed (%d)\n", ret);
604 		return ret;
605 	}
606 	ret = oiap(tb, &authhandle2, enonce2);
607 	if (ret < 0) {
608 		pr_info("trusted_key: oiap failed (%d)\n", ret);
609 		return ret;
610 	}
611 
612 	ordinal = htonl(TPM_ORD_UNSEAL);
613 	keyhndl = htonl(SRKHANDLE);
614 	ret = tpm_get_random(chip, nonceodd, TPM_NONCE_SIZE);
615 	if (ret != TPM_NONCE_SIZE) {
616 		pr_info("trusted_key: tpm_get_random failed (%d)\n", ret);
617 		return ret;
618 	}
619 	ret = TSS_authhmac(authdata1, keyauth, TPM_NONCE_SIZE,
620 			   enonce1, nonceodd, cont, sizeof(uint32_t),
621 			   &ordinal, bloblen, blob, 0, 0);
622 	if (ret < 0)
623 		return ret;
624 	ret = TSS_authhmac(authdata2, blobauth, TPM_NONCE_SIZE,
625 			   enonce2, nonceodd, cont, sizeof(uint32_t),
626 			   &ordinal, bloblen, blob, 0, 0);
627 	if (ret < 0)
628 		return ret;
629 
630 	/* build and send TPM request packet */
631 	INIT_BUF(tb);
632 	store16(tb, TPM_TAG_RQU_AUTH2_COMMAND);
633 	store32(tb, TPM_UNSEAL_SIZE + bloblen);
634 	store32(tb, TPM_ORD_UNSEAL);
635 	store32(tb, keyhandle);
636 	storebytes(tb, blob, bloblen);
637 	store32(tb, authhandle1);
638 	storebytes(tb, nonceodd, TPM_NONCE_SIZE);
639 	store8(tb, cont);
640 	storebytes(tb, authdata1, SHA1_DIGEST_SIZE);
641 	store32(tb, authhandle2);
642 	storebytes(tb, nonceodd, TPM_NONCE_SIZE);
643 	store8(tb, cont);
644 	storebytes(tb, authdata2, SHA1_DIGEST_SIZE);
645 
646 	ret = trusted_tpm_send(tb->data, MAX_BUF_SIZE);
647 	if (ret < 0) {
648 		pr_info("trusted_key: authhmac failed (%d)\n", ret);
649 		return ret;
650 	}
651 
652 	*datalen = LOAD32(tb->data, TPM_DATA_OFFSET);
653 	ret = TSS_checkhmac2(tb->data, ordinal, nonceodd,
654 			     keyauth, SHA1_DIGEST_SIZE,
655 			     blobauth, SHA1_DIGEST_SIZE,
656 			     sizeof(uint32_t), TPM_DATA_OFFSET,
657 			     *datalen, TPM_DATA_OFFSET + sizeof(uint32_t), 0,
658 			     0);
659 	if (ret < 0) {
660 		pr_info("trusted_key: TSS_checkhmac2 failed (%d)\n", ret);
661 		return ret;
662 	}
663 	memcpy(data, tb->data + TPM_DATA_OFFSET + sizeof(uint32_t), *datalen);
664 	return 0;
665 }
666 
667 /*
668  * Have the TPM seal(encrypt) the symmetric key
669  */
key_seal(struct trusted_key_payload * p,struct trusted_key_options * o)670 static int key_seal(struct trusted_key_payload *p,
671 		    struct trusted_key_options *o)
672 {
673 	struct tpm_buf *tb;
674 	int ret;
675 
676 	tb = kzalloc(sizeof *tb, GFP_KERNEL);
677 	if (!tb)
678 		return -ENOMEM;
679 
680 	/* include migratable flag at end of sealed key */
681 	p->key[p->key_len] = p->migratable;
682 
683 	ret = tpm_seal(tb, o->keytype, o->keyhandle, o->keyauth,
684 		       p->key, p->key_len + 1, p->blob, &p->blob_len,
685 		       o->blobauth, o->pcrinfo, o->pcrinfo_len);
686 	if (ret < 0)
687 		pr_info("trusted_key: srkseal failed (%d)\n", ret);
688 
689 	kzfree(tb);
690 	return ret;
691 }
692 
693 /*
694  * Have the TPM unseal(decrypt) the symmetric key
695  */
key_unseal(struct trusted_key_payload * p,struct trusted_key_options * o)696 static int key_unseal(struct trusted_key_payload *p,
697 		      struct trusted_key_options *o)
698 {
699 	struct tpm_buf *tb;
700 	int ret;
701 
702 	tb = kzalloc(sizeof *tb, GFP_KERNEL);
703 	if (!tb)
704 		return -ENOMEM;
705 
706 	ret = tpm_unseal(tb, o->keyhandle, o->keyauth, p->blob, p->blob_len,
707 			 o->blobauth, p->key, &p->key_len);
708 	if (ret < 0)
709 		pr_info("trusted_key: srkunseal failed (%d)\n", ret);
710 	else
711 		/* pull migratable flag out of sealed key */
712 		p->migratable = p->key[--p->key_len];
713 
714 	kzfree(tb);
715 	return ret;
716 }
717 
718 enum {
719 	Opt_err,
720 	Opt_new, Opt_load, Opt_update,
721 	Opt_keyhandle, Opt_keyauth, Opt_blobauth,
722 	Opt_pcrinfo, Opt_pcrlock, Opt_migratable,
723 	Opt_hash,
724 	Opt_policydigest,
725 	Opt_policyhandle,
726 };
727 
728 static const match_table_t key_tokens = {
729 	{Opt_new, "new"},
730 	{Opt_load, "load"},
731 	{Opt_update, "update"},
732 	{Opt_keyhandle, "keyhandle=%s"},
733 	{Opt_keyauth, "keyauth=%s"},
734 	{Opt_blobauth, "blobauth=%s"},
735 	{Opt_pcrinfo, "pcrinfo=%s"},
736 	{Opt_pcrlock, "pcrlock=%s"},
737 	{Opt_migratable, "migratable=%s"},
738 	{Opt_hash, "hash=%s"},
739 	{Opt_policydigest, "policydigest=%s"},
740 	{Opt_policyhandle, "policyhandle=%s"},
741 	{Opt_err, NULL}
742 };
743 
744 /* can have zero or more token= options */
getoptions(char * c,struct trusted_key_payload * pay,struct trusted_key_options * opt)745 static int getoptions(char *c, struct trusted_key_payload *pay,
746 		      struct trusted_key_options *opt)
747 {
748 	substring_t args[MAX_OPT_ARGS];
749 	char *p = c;
750 	int token;
751 	int res;
752 	unsigned long handle;
753 	unsigned long lock;
754 	unsigned long token_mask = 0;
755 	unsigned int digest_len;
756 	int i;
757 	int tpm2;
758 
759 	tpm2 = tpm_is_tpm2(chip);
760 	if (tpm2 < 0)
761 		return tpm2;
762 
763 	opt->hash = tpm2 ? HASH_ALGO_SHA256 : HASH_ALGO_SHA1;
764 
765 	while ((p = strsep(&c, " \t"))) {
766 		if (*p == '\0' || *p == ' ' || *p == '\t')
767 			continue;
768 		token = match_token(p, key_tokens, args);
769 		if (test_and_set_bit(token, &token_mask))
770 			return -EINVAL;
771 
772 		switch (token) {
773 		case Opt_pcrinfo:
774 			opt->pcrinfo_len = strlen(args[0].from) / 2;
775 			if (opt->pcrinfo_len > MAX_PCRINFO_SIZE)
776 				return -EINVAL;
777 			res = hex2bin(opt->pcrinfo, args[0].from,
778 				      opt->pcrinfo_len);
779 			if (res < 0)
780 				return -EINVAL;
781 			break;
782 		case Opt_keyhandle:
783 			res = kstrtoul(args[0].from, 16, &handle);
784 			if (res < 0)
785 				return -EINVAL;
786 			opt->keytype = SEAL_keytype;
787 			opt->keyhandle = handle;
788 			break;
789 		case Opt_keyauth:
790 			if (strlen(args[0].from) != 2 * SHA1_DIGEST_SIZE)
791 				return -EINVAL;
792 			res = hex2bin(opt->keyauth, args[0].from,
793 				      SHA1_DIGEST_SIZE);
794 			if (res < 0)
795 				return -EINVAL;
796 			break;
797 		case Opt_blobauth:
798 			if (strlen(args[0].from) != 2 * SHA1_DIGEST_SIZE)
799 				return -EINVAL;
800 			res = hex2bin(opt->blobauth, args[0].from,
801 				      SHA1_DIGEST_SIZE);
802 			if (res < 0)
803 				return -EINVAL;
804 			break;
805 		case Opt_migratable:
806 			if (*args[0].from == '0')
807 				pay->migratable = 0;
808 			else
809 				return -EINVAL;
810 			break;
811 		case Opt_pcrlock:
812 			res = kstrtoul(args[0].from, 10, &lock);
813 			if (res < 0)
814 				return -EINVAL;
815 			opt->pcrlock = lock;
816 			break;
817 		case Opt_hash:
818 			if (test_bit(Opt_policydigest, &token_mask))
819 				return -EINVAL;
820 			for (i = 0; i < HASH_ALGO__LAST; i++) {
821 				if (!strcmp(args[0].from, hash_algo_name[i])) {
822 					opt->hash = i;
823 					break;
824 				}
825 			}
826 			if (i == HASH_ALGO__LAST)
827 				return -EINVAL;
828 			if  (!tpm2 && i != HASH_ALGO_SHA1) {
829 				pr_info("trusted_key: TPM 1.x only supports SHA-1.\n");
830 				return -EINVAL;
831 			}
832 			break;
833 		case Opt_policydigest:
834 			digest_len = hash_digest_size[opt->hash];
835 			if (!tpm2 || strlen(args[0].from) != (2 * digest_len))
836 				return -EINVAL;
837 			res = hex2bin(opt->policydigest, args[0].from,
838 				      digest_len);
839 			if (res < 0)
840 				return -EINVAL;
841 			opt->policydigest_len = digest_len;
842 			break;
843 		case Opt_policyhandle:
844 			if (!tpm2)
845 				return -EINVAL;
846 			res = kstrtoul(args[0].from, 16, &handle);
847 			if (res < 0)
848 				return -EINVAL;
849 			opt->policyhandle = handle;
850 			break;
851 		default:
852 			return -EINVAL;
853 		}
854 	}
855 	return 0;
856 }
857 
858 /*
859  * datablob_parse - parse the keyctl data and fill in the
860  * 		    payload and options structures
861  *
862  * On success returns 0, otherwise -EINVAL.
863  */
datablob_parse(char * datablob,struct trusted_key_payload * p,struct trusted_key_options * o)864 static int datablob_parse(char *datablob, struct trusted_key_payload *p,
865 			  struct trusted_key_options *o)
866 {
867 	substring_t args[MAX_OPT_ARGS];
868 	long keylen;
869 	int ret = -EINVAL;
870 	int key_cmd;
871 	char *c;
872 
873 	/* main command */
874 	c = strsep(&datablob, " \t");
875 	if (!c)
876 		return -EINVAL;
877 	key_cmd = match_token(c, key_tokens, args);
878 	switch (key_cmd) {
879 	case Opt_new:
880 		/* first argument is key size */
881 		c = strsep(&datablob, " \t");
882 		if (!c)
883 			return -EINVAL;
884 		ret = kstrtol(c, 10, &keylen);
885 		if (ret < 0 || keylen < MIN_KEY_SIZE || keylen > MAX_KEY_SIZE)
886 			return -EINVAL;
887 		p->key_len = keylen;
888 		ret = getoptions(datablob, p, o);
889 		if (ret < 0)
890 			return ret;
891 		ret = Opt_new;
892 		break;
893 	case Opt_load:
894 		/* first argument is sealed blob */
895 		c = strsep(&datablob, " \t");
896 		if (!c)
897 			return -EINVAL;
898 		p->blob_len = strlen(c) / 2;
899 		if (p->blob_len > MAX_BLOB_SIZE)
900 			return -EINVAL;
901 		ret = hex2bin(p->blob, c, p->blob_len);
902 		if (ret < 0)
903 			return -EINVAL;
904 		ret = getoptions(datablob, p, o);
905 		if (ret < 0)
906 			return ret;
907 		ret = Opt_load;
908 		break;
909 	case Opt_update:
910 		/* all arguments are options */
911 		ret = getoptions(datablob, p, o);
912 		if (ret < 0)
913 			return ret;
914 		ret = Opt_update;
915 		break;
916 	case Opt_err:
917 		return -EINVAL;
918 		break;
919 	}
920 	return ret;
921 }
922 
trusted_options_alloc(void)923 static struct trusted_key_options *trusted_options_alloc(void)
924 {
925 	struct trusted_key_options *options;
926 	int tpm2;
927 
928 	tpm2 = tpm_is_tpm2(chip);
929 	if (tpm2 < 0)
930 		return NULL;
931 
932 	options = kzalloc(sizeof *options, GFP_KERNEL);
933 	if (options) {
934 		/* set any non-zero defaults */
935 		options->keytype = SRK_keytype;
936 
937 		if (!tpm2)
938 			options->keyhandle = SRKHANDLE;
939 	}
940 	return options;
941 }
942 
trusted_payload_alloc(struct key * key)943 static struct trusted_key_payload *trusted_payload_alloc(struct key *key)
944 {
945 	struct trusted_key_payload *p = NULL;
946 	int ret;
947 
948 	ret = key_payload_reserve(key, sizeof *p);
949 	if (ret < 0)
950 		return p;
951 	p = kzalloc(sizeof *p, GFP_KERNEL);
952 	if (p)
953 		p->migratable = 1; /* migratable by default */
954 	return p;
955 }
956 
957 /*
958  * trusted_instantiate - create a new trusted key
959  *
960  * Unseal an existing trusted blob or, for a new key, get a
961  * random key, then seal and create a trusted key-type key,
962  * adding it to the specified keyring.
963  *
964  * On success, return 0. Otherwise return errno.
965  */
trusted_instantiate(struct key * key,struct key_preparsed_payload * prep)966 static int trusted_instantiate(struct key *key,
967 			       struct key_preparsed_payload *prep)
968 {
969 	struct trusted_key_payload *payload = NULL;
970 	struct trusted_key_options *options = NULL;
971 	size_t datalen = prep->datalen;
972 	char *datablob;
973 	int ret = 0;
974 	int key_cmd;
975 	size_t key_len;
976 	int tpm2;
977 
978 	tpm2 = tpm_is_tpm2(chip);
979 	if (tpm2 < 0)
980 		return tpm2;
981 
982 	if (datalen <= 0 || datalen > 32767 || !prep->data)
983 		return -EINVAL;
984 
985 	datablob = kmalloc(datalen + 1, GFP_KERNEL);
986 	if (!datablob)
987 		return -ENOMEM;
988 	memcpy(datablob, prep->data, datalen);
989 	datablob[datalen] = '\0';
990 
991 	options = trusted_options_alloc();
992 	if (!options) {
993 		ret = -ENOMEM;
994 		goto out;
995 	}
996 	payload = trusted_payload_alloc(key);
997 	if (!payload) {
998 		ret = -ENOMEM;
999 		goto out;
1000 	}
1001 
1002 	key_cmd = datablob_parse(datablob, payload, options);
1003 	if (key_cmd < 0) {
1004 		ret = key_cmd;
1005 		goto out;
1006 	}
1007 
1008 	if (!options->keyhandle) {
1009 		ret = -EINVAL;
1010 		goto out;
1011 	}
1012 
1013 	dump_payload(payload);
1014 	dump_options(options);
1015 
1016 	switch (key_cmd) {
1017 	case Opt_load:
1018 		if (tpm2)
1019 			ret = tpm_unseal_trusted(chip, payload, options);
1020 		else
1021 			ret = key_unseal(payload, options);
1022 		dump_payload(payload);
1023 		dump_options(options);
1024 		if (ret < 0)
1025 			pr_info("trusted_key: key_unseal failed (%d)\n", ret);
1026 		break;
1027 	case Opt_new:
1028 		key_len = payload->key_len;
1029 		ret = tpm_get_random(chip, payload->key, key_len);
1030 		if (ret != key_len) {
1031 			pr_info("trusted_key: key_create failed (%d)\n", ret);
1032 			goto out;
1033 		}
1034 		if (tpm2)
1035 			ret = tpm_seal_trusted(chip, payload, options);
1036 		else
1037 			ret = key_seal(payload, options);
1038 		if (ret < 0)
1039 			pr_info("trusted_key: key_seal failed (%d)\n", ret);
1040 		break;
1041 	default:
1042 		ret = -EINVAL;
1043 		goto out;
1044 	}
1045 	if (!ret && options->pcrlock)
1046 		ret = pcrlock(options->pcrlock);
1047 out:
1048 	kzfree(datablob);
1049 	kzfree(options);
1050 	if (!ret)
1051 		rcu_assign_keypointer(key, payload);
1052 	else
1053 		kzfree(payload);
1054 	return ret;
1055 }
1056 
trusted_rcu_free(struct rcu_head * rcu)1057 static void trusted_rcu_free(struct rcu_head *rcu)
1058 {
1059 	struct trusted_key_payload *p;
1060 
1061 	p = container_of(rcu, struct trusted_key_payload, rcu);
1062 	kzfree(p);
1063 }
1064 
1065 /*
1066  * trusted_update - reseal an existing key with new PCR values
1067  */
trusted_update(struct key * key,struct key_preparsed_payload * prep)1068 static int trusted_update(struct key *key, struct key_preparsed_payload *prep)
1069 {
1070 	struct trusted_key_payload *p;
1071 	struct trusted_key_payload *new_p;
1072 	struct trusted_key_options *new_o;
1073 	size_t datalen = prep->datalen;
1074 	char *datablob;
1075 	int ret = 0;
1076 
1077 	if (key_is_negative(key))
1078 		return -ENOKEY;
1079 	p = key->payload.data[0];
1080 	if (!p->migratable)
1081 		return -EPERM;
1082 	if (datalen <= 0 || datalen > 32767 || !prep->data)
1083 		return -EINVAL;
1084 
1085 	datablob = kmalloc(datalen + 1, GFP_KERNEL);
1086 	if (!datablob)
1087 		return -ENOMEM;
1088 	new_o = trusted_options_alloc();
1089 	if (!new_o) {
1090 		ret = -ENOMEM;
1091 		goto out;
1092 	}
1093 	new_p = trusted_payload_alloc(key);
1094 	if (!new_p) {
1095 		ret = -ENOMEM;
1096 		goto out;
1097 	}
1098 
1099 	memcpy(datablob, prep->data, datalen);
1100 	datablob[datalen] = '\0';
1101 	ret = datablob_parse(datablob, new_p, new_o);
1102 	if (ret != Opt_update) {
1103 		ret = -EINVAL;
1104 		kzfree(new_p);
1105 		goto out;
1106 	}
1107 
1108 	if (!new_o->keyhandle) {
1109 		ret = -EINVAL;
1110 		kzfree(new_p);
1111 		goto out;
1112 	}
1113 
1114 	/* copy old key values, and reseal with new pcrs */
1115 	new_p->migratable = p->migratable;
1116 	new_p->key_len = p->key_len;
1117 	memcpy(new_p->key, p->key, p->key_len);
1118 	dump_payload(p);
1119 	dump_payload(new_p);
1120 
1121 	ret = key_seal(new_p, new_o);
1122 	if (ret < 0) {
1123 		pr_info("trusted_key: key_seal failed (%d)\n", ret);
1124 		kzfree(new_p);
1125 		goto out;
1126 	}
1127 	if (new_o->pcrlock) {
1128 		ret = pcrlock(new_o->pcrlock);
1129 		if (ret < 0) {
1130 			pr_info("trusted_key: pcrlock failed (%d)\n", ret);
1131 			kzfree(new_p);
1132 			goto out;
1133 		}
1134 	}
1135 	rcu_assign_keypointer(key, new_p);
1136 	call_rcu(&p->rcu, trusted_rcu_free);
1137 out:
1138 	kzfree(datablob);
1139 	kzfree(new_o);
1140 	return ret;
1141 }
1142 
1143 /*
1144  * trusted_read - copy the sealed blob data to userspace in hex.
1145  * On success, return to userspace the trusted key datablob size.
1146  */
trusted_read(const struct key * key,char __user * buffer,size_t buflen)1147 static long trusted_read(const struct key *key, char __user *buffer,
1148 			 size_t buflen)
1149 {
1150 	const struct trusted_key_payload *p;
1151 	char *ascii_buf;
1152 	char *bufp;
1153 	int i;
1154 
1155 	p = dereference_key_locked(key);
1156 	if (!p)
1157 		return -EINVAL;
1158 
1159 	if (buffer && buflen >= 2 * p->blob_len) {
1160 		ascii_buf = kmalloc_array(2, p->blob_len, GFP_KERNEL);
1161 		if (!ascii_buf)
1162 			return -ENOMEM;
1163 
1164 		bufp = ascii_buf;
1165 		for (i = 0; i < p->blob_len; i++)
1166 			bufp = hex_byte_pack(bufp, p->blob[i]);
1167 		if (copy_to_user(buffer, ascii_buf, 2 * p->blob_len) != 0) {
1168 			kzfree(ascii_buf);
1169 			return -EFAULT;
1170 		}
1171 		kzfree(ascii_buf);
1172 	}
1173 	return 2 * p->blob_len;
1174 }
1175 
1176 /*
1177  * trusted_destroy - clear and free the key's payload
1178  */
trusted_destroy(struct key * key)1179 static void trusted_destroy(struct key *key)
1180 {
1181 	kzfree(key->payload.data[0]);
1182 }
1183 
1184 struct key_type key_type_trusted = {
1185 	.name = "trusted",
1186 	.instantiate = trusted_instantiate,
1187 	.update = trusted_update,
1188 	.destroy = trusted_destroy,
1189 	.describe = user_describe,
1190 	.read = trusted_read,
1191 };
1192 
1193 EXPORT_SYMBOL_GPL(key_type_trusted);
1194 
trusted_shash_release(void)1195 static void trusted_shash_release(void)
1196 {
1197 	if (hashalg)
1198 		crypto_free_shash(hashalg);
1199 	if (hmacalg)
1200 		crypto_free_shash(hmacalg);
1201 }
1202 
trusted_shash_alloc(void)1203 static int __init trusted_shash_alloc(void)
1204 {
1205 	int ret;
1206 
1207 	hmacalg = crypto_alloc_shash(hmac_alg, 0, 0);
1208 	if (IS_ERR(hmacalg)) {
1209 		pr_info("trusted_key: could not allocate crypto %s\n",
1210 			hmac_alg);
1211 		return PTR_ERR(hmacalg);
1212 	}
1213 
1214 	hashalg = crypto_alloc_shash(hash_alg, 0, 0);
1215 	if (IS_ERR(hashalg)) {
1216 		pr_info("trusted_key: could not allocate crypto %s\n",
1217 			hash_alg);
1218 		ret = PTR_ERR(hashalg);
1219 		goto hashalg_fail;
1220 	}
1221 
1222 	return 0;
1223 
1224 hashalg_fail:
1225 	crypto_free_shash(hmacalg);
1226 	return ret;
1227 }
1228 
init_digests(void)1229 static int __init init_digests(void)
1230 {
1231 	int i;
1232 
1233 	digests = kcalloc(chip->nr_allocated_banks, sizeof(*digests),
1234 			  GFP_KERNEL);
1235 	if (!digests)
1236 		return -ENOMEM;
1237 
1238 	for (i = 0; i < chip->nr_allocated_banks; i++)
1239 		digests[i].alg_id = chip->allocated_banks[i].alg_id;
1240 
1241 	return 0;
1242 }
1243 
init_trusted(void)1244 static int __init init_trusted(void)
1245 {
1246 	int ret;
1247 
1248 	/* encrypted_keys.ko depends on successful load of this module even if
1249 	 * TPM is not used.
1250 	 */
1251 	chip = tpm_default_chip();
1252 	if (!chip)
1253 		return 0;
1254 
1255 	ret = init_digests();
1256 	if (ret < 0)
1257 		goto err_put;
1258 	ret = trusted_shash_alloc();
1259 	if (ret < 0)
1260 		goto err_free;
1261 	ret = register_key_type(&key_type_trusted);
1262 	if (ret < 0)
1263 		goto err_release;
1264 	return 0;
1265 err_release:
1266 	trusted_shash_release();
1267 err_free:
1268 	kfree(digests);
1269 err_put:
1270 	put_device(&chip->dev);
1271 	return ret;
1272 }
1273 
cleanup_trusted(void)1274 static void __exit cleanup_trusted(void)
1275 {
1276 	if (chip) {
1277 		put_device(&chip->dev);
1278 		kfree(digests);
1279 		trusted_shash_release();
1280 		unregister_key_type(&key_type_trusted);
1281 	}
1282 }
1283 
1284 late_initcall(init_trusted);
1285 module_exit(cleanup_trusted);
1286 
1287 MODULE_LICENSE("GPL");
1288