1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * NSA Security-Enhanced Linux (SELinux) security module
4 *
5 * This file contains the SELinux XFRM hook function implementations.
6 *
7 * Authors: Serge Hallyn <sergeh@us.ibm.com>
8 * Trent Jaeger <jaegert@us.ibm.com>
9 *
10 * Updated: Venkat Yekkirala <vyekkirala@TrustedCS.com>
11 *
12 * Granular IPSec Associations for use in MLS environments.
13 *
14 * Copyright (C) 2005 International Business Machines Corporation
15 * Copyright (C) 2006 Trusted Computer Solutions, Inc.
16 */
17
18 /*
19 * USAGE:
20 * NOTES:
21 * 1. Make sure to enable the following options in your kernel config:
22 * CONFIG_SECURITY=y
23 * CONFIG_SECURITY_NETWORK=y
24 * CONFIG_SECURITY_NETWORK_XFRM=y
25 * CONFIG_SECURITY_SELINUX=m/y
26 * ISSUES:
27 * 1. Caching packets, so they are not dropped during negotiation
28 * 2. Emulating a reasonable SO_PEERSEC across machines
29 * 3. Testing addition of sk_policy's with security context via setsockopt
30 */
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/security.h>
34 #include <linux/types.h>
35 #include <linux/slab.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/skbuff.h>
39 #include <linux/xfrm.h>
40 #include <net/xfrm.h>
41 #include <net/checksum.h>
42 #include <net/udp.h>
43 #include <linux/atomic.h>
44
45 #include "avc.h"
46 #include "objsec.h"
47 #include "xfrm.h"
48
49 /* Labeled XFRM instance counter */
50 atomic_t selinux_xfrm_refcount = ATOMIC_INIT(0);
51
52 /*
53 * Returns true if the context is an LSM/SELinux context.
54 */
selinux_authorizable_ctx(struct xfrm_sec_ctx * ctx)55 static inline int selinux_authorizable_ctx(struct xfrm_sec_ctx *ctx)
56 {
57 return (ctx &&
58 (ctx->ctx_doi == XFRM_SC_DOI_LSM) &&
59 (ctx->ctx_alg == XFRM_SC_ALG_SELINUX));
60 }
61
62 /*
63 * Returns true if the xfrm contains a security blob for SELinux.
64 */
selinux_authorizable_xfrm(struct xfrm_state * x)65 static inline int selinux_authorizable_xfrm(struct xfrm_state *x)
66 {
67 return selinux_authorizable_ctx(x->security);
68 }
69
70 /*
71 * Allocates a xfrm_sec_state and populates it using the supplied security
72 * xfrm_user_sec_ctx context.
73 */
selinux_xfrm_alloc_user(struct xfrm_sec_ctx ** ctxp,struct xfrm_user_sec_ctx * uctx,gfp_t gfp)74 static int selinux_xfrm_alloc_user(struct xfrm_sec_ctx **ctxp,
75 struct xfrm_user_sec_ctx *uctx,
76 gfp_t gfp)
77 {
78 int rc;
79 const struct task_security_struct *tsec = selinux_cred(current_cred());
80 struct xfrm_sec_ctx *ctx = NULL;
81 u32 str_len;
82
83 if (ctxp == NULL || uctx == NULL ||
84 uctx->ctx_doi != XFRM_SC_DOI_LSM ||
85 uctx->ctx_alg != XFRM_SC_ALG_SELINUX)
86 return -EINVAL;
87
88 str_len = uctx->ctx_len;
89 if (str_len >= PAGE_SIZE)
90 return -ENOMEM;
91
92 ctx = kmalloc(sizeof(*ctx) + str_len + 1, gfp);
93 if (!ctx)
94 return -ENOMEM;
95
96 ctx->ctx_doi = XFRM_SC_DOI_LSM;
97 ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
98 ctx->ctx_len = str_len;
99 memcpy(ctx->ctx_str, &uctx[1], str_len);
100 ctx->ctx_str[str_len] = '\0';
101 rc = security_context_to_sid(&selinux_state, ctx->ctx_str, str_len,
102 &ctx->ctx_sid, gfp);
103 if (rc)
104 goto err;
105
106 rc = avc_has_perm(&selinux_state,
107 tsec->sid, ctx->ctx_sid,
108 SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT, NULL);
109 if (rc)
110 goto err;
111
112 *ctxp = ctx;
113 atomic_inc(&selinux_xfrm_refcount);
114 return 0;
115
116 err:
117 kfree(ctx);
118 return rc;
119 }
120
121 /*
122 * Free the xfrm_sec_ctx structure.
123 */
selinux_xfrm_free(struct xfrm_sec_ctx * ctx)124 static void selinux_xfrm_free(struct xfrm_sec_ctx *ctx)
125 {
126 if (!ctx)
127 return;
128
129 atomic_dec(&selinux_xfrm_refcount);
130 kfree(ctx);
131 }
132
133 /*
134 * Authorize the deletion of a labeled SA or policy rule.
135 */
selinux_xfrm_delete(struct xfrm_sec_ctx * ctx)136 static int selinux_xfrm_delete(struct xfrm_sec_ctx *ctx)
137 {
138 const struct task_security_struct *tsec = selinux_cred(current_cred());
139
140 if (!ctx)
141 return 0;
142
143 return avc_has_perm(&selinux_state,
144 tsec->sid, ctx->ctx_sid,
145 SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT,
146 NULL);
147 }
148
149 /*
150 * LSM hook implementation that authorizes that a flow can use a xfrm policy
151 * rule.
152 */
selinux_xfrm_policy_lookup(struct xfrm_sec_ctx * ctx,u32 fl_secid,u8 dir)153 int selinux_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
154 {
155 int rc;
156
157 /* All flows should be treated as polmatch'ing an otherwise applicable
158 * "non-labeled" policy. This would prevent inadvertent "leaks". */
159 if (!ctx)
160 return 0;
161
162 /* Context sid is either set to label or ANY_ASSOC */
163 if (!selinux_authorizable_ctx(ctx))
164 return -EINVAL;
165
166 rc = avc_has_perm(&selinux_state,
167 fl_secid, ctx->ctx_sid,
168 SECCLASS_ASSOCIATION, ASSOCIATION__POLMATCH, NULL);
169 return (rc == -EACCES ? -ESRCH : rc);
170 }
171
172 /*
173 * LSM hook implementation that authorizes that a state matches
174 * the given policy, flow combo.
175 */
selinux_xfrm_state_pol_flow_match(struct xfrm_state * x,struct xfrm_policy * xp,const struct flowi * fl)176 int selinux_xfrm_state_pol_flow_match(struct xfrm_state *x,
177 struct xfrm_policy *xp,
178 const struct flowi *fl)
179 {
180 u32 state_sid;
181
182 if (!xp->security)
183 if (x->security)
184 /* unlabeled policy and labeled SA can't match */
185 return 0;
186 else
187 /* unlabeled policy and unlabeled SA match all flows */
188 return 1;
189 else
190 if (!x->security)
191 /* unlabeled SA and labeled policy can't match */
192 return 0;
193 else
194 if (!selinux_authorizable_xfrm(x))
195 /* Not a SELinux-labeled SA */
196 return 0;
197
198 state_sid = x->security->ctx_sid;
199
200 if (fl->flowi_secid != state_sid)
201 return 0;
202
203 /* We don't need a separate SA Vs. policy polmatch check since the SA
204 * is now of the same label as the flow and a flow Vs. policy polmatch
205 * check had already happened in selinux_xfrm_policy_lookup() above. */
206 return (avc_has_perm(&selinux_state,
207 fl->flowi_secid, state_sid,
208 SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO,
209 NULL) ? 0 : 1);
210 }
211
selinux_xfrm_skb_sid_egress(struct sk_buff * skb)212 static u32 selinux_xfrm_skb_sid_egress(struct sk_buff *skb)
213 {
214 struct dst_entry *dst = skb_dst(skb);
215 struct xfrm_state *x;
216
217 if (dst == NULL)
218 return SECSID_NULL;
219 x = dst->xfrm;
220 if (x == NULL || !selinux_authorizable_xfrm(x))
221 return SECSID_NULL;
222
223 return x->security->ctx_sid;
224 }
225
selinux_xfrm_skb_sid_ingress(struct sk_buff * skb,u32 * sid,int ckall)226 static int selinux_xfrm_skb_sid_ingress(struct sk_buff *skb,
227 u32 *sid, int ckall)
228 {
229 u32 sid_session = SECSID_NULL;
230 struct sec_path *sp = skb_sec_path(skb);
231
232 if (sp) {
233 int i;
234
235 for (i = sp->len - 1; i >= 0; i--) {
236 struct xfrm_state *x = sp->xvec[i];
237 if (selinux_authorizable_xfrm(x)) {
238 struct xfrm_sec_ctx *ctx = x->security;
239
240 if (sid_session == SECSID_NULL) {
241 sid_session = ctx->ctx_sid;
242 if (!ckall)
243 goto out;
244 } else if (sid_session != ctx->ctx_sid) {
245 *sid = SECSID_NULL;
246 return -EINVAL;
247 }
248 }
249 }
250 }
251
252 out:
253 *sid = sid_session;
254 return 0;
255 }
256
257 /*
258 * LSM hook implementation that checks and/or returns the xfrm sid for the
259 * incoming packet.
260 */
selinux_xfrm_decode_session(struct sk_buff * skb,u32 * sid,int ckall)261 int selinux_xfrm_decode_session(struct sk_buff *skb, u32 *sid, int ckall)
262 {
263 if (skb == NULL) {
264 *sid = SECSID_NULL;
265 return 0;
266 }
267 return selinux_xfrm_skb_sid_ingress(skb, sid, ckall);
268 }
269
selinux_xfrm_skb_sid(struct sk_buff * skb,u32 * sid)270 int selinux_xfrm_skb_sid(struct sk_buff *skb, u32 *sid)
271 {
272 int rc;
273
274 rc = selinux_xfrm_skb_sid_ingress(skb, sid, 0);
275 if (rc == 0 && *sid == SECSID_NULL)
276 *sid = selinux_xfrm_skb_sid_egress(skb);
277
278 return rc;
279 }
280
281 /*
282 * LSM hook implementation that allocs and transfers uctx spec to xfrm_policy.
283 */
selinux_xfrm_policy_alloc(struct xfrm_sec_ctx ** ctxp,struct xfrm_user_sec_ctx * uctx,gfp_t gfp)284 int selinux_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
285 struct xfrm_user_sec_ctx *uctx,
286 gfp_t gfp)
287 {
288 return selinux_xfrm_alloc_user(ctxp, uctx, gfp);
289 }
290
291 /*
292 * LSM hook implementation that copies security data structure from old to new
293 * for policy cloning.
294 */
selinux_xfrm_policy_clone(struct xfrm_sec_ctx * old_ctx,struct xfrm_sec_ctx ** new_ctxp)295 int selinux_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
296 struct xfrm_sec_ctx **new_ctxp)
297 {
298 struct xfrm_sec_ctx *new_ctx;
299
300 if (!old_ctx)
301 return 0;
302
303 new_ctx = kmemdup(old_ctx, sizeof(*old_ctx) + old_ctx->ctx_len,
304 GFP_ATOMIC);
305 if (!new_ctx)
306 return -ENOMEM;
307 atomic_inc(&selinux_xfrm_refcount);
308 *new_ctxp = new_ctx;
309
310 return 0;
311 }
312
313 /*
314 * LSM hook implementation that frees xfrm_sec_ctx security information.
315 */
selinux_xfrm_policy_free(struct xfrm_sec_ctx * ctx)316 void selinux_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
317 {
318 selinux_xfrm_free(ctx);
319 }
320
321 /*
322 * LSM hook implementation that authorizes deletion of labeled policies.
323 */
selinux_xfrm_policy_delete(struct xfrm_sec_ctx * ctx)324 int selinux_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
325 {
326 return selinux_xfrm_delete(ctx);
327 }
328
329 /*
330 * LSM hook implementation that allocates a xfrm_sec_state, populates it using
331 * the supplied security context, and assigns it to the xfrm_state.
332 */
selinux_xfrm_state_alloc(struct xfrm_state * x,struct xfrm_user_sec_ctx * uctx)333 int selinux_xfrm_state_alloc(struct xfrm_state *x,
334 struct xfrm_user_sec_ctx *uctx)
335 {
336 return selinux_xfrm_alloc_user(&x->security, uctx, GFP_KERNEL);
337 }
338
339 /*
340 * LSM hook implementation that allocates a xfrm_sec_state and populates based
341 * on a secid.
342 */
selinux_xfrm_state_alloc_acquire(struct xfrm_state * x,struct xfrm_sec_ctx * polsec,u32 secid)343 int selinux_xfrm_state_alloc_acquire(struct xfrm_state *x,
344 struct xfrm_sec_ctx *polsec, u32 secid)
345 {
346 int rc;
347 struct xfrm_sec_ctx *ctx;
348 char *ctx_str = NULL;
349 int str_len;
350
351 if (!polsec)
352 return 0;
353
354 if (secid == 0)
355 return -EINVAL;
356
357 rc = security_sid_to_context(&selinux_state, secid, &ctx_str,
358 &str_len);
359 if (rc)
360 return rc;
361
362 ctx = kmalloc(sizeof(*ctx) + str_len, GFP_ATOMIC);
363 if (!ctx) {
364 rc = -ENOMEM;
365 goto out;
366 }
367
368 ctx->ctx_doi = XFRM_SC_DOI_LSM;
369 ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
370 ctx->ctx_sid = secid;
371 ctx->ctx_len = str_len;
372 memcpy(ctx->ctx_str, ctx_str, str_len);
373
374 x->security = ctx;
375 atomic_inc(&selinux_xfrm_refcount);
376 out:
377 kfree(ctx_str);
378 return rc;
379 }
380
381 /*
382 * LSM hook implementation that frees xfrm_state security information.
383 */
selinux_xfrm_state_free(struct xfrm_state * x)384 void selinux_xfrm_state_free(struct xfrm_state *x)
385 {
386 selinux_xfrm_free(x->security);
387 }
388
389 /*
390 * LSM hook implementation that authorizes deletion of labeled SAs.
391 */
selinux_xfrm_state_delete(struct xfrm_state * x)392 int selinux_xfrm_state_delete(struct xfrm_state *x)
393 {
394 return selinux_xfrm_delete(x->security);
395 }
396
397 /*
398 * LSM hook that controls access to unlabelled packets. If
399 * a xfrm_state is authorizable (defined by macro) then it was
400 * already authorized by the IPSec process. If not, then
401 * we need to check for unlabelled access since this may not have
402 * gone thru the IPSec process.
403 */
selinux_xfrm_sock_rcv_skb(u32 sk_sid,struct sk_buff * skb,struct common_audit_data * ad)404 int selinux_xfrm_sock_rcv_skb(u32 sk_sid, struct sk_buff *skb,
405 struct common_audit_data *ad)
406 {
407 int i;
408 struct sec_path *sp = skb_sec_path(skb);
409 u32 peer_sid = SECINITSID_UNLABELED;
410
411 if (sp) {
412 for (i = 0; i < sp->len; i++) {
413 struct xfrm_state *x = sp->xvec[i];
414
415 if (x && selinux_authorizable_xfrm(x)) {
416 struct xfrm_sec_ctx *ctx = x->security;
417 peer_sid = ctx->ctx_sid;
418 break;
419 }
420 }
421 }
422
423 /* This check even when there's no association involved is intended,
424 * according to Trent Jaeger, to make sure a process can't engage in
425 * non-IPsec communication unless explicitly allowed by policy. */
426 return avc_has_perm(&selinux_state,
427 sk_sid, peer_sid,
428 SECCLASS_ASSOCIATION, ASSOCIATION__RECVFROM, ad);
429 }
430
431 /*
432 * POSTROUTE_LAST hook's XFRM processing:
433 * If we have no security association, then we need to determine
434 * whether the socket is allowed to send to an unlabelled destination.
435 * If we do have a authorizable security association, then it has already been
436 * checked in the selinux_xfrm_state_pol_flow_match hook above.
437 */
selinux_xfrm_postroute_last(u32 sk_sid,struct sk_buff * skb,struct common_audit_data * ad,u8 proto)438 int selinux_xfrm_postroute_last(u32 sk_sid, struct sk_buff *skb,
439 struct common_audit_data *ad, u8 proto)
440 {
441 struct dst_entry *dst;
442
443 switch (proto) {
444 case IPPROTO_AH:
445 case IPPROTO_ESP:
446 case IPPROTO_COMP:
447 /* We should have already seen this packet once before it
448 * underwent xfrm(s). No need to subject it to the unlabeled
449 * check. */
450 return 0;
451 default:
452 break;
453 }
454
455 dst = skb_dst(skb);
456 if (dst) {
457 struct dst_entry *iter;
458
459 for (iter = dst; iter != NULL; iter = xfrm_dst_child(iter)) {
460 struct xfrm_state *x = iter->xfrm;
461
462 if (x && selinux_authorizable_xfrm(x))
463 return 0;
464 }
465 }
466
467 /* This check even when there's no association involved is intended,
468 * according to Trent Jaeger, to make sure a process can't engage in
469 * non-IPsec communication unless explicitly allowed by policy. */
470 return avc_has_perm(&selinux_state, sk_sid, SECINITSID_UNLABELED,
471 SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO, ad);
472 }
473