1 // SPDX-License-Identifier: GPL-2.0
2 #include "builtin.h"
3 #include "perf.h"
4 #include "perf-sys.h"
5
6 #include "util/cpumap.h"
7 #include "util/evlist.h"
8 #include "util/evsel.h"
9 #include "util/evsel_fprintf.h"
10 #include "util/symbol.h"
11 #include "util/thread.h"
12 #include "util/header.h"
13 #include "util/session.h"
14 #include "util/tool.h"
15 #include "util/cloexec.h"
16 #include "util/thread_map.h"
17 #include "util/color.h"
18 #include "util/stat.h"
19 #include "util/string2.h"
20 #include "util/callchain.h"
21 #include "util/time-utils.h"
22
23 #include <subcmd/pager.h>
24 #include <subcmd/parse-options.h>
25 #include "util/trace-event.h"
26
27 #include "util/debug.h"
28 #include "util/event.h"
29
30 #include <linux/kernel.h>
31 #include <linux/log2.h>
32 #include <linux/zalloc.h>
33 #include <sys/prctl.h>
34 #include <sys/resource.h>
35 #include <inttypes.h>
36
37 #include <errno.h>
38 #include <semaphore.h>
39 #include <pthread.h>
40 #include <math.h>
41 #include <api/fs/fs.h>
42 #include <perf/cpumap.h>
43 #include <linux/time64.h>
44 #include <linux/err.h>
45
46 #include <linux/ctype.h>
47
48 #define PR_SET_NAME 15 /* Set process name */
49 #define MAX_CPUS 4096
50 #define COMM_LEN 20
51 #define SYM_LEN 129
52 #define MAX_PID 1024000
53
54 struct sched_atom;
55
56 struct task_desc {
57 unsigned long nr;
58 unsigned long pid;
59 char comm[COMM_LEN];
60
61 unsigned long nr_events;
62 unsigned long curr_event;
63 struct sched_atom **atoms;
64
65 pthread_t thread;
66 sem_t sleep_sem;
67
68 sem_t ready_for_work;
69 sem_t work_done_sem;
70
71 u64 cpu_usage;
72 };
73
74 enum sched_event_type {
75 SCHED_EVENT_RUN,
76 SCHED_EVENT_SLEEP,
77 SCHED_EVENT_WAKEUP,
78 SCHED_EVENT_MIGRATION,
79 };
80
81 struct sched_atom {
82 enum sched_event_type type;
83 int specific_wait;
84 u64 timestamp;
85 u64 duration;
86 unsigned long nr;
87 sem_t *wait_sem;
88 struct task_desc *wakee;
89 };
90
91 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
92
93 /* task state bitmask, copied from include/linux/sched.h */
94 #define TASK_RUNNING 0
95 #define TASK_INTERRUPTIBLE 1
96 #define TASK_UNINTERRUPTIBLE 2
97 #define __TASK_STOPPED 4
98 #define __TASK_TRACED 8
99 /* in tsk->exit_state */
100 #define EXIT_DEAD 16
101 #define EXIT_ZOMBIE 32
102 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
103 /* in tsk->state again */
104 #define TASK_DEAD 64
105 #define TASK_WAKEKILL 128
106 #define TASK_WAKING 256
107 #define TASK_PARKED 512
108
109 enum thread_state {
110 THREAD_SLEEPING = 0,
111 THREAD_WAIT_CPU,
112 THREAD_SCHED_IN,
113 THREAD_IGNORE
114 };
115
116 struct work_atom {
117 struct list_head list;
118 enum thread_state state;
119 u64 sched_out_time;
120 u64 wake_up_time;
121 u64 sched_in_time;
122 u64 runtime;
123 };
124
125 struct work_atoms {
126 struct list_head work_list;
127 struct thread *thread;
128 struct rb_node node;
129 u64 max_lat;
130 u64 max_lat_at;
131 u64 total_lat;
132 u64 nb_atoms;
133 u64 total_runtime;
134 int num_merged;
135 };
136
137 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
138
139 struct perf_sched;
140
141 struct trace_sched_handler {
142 int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
143 struct perf_sample *sample, struct machine *machine);
144
145 int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
146 struct perf_sample *sample, struct machine *machine);
147
148 int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
149 struct perf_sample *sample, struct machine *machine);
150
151 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
152 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
153 struct machine *machine);
154
155 int (*migrate_task_event)(struct perf_sched *sched,
156 struct evsel *evsel,
157 struct perf_sample *sample,
158 struct machine *machine);
159 };
160
161 #define COLOR_PIDS PERF_COLOR_BLUE
162 #define COLOR_CPUS PERF_COLOR_BG_RED
163
164 struct perf_sched_map {
165 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
166 int *comp_cpus;
167 bool comp;
168 struct perf_thread_map *color_pids;
169 const char *color_pids_str;
170 struct perf_cpu_map *color_cpus;
171 const char *color_cpus_str;
172 struct perf_cpu_map *cpus;
173 const char *cpus_str;
174 };
175
176 struct perf_sched {
177 struct perf_tool tool;
178 const char *sort_order;
179 unsigned long nr_tasks;
180 struct task_desc **pid_to_task;
181 struct task_desc **tasks;
182 const struct trace_sched_handler *tp_handler;
183 pthread_mutex_t start_work_mutex;
184 pthread_mutex_t work_done_wait_mutex;
185 int profile_cpu;
186 /*
187 * Track the current task - that way we can know whether there's any
188 * weird events, such as a task being switched away that is not current.
189 */
190 int max_cpu;
191 u32 curr_pid[MAX_CPUS];
192 struct thread *curr_thread[MAX_CPUS];
193 char next_shortname1;
194 char next_shortname2;
195 unsigned int replay_repeat;
196 unsigned long nr_run_events;
197 unsigned long nr_sleep_events;
198 unsigned long nr_wakeup_events;
199 unsigned long nr_sleep_corrections;
200 unsigned long nr_run_events_optimized;
201 unsigned long targetless_wakeups;
202 unsigned long multitarget_wakeups;
203 unsigned long nr_runs;
204 unsigned long nr_timestamps;
205 unsigned long nr_unordered_timestamps;
206 unsigned long nr_context_switch_bugs;
207 unsigned long nr_events;
208 unsigned long nr_lost_chunks;
209 unsigned long nr_lost_events;
210 u64 run_measurement_overhead;
211 u64 sleep_measurement_overhead;
212 u64 start_time;
213 u64 cpu_usage;
214 u64 runavg_cpu_usage;
215 u64 parent_cpu_usage;
216 u64 runavg_parent_cpu_usage;
217 u64 sum_runtime;
218 u64 sum_fluct;
219 u64 run_avg;
220 u64 all_runtime;
221 u64 all_count;
222 u64 cpu_last_switched[MAX_CPUS];
223 struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
224 struct list_head sort_list, cmp_pid;
225 bool force;
226 bool skip_merge;
227 struct perf_sched_map map;
228
229 /* options for timehist command */
230 bool summary;
231 bool summary_only;
232 bool idle_hist;
233 bool show_callchain;
234 unsigned int max_stack;
235 bool show_cpu_visual;
236 bool show_wakeups;
237 bool show_next;
238 bool show_migrations;
239 bool show_state;
240 u64 skipped_samples;
241 const char *time_str;
242 struct perf_time_interval ptime;
243 struct perf_time_interval hist_time;
244 };
245
246 /* per thread run time data */
247 struct thread_runtime {
248 u64 last_time; /* time of previous sched in/out event */
249 u64 dt_run; /* run time */
250 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */
251 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */
252 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */
253 u64 dt_delay; /* time between wakeup and sched-in */
254 u64 ready_to_run; /* time of wakeup */
255
256 struct stats run_stats;
257 u64 total_run_time;
258 u64 total_sleep_time;
259 u64 total_iowait_time;
260 u64 total_preempt_time;
261 u64 total_delay_time;
262
263 int last_state;
264
265 char shortname[3];
266 bool comm_changed;
267
268 u64 migrations;
269 };
270
271 /* per event run time data */
272 struct evsel_runtime {
273 u64 *last_time; /* time this event was last seen per cpu */
274 u32 ncpu; /* highest cpu slot allocated */
275 };
276
277 /* per cpu idle time data */
278 struct idle_thread_runtime {
279 struct thread_runtime tr;
280 struct thread *last_thread;
281 struct rb_root_cached sorted_root;
282 struct callchain_root callchain;
283 struct callchain_cursor cursor;
284 };
285
286 /* track idle times per cpu */
287 static struct thread **idle_threads;
288 static int idle_max_cpu;
289 static char idle_comm[] = "<idle>";
290
get_nsecs(void)291 static u64 get_nsecs(void)
292 {
293 struct timespec ts;
294
295 clock_gettime(CLOCK_MONOTONIC, &ts);
296
297 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
298 }
299
burn_nsecs(struct perf_sched * sched,u64 nsecs)300 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
301 {
302 u64 T0 = get_nsecs(), T1;
303
304 do {
305 T1 = get_nsecs();
306 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
307 }
308
sleep_nsecs(u64 nsecs)309 static void sleep_nsecs(u64 nsecs)
310 {
311 struct timespec ts;
312
313 ts.tv_nsec = nsecs % 999999999;
314 ts.tv_sec = nsecs / 999999999;
315
316 nanosleep(&ts, NULL);
317 }
318
calibrate_run_measurement_overhead(struct perf_sched * sched)319 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
320 {
321 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
322 int i;
323
324 for (i = 0; i < 10; i++) {
325 T0 = get_nsecs();
326 burn_nsecs(sched, 0);
327 T1 = get_nsecs();
328 delta = T1-T0;
329 min_delta = min(min_delta, delta);
330 }
331 sched->run_measurement_overhead = min_delta;
332
333 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
334 }
335
calibrate_sleep_measurement_overhead(struct perf_sched * sched)336 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
337 {
338 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
339 int i;
340
341 for (i = 0; i < 10; i++) {
342 T0 = get_nsecs();
343 sleep_nsecs(10000);
344 T1 = get_nsecs();
345 delta = T1-T0;
346 min_delta = min(min_delta, delta);
347 }
348 min_delta -= 10000;
349 sched->sleep_measurement_overhead = min_delta;
350
351 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
352 }
353
354 static struct sched_atom *
get_new_event(struct task_desc * task,u64 timestamp)355 get_new_event(struct task_desc *task, u64 timestamp)
356 {
357 struct sched_atom *event = zalloc(sizeof(*event));
358 unsigned long idx = task->nr_events;
359 size_t size;
360
361 event->timestamp = timestamp;
362 event->nr = idx;
363
364 task->nr_events++;
365 size = sizeof(struct sched_atom *) * task->nr_events;
366 task->atoms = realloc(task->atoms, size);
367 BUG_ON(!task->atoms);
368
369 task->atoms[idx] = event;
370
371 return event;
372 }
373
last_event(struct task_desc * task)374 static struct sched_atom *last_event(struct task_desc *task)
375 {
376 if (!task->nr_events)
377 return NULL;
378
379 return task->atoms[task->nr_events - 1];
380 }
381
add_sched_event_run(struct perf_sched * sched,struct task_desc * task,u64 timestamp,u64 duration)382 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
383 u64 timestamp, u64 duration)
384 {
385 struct sched_atom *event, *curr_event = last_event(task);
386
387 /*
388 * optimize an existing RUN event by merging this one
389 * to it:
390 */
391 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
392 sched->nr_run_events_optimized++;
393 curr_event->duration += duration;
394 return;
395 }
396
397 event = get_new_event(task, timestamp);
398
399 event->type = SCHED_EVENT_RUN;
400 event->duration = duration;
401
402 sched->nr_run_events++;
403 }
404
add_sched_event_wakeup(struct perf_sched * sched,struct task_desc * task,u64 timestamp,struct task_desc * wakee)405 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
406 u64 timestamp, struct task_desc *wakee)
407 {
408 struct sched_atom *event, *wakee_event;
409
410 event = get_new_event(task, timestamp);
411 event->type = SCHED_EVENT_WAKEUP;
412 event->wakee = wakee;
413
414 wakee_event = last_event(wakee);
415 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
416 sched->targetless_wakeups++;
417 return;
418 }
419 if (wakee_event->wait_sem) {
420 sched->multitarget_wakeups++;
421 return;
422 }
423
424 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
425 sem_init(wakee_event->wait_sem, 0, 0);
426 wakee_event->specific_wait = 1;
427 event->wait_sem = wakee_event->wait_sem;
428
429 sched->nr_wakeup_events++;
430 }
431
add_sched_event_sleep(struct perf_sched * sched,struct task_desc * task,u64 timestamp,u64 task_state __maybe_unused)432 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
433 u64 timestamp, u64 task_state __maybe_unused)
434 {
435 struct sched_atom *event = get_new_event(task, timestamp);
436
437 event->type = SCHED_EVENT_SLEEP;
438
439 sched->nr_sleep_events++;
440 }
441
register_pid(struct perf_sched * sched,unsigned long pid,const char * comm)442 static struct task_desc *register_pid(struct perf_sched *sched,
443 unsigned long pid, const char *comm)
444 {
445 struct task_desc *task;
446 static int pid_max;
447
448 if (sched->pid_to_task == NULL) {
449 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
450 pid_max = MAX_PID;
451 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
452 }
453 if (pid >= (unsigned long)pid_max) {
454 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
455 sizeof(struct task_desc *))) == NULL);
456 while (pid >= (unsigned long)pid_max)
457 sched->pid_to_task[pid_max++] = NULL;
458 }
459
460 task = sched->pid_to_task[pid];
461
462 if (task)
463 return task;
464
465 task = zalloc(sizeof(*task));
466 task->pid = pid;
467 task->nr = sched->nr_tasks;
468 strcpy(task->comm, comm);
469 /*
470 * every task starts in sleeping state - this gets ignored
471 * if there's no wakeup pointing to this sleep state:
472 */
473 add_sched_event_sleep(sched, task, 0, 0);
474
475 sched->pid_to_task[pid] = task;
476 sched->nr_tasks++;
477 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
478 BUG_ON(!sched->tasks);
479 sched->tasks[task->nr] = task;
480
481 if (verbose > 0)
482 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
483
484 return task;
485 }
486
487
print_task_traces(struct perf_sched * sched)488 static void print_task_traces(struct perf_sched *sched)
489 {
490 struct task_desc *task;
491 unsigned long i;
492
493 for (i = 0; i < sched->nr_tasks; i++) {
494 task = sched->tasks[i];
495 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
496 task->nr, task->comm, task->pid, task->nr_events);
497 }
498 }
499
add_cross_task_wakeups(struct perf_sched * sched)500 static void add_cross_task_wakeups(struct perf_sched *sched)
501 {
502 struct task_desc *task1, *task2;
503 unsigned long i, j;
504
505 for (i = 0; i < sched->nr_tasks; i++) {
506 task1 = sched->tasks[i];
507 j = i + 1;
508 if (j == sched->nr_tasks)
509 j = 0;
510 task2 = sched->tasks[j];
511 add_sched_event_wakeup(sched, task1, 0, task2);
512 }
513 }
514
perf_sched__process_event(struct perf_sched * sched,struct sched_atom * atom)515 static void perf_sched__process_event(struct perf_sched *sched,
516 struct sched_atom *atom)
517 {
518 int ret = 0;
519
520 switch (atom->type) {
521 case SCHED_EVENT_RUN:
522 burn_nsecs(sched, atom->duration);
523 break;
524 case SCHED_EVENT_SLEEP:
525 if (atom->wait_sem)
526 ret = sem_wait(atom->wait_sem);
527 BUG_ON(ret);
528 break;
529 case SCHED_EVENT_WAKEUP:
530 if (atom->wait_sem)
531 ret = sem_post(atom->wait_sem);
532 BUG_ON(ret);
533 break;
534 case SCHED_EVENT_MIGRATION:
535 break;
536 default:
537 BUG_ON(1);
538 }
539 }
540
get_cpu_usage_nsec_parent(void)541 static u64 get_cpu_usage_nsec_parent(void)
542 {
543 struct rusage ru;
544 u64 sum;
545 int err;
546
547 err = getrusage(RUSAGE_SELF, &ru);
548 BUG_ON(err);
549
550 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
551 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
552
553 return sum;
554 }
555
self_open_counters(struct perf_sched * sched,unsigned long cur_task)556 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
557 {
558 struct perf_event_attr attr;
559 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
560 int fd;
561 struct rlimit limit;
562 bool need_privilege = false;
563
564 memset(&attr, 0, sizeof(attr));
565
566 attr.type = PERF_TYPE_SOFTWARE;
567 attr.config = PERF_COUNT_SW_TASK_CLOCK;
568
569 force_again:
570 fd = sys_perf_event_open(&attr, 0, -1, -1,
571 perf_event_open_cloexec_flag());
572
573 if (fd < 0) {
574 if (errno == EMFILE) {
575 if (sched->force) {
576 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
577 limit.rlim_cur += sched->nr_tasks - cur_task;
578 if (limit.rlim_cur > limit.rlim_max) {
579 limit.rlim_max = limit.rlim_cur;
580 need_privilege = true;
581 }
582 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
583 if (need_privilege && errno == EPERM)
584 strcpy(info, "Need privilege\n");
585 } else
586 goto force_again;
587 } else
588 strcpy(info, "Have a try with -f option\n");
589 }
590 pr_err("Error: sys_perf_event_open() syscall returned "
591 "with %d (%s)\n%s", fd,
592 str_error_r(errno, sbuf, sizeof(sbuf)), info);
593 exit(EXIT_FAILURE);
594 }
595 return fd;
596 }
597
get_cpu_usage_nsec_self(int fd)598 static u64 get_cpu_usage_nsec_self(int fd)
599 {
600 u64 runtime;
601 int ret;
602
603 ret = read(fd, &runtime, sizeof(runtime));
604 BUG_ON(ret != sizeof(runtime));
605
606 return runtime;
607 }
608
609 struct sched_thread_parms {
610 struct task_desc *task;
611 struct perf_sched *sched;
612 int fd;
613 };
614
thread_func(void * ctx)615 static void *thread_func(void *ctx)
616 {
617 struct sched_thread_parms *parms = ctx;
618 struct task_desc *this_task = parms->task;
619 struct perf_sched *sched = parms->sched;
620 u64 cpu_usage_0, cpu_usage_1;
621 unsigned long i, ret;
622 char comm2[22];
623 int fd = parms->fd;
624
625 zfree(&parms);
626
627 sprintf(comm2, ":%s", this_task->comm);
628 prctl(PR_SET_NAME, comm2);
629 if (fd < 0)
630 return NULL;
631 again:
632 ret = sem_post(&this_task->ready_for_work);
633 BUG_ON(ret);
634 ret = pthread_mutex_lock(&sched->start_work_mutex);
635 BUG_ON(ret);
636 ret = pthread_mutex_unlock(&sched->start_work_mutex);
637 BUG_ON(ret);
638
639 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
640
641 for (i = 0; i < this_task->nr_events; i++) {
642 this_task->curr_event = i;
643 perf_sched__process_event(sched, this_task->atoms[i]);
644 }
645
646 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
647 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
648 ret = sem_post(&this_task->work_done_sem);
649 BUG_ON(ret);
650
651 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
652 BUG_ON(ret);
653 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
654 BUG_ON(ret);
655
656 goto again;
657 }
658
create_tasks(struct perf_sched * sched)659 static void create_tasks(struct perf_sched *sched)
660 {
661 struct task_desc *task;
662 pthread_attr_t attr;
663 unsigned long i;
664 int err;
665
666 err = pthread_attr_init(&attr);
667 BUG_ON(err);
668 err = pthread_attr_setstacksize(&attr,
669 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
670 BUG_ON(err);
671 err = pthread_mutex_lock(&sched->start_work_mutex);
672 BUG_ON(err);
673 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
674 BUG_ON(err);
675 for (i = 0; i < sched->nr_tasks; i++) {
676 struct sched_thread_parms *parms = malloc(sizeof(*parms));
677 BUG_ON(parms == NULL);
678 parms->task = task = sched->tasks[i];
679 parms->sched = sched;
680 parms->fd = self_open_counters(sched, i);
681 sem_init(&task->sleep_sem, 0, 0);
682 sem_init(&task->ready_for_work, 0, 0);
683 sem_init(&task->work_done_sem, 0, 0);
684 task->curr_event = 0;
685 err = pthread_create(&task->thread, &attr, thread_func, parms);
686 BUG_ON(err);
687 }
688 }
689
wait_for_tasks(struct perf_sched * sched)690 static void wait_for_tasks(struct perf_sched *sched)
691 {
692 u64 cpu_usage_0, cpu_usage_1;
693 struct task_desc *task;
694 unsigned long i, ret;
695
696 sched->start_time = get_nsecs();
697 sched->cpu_usage = 0;
698 pthread_mutex_unlock(&sched->work_done_wait_mutex);
699
700 for (i = 0; i < sched->nr_tasks; i++) {
701 task = sched->tasks[i];
702 ret = sem_wait(&task->ready_for_work);
703 BUG_ON(ret);
704 sem_init(&task->ready_for_work, 0, 0);
705 }
706 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
707 BUG_ON(ret);
708
709 cpu_usage_0 = get_cpu_usage_nsec_parent();
710
711 pthread_mutex_unlock(&sched->start_work_mutex);
712
713 for (i = 0; i < sched->nr_tasks; i++) {
714 task = sched->tasks[i];
715 ret = sem_wait(&task->work_done_sem);
716 BUG_ON(ret);
717 sem_init(&task->work_done_sem, 0, 0);
718 sched->cpu_usage += task->cpu_usage;
719 task->cpu_usage = 0;
720 }
721
722 cpu_usage_1 = get_cpu_usage_nsec_parent();
723 if (!sched->runavg_cpu_usage)
724 sched->runavg_cpu_usage = sched->cpu_usage;
725 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
726
727 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
728 if (!sched->runavg_parent_cpu_usage)
729 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
730 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
731 sched->parent_cpu_usage)/sched->replay_repeat;
732
733 ret = pthread_mutex_lock(&sched->start_work_mutex);
734 BUG_ON(ret);
735
736 for (i = 0; i < sched->nr_tasks; i++) {
737 task = sched->tasks[i];
738 sem_init(&task->sleep_sem, 0, 0);
739 task->curr_event = 0;
740 }
741 }
742
run_one_test(struct perf_sched * sched)743 static void run_one_test(struct perf_sched *sched)
744 {
745 u64 T0, T1, delta, avg_delta, fluct;
746
747 T0 = get_nsecs();
748 wait_for_tasks(sched);
749 T1 = get_nsecs();
750
751 delta = T1 - T0;
752 sched->sum_runtime += delta;
753 sched->nr_runs++;
754
755 avg_delta = sched->sum_runtime / sched->nr_runs;
756 if (delta < avg_delta)
757 fluct = avg_delta - delta;
758 else
759 fluct = delta - avg_delta;
760 sched->sum_fluct += fluct;
761 if (!sched->run_avg)
762 sched->run_avg = delta;
763 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
764
765 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
766
767 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
768
769 printf("cpu: %0.2f / %0.2f",
770 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
771
772 #if 0
773 /*
774 * rusage statistics done by the parent, these are less
775 * accurate than the sched->sum_exec_runtime based statistics:
776 */
777 printf(" [%0.2f / %0.2f]",
778 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
779 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
780 #endif
781
782 printf("\n");
783
784 if (sched->nr_sleep_corrections)
785 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
786 sched->nr_sleep_corrections = 0;
787 }
788
test_calibrations(struct perf_sched * sched)789 static void test_calibrations(struct perf_sched *sched)
790 {
791 u64 T0, T1;
792
793 T0 = get_nsecs();
794 burn_nsecs(sched, NSEC_PER_MSEC);
795 T1 = get_nsecs();
796
797 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
798
799 T0 = get_nsecs();
800 sleep_nsecs(NSEC_PER_MSEC);
801 T1 = get_nsecs();
802
803 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
804 }
805
806 static int
replay_wakeup_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)807 replay_wakeup_event(struct perf_sched *sched,
808 struct evsel *evsel, struct perf_sample *sample,
809 struct machine *machine __maybe_unused)
810 {
811 const char *comm = perf_evsel__strval(evsel, sample, "comm");
812 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
813 struct task_desc *waker, *wakee;
814
815 if (verbose > 0) {
816 printf("sched_wakeup event %p\n", evsel);
817
818 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
819 }
820
821 waker = register_pid(sched, sample->tid, "<unknown>");
822 wakee = register_pid(sched, pid, comm);
823
824 add_sched_event_wakeup(sched, waker, sample->time, wakee);
825 return 0;
826 }
827
replay_switch_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)828 static int replay_switch_event(struct perf_sched *sched,
829 struct evsel *evsel,
830 struct perf_sample *sample,
831 struct machine *machine __maybe_unused)
832 {
833 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
834 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
835 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
836 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
837 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
838 struct task_desc *prev, __maybe_unused *next;
839 u64 timestamp0, timestamp = sample->time;
840 int cpu = sample->cpu;
841 s64 delta;
842
843 if (verbose > 0)
844 printf("sched_switch event %p\n", evsel);
845
846 if (cpu >= MAX_CPUS || cpu < 0)
847 return 0;
848
849 timestamp0 = sched->cpu_last_switched[cpu];
850 if (timestamp0)
851 delta = timestamp - timestamp0;
852 else
853 delta = 0;
854
855 if (delta < 0) {
856 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
857 return -1;
858 }
859
860 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
861 prev_comm, prev_pid, next_comm, next_pid, delta);
862
863 prev = register_pid(sched, prev_pid, prev_comm);
864 next = register_pid(sched, next_pid, next_comm);
865
866 sched->cpu_last_switched[cpu] = timestamp;
867
868 add_sched_event_run(sched, prev, timestamp, delta);
869 add_sched_event_sleep(sched, prev, timestamp, prev_state);
870
871 return 0;
872 }
873
replay_fork_event(struct perf_sched * sched,union perf_event * event,struct machine * machine)874 static int replay_fork_event(struct perf_sched *sched,
875 union perf_event *event,
876 struct machine *machine)
877 {
878 struct thread *child, *parent;
879
880 child = machine__findnew_thread(machine, event->fork.pid,
881 event->fork.tid);
882 parent = machine__findnew_thread(machine, event->fork.ppid,
883 event->fork.ptid);
884
885 if (child == NULL || parent == NULL) {
886 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
887 child, parent);
888 goto out_put;
889 }
890
891 if (verbose > 0) {
892 printf("fork event\n");
893 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
894 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
895 }
896
897 register_pid(sched, parent->tid, thread__comm_str(parent));
898 register_pid(sched, child->tid, thread__comm_str(child));
899 out_put:
900 thread__put(child);
901 thread__put(parent);
902 return 0;
903 }
904
905 struct sort_dimension {
906 const char *name;
907 sort_fn_t cmp;
908 struct list_head list;
909 };
910
911 /*
912 * handle runtime stats saved per thread
913 */
thread__init_runtime(struct thread * thread)914 static struct thread_runtime *thread__init_runtime(struct thread *thread)
915 {
916 struct thread_runtime *r;
917
918 r = zalloc(sizeof(struct thread_runtime));
919 if (!r)
920 return NULL;
921
922 init_stats(&r->run_stats);
923 thread__set_priv(thread, r);
924
925 return r;
926 }
927
thread__get_runtime(struct thread * thread)928 static struct thread_runtime *thread__get_runtime(struct thread *thread)
929 {
930 struct thread_runtime *tr;
931
932 tr = thread__priv(thread);
933 if (tr == NULL) {
934 tr = thread__init_runtime(thread);
935 if (tr == NULL)
936 pr_debug("Failed to malloc memory for runtime data.\n");
937 }
938
939 return tr;
940 }
941
942 static int
thread_lat_cmp(struct list_head * list,struct work_atoms * l,struct work_atoms * r)943 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
944 {
945 struct sort_dimension *sort;
946 int ret = 0;
947
948 BUG_ON(list_empty(list));
949
950 list_for_each_entry(sort, list, list) {
951 ret = sort->cmp(l, r);
952 if (ret)
953 return ret;
954 }
955
956 return ret;
957 }
958
959 static struct work_atoms *
thread_atoms_search(struct rb_root_cached * root,struct thread * thread,struct list_head * sort_list)960 thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
961 struct list_head *sort_list)
962 {
963 struct rb_node *node = root->rb_root.rb_node;
964 struct work_atoms key = { .thread = thread };
965
966 while (node) {
967 struct work_atoms *atoms;
968 int cmp;
969
970 atoms = container_of(node, struct work_atoms, node);
971
972 cmp = thread_lat_cmp(sort_list, &key, atoms);
973 if (cmp > 0)
974 node = node->rb_left;
975 else if (cmp < 0)
976 node = node->rb_right;
977 else {
978 BUG_ON(thread != atoms->thread);
979 return atoms;
980 }
981 }
982 return NULL;
983 }
984
985 static void
__thread_latency_insert(struct rb_root_cached * root,struct work_atoms * data,struct list_head * sort_list)986 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
987 struct list_head *sort_list)
988 {
989 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
990 bool leftmost = true;
991
992 while (*new) {
993 struct work_atoms *this;
994 int cmp;
995
996 this = container_of(*new, struct work_atoms, node);
997 parent = *new;
998
999 cmp = thread_lat_cmp(sort_list, data, this);
1000
1001 if (cmp > 0)
1002 new = &((*new)->rb_left);
1003 else {
1004 new = &((*new)->rb_right);
1005 leftmost = false;
1006 }
1007 }
1008
1009 rb_link_node(&data->node, parent, new);
1010 rb_insert_color_cached(&data->node, root, leftmost);
1011 }
1012
thread_atoms_insert(struct perf_sched * sched,struct thread * thread)1013 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1014 {
1015 struct work_atoms *atoms = zalloc(sizeof(*atoms));
1016 if (!atoms) {
1017 pr_err("No memory at %s\n", __func__);
1018 return -1;
1019 }
1020
1021 atoms->thread = thread__get(thread);
1022 INIT_LIST_HEAD(&atoms->work_list);
1023 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1024 return 0;
1025 }
1026
sched_out_state(u64 prev_state)1027 static char sched_out_state(u64 prev_state)
1028 {
1029 const char *str = TASK_STATE_TO_CHAR_STR;
1030
1031 return str[prev_state];
1032 }
1033
1034 static int
add_sched_out_event(struct work_atoms * atoms,char run_state,u64 timestamp)1035 add_sched_out_event(struct work_atoms *atoms,
1036 char run_state,
1037 u64 timestamp)
1038 {
1039 struct work_atom *atom = zalloc(sizeof(*atom));
1040 if (!atom) {
1041 pr_err("Non memory at %s", __func__);
1042 return -1;
1043 }
1044
1045 atom->sched_out_time = timestamp;
1046
1047 if (run_state == 'R') {
1048 atom->state = THREAD_WAIT_CPU;
1049 atom->wake_up_time = atom->sched_out_time;
1050 }
1051
1052 list_add_tail(&atom->list, &atoms->work_list);
1053 return 0;
1054 }
1055
1056 static void
add_runtime_event(struct work_atoms * atoms,u64 delta,u64 timestamp __maybe_unused)1057 add_runtime_event(struct work_atoms *atoms, u64 delta,
1058 u64 timestamp __maybe_unused)
1059 {
1060 struct work_atom *atom;
1061
1062 BUG_ON(list_empty(&atoms->work_list));
1063
1064 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1065
1066 atom->runtime += delta;
1067 atoms->total_runtime += delta;
1068 }
1069
1070 static void
add_sched_in_event(struct work_atoms * atoms,u64 timestamp)1071 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1072 {
1073 struct work_atom *atom;
1074 u64 delta;
1075
1076 if (list_empty(&atoms->work_list))
1077 return;
1078
1079 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1080
1081 if (atom->state != THREAD_WAIT_CPU)
1082 return;
1083
1084 if (timestamp < atom->wake_up_time) {
1085 atom->state = THREAD_IGNORE;
1086 return;
1087 }
1088
1089 atom->state = THREAD_SCHED_IN;
1090 atom->sched_in_time = timestamp;
1091
1092 delta = atom->sched_in_time - atom->wake_up_time;
1093 atoms->total_lat += delta;
1094 if (delta > atoms->max_lat) {
1095 atoms->max_lat = delta;
1096 atoms->max_lat_at = timestamp;
1097 }
1098 atoms->nb_atoms++;
1099 }
1100
latency_switch_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1101 static int latency_switch_event(struct perf_sched *sched,
1102 struct evsel *evsel,
1103 struct perf_sample *sample,
1104 struct machine *machine)
1105 {
1106 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1107 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1108 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1109 struct work_atoms *out_events, *in_events;
1110 struct thread *sched_out, *sched_in;
1111 u64 timestamp0, timestamp = sample->time;
1112 int cpu = sample->cpu, err = -1;
1113 s64 delta;
1114
1115 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1116
1117 timestamp0 = sched->cpu_last_switched[cpu];
1118 sched->cpu_last_switched[cpu] = timestamp;
1119 if (timestamp0)
1120 delta = timestamp - timestamp0;
1121 else
1122 delta = 0;
1123
1124 if (delta < 0) {
1125 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1126 return -1;
1127 }
1128
1129 sched_out = machine__findnew_thread(machine, -1, prev_pid);
1130 sched_in = machine__findnew_thread(machine, -1, next_pid);
1131 if (sched_out == NULL || sched_in == NULL)
1132 goto out_put;
1133
1134 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1135 if (!out_events) {
1136 if (thread_atoms_insert(sched, sched_out))
1137 goto out_put;
1138 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1139 if (!out_events) {
1140 pr_err("out-event: Internal tree error");
1141 goto out_put;
1142 }
1143 }
1144 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1145 return -1;
1146
1147 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1148 if (!in_events) {
1149 if (thread_atoms_insert(sched, sched_in))
1150 goto out_put;
1151 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1152 if (!in_events) {
1153 pr_err("in-event: Internal tree error");
1154 goto out_put;
1155 }
1156 /*
1157 * Take came in we have not heard about yet,
1158 * add in an initial atom in runnable state:
1159 */
1160 if (add_sched_out_event(in_events, 'R', timestamp))
1161 goto out_put;
1162 }
1163 add_sched_in_event(in_events, timestamp);
1164 err = 0;
1165 out_put:
1166 thread__put(sched_out);
1167 thread__put(sched_in);
1168 return err;
1169 }
1170
latency_runtime_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1171 static int latency_runtime_event(struct perf_sched *sched,
1172 struct evsel *evsel,
1173 struct perf_sample *sample,
1174 struct machine *machine)
1175 {
1176 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1177 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
1178 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1179 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1180 u64 timestamp = sample->time;
1181 int cpu = sample->cpu, err = -1;
1182
1183 if (thread == NULL)
1184 return -1;
1185
1186 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1187 if (!atoms) {
1188 if (thread_atoms_insert(sched, thread))
1189 goto out_put;
1190 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1191 if (!atoms) {
1192 pr_err("in-event: Internal tree error");
1193 goto out_put;
1194 }
1195 if (add_sched_out_event(atoms, 'R', timestamp))
1196 goto out_put;
1197 }
1198
1199 add_runtime_event(atoms, runtime, timestamp);
1200 err = 0;
1201 out_put:
1202 thread__put(thread);
1203 return err;
1204 }
1205
latency_wakeup_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1206 static int latency_wakeup_event(struct perf_sched *sched,
1207 struct evsel *evsel,
1208 struct perf_sample *sample,
1209 struct machine *machine)
1210 {
1211 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1212 struct work_atoms *atoms;
1213 struct work_atom *atom;
1214 struct thread *wakee;
1215 u64 timestamp = sample->time;
1216 int err = -1;
1217
1218 wakee = machine__findnew_thread(machine, -1, pid);
1219 if (wakee == NULL)
1220 return -1;
1221 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1222 if (!atoms) {
1223 if (thread_atoms_insert(sched, wakee))
1224 goto out_put;
1225 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1226 if (!atoms) {
1227 pr_err("wakeup-event: Internal tree error");
1228 goto out_put;
1229 }
1230 if (add_sched_out_event(atoms, 'S', timestamp))
1231 goto out_put;
1232 }
1233
1234 BUG_ON(list_empty(&atoms->work_list));
1235
1236 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1237
1238 /*
1239 * As we do not guarantee the wakeup event happens when
1240 * task is out of run queue, also may happen when task is
1241 * on run queue and wakeup only change ->state to TASK_RUNNING,
1242 * then we should not set the ->wake_up_time when wake up a
1243 * task which is on run queue.
1244 *
1245 * You WILL be missing events if you've recorded only
1246 * one CPU, or are only looking at only one, so don't
1247 * skip in this case.
1248 */
1249 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1250 goto out_ok;
1251
1252 sched->nr_timestamps++;
1253 if (atom->sched_out_time > timestamp) {
1254 sched->nr_unordered_timestamps++;
1255 goto out_ok;
1256 }
1257
1258 atom->state = THREAD_WAIT_CPU;
1259 atom->wake_up_time = timestamp;
1260 out_ok:
1261 err = 0;
1262 out_put:
1263 thread__put(wakee);
1264 return err;
1265 }
1266
latency_migrate_task_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1267 static int latency_migrate_task_event(struct perf_sched *sched,
1268 struct evsel *evsel,
1269 struct perf_sample *sample,
1270 struct machine *machine)
1271 {
1272 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1273 u64 timestamp = sample->time;
1274 struct work_atoms *atoms;
1275 struct work_atom *atom;
1276 struct thread *migrant;
1277 int err = -1;
1278
1279 /*
1280 * Only need to worry about migration when profiling one CPU.
1281 */
1282 if (sched->profile_cpu == -1)
1283 return 0;
1284
1285 migrant = machine__findnew_thread(machine, -1, pid);
1286 if (migrant == NULL)
1287 return -1;
1288 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1289 if (!atoms) {
1290 if (thread_atoms_insert(sched, migrant))
1291 goto out_put;
1292 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1293 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1294 if (!atoms) {
1295 pr_err("migration-event: Internal tree error");
1296 goto out_put;
1297 }
1298 if (add_sched_out_event(atoms, 'R', timestamp))
1299 goto out_put;
1300 }
1301
1302 BUG_ON(list_empty(&atoms->work_list));
1303
1304 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1305 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1306
1307 sched->nr_timestamps++;
1308
1309 if (atom->sched_out_time > timestamp)
1310 sched->nr_unordered_timestamps++;
1311 err = 0;
1312 out_put:
1313 thread__put(migrant);
1314 return err;
1315 }
1316
output_lat_thread(struct perf_sched * sched,struct work_atoms * work_list)1317 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1318 {
1319 int i;
1320 int ret;
1321 u64 avg;
1322 char max_lat_at[32];
1323
1324 if (!work_list->nb_atoms)
1325 return;
1326 /*
1327 * Ignore idle threads:
1328 */
1329 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1330 return;
1331
1332 sched->all_runtime += work_list->total_runtime;
1333 sched->all_count += work_list->nb_atoms;
1334
1335 if (work_list->num_merged > 1)
1336 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1337 else
1338 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1339
1340 for (i = 0; i < 24 - ret; i++)
1341 printf(" ");
1342
1343 avg = work_list->total_lat / work_list->nb_atoms;
1344 timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1345
1346 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1347 (double)work_list->total_runtime / NSEC_PER_MSEC,
1348 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1349 (double)work_list->max_lat / NSEC_PER_MSEC,
1350 max_lat_at);
1351 }
1352
pid_cmp(struct work_atoms * l,struct work_atoms * r)1353 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1354 {
1355 if (l->thread == r->thread)
1356 return 0;
1357 if (l->thread->tid < r->thread->tid)
1358 return -1;
1359 if (l->thread->tid > r->thread->tid)
1360 return 1;
1361 return (int)(l->thread - r->thread);
1362 }
1363
avg_cmp(struct work_atoms * l,struct work_atoms * r)1364 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1365 {
1366 u64 avgl, avgr;
1367
1368 if (!l->nb_atoms)
1369 return -1;
1370
1371 if (!r->nb_atoms)
1372 return 1;
1373
1374 avgl = l->total_lat / l->nb_atoms;
1375 avgr = r->total_lat / r->nb_atoms;
1376
1377 if (avgl < avgr)
1378 return -1;
1379 if (avgl > avgr)
1380 return 1;
1381
1382 return 0;
1383 }
1384
max_cmp(struct work_atoms * l,struct work_atoms * r)1385 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1386 {
1387 if (l->max_lat < r->max_lat)
1388 return -1;
1389 if (l->max_lat > r->max_lat)
1390 return 1;
1391
1392 return 0;
1393 }
1394
switch_cmp(struct work_atoms * l,struct work_atoms * r)1395 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1396 {
1397 if (l->nb_atoms < r->nb_atoms)
1398 return -1;
1399 if (l->nb_atoms > r->nb_atoms)
1400 return 1;
1401
1402 return 0;
1403 }
1404
runtime_cmp(struct work_atoms * l,struct work_atoms * r)1405 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1406 {
1407 if (l->total_runtime < r->total_runtime)
1408 return -1;
1409 if (l->total_runtime > r->total_runtime)
1410 return 1;
1411
1412 return 0;
1413 }
1414
sort_dimension__add(const char * tok,struct list_head * list)1415 static int sort_dimension__add(const char *tok, struct list_head *list)
1416 {
1417 size_t i;
1418 static struct sort_dimension avg_sort_dimension = {
1419 .name = "avg",
1420 .cmp = avg_cmp,
1421 };
1422 static struct sort_dimension max_sort_dimension = {
1423 .name = "max",
1424 .cmp = max_cmp,
1425 };
1426 static struct sort_dimension pid_sort_dimension = {
1427 .name = "pid",
1428 .cmp = pid_cmp,
1429 };
1430 static struct sort_dimension runtime_sort_dimension = {
1431 .name = "runtime",
1432 .cmp = runtime_cmp,
1433 };
1434 static struct sort_dimension switch_sort_dimension = {
1435 .name = "switch",
1436 .cmp = switch_cmp,
1437 };
1438 struct sort_dimension *available_sorts[] = {
1439 &pid_sort_dimension,
1440 &avg_sort_dimension,
1441 &max_sort_dimension,
1442 &switch_sort_dimension,
1443 &runtime_sort_dimension,
1444 };
1445
1446 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1447 if (!strcmp(available_sorts[i]->name, tok)) {
1448 list_add_tail(&available_sorts[i]->list, list);
1449
1450 return 0;
1451 }
1452 }
1453
1454 return -1;
1455 }
1456
perf_sched__sort_lat(struct perf_sched * sched)1457 static void perf_sched__sort_lat(struct perf_sched *sched)
1458 {
1459 struct rb_node *node;
1460 struct rb_root_cached *root = &sched->atom_root;
1461 again:
1462 for (;;) {
1463 struct work_atoms *data;
1464 node = rb_first_cached(root);
1465 if (!node)
1466 break;
1467
1468 rb_erase_cached(node, root);
1469 data = rb_entry(node, struct work_atoms, node);
1470 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1471 }
1472 if (root == &sched->atom_root) {
1473 root = &sched->merged_atom_root;
1474 goto again;
1475 }
1476 }
1477
process_sched_wakeup_event(struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1478 static int process_sched_wakeup_event(struct perf_tool *tool,
1479 struct evsel *evsel,
1480 struct perf_sample *sample,
1481 struct machine *machine)
1482 {
1483 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1484
1485 if (sched->tp_handler->wakeup_event)
1486 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1487
1488 return 0;
1489 }
1490
1491 union map_priv {
1492 void *ptr;
1493 bool color;
1494 };
1495
thread__has_color(struct thread * thread)1496 static bool thread__has_color(struct thread *thread)
1497 {
1498 union map_priv priv = {
1499 .ptr = thread__priv(thread),
1500 };
1501
1502 return priv.color;
1503 }
1504
1505 static struct thread*
map__findnew_thread(struct perf_sched * sched,struct machine * machine,pid_t pid,pid_t tid)1506 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1507 {
1508 struct thread *thread = machine__findnew_thread(machine, pid, tid);
1509 union map_priv priv = {
1510 .color = false,
1511 };
1512
1513 if (!sched->map.color_pids || !thread || thread__priv(thread))
1514 return thread;
1515
1516 if (thread_map__has(sched->map.color_pids, tid))
1517 priv.color = true;
1518
1519 thread__set_priv(thread, priv.ptr);
1520 return thread;
1521 }
1522
map_switch_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1523 static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1524 struct perf_sample *sample, struct machine *machine)
1525 {
1526 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1527 struct thread *sched_in;
1528 struct thread_runtime *tr;
1529 int new_shortname;
1530 u64 timestamp0, timestamp = sample->time;
1531 s64 delta;
1532 int i, this_cpu = sample->cpu;
1533 int cpus_nr;
1534 bool new_cpu = false;
1535 const char *color = PERF_COLOR_NORMAL;
1536 char stimestamp[32];
1537
1538 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1539
1540 if (this_cpu > sched->max_cpu)
1541 sched->max_cpu = this_cpu;
1542
1543 if (sched->map.comp) {
1544 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1545 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1546 sched->map.comp_cpus[cpus_nr++] = this_cpu;
1547 new_cpu = true;
1548 }
1549 } else
1550 cpus_nr = sched->max_cpu;
1551
1552 timestamp0 = sched->cpu_last_switched[this_cpu];
1553 sched->cpu_last_switched[this_cpu] = timestamp;
1554 if (timestamp0)
1555 delta = timestamp - timestamp0;
1556 else
1557 delta = 0;
1558
1559 if (delta < 0) {
1560 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1561 return -1;
1562 }
1563
1564 sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1565 if (sched_in == NULL)
1566 return -1;
1567
1568 tr = thread__get_runtime(sched_in);
1569 if (tr == NULL) {
1570 thread__put(sched_in);
1571 return -1;
1572 }
1573
1574 sched->curr_thread[this_cpu] = thread__get(sched_in);
1575
1576 printf(" ");
1577
1578 new_shortname = 0;
1579 if (!tr->shortname[0]) {
1580 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1581 /*
1582 * Don't allocate a letter-number for swapper:0
1583 * as a shortname. Instead, we use '.' for it.
1584 */
1585 tr->shortname[0] = '.';
1586 tr->shortname[1] = ' ';
1587 } else {
1588 tr->shortname[0] = sched->next_shortname1;
1589 tr->shortname[1] = sched->next_shortname2;
1590
1591 if (sched->next_shortname1 < 'Z') {
1592 sched->next_shortname1++;
1593 } else {
1594 sched->next_shortname1 = 'A';
1595 if (sched->next_shortname2 < '9')
1596 sched->next_shortname2++;
1597 else
1598 sched->next_shortname2 = '0';
1599 }
1600 }
1601 new_shortname = 1;
1602 }
1603
1604 for (i = 0; i < cpus_nr; i++) {
1605 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1606 struct thread *curr_thread = sched->curr_thread[cpu];
1607 struct thread_runtime *curr_tr;
1608 const char *pid_color = color;
1609 const char *cpu_color = color;
1610
1611 if (curr_thread && thread__has_color(curr_thread))
1612 pid_color = COLOR_PIDS;
1613
1614 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1615 continue;
1616
1617 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1618 cpu_color = COLOR_CPUS;
1619
1620 if (cpu != this_cpu)
1621 color_fprintf(stdout, color, " ");
1622 else
1623 color_fprintf(stdout, cpu_color, "*");
1624
1625 if (sched->curr_thread[cpu]) {
1626 curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1627 if (curr_tr == NULL) {
1628 thread__put(sched_in);
1629 return -1;
1630 }
1631 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1632 } else
1633 color_fprintf(stdout, color, " ");
1634 }
1635
1636 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1637 goto out;
1638
1639 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1640 color_fprintf(stdout, color, " %12s secs ", stimestamp);
1641 if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1642 const char *pid_color = color;
1643
1644 if (thread__has_color(sched_in))
1645 pid_color = COLOR_PIDS;
1646
1647 color_fprintf(stdout, pid_color, "%s => %s:%d",
1648 tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1649 tr->comm_changed = false;
1650 }
1651
1652 if (sched->map.comp && new_cpu)
1653 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1654
1655 out:
1656 color_fprintf(stdout, color, "\n");
1657
1658 thread__put(sched_in);
1659
1660 return 0;
1661 }
1662
process_sched_switch_event(struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1663 static int process_sched_switch_event(struct perf_tool *tool,
1664 struct evsel *evsel,
1665 struct perf_sample *sample,
1666 struct machine *machine)
1667 {
1668 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1669 int this_cpu = sample->cpu, err = 0;
1670 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1671 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1672
1673 if (sched->curr_pid[this_cpu] != (u32)-1) {
1674 /*
1675 * Are we trying to switch away a PID that is
1676 * not current?
1677 */
1678 if (sched->curr_pid[this_cpu] != prev_pid)
1679 sched->nr_context_switch_bugs++;
1680 }
1681
1682 if (sched->tp_handler->switch_event)
1683 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1684
1685 sched->curr_pid[this_cpu] = next_pid;
1686 return err;
1687 }
1688
process_sched_runtime_event(struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1689 static int process_sched_runtime_event(struct perf_tool *tool,
1690 struct evsel *evsel,
1691 struct perf_sample *sample,
1692 struct machine *machine)
1693 {
1694 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1695
1696 if (sched->tp_handler->runtime_event)
1697 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1698
1699 return 0;
1700 }
1701
perf_sched__process_fork_event(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample,struct machine * machine)1702 static int perf_sched__process_fork_event(struct perf_tool *tool,
1703 union perf_event *event,
1704 struct perf_sample *sample,
1705 struct machine *machine)
1706 {
1707 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1708
1709 /* run the fork event through the perf machineruy */
1710 perf_event__process_fork(tool, event, sample, machine);
1711
1712 /* and then run additional processing needed for this command */
1713 if (sched->tp_handler->fork_event)
1714 return sched->tp_handler->fork_event(sched, event, machine);
1715
1716 return 0;
1717 }
1718
process_sched_migrate_task_event(struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1719 static int process_sched_migrate_task_event(struct perf_tool *tool,
1720 struct evsel *evsel,
1721 struct perf_sample *sample,
1722 struct machine *machine)
1723 {
1724 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1725
1726 if (sched->tp_handler->migrate_task_event)
1727 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1728
1729 return 0;
1730 }
1731
1732 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1733 struct evsel *evsel,
1734 struct perf_sample *sample,
1735 struct machine *machine);
1736
perf_sched__process_tracepoint_sample(struct perf_tool * tool __maybe_unused,union perf_event * event __maybe_unused,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)1737 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1738 union perf_event *event __maybe_unused,
1739 struct perf_sample *sample,
1740 struct evsel *evsel,
1741 struct machine *machine)
1742 {
1743 int err = 0;
1744
1745 if (evsel->handler != NULL) {
1746 tracepoint_handler f = evsel->handler;
1747 err = f(tool, evsel, sample, machine);
1748 }
1749
1750 return err;
1751 }
1752
perf_sched__process_comm(struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_sample * sample,struct machine * machine)1753 static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1754 union perf_event *event,
1755 struct perf_sample *sample,
1756 struct machine *machine)
1757 {
1758 struct thread *thread;
1759 struct thread_runtime *tr;
1760 int err;
1761
1762 err = perf_event__process_comm(tool, event, sample, machine);
1763 if (err)
1764 return err;
1765
1766 thread = machine__find_thread(machine, sample->pid, sample->tid);
1767 if (!thread) {
1768 pr_err("Internal error: can't find thread\n");
1769 return -1;
1770 }
1771
1772 tr = thread__get_runtime(thread);
1773 if (tr == NULL) {
1774 thread__put(thread);
1775 return -1;
1776 }
1777
1778 tr->comm_changed = true;
1779 thread__put(thread);
1780
1781 return 0;
1782 }
1783
perf_sched__read_events(struct perf_sched * sched)1784 static int perf_sched__read_events(struct perf_sched *sched)
1785 {
1786 const struct evsel_str_handler handlers[] = {
1787 { "sched:sched_switch", process_sched_switch_event, },
1788 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1789 { "sched:sched_wakeup", process_sched_wakeup_event, },
1790 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1791 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1792 };
1793 struct perf_session *session;
1794 struct perf_data data = {
1795 .path = input_name,
1796 .mode = PERF_DATA_MODE_READ,
1797 .force = sched->force,
1798 };
1799 int rc = -1;
1800
1801 session = perf_session__new(&data, false, &sched->tool);
1802 if (IS_ERR(session)) {
1803 pr_debug("Error creating perf session");
1804 return PTR_ERR(session);
1805 }
1806
1807 symbol__init(&session->header.env);
1808
1809 if (perf_session__set_tracepoints_handlers(session, handlers))
1810 goto out_delete;
1811
1812 if (perf_session__has_traces(session, "record -R")) {
1813 int err = perf_session__process_events(session);
1814 if (err) {
1815 pr_err("Failed to process events, error %d", err);
1816 goto out_delete;
1817 }
1818
1819 sched->nr_events = session->evlist->stats.nr_events[0];
1820 sched->nr_lost_events = session->evlist->stats.total_lost;
1821 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1822 }
1823
1824 rc = 0;
1825 out_delete:
1826 perf_session__delete(session);
1827 return rc;
1828 }
1829
1830 /*
1831 * scheduling times are printed as msec.usec
1832 */
print_sched_time(unsigned long long nsecs,int width)1833 static inline void print_sched_time(unsigned long long nsecs, int width)
1834 {
1835 unsigned long msecs;
1836 unsigned long usecs;
1837
1838 msecs = nsecs / NSEC_PER_MSEC;
1839 nsecs -= msecs * NSEC_PER_MSEC;
1840 usecs = nsecs / NSEC_PER_USEC;
1841 printf("%*lu.%03lu ", width, msecs, usecs);
1842 }
1843
1844 /*
1845 * returns runtime data for event, allocating memory for it the
1846 * first time it is used.
1847 */
perf_evsel__get_runtime(struct evsel * evsel)1848 static struct evsel_runtime *perf_evsel__get_runtime(struct evsel *evsel)
1849 {
1850 struct evsel_runtime *r = evsel->priv;
1851
1852 if (r == NULL) {
1853 r = zalloc(sizeof(struct evsel_runtime));
1854 evsel->priv = r;
1855 }
1856
1857 return r;
1858 }
1859
1860 /*
1861 * save last time event was seen per cpu
1862 */
perf_evsel__save_time(struct evsel * evsel,u64 timestamp,u32 cpu)1863 static void perf_evsel__save_time(struct evsel *evsel,
1864 u64 timestamp, u32 cpu)
1865 {
1866 struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1867
1868 if (r == NULL)
1869 return;
1870
1871 if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1872 int i, n = __roundup_pow_of_two(cpu+1);
1873 void *p = r->last_time;
1874
1875 p = realloc(r->last_time, n * sizeof(u64));
1876 if (!p)
1877 return;
1878
1879 r->last_time = p;
1880 for (i = r->ncpu; i < n; ++i)
1881 r->last_time[i] = (u64) 0;
1882
1883 r->ncpu = n;
1884 }
1885
1886 r->last_time[cpu] = timestamp;
1887 }
1888
1889 /* returns last time this event was seen on the given cpu */
perf_evsel__get_time(struct evsel * evsel,u32 cpu)1890 static u64 perf_evsel__get_time(struct evsel *evsel, u32 cpu)
1891 {
1892 struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1893
1894 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1895 return 0;
1896
1897 return r->last_time[cpu];
1898 }
1899
1900 static int comm_width = 30;
1901
timehist_get_commstr(struct thread * thread)1902 static char *timehist_get_commstr(struct thread *thread)
1903 {
1904 static char str[32];
1905 const char *comm = thread__comm_str(thread);
1906 pid_t tid = thread->tid;
1907 pid_t pid = thread->pid_;
1908 int n;
1909
1910 if (pid == 0)
1911 n = scnprintf(str, sizeof(str), "%s", comm);
1912
1913 else if (tid != pid)
1914 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1915
1916 else
1917 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1918
1919 if (n > comm_width)
1920 comm_width = n;
1921
1922 return str;
1923 }
1924
timehist_header(struct perf_sched * sched)1925 static void timehist_header(struct perf_sched *sched)
1926 {
1927 u32 ncpus = sched->max_cpu + 1;
1928 u32 i, j;
1929
1930 printf("%15s %6s ", "time", "cpu");
1931
1932 if (sched->show_cpu_visual) {
1933 printf(" ");
1934 for (i = 0, j = 0; i < ncpus; ++i) {
1935 printf("%x", j++);
1936 if (j > 15)
1937 j = 0;
1938 }
1939 printf(" ");
1940 }
1941
1942 printf(" %-*s %9s %9s %9s", comm_width,
1943 "task name", "wait time", "sch delay", "run time");
1944
1945 if (sched->show_state)
1946 printf(" %s", "state");
1947
1948 printf("\n");
1949
1950 /*
1951 * units row
1952 */
1953 printf("%15s %-6s ", "", "");
1954
1955 if (sched->show_cpu_visual)
1956 printf(" %*s ", ncpus, "");
1957
1958 printf(" %-*s %9s %9s %9s", comm_width,
1959 "[tid/pid]", "(msec)", "(msec)", "(msec)");
1960
1961 if (sched->show_state)
1962 printf(" %5s", "");
1963
1964 printf("\n");
1965
1966 /*
1967 * separator
1968 */
1969 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1970
1971 if (sched->show_cpu_visual)
1972 printf(" %.*s ", ncpus, graph_dotted_line);
1973
1974 printf(" %.*s %.9s %.9s %.9s", comm_width,
1975 graph_dotted_line, graph_dotted_line, graph_dotted_line,
1976 graph_dotted_line);
1977
1978 if (sched->show_state)
1979 printf(" %.5s", graph_dotted_line);
1980
1981 printf("\n");
1982 }
1983
task_state_char(struct thread * thread,int state)1984 static char task_state_char(struct thread *thread, int state)
1985 {
1986 static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1987 unsigned bit = state ? ffs(state) : 0;
1988
1989 /* 'I' for idle */
1990 if (thread->tid == 0)
1991 return 'I';
1992
1993 return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1994 }
1995
timehist_print_sample(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct addr_location * al,struct thread * thread,u64 t,int state)1996 static void timehist_print_sample(struct perf_sched *sched,
1997 struct evsel *evsel,
1998 struct perf_sample *sample,
1999 struct addr_location *al,
2000 struct thread *thread,
2001 u64 t, int state)
2002 {
2003 struct thread_runtime *tr = thread__priv(thread);
2004 const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
2005 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
2006 u32 max_cpus = sched->max_cpu + 1;
2007 char tstr[64];
2008 char nstr[30];
2009 u64 wait_time;
2010
2011 timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2012 printf("%15s [%04d] ", tstr, sample->cpu);
2013
2014 if (sched->show_cpu_visual) {
2015 u32 i;
2016 char c;
2017
2018 printf(" ");
2019 for (i = 0; i < max_cpus; ++i) {
2020 /* flag idle times with 'i'; others are sched events */
2021 if (i == sample->cpu)
2022 c = (thread->tid == 0) ? 'i' : 's';
2023 else
2024 c = ' ';
2025 printf("%c", c);
2026 }
2027 printf(" ");
2028 }
2029
2030 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2031
2032 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2033 print_sched_time(wait_time, 6);
2034
2035 print_sched_time(tr->dt_delay, 6);
2036 print_sched_time(tr->dt_run, 6);
2037
2038 if (sched->show_state)
2039 printf(" %5c ", task_state_char(thread, state));
2040
2041 if (sched->show_next) {
2042 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2043 printf(" %-*s", comm_width, nstr);
2044 }
2045
2046 if (sched->show_wakeups && !sched->show_next)
2047 printf(" %-*s", comm_width, "");
2048
2049 if (thread->tid == 0)
2050 goto out;
2051
2052 if (sched->show_callchain)
2053 printf(" ");
2054
2055 sample__fprintf_sym(sample, al, 0,
2056 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2057 EVSEL__PRINT_CALLCHAIN_ARROW |
2058 EVSEL__PRINT_SKIP_IGNORED,
2059 &callchain_cursor, symbol_conf.bt_stop_list, stdout);
2060
2061 out:
2062 printf("\n");
2063 }
2064
2065 /*
2066 * Explanation of delta-time stats:
2067 *
2068 * t = time of current schedule out event
2069 * tprev = time of previous sched out event
2070 * also time of schedule-in event for current task
2071 * last_time = time of last sched change event for current task
2072 * (i.e, time process was last scheduled out)
2073 * ready_to_run = time of wakeup for current task
2074 *
2075 * -----|------------|------------|------------|------
2076 * last ready tprev t
2077 * time to run
2078 *
2079 * |-------- dt_wait --------|
2080 * |- dt_delay -|-- dt_run --|
2081 *
2082 * dt_run = run time of current task
2083 * dt_wait = time between last schedule out event for task and tprev
2084 * represents time spent off the cpu
2085 * dt_delay = time between wakeup and schedule-in of task
2086 */
2087
timehist_update_runtime_stats(struct thread_runtime * r,u64 t,u64 tprev)2088 static void timehist_update_runtime_stats(struct thread_runtime *r,
2089 u64 t, u64 tprev)
2090 {
2091 r->dt_delay = 0;
2092 r->dt_sleep = 0;
2093 r->dt_iowait = 0;
2094 r->dt_preempt = 0;
2095 r->dt_run = 0;
2096
2097 if (tprev) {
2098 r->dt_run = t - tprev;
2099 if (r->ready_to_run) {
2100 if (r->ready_to_run > tprev)
2101 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2102 else
2103 r->dt_delay = tprev - r->ready_to_run;
2104 }
2105
2106 if (r->last_time > tprev)
2107 pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2108 else if (r->last_time) {
2109 u64 dt_wait = tprev - r->last_time;
2110
2111 if (r->last_state == TASK_RUNNING)
2112 r->dt_preempt = dt_wait;
2113 else if (r->last_state == TASK_UNINTERRUPTIBLE)
2114 r->dt_iowait = dt_wait;
2115 else
2116 r->dt_sleep = dt_wait;
2117 }
2118 }
2119
2120 update_stats(&r->run_stats, r->dt_run);
2121
2122 r->total_run_time += r->dt_run;
2123 r->total_delay_time += r->dt_delay;
2124 r->total_sleep_time += r->dt_sleep;
2125 r->total_iowait_time += r->dt_iowait;
2126 r->total_preempt_time += r->dt_preempt;
2127 }
2128
is_idle_sample(struct perf_sample * sample,struct evsel * evsel)2129 static bool is_idle_sample(struct perf_sample *sample,
2130 struct evsel *evsel)
2131 {
2132 /* pid 0 == swapper == idle task */
2133 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
2134 return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2135
2136 return sample->pid == 0;
2137 }
2138
save_task_callchain(struct perf_sched * sched,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)2139 static void save_task_callchain(struct perf_sched *sched,
2140 struct perf_sample *sample,
2141 struct evsel *evsel,
2142 struct machine *machine)
2143 {
2144 struct callchain_cursor *cursor = &callchain_cursor;
2145 struct thread *thread;
2146
2147 /* want main thread for process - has maps */
2148 thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2149 if (thread == NULL) {
2150 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2151 return;
2152 }
2153
2154 if (!sched->show_callchain || sample->callchain == NULL)
2155 return;
2156
2157 if (thread__resolve_callchain(thread, cursor, evsel, sample,
2158 NULL, NULL, sched->max_stack + 2) != 0) {
2159 if (verbose > 0)
2160 pr_err("Failed to resolve callchain. Skipping\n");
2161
2162 return;
2163 }
2164
2165 callchain_cursor_commit(cursor);
2166
2167 while (true) {
2168 struct callchain_cursor_node *node;
2169 struct symbol *sym;
2170
2171 node = callchain_cursor_current(cursor);
2172 if (node == NULL)
2173 break;
2174
2175 sym = node->sym;
2176 if (sym) {
2177 if (!strcmp(sym->name, "schedule") ||
2178 !strcmp(sym->name, "__schedule") ||
2179 !strcmp(sym->name, "preempt_schedule"))
2180 sym->ignore = 1;
2181 }
2182
2183 callchain_cursor_advance(cursor);
2184 }
2185 }
2186
init_idle_thread(struct thread * thread)2187 static int init_idle_thread(struct thread *thread)
2188 {
2189 struct idle_thread_runtime *itr;
2190
2191 thread__set_comm(thread, idle_comm, 0);
2192
2193 itr = zalloc(sizeof(*itr));
2194 if (itr == NULL)
2195 return -ENOMEM;
2196
2197 init_stats(&itr->tr.run_stats);
2198 callchain_init(&itr->callchain);
2199 callchain_cursor_reset(&itr->cursor);
2200 thread__set_priv(thread, itr);
2201
2202 return 0;
2203 }
2204
2205 /*
2206 * Track idle stats per cpu by maintaining a local thread
2207 * struct for the idle task on each cpu.
2208 */
init_idle_threads(int ncpu)2209 static int init_idle_threads(int ncpu)
2210 {
2211 int i, ret;
2212
2213 idle_threads = zalloc(ncpu * sizeof(struct thread *));
2214 if (!idle_threads)
2215 return -ENOMEM;
2216
2217 idle_max_cpu = ncpu;
2218
2219 /* allocate the actual thread struct if needed */
2220 for (i = 0; i < ncpu; ++i) {
2221 idle_threads[i] = thread__new(0, 0);
2222 if (idle_threads[i] == NULL)
2223 return -ENOMEM;
2224
2225 ret = init_idle_thread(idle_threads[i]);
2226 if (ret < 0)
2227 return ret;
2228 }
2229
2230 return 0;
2231 }
2232
free_idle_threads(void)2233 static void free_idle_threads(void)
2234 {
2235 int i;
2236
2237 if (idle_threads == NULL)
2238 return;
2239
2240 for (i = 0; i < idle_max_cpu; ++i) {
2241 if ((idle_threads[i]))
2242 thread__delete(idle_threads[i]);
2243 }
2244
2245 free(idle_threads);
2246 }
2247
get_idle_thread(int cpu)2248 static struct thread *get_idle_thread(int cpu)
2249 {
2250 /*
2251 * expand/allocate array of pointers to local thread
2252 * structs if needed
2253 */
2254 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2255 int i, j = __roundup_pow_of_two(cpu+1);
2256 void *p;
2257
2258 p = realloc(idle_threads, j * sizeof(struct thread *));
2259 if (!p)
2260 return NULL;
2261
2262 idle_threads = (struct thread **) p;
2263 for (i = idle_max_cpu; i < j; ++i)
2264 idle_threads[i] = NULL;
2265
2266 idle_max_cpu = j;
2267 }
2268
2269 /* allocate a new thread struct if needed */
2270 if (idle_threads[cpu] == NULL) {
2271 idle_threads[cpu] = thread__new(0, 0);
2272
2273 if (idle_threads[cpu]) {
2274 if (init_idle_thread(idle_threads[cpu]) < 0)
2275 return NULL;
2276 }
2277 }
2278
2279 return idle_threads[cpu];
2280 }
2281
save_idle_callchain(struct perf_sched * sched,struct idle_thread_runtime * itr,struct perf_sample * sample)2282 static void save_idle_callchain(struct perf_sched *sched,
2283 struct idle_thread_runtime *itr,
2284 struct perf_sample *sample)
2285 {
2286 if (!sched->show_callchain || sample->callchain == NULL)
2287 return;
2288
2289 callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2290 }
2291
timehist_get_thread(struct perf_sched * sched,struct perf_sample * sample,struct machine * machine,struct evsel * evsel)2292 static struct thread *timehist_get_thread(struct perf_sched *sched,
2293 struct perf_sample *sample,
2294 struct machine *machine,
2295 struct evsel *evsel)
2296 {
2297 struct thread *thread;
2298
2299 if (is_idle_sample(sample, evsel)) {
2300 thread = get_idle_thread(sample->cpu);
2301 if (thread == NULL)
2302 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2303
2304 } else {
2305 /* there were samples with tid 0 but non-zero pid */
2306 thread = machine__findnew_thread(machine, sample->pid,
2307 sample->tid ?: sample->pid);
2308 if (thread == NULL) {
2309 pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2310 sample->tid);
2311 }
2312
2313 save_task_callchain(sched, sample, evsel, machine);
2314 if (sched->idle_hist) {
2315 struct thread *idle;
2316 struct idle_thread_runtime *itr;
2317
2318 idle = get_idle_thread(sample->cpu);
2319 if (idle == NULL) {
2320 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2321 return NULL;
2322 }
2323
2324 itr = thread__priv(idle);
2325 if (itr == NULL)
2326 return NULL;
2327
2328 itr->last_thread = thread;
2329
2330 /* copy task callchain when entering to idle */
2331 if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2332 save_idle_callchain(sched, itr, sample);
2333 }
2334 }
2335
2336 return thread;
2337 }
2338
timehist_skip_sample(struct perf_sched * sched,struct thread * thread,struct evsel * evsel,struct perf_sample * sample)2339 static bool timehist_skip_sample(struct perf_sched *sched,
2340 struct thread *thread,
2341 struct evsel *evsel,
2342 struct perf_sample *sample)
2343 {
2344 bool rc = false;
2345
2346 if (thread__is_filtered(thread)) {
2347 rc = true;
2348 sched->skipped_samples++;
2349 }
2350
2351 if (sched->idle_hist) {
2352 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2353 rc = true;
2354 else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2355 perf_evsel__intval(evsel, sample, "next_pid") != 0)
2356 rc = true;
2357 }
2358
2359 return rc;
2360 }
2361
timehist_print_wakeup_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine,struct thread * awakened)2362 static void timehist_print_wakeup_event(struct perf_sched *sched,
2363 struct evsel *evsel,
2364 struct perf_sample *sample,
2365 struct machine *machine,
2366 struct thread *awakened)
2367 {
2368 struct thread *thread;
2369 char tstr[64];
2370
2371 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2372 if (thread == NULL)
2373 return;
2374
2375 /* show wakeup unless both awakee and awaker are filtered */
2376 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2377 timehist_skip_sample(sched, awakened, evsel, sample)) {
2378 return;
2379 }
2380
2381 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2382 printf("%15s [%04d] ", tstr, sample->cpu);
2383 if (sched->show_cpu_visual)
2384 printf(" %*s ", sched->max_cpu + 1, "");
2385
2386 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2387
2388 /* dt spacer */
2389 printf(" %9s %9s %9s ", "", "", "");
2390
2391 printf("awakened: %s", timehist_get_commstr(awakened));
2392
2393 printf("\n");
2394 }
2395
timehist_sched_wakeup_event(struct perf_tool * tool,union perf_event * event __maybe_unused,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2396 static int timehist_sched_wakeup_event(struct perf_tool *tool,
2397 union perf_event *event __maybe_unused,
2398 struct evsel *evsel,
2399 struct perf_sample *sample,
2400 struct machine *machine)
2401 {
2402 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2403 struct thread *thread;
2404 struct thread_runtime *tr = NULL;
2405 /* want pid of awakened task not pid in sample */
2406 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2407
2408 thread = machine__findnew_thread(machine, 0, pid);
2409 if (thread == NULL)
2410 return -1;
2411
2412 tr = thread__get_runtime(thread);
2413 if (tr == NULL)
2414 return -1;
2415
2416 if (tr->ready_to_run == 0)
2417 tr->ready_to_run = sample->time;
2418
2419 /* show wakeups if requested */
2420 if (sched->show_wakeups &&
2421 !perf_time__skip_sample(&sched->ptime, sample->time))
2422 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2423
2424 return 0;
2425 }
2426
timehist_print_migration_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine,struct thread * migrated)2427 static void timehist_print_migration_event(struct perf_sched *sched,
2428 struct evsel *evsel,
2429 struct perf_sample *sample,
2430 struct machine *machine,
2431 struct thread *migrated)
2432 {
2433 struct thread *thread;
2434 char tstr[64];
2435 u32 max_cpus = sched->max_cpu + 1;
2436 u32 ocpu, dcpu;
2437
2438 if (sched->summary_only)
2439 return;
2440
2441 max_cpus = sched->max_cpu + 1;
2442 ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2443 dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2444
2445 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2446 if (thread == NULL)
2447 return;
2448
2449 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2450 timehist_skip_sample(sched, migrated, evsel, sample)) {
2451 return;
2452 }
2453
2454 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2455 printf("%15s [%04d] ", tstr, sample->cpu);
2456
2457 if (sched->show_cpu_visual) {
2458 u32 i;
2459 char c;
2460
2461 printf(" ");
2462 for (i = 0; i < max_cpus; ++i) {
2463 c = (i == sample->cpu) ? 'm' : ' ';
2464 printf("%c", c);
2465 }
2466 printf(" ");
2467 }
2468
2469 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2470
2471 /* dt spacer */
2472 printf(" %9s %9s %9s ", "", "", "");
2473
2474 printf("migrated: %s", timehist_get_commstr(migrated));
2475 printf(" cpu %d => %d", ocpu, dcpu);
2476
2477 printf("\n");
2478 }
2479
timehist_migrate_task_event(struct perf_tool * tool,union perf_event * event __maybe_unused,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2480 static int timehist_migrate_task_event(struct perf_tool *tool,
2481 union perf_event *event __maybe_unused,
2482 struct evsel *evsel,
2483 struct perf_sample *sample,
2484 struct machine *machine)
2485 {
2486 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2487 struct thread *thread;
2488 struct thread_runtime *tr = NULL;
2489 /* want pid of migrated task not pid in sample */
2490 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2491
2492 thread = machine__findnew_thread(machine, 0, pid);
2493 if (thread == NULL)
2494 return -1;
2495
2496 tr = thread__get_runtime(thread);
2497 if (tr == NULL)
2498 return -1;
2499
2500 tr->migrations++;
2501
2502 /* show migrations if requested */
2503 timehist_print_migration_event(sched, evsel, sample, machine, thread);
2504
2505 return 0;
2506 }
2507
timehist_sched_change_event(struct perf_tool * tool,union perf_event * event,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2508 static int timehist_sched_change_event(struct perf_tool *tool,
2509 union perf_event *event,
2510 struct evsel *evsel,
2511 struct perf_sample *sample,
2512 struct machine *machine)
2513 {
2514 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2515 struct perf_time_interval *ptime = &sched->ptime;
2516 struct addr_location al;
2517 struct thread *thread;
2518 struct thread_runtime *tr = NULL;
2519 u64 tprev, t = sample->time;
2520 int rc = 0;
2521 int state = perf_evsel__intval(evsel, sample, "prev_state");
2522
2523
2524 if (machine__resolve(machine, &al, sample) < 0) {
2525 pr_err("problem processing %d event. skipping it\n",
2526 event->header.type);
2527 rc = -1;
2528 goto out;
2529 }
2530
2531 thread = timehist_get_thread(sched, sample, machine, evsel);
2532 if (thread == NULL) {
2533 rc = -1;
2534 goto out;
2535 }
2536
2537 if (timehist_skip_sample(sched, thread, evsel, sample))
2538 goto out;
2539
2540 tr = thread__get_runtime(thread);
2541 if (tr == NULL) {
2542 rc = -1;
2543 goto out;
2544 }
2545
2546 tprev = perf_evsel__get_time(evsel, sample->cpu);
2547
2548 /*
2549 * If start time given:
2550 * - sample time is under window user cares about - skip sample
2551 * - tprev is under window user cares about - reset to start of window
2552 */
2553 if (ptime->start && ptime->start > t)
2554 goto out;
2555
2556 if (tprev && ptime->start > tprev)
2557 tprev = ptime->start;
2558
2559 /*
2560 * If end time given:
2561 * - previous sched event is out of window - we are done
2562 * - sample time is beyond window user cares about - reset it
2563 * to close out stats for time window interest
2564 */
2565 if (ptime->end) {
2566 if (tprev > ptime->end)
2567 goto out;
2568
2569 if (t > ptime->end)
2570 t = ptime->end;
2571 }
2572
2573 if (!sched->idle_hist || thread->tid == 0) {
2574 timehist_update_runtime_stats(tr, t, tprev);
2575
2576 if (sched->idle_hist) {
2577 struct idle_thread_runtime *itr = (void *)tr;
2578 struct thread_runtime *last_tr;
2579
2580 BUG_ON(thread->tid != 0);
2581
2582 if (itr->last_thread == NULL)
2583 goto out;
2584
2585 /* add current idle time as last thread's runtime */
2586 last_tr = thread__get_runtime(itr->last_thread);
2587 if (last_tr == NULL)
2588 goto out;
2589
2590 timehist_update_runtime_stats(last_tr, t, tprev);
2591 /*
2592 * remove delta time of last thread as it's not updated
2593 * and otherwise it will show an invalid value next
2594 * time. we only care total run time and run stat.
2595 */
2596 last_tr->dt_run = 0;
2597 last_tr->dt_delay = 0;
2598 last_tr->dt_sleep = 0;
2599 last_tr->dt_iowait = 0;
2600 last_tr->dt_preempt = 0;
2601
2602 if (itr->cursor.nr)
2603 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2604
2605 itr->last_thread = NULL;
2606 }
2607 }
2608
2609 if (!sched->summary_only)
2610 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2611
2612 out:
2613 if (sched->hist_time.start == 0 && t >= ptime->start)
2614 sched->hist_time.start = t;
2615 if (ptime->end == 0 || t <= ptime->end)
2616 sched->hist_time.end = t;
2617
2618 if (tr) {
2619 /* time of this sched_switch event becomes last time task seen */
2620 tr->last_time = sample->time;
2621
2622 /* last state is used to determine where to account wait time */
2623 tr->last_state = state;
2624
2625 /* sched out event for task so reset ready to run time */
2626 tr->ready_to_run = 0;
2627 }
2628
2629 perf_evsel__save_time(evsel, sample->time, sample->cpu);
2630
2631 return rc;
2632 }
2633
timehist_sched_switch_event(struct perf_tool * tool,union perf_event * event,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)2634 static int timehist_sched_switch_event(struct perf_tool *tool,
2635 union perf_event *event,
2636 struct evsel *evsel,
2637 struct perf_sample *sample,
2638 struct machine *machine __maybe_unused)
2639 {
2640 return timehist_sched_change_event(tool, event, evsel, sample, machine);
2641 }
2642
process_lost(struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_sample * sample,struct machine * machine __maybe_unused)2643 static int process_lost(struct perf_tool *tool __maybe_unused,
2644 union perf_event *event,
2645 struct perf_sample *sample,
2646 struct machine *machine __maybe_unused)
2647 {
2648 char tstr[64];
2649
2650 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2651 printf("%15s ", tstr);
2652 printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2653
2654 return 0;
2655 }
2656
2657
print_thread_runtime(struct thread * t,struct thread_runtime * r)2658 static void print_thread_runtime(struct thread *t,
2659 struct thread_runtime *r)
2660 {
2661 double mean = avg_stats(&r->run_stats);
2662 float stddev;
2663
2664 printf("%*s %5d %9" PRIu64 " ",
2665 comm_width, timehist_get_commstr(t), t->ppid,
2666 (u64) r->run_stats.n);
2667
2668 print_sched_time(r->total_run_time, 8);
2669 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2670 print_sched_time(r->run_stats.min, 6);
2671 printf(" ");
2672 print_sched_time((u64) mean, 6);
2673 printf(" ");
2674 print_sched_time(r->run_stats.max, 6);
2675 printf(" ");
2676 printf("%5.2f", stddev);
2677 printf(" %5" PRIu64, r->migrations);
2678 printf("\n");
2679 }
2680
print_thread_waittime(struct thread * t,struct thread_runtime * r)2681 static void print_thread_waittime(struct thread *t,
2682 struct thread_runtime *r)
2683 {
2684 printf("%*s %5d %9" PRIu64 " ",
2685 comm_width, timehist_get_commstr(t), t->ppid,
2686 (u64) r->run_stats.n);
2687
2688 print_sched_time(r->total_run_time, 8);
2689 print_sched_time(r->total_sleep_time, 6);
2690 printf(" ");
2691 print_sched_time(r->total_iowait_time, 6);
2692 printf(" ");
2693 print_sched_time(r->total_preempt_time, 6);
2694 printf(" ");
2695 print_sched_time(r->total_delay_time, 6);
2696 printf("\n");
2697 }
2698
2699 struct total_run_stats {
2700 struct perf_sched *sched;
2701 u64 sched_count;
2702 u64 task_count;
2703 u64 total_run_time;
2704 };
2705
__show_thread_runtime(struct thread * t,void * priv)2706 static int __show_thread_runtime(struct thread *t, void *priv)
2707 {
2708 struct total_run_stats *stats = priv;
2709 struct thread_runtime *r;
2710
2711 if (thread__is_filtered(t))
2712 return 0;
2713
2714 r = thread__priv(t);
2715 if (r && r->run_stats.n) {
2716 stats->task_count++;
2717 stats->sched_count += r->run_stats.n;
2718 stats->total_run_time += r->total_run_time;
2719
2720 if (stats->sched->show_state)
2721 print_thread_waittime(t, r);
2722 else
2723 print_thread_runtime(t, r);
2724 }
2725
2726 return 0;
2727 }
2728
show_thread_runtime(struct thread * t,void * priv)2729 static int show_thread_runtime(struct thread *t, void *priv)
2730 {
2731 if (t->dead)
2732 return 0;
2733
2734 return __show_thread_runtime(t, priv);
2735 }
2736
show_deadthread_runtime(struct thread * t,void * priv)2737 static int show_deadthread_runtime(struct thread *t, void *priv)
2738 {
2739 if (!t->dead)
2740 return 0;
2741
2742 return __show_thread_runtime(t, priv);
2743 }
2744
callchain__fprintf_folded(FILE * fp,struct callchain_node * node)2745 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2746 {
2747 const char *sep = " <- ";
2748 struct callchain_list *chain;
2749 size_t ret = 0;
2750 char bf[1024];
2751 bool first;
2752
2753 if (node == NULL)
2754 return 0;
2755
2756 ret = callchain__fprintf_folded(fp, node->parent);
2757 first = (ret == 0);
2758
2759 list_for_each_entry(chain, &node->val, list) {
2760 if (chain->ip >= PERF_CONTEXT_MAX)
2761 continue;
2762 if (chain->ms.sym && chain->ms.sym->ignore)
2763 continue;
2764 ret += fprintf(fp, "%s%s", first ? "" : sep,
2765 callchain_list__sym_name(chain, bf, sizeof(bf),
2766 false));
2767 first = false;
2768 }
2769
2770 return ret;
2771 }
2772
timehist_print_idlehist_callchain(struct rb_root_cached * root)2773 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2774 {
2775 size_t ret = 0;
2776 FILE *fp = stdout;
2777 struct callchain_node *chain;
2778 struct rb_node *rb_node = rb_first_cached(root);
2779
2780 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
2781 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line,
2782 graph_dotted_line);
2783
2784 while (rb_node) {
2785 chain = rb_entry(rb_node, struct callchain_node, rb_node);
2786 rb_node = rb_next(rb_node);
2787
2788 ret += fprintf(fp, " ");
2789 print_sched_time(chain->hit, 12);
2790 ret += 16; /* print_sched_time returns 2nd arg + 4 */
2791 ret += fprintf(fp, " %8d ", chain->count);
2792 ret += callchain__fprintf_folded(fp, chain);
2793 ret += fprintf(fp, "\n");
2794 }
2795
2796 return ret;
2797 }
2798
timehist_print_summary(struct perf_sched * sched,struct perf_session * session)2799 static void timehist_print_summary(struct perf_sched *sched,
2800 struct perf_session *session)
2801 {
2802 struct machine *m = &session->machines.host;
2803 struct total_run_stats totals;
2804 u64 task_count;
2805 struct thread *t;
2806 struct thread_runtime *r;
2807 int i;
2808 u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2809
2810 memset(&totals, 0, sizeof(totals));
2811 totals.sched = sched;
2812
2813 if (sched->idle_hist) {
2814 printf("\nIdle-time summary\n");
2815 printf("%*s parent sched-out ", comm_width, "comm");
2816 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
2817 } else if (sched->show_state) {
2818 printf("\nWait-time summary\n");
2819 printf("%*s parent sched-in ", comm_width, "comm");
2820 printf(" run-time sleep iowait preempt delay\n");
2821 } else {
2822 printf("\nRuntime summary\n");
2823 printf("%*s parent sched-in ", comm_width, "comm");
2824 printf(" run-time min-run avg-run max-run stddev migrations\n");
2825 }
2826 printf("%*s (count) ", comm_width, "");
2827 printf(" (msec) (msec) (msec) (msec) %s\n",
2828 sched->show_state ? "(msec)" : "%");
2829 printf("%.117s\n", graph_dotted_line);
2830
2831 machine__for_each_thread(m, show_thread_runtime, &totals);
2832 task_count = totals.task_count;
2833 if (!task_count)
2834 printf("<no still running tasks>\n");
2835
2836 printf("\nTerminated tasks:\n");
2837 machine__for_each_thread(m, show_deadthread_runtime, &totals);
2838 if (task_count == totals.task_count)
2839 printf("<no terminated tasks>\n");
2840
2841 /* CPU idle stats not tracked when samples were skipped */
2842 if (sched->skipped_samples && !sched->idle_hist)
2843 return;
2844
2845 printf("\nIdle stats:\n");
2846 for (i = 0; i < idle_max_cpu; ++i) {
2847 t = idle_threads[i];
2848 if (!t)
2849 continue;
2850
2851 r = thread__priv(t);
2852 if (r && r->run_stats.n) {
2853 totals.sched_count += r->run_stats.n;
2854 printf(" CPU %2d idle for ", i);
2855 print_sched_time(r->total_run_time, 6);
2856 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2857 } else
2858 printf(" CPU %2d idle entire time window\n", i);
2859 }
2860
2861 if (sched->idle_hist && sched->show_callchain) {
2862 callchain_param.mode = CHAIN_FOLDED;
2863 callchain_param.value = CCVAL_PERIOD;
2864
2865 callchain_register_param(&callchain_param);
2866
2867 printf("\nIdle stats by callchain:\n");
2868 for (i = 0; i < idle_max_cpu; ++i) {
2869 struct idle_thread_runtime *itr;
2870
2871 t = idle_threads[i];
2872 if (!t)
2873 continue;
2874
2875 itr = thread__priv(t);
2876 if (itr == NULL)
2877 continue;
2878
2879 callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2880 0, &callchain_param);
2881
2882 printf(" CPU %2d:", i);
2883 print_sched_time(itr->tr.total_run_time, 6);
2884 printf(" msec\n");
2885 timehist_print_idlehist_callchain(&itr->sorted_root);
2886 printf("\n");
2887 }
2888 }
2889
2890 printf("\n"
2891 " Total number of unique tasks: %" PRIu64 "\n"
2892 "Total number of context switches: %" PRIu64 "\n",
2893 totals.task_count, totals.sched_count);
2894
2895 printf(" Total run time (msec): ");
2896 print_sched_time(totals.total_run_time, 2);
2897 printf("\n");
2898
2899 printf(" Total scheduling time (msec): ");
2900 print_sched_time(hist_time, 2);
2901 printf(" (x %d)\n", sched->max_cpu);
2902 }
2903
2904 typedef int (*sched_handler)(struct perf_tool *tool,
2905 union perf_event *event,
2906 struct evsel *evsel,
2907 struct perf_sample *sample,
2908 struct machine *machine);
2909
perf_timehist__process_sample(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)2910 static int perf_timehist__process_sample(struct perf_tool *tool,
2911 union perf_event *event,
2912 struct perf_sample *sample,
2913 struct evsel *evsel,
2914 struct machine *machine)
2915 {
2916 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2917 int err = 0;
2918 int this_cpu = sample->cpu;
2919
2920 if (this_cpu > sched->max_cpu)
2921 sched->max_cpu = this_cpu;
2922
2923 if (evsel->handler != NULL) {
2924 sched_handler f = evsel->handler;
2925
2926 err = f(tool, event, evsel, sample, machine);
2927 }
2928
2929 return err;
2930 }
2931
timehist_check_attr(struct perf_sched * sched,struct evlist * evlist)2932 static int timehist_check_attr(struct perf_sched *sched,
2933 struct evlist *evlist)
2934 {
2935 struct evsel *evsel;
2936 struct evsel_runtime *er;
2937
2938 list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2939 er = perf_evsel__get_runtime(evsel);
2940 if (er == NULL) {
2941 pr_err("Failed to allocate memory for evsel runtime data\n");
2942 return -1;
2943 }
2944
2945 if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2946 pr_info("Samples do not have callchains.\n");
2947 sched->show_callchain = 0;
2948 symbol_conf.use_callchain = 0;
2949 }
2950 }
2951
2952 return 0;
2953 }
2954
perf_sched__timehist(struct perf_sched * sched)2955 static int perf_sched__timehist(struct perf_sched *sched)
2956 {
2957 const struct evsel_str_handler handlers[] = {
2958 { "sched:sched_switch", timehist_sched_switch_event, },
2959 { "sched:sched_wakeup", timehist_sched_wakeup_event, },
2960 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, },
2961 };
2962 const struct evsel_str_handler migrate_handlers[] = {
2963 { "sched:sched_migrate_task", timehist_migrate_task_event, },
2964 };
2965 struct perf_data data = {
2966 .path = input_name,
2967 .mode = PERF_DATA_MODE_READ,
2968 .force = sched->force,
2969 };
2970
2971 struct perf_session *session;
2972 struct evlist *evlist;
2973 int err = -1;
2974
2975 /*
2976 * event handlers for timehist option
2977 */
2978 sched->tool.sample = perf_timehist__process_sample;
2979 sched->tool.mmap = perf_event__process_mmap;
2980 sched->tool.comm = perf_event__process_comm;
2981 sched->tool.exit = perf_event__process_exit;
2982 sched->tool.fork = perf_event__process_fork;
2983 sched->tool.lost = process_lost;
2984 sched->tool.attr = perf_event__process_attr;
2985 sched->tool.tracing_data = perf_event__process_tracing_data;
2986 sched->tool.build_id = perf_event__process_build_id;
2987
2988 sched->tool.ordered_events = true;
2989 sched->tool.ordering_requires_timestamps = true;
2990
2991 symbol_conf.use_callchain = sched->show_callchain;
2992
2993 session = perf_session__new(&data, false, &sched->tool);
2994 if (IS_ERR(session))
2995 return PTR_ERR(session);
2996
2997 evlist = session->evlist;
2998
2999 symbol__init(&session->header.env);
3000
3001 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3002 pr_err("Invalid time string\n");
3003 return -EINVAL;
3004 }
3005
3006 if (timehist_check_attr(sched, evlist) != 0)
3007 goto out;
3008
3009 setup_pager();
3010
3011 /* setup per-evsel handlers */
3012 if (perf_session__set_tracepoints_handlers(session, handlers))
3013 goto out;
3014
3015 /* sched_switch event at a minimum needs to exist */
3016 if (!perf_evlist__find_tracepoint_by_name(session->evlist,
3017 "sched:sched_switch")) {
3018 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3019 goto out;
3020 }
3021
3022 if (sched->show_migrations &&
3023 perf_session__set_tracepoints_handlers(session, migrate_handlers))
3024 goto out;
3025
3026 /* pre-allocate struct for per-CPU idle stats */
3027 sched->max_cpu = session->header.env.nr_cpus_online;
3028 if (sched->max_cpu == 0)
3029 sched->max_cpu = 4;
3030 if (init_idle_threads(sched->max_cpu))
3031 goto out;
3032
3033 /* summary_only implies summary option, but don't overwrite summary if set */
3034 if (sched->summary_only)
3035 sched->summary = sched->summary_only;
3036
3037 if (!sched->summary_only)
3038 timehist_header(sched);
3039
3040 err = perf_session__process_events(session);
3041 if (err) {
3042 pr_err("Failed to process events, error %d", err);
3043 goto out;
3044 }
3045
3046 sched->nr_events = evlist->stats.nr_events[0];
3047 sched->nr_lost_events = evlist->stats.total_lost;
3048 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3049
3050 if (sched->summary)
3051 timehist_print_summary(sched, session);
3052
3053 out:
3054 free_idle_threads();
3055 perf_session__delete(session);
3056
3057 return err;
3058 }
3059
3060
print_bad_events(struct perf_sched * sched)3061 static void print_bad_events(struct perf_sched *sched)
3062 {
3063 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3064 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3065 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3066 sched->nr_unordered_timestamps, sched->nr_timestamps);
3067 }
3068 if (sched->nr_lost_events && sched->nr_events) {
3069 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3070 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3071 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3072 }
3073 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3074 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
3075 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3076 sched->nr_context_switch_bugs, sched->nr_timestamps);
3077 if (sched->nr_lost_events)
3078 printf(" (due to lost events?)");
3079 printf("\n");
3080 }
3081 }
3082
__merge_work_atoms(struct rb_root_cached * root,struct work_atoms * data)3083 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3084 {
3085 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3086 struct work_atoms *this;
3087 const char *comm = thread__comm_str(data->thread), *this_comm;
3088 bool leftmost = true;
3089
3090 while (*new) {
3091 int cmp;
3092
3093 this = container_of(*new, struct work_atoms, node);
3094 parent = *new;
3095
3096 this_comm = thread__comm_str(this->thread);
3097 cmp = strcmp(comm, this_comm);
3098 if (cmp > 0) {
3099 new = &((*new)->rb_left);
3100 } else if (cmp < 0) {
3101 new = &((*new)->rb_right);
3102 leftmost = false;
3103 } else {
3104 this->num_merged++;
3105 this->total_runtime += data->total_runtime;
3106 this->nb_atoms += data->nb_atoms;
3107 this->total_lat += data->total_lat;
3108 list_splice(&data->work_list, &this->work_list);
3109 if (this->max_lat < data->max_lat) {
3110 this->max_lat = data->max_lat;
3111 this->max_lat_at = data->max_lat_at;
3112 }
3113 zfree(&data);
3114 return;
3115 }
3116 }
3117
3118 data->num_merged++;
3119 rb_link_node(&data->node, parent, new);
3120 rb_insert_color_cached(&data->node, root, leftmost);
3121 }
3122
perf_sched__merge_lat(struct perf_sched * sched)3123 static void perf_sched__merge_lat(struct perf_sched *sched)
3124 {
3125 struct work_atoms *data;
3126 struct rb_node *node;
3127
3128 if (sched->skip_merge)
3129 return;
3130
3131 while ((node = rb_first_cached(&sched->atom_root))) {
3132 rb_erase_cached(node, &sched->atom_root);
3133 data = rb_entry(node, struct work_atoms, node);
3134 __merge_work_atoms(&sched->merged_atom_root, data);
3135 }
3136 }
3137
perf_sched__lat(struct perf_sched * sched)3138 static int perf_sched__lat(struct perf_sched *sched)
3139 {
3140 struct rb_node *next;
3141
3142 setup_pager();
3143
3144 if (perf_sched__read_events(sched))
3145 return -1;
3146
3147 perf_sched__merge_lat(sched);
3148 perf_sched__sort_lat(sched);
3149
3150 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3151 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
3152 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3153
3154 next = rb_first_cached(&sched->sorted_atom_root);
3155
3156 while (next) {
3157 struct work_atoms *work_list;
3158
3159 work_list = rb_entry(next, struct work_atoms, node);
3160 output_lat_thread(sched, work_list);
3161 next = rb_next(next);
3162 thread__zput(work_list->thread);
3163 }
3164
3165 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3166 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
3167 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3168
3169 printf(" ---------------------------------------------------\n");
3170
3171 print_bad_events(sched);
3172 printf("\n");
3173
3174 return 0;
3175 }
3176
setup_map_cpus(struct perf_sched * sched)3177 static int setup_map_cpus(struct perf_sched *sched)
3178 {
3179 struct perf_cpu_map *map;
3180
3181 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
3182
3183 if (sched->map.comp) {
3184 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3185 if (!sched->map.comp_cpus)
3186 return -1;
3187 }
3188
3189 if (!sched->map.cpus_str)
3190 return 0;
3191
3192 map = perf_cpu_map__new(sched->map.cpus_str);
3193 if (!map) {
3194 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3195 return -1;
3196 }
3197
3198 sched->map.cpus = map;
3199 return 0;
3200 }
3201
setup_color_pids(struct perf_sched * sched)3202 static int setup_color_pids(struct perf_sched *sched)
3203 {
3204 struct perf_thread_map *map;
3205
3206 if (!sched->map.color_pids_str)
3207 return 0;
3208
3209 map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3210 if (!map) {
3211 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3212 return -1;
3213 }
3214
3215 sched->map.color_pids = map;
3216 return 0;
3217 }
3218
setup_color_cpus(struct perf_sched * sched)3219 static int setup_color_cpus(struct perf_sched *sched)
3220 {
3221 struct perf_cpu_map *map;
3222
3223 if (!sched->map.color_cpus_str)
3224 return 0;
3225
3226 map = perf_cpu_map__new(sched->map.color_cpus_str);
3227 if (!map) {
3228 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3229 return -1;
3230 }
3231
3232 sched->map.color_cpus = map;
3233 return 0;
3234 }
3235
perf_sched__map(struct perf_sched * sched)3236 static int perf_sched__map(struct perf_sched *sched)
3237 {
3238 if (setup_map_cpus(sched))
3239 return -1;
3240
3241 if (setup_color_pids(sched))
3242 return -1;
3243
3244 if (setup_color_cpus(sched))
3245 return -1;
3246
3247 setup_pager();
3248 if (perf_sched__read_events(sched))
3249 return -1;
3250 print_bad_events(sched);
3251 return 0;
3252 }
3253
perf_sched__replay(struct perf_sched * sched)3254 static int perf_sched__replay(struct perf_sched *sched)
3255 {
3256 unsigned long i;
3257
3258 calibrate_run_measurement_overhead(sched);
3259 calibrate_sleep_measurement_overhead(sched);
3260
3261 test_calibrations(sched);
3262
3263 if (perf_sched__read_events(sched))
3264 return -1;
3265
3266 printf("nr_run_events: %ld\n", sched->nr_run_events);
3267 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
3268 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
3269
3270 if (sched->targetless_wakeups)
3271 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
3272 if (sched->multitarget_wakeups)
3273 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3274 if (sched->nr_run_events_optimized)
3275 printf("run atoms optimized: %ld\n",
3276 sched->nr_run_events_optimized);
3277
3278 print_task_traces(sched);
3279 add_cross_task_wakeups(sched);
3280
3281 create_tasks(sched);
3282 printf("------------------------------------------------------------\n");
3283 for (i = 0; i < sched->replay_repeat; i++)
3284 run_one_test(sched);
3285
3286 return 0;
3287 }
3288
setup_sorting(struct perf_sched * sched,const struct option * options,const char * const usage_msg[])3289 static void setup_sorting(struct perf_sched *sched, const struct option *options,
3290 const char * const usage_msg[])
3291 {
3292 char *tmp, *tok, *str = strdup(sched->sort_order);
3293
3294 for (tok = strtok_r(str, ", ", &tmp);
3295 tok; tok = strtok_r(NULL, ", ", &tmp)) {
3296 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3297 usage_with_options_msg(usage_msg, options,
3298 "Unknown --sort key: `%s'", tok);
3299 }
3300 }
3301
3302 free(str);
3303
3304 sort_dimension__add("pid", &sched->cmp_pid);
3305 }
3306
__cmd_record(int argc,const char ** argv)3307 static int __cmd_record(int argc, const char **argv)
3308 {
3309 unsigned int rec_argc, i, j;
3310 const char **rec_argv;
3311 const char * const record_args[] = {
3312 "record",
3313 "-a",
3314 "-R",
3315 "-m", "1024",
3316 "-c", "1",
3317 "-e", "sched:sched_switch",
3318 "-e", "sched:sched_stat_wait",
3319 "-e", "sched:sched_stat_sleep",
3320 "-e", "sched:sched_stat_iowait",
3321 "-e", "sched:sched_stat_runtime",
3322 "-e", "sched:sched_process_fork",
3323 "-e", "sched:sched_wakeup",
3324 "-e", "sched:sched_wakeup_new",
3325 "-e", "sched:sched_migrate_task",
3326 };
3327
3328 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3329 rec_argv = calloc(rec_argc + 1, sizeof(char *));
3330
3331 if (rec_argv == NULL)
3332 return -ENOMEM;
3333
3334 for (i = 0; i < ARRAY_SIZE(record_args); i++)
3335 rec_argv[i] = strdup(record_args[i]);
3336
3337 for (j = 1; j < (unsigned int)argc; j++, i++)
3338 rec_argv[i] = argv[j];
3339
3340 BUG_ON(i != rec_argc);
3341
3342 return cmd_record(i, rec_argv);
3343 }
3344
cmd_sched(int argc,const char ** argv)3345 int cmd_sched(int argc, const char **argv)
3346 {
3347 static const char default_sort_order[] = "avg, max, switch, runtime";
3348 struct perf_sched sched = {
3349 .tool = {
3350 .sample = perf_sched__process_tracepoint_sample,
3351 .comm = perf_sched__process_comm,
3352 .namespaces = perf_event__process_namespaces,
3353 .lost = perf_event__process_lost,
3354 .fork = perf_sched__process_fork_event,
3355 .ordered_events = true,
3356 },
3357 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
3358 .sort_list = LIST_HEAD_INIT(sched.sort_list),
3359 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
3360 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3361 .sort_order = default_sort_order,
3362 .replay_repeat = 10,
3363 .profile_cpu = -1,
3364 .next_shortname1 = 'A',
3365 .next_shortname2 = '0',
3366 .skip_merge = 0,
3367 .show_callchain = 1,
3368 .max_stack = 5,
3369 };
3370 const struct option sched_options[] = {
3371 OPT_STRING('i', "input", &input_name, "file",
3372 "input file name"),
3373 OPT_INCR('v', "verbose", &verbose,
3374 "be more verbose (show symbol address, etc)"),
3375 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3376 "dump raw trace in ASCII"),
3377 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3378 OPT_END()
3379 };
3380 const struct option latency_options[] = {
3381 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3382 "sort by key(s): runtime, switch, avg, max"),
3383 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3384 "CPU to profile on"),
3385 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3386 "latency stats per pid instead of per comm"),
3387 OPT_PARENT(sched_options)
3388 };
3389 const struct option replay_options[] = {
3390 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3391 "repeat the workload replay N times (-1: infinite)"),
3392 OPT_PARENT(sched_options)
3393 };
3394 const struct option map_options[] = {
3395 OPT_BOOLEAN(0, "compact", &sched.map.comp,
3396 "map output in compact mode"),
3397 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3398 "highlight given pids in map"),
3399 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3400 "highlight given CPUs in map"),
3401 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3402 "display given CPUs in map"),
3403 OPT_PARENT(sched_options)
3404 };
3405 const struct option timehist_options[] = {
3406 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3407 "file", "vmlinux pathname"),
3408 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3409 "file", "kallsyms pathname"),
3410 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3411 "Display call chains if present (default on)"),
3412 OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3413 "Maximum number of functions to display backtrace."),
3414 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3415 "Look for files with symbols relative to this directory"),
3416 OPT_BOOLEAN('s', "summary", &sched.summary_only,
3417 "Show only syscall summary with statistics"),
3418 OPT_BOOLEAN('S', "with-summary", &sched.summary,
3419 "Show all syscalls and summary with statistics"),
3420 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3421 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3422 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3423 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3424 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3425 OPT_STRING(0, "time", &sched.time_str, "str",
3426 "Time span for analysis (start,stop)"),
3427 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3428 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3429 "analyze events only for given process id(s)"),
3430 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3431 "analyze events only for given thread id(s)"),
3432 OPT_PARENT(sched_options)
3433 };
3434
3435 const char * const latency_usage[] = {
3436 "perf sched latency [<options>]",
3437 NULL
3438 };
3439 const char * const replay_usage[] = {
3440 "perf sched replay [<options>]",
3441 NULL
3442 };
3443 const char * const map_usage[] = {
3444 "perf sched map [<options>]",
3445 NULL
3446 };
3447 const char * const timehist_usage[] = {
3448 "perf sched timehist [<options>]",
3449 NULL
3450 };
3451 const char *const sched_subcommands[] = { "record", "latency", "map",
3452 "replay", "script",
3453 "timehist", NULL };
3454 const char *sched_usage[] = {
3455 NULL,
3456 NULL
3457 };
3458 struct trace_sched_handler lat_ops = {
3459 .wakeup_event = latency_wakeup_event,
3460 .switch_event = latency_switch_event,
3461 .runtime_event = latency_runtime_event,
3462 .migrate_task_event = latency_migrate_task_event,
3463 };
3464 struct trace_sched_handler map_ops = {
3465 .switch_event = map_switch_event,
3466 };
3467 struct trace_sched_handler replay_ops = {
3468 .wakeup_event = replay_wakeup_event,
3469 .switch_event = replay_switch_event,
3470 .fork_event = replay_fork_event,
3471 };
3472 unsigned int i;
3473
3474 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3475 sched.curr_pid[i] = -1;
3476
3477 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3478 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3479 if (!argc)
3480 usage_with_options(sched_usage, sched_options);
3481
3482 /*
3483 * Aliased to 'perf script' for now:
3484 */
3485 if (!strcmp(argv[0], "script"))
3486 return cmd_script(argc, argv);
3487
3488 if (!strncmp(argv[0], "rec", 3)) {
3489 return __cmd_record(argc, argv);
3490 } else if (!strncmp(argv[0], "lat", 3)) {
3491 sched.tp_handler = &lat_ops;
3492 if (argc > 1) {
3493 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3494 if (argc)
3495 usage_with_options(latency_usage, latency_options);
3496 }
3497 setup_sorting(&sched, latency_options, latency_usage);
3498 return perf_sched__lat(&sched);
3499 } else if (!strcmp(argv[0], "map")) {
3500 if (argc) {
3501 argc = parse_options(argc, argv, map_options, map_usage, 0);
3502 if (argc)
3503 usage_with_options(map_usage, map_options);
3504 }
3505 sched.tp_handler = &map_ops;
3506 setup_sorting(&sched, latency_options, latency_usage);
3507 return perf_sched__map(&sched);
3508 } else if (!strncmp(argv[0], "rep", 3)) {
3509 sched.tp_handler = &replay_ops;
3510 if (argc) {
3511 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3512 if (argc)
3513 usage_with_options(replay_usage, replay_options);
3514 }
3515 return perf_sched__replay(&sched);
3516 } else if (!strcmp(argv[0], "timehist")) {
3517 if (argc) {
3518 argc = parse_options(argc, argv, timehist_options,
3519 timehist_usage, 0);
3520 if (argc)
3521 usage_with_options(timehist_usage, timehist_options);
3522 }
3523 if ((sched.show_wakeups || sched.show_next) &&
3524 sched.summary_only) {
3525 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3526 parse_options_usage(timehist_usage, timehist_options, "s", true);
3527 if (sched.show_wakeups)
3528 parse_options_usage(NULL, timehist_options, "w", true);
3529 if (sched.show_next)
3530 parse_options_usage(NULL, timehist_options, "n", true);
3531 return -EINVAL;
3532 }
3533
3534 return perf_sched__timehist(&sched);
3535 } else {
3536 usage_with_options(sched_usage, sched_options);
3537 }
3538
3539 return 0;
3540 }
3541