1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015, 2016 ARM Ltd.
4 */
5
6 #include <linux/uaccess.h>
7 #include <linux/interrupt.h>
8 #include <linux/cpu.h>
9 #include <linux/kvm_host.h>
10 #include <kvm/arm_vgic.h>
11 #include <asm/kvm_emulate.h>
12 #include <asm/kvm_mmu.h>
13 #include "vgic.h"
14
15 /*
16 * Initialization rules: there are multiple stages to the vgic
17 * initialization, both for the distributor and the CPU interfaces. The basic
18 * idea is that even though the VGIC is not functional or not requested from
19 * user space, the critical path of the run loop can still call VGIC functions
20 * that just won't do anything, without them having to check additional
21 * initialization flags to ensure they don't look at uninitialized data
22 * structures.
23 *
24 * Distributor:
25 *
26 * - kvm_vgic_early_init(): initialization of static data that doesn't
27 * depend on any sizing information or emulation type. No allocation
28 * is allowed there.
29 *
30 * - vgic_init(): allocation and initialization of the generic data
31 * structures that depend on sizing information (number of CPUs,
32 * number of interrupts). Also initializes the vcpu specific data
33 * structures. Can be executed lazily for GICv2.
34 *
35 * CPU Interface:
36 *
37 * - kvm_vgic_vcpu_init(): initialization of static data that
38 * doesn't depend on any sizing information or emulation type. No
39 * allocation is allowed there.
40 */
41
42 /* EARLY INIT */
43
44 /**
45 * kvm_vgic_early_init() - Initialize static VGIC VCPU data structures
46 * @kvm: The VM whose VGIC districutor should be initialized
47 *
48 * Only do initialization of static structures that don't require any
49 * allocation or sizing information from userspace. vgic_init() called
50 * kvm_vgic_dist_init() which takes care of the rest.
51 */
kvm_vgic_early_init(struct kvm * kvm)52 void kvm_vgic_early_init(struct kvm *kvm)
53 {
54 struct vgic_dist *dist = &kvm->arch.vgic;
55
56 INIT_LIST_HEAD(&dist->lpi_list_head);
57 INIT_LIST_HEAD(&dist->lpi_translation_cache);
58 raw_spin_lock_init(&dist->lpi_list_lock);
59 }
60
61 /* CREATION */
62
63 /**
64 * kvm_vgic_create: triggered by the instantiation of the VGIC device by
65 * user space, either through the legacy KVM_CREATE_IRQCHIP ioctl (v2 only)
66 * or through the generic KVM_CREATE_DEVICE API ioctl.
67 * irqchip_in_kernel() tells you if this function succeeded or not.
68 * @kvm: kvm struct pointer
69 * @type: KVM_DEV_TYPE_ARM_VGIC_V[23]
70 */
kvm_vgic_create(struct kvm * kvm,u32 type)71 int kvm_vgic_create(struct kvm *kvm, u32 type)
72 {
73 int i, vcpu_lock_idx = -1, ret;
74 struct kvm_vcpu *vcpu;
75
76 if (irqchip_in_kernel(kvm))
77 return -EEXIST;
78
79 /*
80 * This function is also called by the KVM_CREATE_IRQCHIP handler,
81 * which had no chance yet to check the availability of the GICv2
82 * emulation. So check this here again. KVM_CREATE_DEVICE does
83 * the proper checks already.
84 */
85 if (type == KVM_DEV_TYPE_ARM_VGIC_V2 &&
86 !kvm_vgic_global_state.can_emulate_gicv2)
87 return -ENODEV;
88
89 /*
90 * Any time a vcpu is run, vcpu_load is called which tries to grab the
91 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
92 * that no other VCPUs are run while we create the vgic.
93 */
94 ret = -EBUSY;
95 kvm_for_each_vcpu(i, vcpu, kvm) {
96 if (!mutex_trylock(&vcpu->mutex))
97 goto out_unlock;
98 vcpu_lock_idx = i;
99 }
100
101 kvm_for_each_vcpu(i, vcpu, kvm) {
102 if (vcpu->arch.has_run_once)
103 goto out_unlock;
104 }
105 ret = 0;
106
107 if (type == KVM_DEV_TYPE_ARM_VGIC_V2)
108 kvm->arch.max_vcpus = VGIC_V2_MAX_CPUS;
109 else
110 kvm->arch.max_vcpus = VGIC_V3_MAX_CPUS;
111
112 if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus) {
113 ret = -E2BIG;
114 goto out_unlock;
115 }
116
117 kvm->arch.vgic.in_kernel = true;
118 kvm->arch.vgic.vgic_model = type;
119
120 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
121
122 if (type == KVM_DEV_TYPE_ARM_VGIC_V2)
123 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
124 else
125 INIT_LIST_HEAD(&kvm->arch.vgic.rd_regions);
126
127 out_unlock:
128 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
129 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
130 mutex_unlock(&vcpu->mutex);
131 }
132 return ret;
133 }
134
135 /* INIT/DESTROY */
136
137 /**
138 * kvm_vgic_dist_init: initialize the dist data structures
139 * @kvm: kvm struct pointer
140 * @nr_spis: number of spis, frozen by caller
141 */
kvm_vgic_dist_init(struct kvm * kvm,unsigned int nr_spis)142 static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis)
143 {
144 struct vgic_dist *dist = &kvm->arch.vgic;
145 struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0);
146 int i;
147
148 dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL);
149 if (!dist->spis)
150 return -ENOMEM;
151
152 /*
153 * In the following code we do not take the irq struct lock since
154 * no other action on irq structs can happen while the VGIC is
155 * not initialized yet:
156 * If someone wants to inject an interrupt or does a MMIO access, we
157 * require prior initialization in case of a virtual GICv3 or trigger
158 * initialization when using a virtual GICv2.
159 */
160 for (i = 0; i < nr_spis; i++) {
161 struct vgic_irq *irq = &dist->spis[i];
162
163 irq->intid = i + VGIC_NR_PRIVATE_IRQS;
164 INIT_LIST_HEAD(&irq->ap_list);
165 raw_spin_lock_init(&irq->irq_lock);
166 irq->vcpu = NULL;
167 irq->target_vcpu = vcpu0;
168 kref_init(&irq->refcount);
169 switch (dist->vgic_model) {
170 case KVM_DEV_TYPE_ARM_VGIC_V2:
171 irq->targets = 0;
172 irq->group = 0;
173 break;
174 case KVM_DEV_TYPE_ARM_VGIC_V3:
175 irq->mpidr = 0;
176 irq->group = 1;
177 break;
178 default:
179 kfree(dist->spis);
180 return -EINVAL;
181 }
182 }
183 return 0;
184 }
185
186 /**
187 * kvm_vgic_vcpu_init() - Initialize static VGIC VCPU data
188 * structures and register VCPU-specific KVM iodevs
189 *
190 * @vcpu: pointer to the VCPU being created and initialized
191 *
192 * Only do initialization, but do not actually enable the
193 * VGIC CPU interface
194 */
kvm_vgic_vcpu_init(struct kvm_vcpu * vcpu)195 int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
196 {
197 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
198 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
199 int ret = 0;
200 int i;
201
202 vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF;
203
204 INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
205 raw_spin_lock_init(&vgic_cpu->ap_list_lock);
206
207 /*
208 * Enable and configure all SGIs to be edge-triggered and
209 * configure all PPIs as level-triggered.
210 */
211 for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
212 struct vgic_irq *irq = &vgic_cpu->private_irqs[i];
213
214 INIT_LIST_HEAD(&irq->ap_list);
215 raw_spin_lock_init(&irq->irq_lock);
216 irq->intid = i;
217 irq->vcpu = NULL;
218 irq->target_vcpu = vcpu;
219 kref_init(&irq->refcount);
220 if (vgic_irq_is_sgi(i)) {
221 /* SGIs */
222 irq->enabled = 1;
223 irq->config = VGIC_CONFIG_EDGE;
224 } else {
225 /* PPIs */
226 irq->config = VGIC_CONFIG_LEVEL;
227 }
228 }
229
230 if (!irqchip_in_kernel(vcpu->kvm))
231 return 0;
232
233 /*
234 * If we are creating a VCPU with a GICv3 we must also register the
235 * KVM io device for the redistributor that belongs to this VCPU.
236 */
237 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
238 mutex_lock(&vcpu->kvm->lock);
239 ret = vgic_register_redist_iodev(vcpu);
240 mutex_unlock(&vcpu->kvm->lock);
241 }
242 return ret;
243 }
244
kvm_vgic_vcpu_enable(struct kvm_vcpu * vcpu)245 static void kvm_vgic_vcpu_enable(struct kvm_vcpu *vcpu)
246 {
247 if (kvm_vgic_global_state.type == VGIC_V2)
248 vgic_v2_enable(vcpu);
249 else
250 vgic_v3_enable(vcpu);
251 }
252
253 /*
254 * vgic_init: allocates and initializes dist and vcpu data structures
255 * depending on two dimensioning parameters:
256 * - the number of spis
257 * - the number of vcpus
258 * The function is generally called when nr_spis has been explicitly set
259 * by the guest through the KVM DEVICE API. If not nr_spis is set to 256.
260 * vgic_initialized() returns true when this function has succeeded.
261 * Must be called with kvm->lock held!
262 */
vgic_init(struct kvm * kvm)263 int vgic_init(struct kvm *kvm)
264 {
265 struct vgic_dist *dist = &kvm->arch.vgic;
266 struct kvm_vcpu *vcpu;
267 int ret = 0, i, idx;
268
269 if (vgic_initialized(kvm))
270 return 0;
271
272 /* Are we also in the middle of creating a VCPU? */
273 if (kvm->created_vcpus != atomic_read(&kvm->online_vcpus))
274 return -EBUSY;
275
276 /* freeze the number of spis */
277 if (!dist->nr_spis)
278 dist->nr_spis = VGIC_NR_IRQS_LEGACY - VGIC_NR_PRIVATE_IRQS;
279
280 ret = kvm_vgic_dist_init(kvm, dist->nr_spis);
281 if (ret)
282 goto out;
283
284 /* Initialize groups on CPUs created before the VGIC type was known */
285 kvm_for_each_vcpu(idx, vcpu, kvm) {
286 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
287
288 for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
289 struct vgic_irq *irq = &vgic_cpu->private_irqs[i];
290 switch (dist->vgic_model) {
291 case KVM_DEV_TYPE_ARM_VGIC_V3:
292 irq->group = 1;
293 irq->mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
294 break;
295 case KVM_DEV_TYPE_ARM_VGIC_V2:
296 irq->group = 0;
297 irq->targets = 1U << idx;
298 break;
299 default:
300 ret = -EINVAL;
301 goto out;
302 }
303 }
304 }
305
306 if (vgic_has_its(kvm)) {
307 vgic_lpi_translation_cache_init(kvm);
308 ret = vgic_v4_init(kvm);
309 if (ret)
310 goto out;
311 }
312
313 kvm_for_each_vcpu(i, vcpu, kvm)
314 kvm_vgic_vcpu_enable(vcpu);
315
316 ret = kvm_vgic_setup_default_irq_routing(kvm);
317 if (ret)
318 goto out;
319
320 vgic_debug_init(kvm);
321
322 dist->implementation_rev = 2;
323 dist->initialized = true;
324
325 out:
326 return ret;
327 }
328
kvm_vgic_dist_destroy(struct kvm * kvm)329 static void kvm_vgic_dist_destroy(struct kvm *kvm)
330 {
331 struct vgic_dist *dist = &kvm->arch.vgic;
332 struct vgic_redist_region *rdreg, *next;
333
334 dist->ready = false;
335 dist->initialized = false;
336
337 kfree(dist->spis);
338 dist->spis = NULL;
339 dist->nr_spis = 0;
340
341 if (kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
342 list_for_each_entry_safe(rdreg, next, &dist->rd_regions, list) {
343 list_del(&rdreg->list);
344 kfree(rdreg);
345 }
346 INIT_LIST_HEAD(&dist->rd_regions);
347 }
348
349 if (vgic_has_its(kvm))
350 vgic_lpi_translation_cache_destroy(kvm);
351
352 if (vgic_supports_direct_msis(kvm))
353 vgic_v4_teardown(kvm);
354 }
355
kvm_vgic_vcpu_destroy(struct kvm_vcpu * vcpu)356 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
357 {
358 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
359
360 INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
361 }
362
363 /* To be called with kvm->lock held */
__kvm_vgic_destroy(struct kvm * kvm)364 static void __kvm_vgic_destroy(struct kvm *kvm)
365 {
366 struct kvm_vcpu *vcpu;
367 int i;
368
369 vgic_debug_destroy(kvm);
370
371 kvm_vgic_dist_destroy(kvm);
372
373 kvm_for_each_vcpu(i, vcpu, kvm)
374 kvm_vgic_vcpu_destroy(vcpu);
375 }
376
kvm_vgic_destroy(struct kvm * kvm)377 void kvm_vgic_destroy(struct kvm *kvm)
378 {
379 mutex_lock(&kvm->lock);
380 __kvm_vgic_destroy(kvm);
381 mutex_unlock(&kvm->lock);
382 }
383
384 /**
385 * vgic_lazy_init: Lazy init is only allowed if the GIC exposed to the guest
386 * is a GICv2. A GICv3 must be explicitly initialized by the guest using the
387 * KVM_DEV_ARM_VGIC_GRP_CTRL KVM_DEVICE group.
388 * @kvm: kvm struct pointer
389 */
vgic_lazy_init(struct kvm * kvm)390 int vgic_lazy_init(struct kvm *kvm)
391 {
392 int ret = 0;
393
394 if (unlikely(!vgic_initialized(kvm))) {
395 /*
396 * We only provide the automatic initialization of the VGIC
397 * for the legacy case of a GICv2. Any other type must
398 * be explicitly initialized once setup with the respective
399 * KVM device call.
400 */
401 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
402 return -EBUSY;
403
404 mutex_lock(&kvm->lock);
405 ret = vgic_init(kvm);
406 mutex_unlock(&kvm->lock);
407 }
408
409 return ret;
410 }
411
412 /* RESOURCE MAPPING */
413
414 /**
415 * Map the MMIO regions depending on the VGIC model exposed to the guest
416 * called on the first VCPU run.
417 * Also map the virtual CPU interface into the VM.
418 * v2/v3 derivatives call vgic_init if not already done.
419 * vgic_ready() returns true if this function has succeeded.
420 * @kvm: kvm struct pointer
421 */
kvm_vgic_map_resources(struct kvm * kvm)422 int kvm_vgic_map_resources(struct kvm *kvm)
423 {
424 struct vgic_dist *dist = &kvm->arch.vgic;
425 int ret = 0;
426
427 mutex_lock(&kvm->lock);
428 if (!irqchip_in_kernel(kvm))
429 goto out;
430
431 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2)
432 ret = vgic_v2_map_resources(kvm);
433 else
434 ret = vgic_v3_map_resources(kvm);
435
436 if (ret)
437 __kvm_vgic_destroy(kvm);
438
439 out:
440 mutex_unlock(&kvm->lock);
441 return ret;
442 }
443
444 /* GENERIC PROBE */
445
vgic_init_cpu_starting(unsigned int cpu)446 static int vgic_init_cpu_starting(unsigned int cpu)
447 {
448 enable_percpu_irq(kvm_vgic_global_state.maint_irq, 0);
449 return 0;
450 }
451
452
vgic_init_cpu_dying(unsigned int cpu)453 static int vgic_init_cpu_dying(unsigned int cpu)
454 {
455 disable_percpu_irq(kvm_vgic_global_state.maint_irq);
456 return 0;
457 }
458
vgic_maintenance_handler(int irq,void * data)459 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
460 {
461 /*
462 * We cannot rely on the vgic maintenance interrupt to be
463 * delivered synchronously. This means we can only use it to
464 * exit the VM, and we perform the handling of EOIed
465 * interrupts on the exit path (see vgic_fold_lr_state).
466 */
467 return IRQ_HANDLED;
468 }
469
470 /**
471 * kvm_vgic_init_cpu_hardware - initialize the GIC VE hardware
472 *
473 * For a specific CPU, initialize the GIC VE hardware.
474 */
kvm_vgic_init_cpu_hardware(void)475 void kvm_vgic_init_cpu_hardware(void)
476 {
477 BUG_ON(preemptible());
478
479 /*
480 * We want to make sure the list registers start out clear so that we
481 * only have the program the used registers.
482 */
483 if (kvm_vgic_global_state.type == VGIC_V2)
484 vgic_v2_init_lrs();
485 else
486 kvm_call_hyp(__vgic_v3_init_lrs);
487 }
488
489 /**
490 * kvm_vgic_hyp_init: populates the kvm_vgic_global_state variable
491 * according to the host GIC model. Accordingly calls either
492 * vgic_v2/v3_probe which registers the KVM_DEVICE that can be
493 * instantiated by a guest later on .
494 */
kvm_vgic_hyp_init(void)495 int kvm_vgic_hyp_init(void)
496 {
497 const struct gic_kvm_info *gic_kvm_info;
498 int ret;
499
500 gic_kvm_info = gic_get_kvm_info();
501 if (!gic_kvm_info)
502 return -ENODEV;
503
504 if (!gic_kvm_info->maint_irq) {
505 kvm_err("No vgic maintenance irq\n");
506 return -ENXIO;
507 }
508
509 switch (gic_kvm_info->type) {
510 case GIC_V2:
511 ret = vgic_v2_probe(gic_kvm_info);
512 break;
513 case GIC_V3:
514 ret = vgic_v3_probe(gic_kvm_info);
515 if (!ret) {
516 static_branch_enable(&kvm_vgic_global_state.gicv3_cpuif);
517 kvm_info("GIC system register CPU interface enabled\n");
518 }
519 break;
520 default:
521 ret = -ENODEV;
522 }
523
524 if (ret)
525 return ret;
526
527 kvm_vgic_global_state.maint_irq = gic_kvm_info->maint_irq;
528 ret = request_percpu_irq(kvm_vgic_global_state.maint_irq,
529 vgic_maintenance_handler,
530 "vgic", kvm_get_running_vcpus());
531 if (ret) {
532 kvm_err("Cannot register interrupt %d\n",
533 kvm_vgic_global_state.maint_irq);
534 return ret;
535 }
536
537 ret = cpuhp_setup_state(CPUHP_AP_KVM_ARM_VGIC_INIT_STARTING,
538 "kvm/arm/vgic:starting",
539 vgic_init_cpu_starting, vgic_init_cpu_dying);
540 if (ret) {
541 kvm_err("Cannot register vgic CPU notifier\n");
542 goto out_free_irq;
543 }
544
545 kvm_info("vgic interrupt IRQ%d\n", kvm_vgic_global_state.maint_irq);
546 return 0;
547
548 out_free_irq:
549 free_percpu_irq(kvm_vgic_global_state.maint_irq,
550 kvm_get_running_vcpus());
551 return ret;
552 }
553