1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * GICv3 ITS emulation
4 *
5 * Copyright (C) 2015,2016 ARM Ltd.
6 * Author: Andre Przywara <andre.przywara@arm.com>
7 */
8
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
16
17 #include <linux/irqchip/arm-gic-v3.h>
18
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
22
23 #include "vgic.h"
24 #include "vgic-mmio.h"
25
26 static int vgic_its_save_tables_v0(struct vgic_its *its);
27 static int vgic_its_restore_tables_v0(struct vgic_its *its);
28 static int vgic_its_commit_v0(struct vgic_its *its);
29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
30 struct kvm_vcpu *filter_vcpu, bool needs_inv);
31
32 /*
33 * Creates a new (reference to a) struct vgic_irq for a given LPI.
34 * If this LPI is already mapped on another ITS, we increase its refcount
35 * and return a pointer to the existing structure.
36 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
37 * This function returns a pointer to the _unlocked_ structure.
38 */
vgic_add_lpi(struct kvm * kvm,u32 intid,struct kvm_vcpu * vcpu)39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
40 struct kvm_vcpu *vcpu)
41 {
42 struct vgic_dist *dist = &kvm->arch.vgic;
43 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
44 unsigned long flags;
45 int ret;
46
47 /* In this case there is no put, since we keep the reference. */
48 if (irq)
49 return irq;
50
51 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
52 if (!irq)
53 return ERR_PTR(-ENOMEM);
54
55 INIT_LIST_HEAD(&irq->lpi_list);
56 INIT_LIST_HEAD(&irq->ap_list);
57 raw_spin_lock_init(&irq->irq_lock);
58
59 irq->config = VGIC_CONFIG_EDGE;
60 kref_init(&irq->refcount);
61 irq->intid = intid;
62 irq->target_vcpu = vcpu;
63 irq->group = 1;
64
65 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
66
67 /*
68 * There could be a race with another vgic_add_lpi(), so we need to
69 * check that we don't add a second list entry with the same LPI.
70 */
71 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
72 if (oldirq->intid != intid)
73 continue;
74
75 /* Someone was faster with adding this LPI, lets use that. */
76 kfree(irq);
77 irq = oldirq;
78
79 /*
80 * This increases the refcount, the caller is expected to
81 * call vgic_put_irq() on the returned pointer once it's
82 * finished with the IRQ.
83 */
84 vgic_get_irq_kref(irq);
85
86 goto out_unlock;
87 }
88
89 list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
90 dist->lpi_list_count++;
91
92 out_unlock:
93 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
94
95 /*
96 * We "cache" the configuration table entries in our struct vgic_irq's.
97 * However we only have those structs for mapped IRQs, so we read in
98 * the respective config data from memory here upon mapping the LPI.
99 */
100 ret = update_lpi_config(kvm, irq, NULL, false);
101 if (ret)
102 return ERR_PTR(ret);
103
104 ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
105 if (ret)
106 return ERR_PTR(ret);
107
108 return irq;
109 }
110
111 struct its_device {
112 struct list_head dev_list;
113
114 /* the head for the list of ITTEs */
115 struct list_head itt_head;
116 u32 num_eventid_bits;
117 gpa_t itt_addr;
118 u32 device_id;
119 };
120
121 #define COLLECTION_NOT_MAPPED ((u32)~0)
122
123 struct its_collection {
124 struct list_head coll_list;
125
126 u32 collection_id;
127 u32 target_addr;
128 };
129
130 #define its_is_collection_mapped(coll) ((coll) && \
131 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
132
133 struct its_ite {
134 struct list_head ite_list;
135
136 struct vgic_irq *irq;
137 struct its_collection *collection;
138 u32 event_id;
139 };
140
141 struct vgic_translation_cache_entry {
142 struct list_head entry;
143 phys_addr_t db;
144 u32 devid;
145 u32 eventid;
146 struct vgic_irq *irq;
147 };
148
149 /**
150 * struct vgic_its_abi - ITS abi ops and settings
151 * @cte_esz: collection table entry size
152 * @dte_esz: device table entry size
153 * @ite_esz: interrupt translation table entry size
154 * @save tables: save the ITS tables into guest RAM
155 * @restore_tables: restore the ITS internal structs from tables
156 * stored in guest RAM
157 * @commit: initialize the registers which expose the ABI settings,
158 * especially the entry sizes
159 */
160 struct vgic_its_abi {
161 int cte_esz;
162 int dte_esz;
163 int ite_esz;
164 int (*save_tables)(struct vgic_its *its);
165 int (*restore_tables)(struct vgic_its *its);
166 int (*commit)(struct vgic_its *its);
167 };
168
169 #define ABI_0_ESZ 8
170 #define ESZ_MAX ABI_0_ESZ
171
172 static const struct vgic_its_abi its_table_abi_versions[] = {
173 [0] = {
174 .cte_esz = ABI_0_ESZ,
175 .dte_esz = ABI_0_ESZ,
176 .ite_esz = ABI_0_ESZ,
177 .save_tables = vgic_its_save_tables_v0,
178 .restore_tables = vgic_its_restore_tables_v0,
179 .commit = vgic_its_commit_v0,
180 },
181 };
182
183 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions)
184
vgic_its_get_abi(struct vgic_its * its)185 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
186 {
187 return &its_table_abi_versions[its->abi_rev];
188 }
189
vgic_its_set_abi(struct vgic_its * its,u32 rev)190 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
191 {
192 const struct vgic_its_abi *abi;
193
194 its->abi_rev = rev;
195 abi = vgic_its_get_abi(its);
196 return abi->commit(its);
197 }
198
199 /*
200 * Find and returns a device in the device table for an ITS.
201 * Must be called with the its_lock mutex held.
202 */
find_its_device(struct vgic_its * its,u32 device_id)203 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
204 {
205 struct its_device *device;
206
207 list_for_each_entry(device, &its->device_list, dev_list)
208 if (device_id == device->device_id)
209 return device;
210
211 return NULL;
212 }
213
214 /*
215 * Find and returns an interrupt translation table entry (ITTE) for a given
216 * Device ID/Event ID pair on an ITS.
217 * Must be called with the its_lock mutex held.
218 */
find_ite(struct vgic_its * its,u32 device_id,u32 event_id)219 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
220 u32 event_id)
221 {
222 struct its_device *device;
223 struct its_ite *ite;
224
225 device = find_its_device(its, device_id);
226 if (device == NULL)
227 return NULL;
228
229 list_for_each_entry(ite, &device->itt_head, ite_list)
230 if (ite->event_id == event_id)
231 return ite;
232
233 return NULL;
234 }
235
236 /* To be used as an iterator this macro misses the enclosing parentheses */
237 #define for_each_lpi_its(dev, ite, its) \
238 list_for_each_entry(dev, &(its)->device_list, dev_list) \
239 list_for_each_entry(ite, &(dev)->itt_head, ite_list)
240
241 #define GIC_LPI_OFFSET 8192
242
243 #define VITS_TYPER_IDBITS 16
244 #define VITS_TYPER_DEVBITS 16
245 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1)
246 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1)
247
248 /*
249 * Finds and returns a collection in the ITS collection table.
250 * Must be called with the its_lock mutex held.
251 */
find_collection(struct vgic_its * its,int coll_id)252 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
253 {
254 struct its_collection *collection;
255
256 list_for_each_entry(collection, &its->collection_list, coll_list) {
257 if (coll_id == collection->collection_id)
258 return collection;
259 }
260
261 return NULL;
262 }
263
264 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
265 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
266
267 /*
268 * Reads the configuration data for a given LPI from guest memory and
269 * updates the fields in struct vgic_irq.
270 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
271 * VCPU. Unconditionally applies if filter_vcpu is NULL.
272 */
update_lpi_config(struct kvm * kvm,struct vgic_irq * irq,struct kvm_vcpu * filter_vcpu,bool needs_inv)273 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
274 struct kvm_vcpu *filter_vcpu, bool needs_inv)
275 {
276 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
277 u8 prop;
278 int ret;
279 unsigned long flags;
280
281 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
282 &prop, 1);
283
284 if (ret)
285 return ret;
286
287 raw_spin_lock_irqsave(&irq->irq_lock, flags);
288
289 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
290 irq->priority = LPI_PROP_PRIORITY(prop);
291 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
292
293 if (!irq->hw) {
294 vgic_queue_irq_unlock(kvm, irq, flags);
295 return 0;
296 }
297 }
298
299 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
300
301 if (irq->hw)
302 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
303
304 return 0;
305 }
306
307 /*
308 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
309 * enumerate those LPIs without holding any lock.
310 * Returns their number and puts the kmalloc'ed array into intid_ptr.
311 */
vgic_copy_lpi_list(struct kvm * kvm,struct kvm_vcpu * vcpu,u32 ** intid_ptr)312 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
313 {
314 struct vgic_dist *dist = &kvm->arch.vgic;
315 struct vgic_irq *irq;
316 unsigned long flags;
317 u32 *intids;
318 int irq_count, i = 0;
319
320 /*
321 * There is an obvious race between allocating the array and LPIs
322 * being mapped/unmapped. If we ended up here as a result of a
323 * command, we're safe (locks are held, preventing another
324 * command). If coming from another path (such as enabling LPIs),
325 * we must be careful not to overrun the array.
326 */
327 irq_count = READ_ONCE(dist->lpi_list_count);
328 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
329 if (!intids)
330 return -ENOMEM;
331
332 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
333 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
334 if (i == irq_count)
335 break;
336 /* We don't need to "get" the IRQ, as we hold the list lock. */
337 if (vcpu && irq->target_vcpu != vcpu)
338 continue;
339 intids[i++] = irq->intid;
340 }
341 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
342
343 *intid_ptr = intids;
344 return i;
345 }
346
update_affinity(struct vgic_irq * irq,struct kvm_vcpu * vcpu)347 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
348 {
349 int ret = 0;
350 unsigned long flags;
351
352 raw_spin_lock_irqsave(&irq->irq_lock, flags);
353 irq->target_vcpu = vcpu;
354 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
355
356 if (irq->hw) {
357 struct its_vlpi_map map;
358
359 ret = its_get_vlpi(irq->host_irq, &map);
360 if (ret)
361 return ret;
362
363 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
364
365 ret = its_map_vlpi(irq->host_irq, &map);
366 }
367
368 return ret;
369 }
370
371 /*
372 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
373 * is targeting) to the VGIC's view, which deals with target VCPUs.
374 * Needs to be called whenever either the collection for a LPIs has
375 * changed or the collection itself got retargeted.
376 */
update_affinity_ite(struct kvm * kvm,struct its_ite * ite)377 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
378 {
379 struct kvm_vcpu *vcpu;
380
381 if (!its_is_collection_mapped(ite->collection))
382 return;
383
384 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
385 update_affinity(ite->irq, vcpu);
386 }
387
388 /*
389 * Updates the target VCPU for every LPI targeting this collection.
390 * Must be called with the its_lock mutex held.
391 */
update_affinity_collection(struct kvm * kvm,struct vgic_its * its,struct its_collection * coll)392 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
393 struct its_collection *coll)
394 {
395 struct its_device *device;
396 struct its_ite *ite;
397
398 for_each_lpi_its(device, ite, its) {
399 if (!ite->collection || coll != ite->collection)
400 continue;
401
402 update_affinity_ite(kvm, ite);
403 }
404 }
405
max_lpis_propbaser(u64 propbaser)406 static u32 max_lpis_propbaser(u64 propbaser)
407 {
408 int nr_idbits = (propbaser & 0x1f) + 1;
409
410 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
411 }
412
413 /*
414 * Sync the pending table pending bit of LPIs targeting @vcpu
415 * with our own data structures. This relies on the LPI being
416 * mapped before.
417 */
its_sync_lpi_pending_table(struct kvm_vcpu * vcpu)418 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
419 {
420 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
421 struct vgic_irq *irq;
422 int last_byte_offset = -1;
423 int ret = 0;
424 u32 *intids;
425 int nr_irqs, i;
426 unsigned long flags;
427 u8 pendmask;
428
429 nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
430 if (nr_irqs < 0)
431 return nr_irqs;
432
433 for (i = 0; i < nr_irqs; i++) {
434 int byte_offset, bit_nr;
435
436 byte_offset = intids[i] / BITS_PER_BYTE;
437 bit_nr = intids[i] % BITS_PER_BYTE;
438
439 /*
440 * For contiguously allocated LPIs chances are we just read
441 * this very same byte in the last iteration. Reuse that.
442 */
443 if (byte_offset != last_byte_offset) {
444 ret = kvm_read_guest_lock(vcpu->kvm,
445 pendbase + byte_offset,
446 &pendmask, 1);
447 if (ret) {
448 kfree(intids);
449 return ret;
450 }
451 last_byte_offset = byte_offset;
452 }
453
454 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
455 raw_spin_lock_irqsave(&irq->irq_lock, flags);
456 irq->pending_latch = pendmask & (1U << bit_nr);
457 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
458 vgic_put_irq(vcpu->kvm, irq);
459 }
460
461 kfree(intids);
462
463 return ret;
464 }
465
vgic_mmio_read_its_typer(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)466 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
467 struct vgic_its *its,
468 gpa_t addr, unsigned int len)
469 {
470 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
471 u64 reg = GITS_TYPER_PLPIS;
472
473 /*
474 * We use linear CPU numbers for redistributor addressing,
475 * so GITS_TYPER.PTA is 0.
476 * Also we force all PROPBASER registers to be the same, so
477 * CommonLPIAff is 0 as well.
478 * To avoid memory waste in the guest, we keep the number of IDBits and
479 * DevBits low - as least for the time being.
480 */
481 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
482 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
483 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
484
485 return extract_bytes(reg, addr & 7, len);
486 }
487
vgic_mmio_read_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)488 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
489 struct vgic_its *its,
490 gpa_t addr, unsigned int len)
491 {
492 u32 val;
493
494 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
495 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
496 return val;
497 }
498
vgic_mmio_uaccess_write_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)499 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
500 struct vgic_its *its,
501 gpa_t addr, unsigned int len,
502 unsigned long val)
503 {
504 u32 rev = GITS_IIDR_REV(val);
505
506 if (rev >= NR_ITS_ABIS)
507 return -EINVAL;
508 return vgic_its_set_abi(its, rev);
509 }
510
vgic_mmio_read_its_idregs(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)511 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
512 struct vgic_its *its,
513 gpa_t addr, unsigned int len)
514 {
515 switch (addr & 0xffff) {
516 case GITS_PIDR0:
517 return 0x92; /* part number, bits[7:0] */
518 case GITS_PIDR1:
519 return 0xb4; /* part number, bits[11:8] */
520 case GITS_PIDR2:
521 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
522 case GITS_PIDR4:
523 return 0x40; /* This is a 64K software visible page */
524 /* The following are the ID registers for (any) GIC. */
525 case GITS_CIDR0:
526 return 0x0d;
527 case GITS_CIDR1:
528 return 0xf0;
529 case GITS_CIDR2:
530 return 0x05;
531 case GITS_CIDR3:
532 return 0xb1;
533 }
534
535 return 0;
536 }
537
__vgic_its_check_cache(struct vgic_dist * dist,phys_addr_t db,u32 devid,u32 eventid)538 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
539 phys_addr_t db,
540 u32 devid, u32 eventid)
541 {
542 struct vgic_translation_cache_entry *cte;
543
544 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
545 /*
546 * If we hit a NULL entry, there is nothing after this
547 * point.
548 */
549 if (!cte->irq)
550 break;
551
552 if (cte->db != db || cte->devid != devid ||
553 cte->eventid != eventid)
554 continue;
555
556 /*
557 * Move this entry to the head, as it is the most
558 * recently used.
559 */
560 if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
561 list_move(&cte->entry, &dist->lpi_translation_cache);
562
563 return cte->irq;
564 }
565
566 return NULL;
567 }
568
vgic_its_check_cache(struct kvm * kvm,phys_addr_t db,u32 devid,u32 eventid)569 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
570 u32 devid, u32 eventid)
571 {
572 struct vgic_dist *dist = &kvm->arch.vgic;
573 struct vgic_irq *irq;
574 unsigned long flags;
575
576 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
577 irq = __vgic_its_check_cache(dist, db, devid, eventid);
578 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
579
580 return irq;
581 }
582
vgic_its_cache_translation(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq * irq)583 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
584 u32 devid, u32 eventid,
585 struct vgic_irq *irq)
586 {
587 struct vgic_dist *dist = &kvm->arch.vgic;
588 struct vgic_translation_cache_entry *cte;
589 unsigned long flags;
590 phys_addr_t db;
591
592 /* Do not cache a directly injected interrupt */
593 if (irq->hw)
594 return;
595
596 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
597
598 if (unlikely(list_empty(&dist->lpi_translation_cache)))
599 goto out;
600
601 /*
602 * We could have raced with another CPU caching the same
603 * translation behind our back, so let's check it is not in
604 * already
605 */
606 db = its->vgic_its_base + GITS_TRANSLATER;
607 if (__vgic_its_check_cache(dist, db, devid, eventid))
608 goto out;
609
610 /* Always reuse the last entry (LRU policy) */
611 cte = list_last_entry(&dist->lpi_translation_cache,
612 typeof(*cte), entry);
613
614 /*
615 * Caching the translation implies having an extra reference
616 * to the interrupt, so drop the potential reference on what
617 * was in the cache, and increment it on the new interrupt.
618 */
619 if (cte->irq)
620 __vgic_put_lpi_locked(kvm, cte->irq);
621
622 vgic_get_irq_kref(irq);
623
624 cte->db = db;
625 cte->devid = devid;
626 cte->eventid = eventid;
627 cte->irq = irq;
628
629 /* Move the new translation to the head of the list */
630 list_move(&cte->entry, &dist->lpi_translation_cache);
631
632 out:
633 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
634 }
635
vgic_its_invalidate_cache(struct kvm * kvm)636 void vgic_its_invalidate_cache(struct kvm *kvm)
637 {
638 struct vgic_dist *dist = &kvm->arch.vgic;
639 struct vgic_translation_cache_entry *cte;
640 unsigned long flags;
641
642 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
643
644 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
645 /*
646 * If we hit a NULL entry, there is nothing after this
647 * point.
648 */
649 if (!cte->irq)
650 break;
651
652 __vgic_put_lpi_locked(kvm, cte->irq);
653 cte->irq = NULL;
654 }
655
656 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
657 }
658
vgic_its_resolve_lpi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq ** irq)659 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
660 u32 devid, u32 eventid, struct vgic_irq **irq)
661 {
662 struct kvm_vcpu *vcpu;
663 struct its_ite *ite;
664
665 if (!its->enabled)
666 return -EBUSY;
667
668 ite = find_ite(its, devid, eventid);
669 if (!ite || !its_is_collection_mapped(ite->collection))
670 return E_ITS_INT_UNMAPPED_INTERRUPT;
671
672 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
673 if (!vcpu)
674 return E_ITS_INT_UNMAPPED_INTERRUPT;
675
676 if (!vcpu->arch.vgic_cpu.lpis_enabled)
677 return -EBUSY;
678
679 vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
680
681 *irq = ite->irq;
682 return 0;
683 }
684
vgic_msi_to_its(struct kvm * kvm,struct kvm_msi * msi)685 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
686 {
687 u64 address;
688 struct kvm_io_device *kvm_io_dev;
689 struct vgic_io_device *iodev;
690
691 if (!vgic_has_its(kvm))
692 return ERR_PTR(-ENODEV);
693
694 if (!(msi->flags & KVM_MSI_VALID_DEVID))
695 return ERR_PTR(-EINVAL);
696
697 address = (u64)msi->address_hi << 32 | msi->address_lo;
698
699 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
700 if (!kvm_io_dev)
701 return ERR_PTR(-EINVAL);
702
703 if (kvm_io_dev->ops != &kvm_io_gic_ops)
704 return ERR_PTR(-EINVAL);
705
706 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
707 if (iodev->iodev_type != IODEV_ITS)
708 return ERR_PTR(-EINVAL);
709
710 return iodev->its;
711 }
712
713 /*
714 * Find the target VCPU and the LPI number for a given devid/eventid pair
715 * and make this IRQ pending, possibly injecting it.
716 * Must be called with the its_lock mutex held.
717 * Returns 0 on success, a positive error value for any ITS mapping
718 * related errors and negative error values for generic errors.
719 */
vgic_its_trigger_msi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid)720 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
721 u32 devid, u32 eventid)
722 {
723 struct vgic_irq *irq = NULL;
724 unsigned long flags;
725 int err;
726
727 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
728 if (err)
729 return err;
730
731 if (irq->hw)
732 return irq_set_irqchip_state(irq->host_irq,
733 IRQCHIP_STATE_PENDING, true);
734
735 raw_spin_lock_irqsave(&irq->irq_lock, flags);
736 irq->pending_latch = true;
737 vgic_queue_irq_unlock(kvm, irq, flags);
738
739 return 0;
740 }
741
vgic_its_inject_cached_translation(struct kvm * kvm,struct kvm_msi * msi)742 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
743 {
744 struct vgic_irq *irq;
745 unsigned long flags;
746 phys_addr_t db;
747
748 db = (u64)msi->address_hi << 32 | msi->address_lo;
749 irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
750
751 if (!irq)
752 return -1;
753
754 raw_spin_lock_irqsave(&irq->irq_lock, flags);
755 irq->pending_latch = true;
756 vgic_queue_irq_unlock(kvm, irq, flags);
757
758 return 0;
759 }
760
761 /*
762 * Queries the KVM IO bus framework to get the ITS pointer from the given
763 * doorbell address.
764 * We then call vgic_its_trigger_msi() with the decoded data.
765 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
766 */
vgic_its_inject_msi(struct kvm * kvm,struct kvm_msi * msi)767 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
768 {
769 struct vgic_its *its;
770 int ret;
771
772 if (!vgic_its_inject_cached_translation(kvm, msi))
773 return 1;
774
775 its = vgic_msi_to_its(kvm, msi);
776 if (IS_ERR(its))
777 return PTR_ERR(its);
778
779 mutex_lock(&its->its_lock);
780 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
781 mutex_unlock(&its->its_lock);
782
783 if (ret < 0)
784 return ret;
785
786 /*
787 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
788 * if the guest has blocked the MSI. So we map any LPI mapping
789 * related error to that.
790 */
791 if (ret)
792 return 0;
793 else
794 return 1;
795 }
796
797 /* Requires the its_lock to be held. */
its_free_ite(struct kvm * kvm,struct its_ite * ite)798 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
799 {
800 list_del(&ite->ite_list);
801
802 /* This put matches the get in vgic_add_lpi. */
803 if (ite->irq) {
804 if (ite->irq->hw)
805 WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
806
807 vgic_put_irq(kvm, ite->irq);
808 }
809
810 kfree(ite);
811 }
812
its_cmd_mask_field(u64 * its_cmd,int word,int shift,int size)813 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
814 {
815 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
816 }
817
818 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
819 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
820 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1)
821 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
822 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
823 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
824 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8)
825 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
826 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
827
828 /*
829 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
830 * Must be called with the its_lock mutex held.
831 */
vgic_its_cmd_handle_discard(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)832 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
833 u64 *its_cmd)
834 {
835 u32 device_id = its_cmd_get_deviceid(its_cmd);
836 u32 event_id = its_cmd_get_id(its_cmd);
837 struct its_ite *ite;
838
839
840 ite = find_ite(its, device_id, event_id);
841 if (ite && ite->collection) {
842 /*
843 * Though the spec talks about removing the pending state, we
844 * don't bother here since we clear the ITTE anyway and the
845 * pending state is a property of the ITTE struct.
846 */
847 vgic_its_invalidate_cache(kvm);
848
849 its_free_ite(kvm, ite);
850 return 0;
851 }
852
853 return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
854 }
855
856 /*
857 * The MOVI command moves an ITTE to a different collection.
858 * Must be called with the its_lock mutex held.
859 */
vgic_its_cmd_handle_movi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)860 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
861 u64 *its_cmd)
862 {
863 u32 device_id = its_cmd_get_deviceid(its_cmd);
864 u32 event_id = its_cmd_get_id(its_cmd);
865 u32 coll_id = its_cmd_get_collection(its_cmd);
866 struct kvm_vcpu *vcpu;
867 struct its_ite *ite;
868 struct its_collection *collection;
869
870 ite = find_ite(its, device_id, event_id);
871 if (!ite)
872 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
873
874 if (!its_is_collection_mapped(ite->collection))
875 return E_ITS_MOVI_UNMAPPED_COLLECTION;
876
877 collection = find_collection(its, coll_id);
878 if (!its_is_collection_mapped(collection))
879 return E_ITS_MOVI_UNMAPPED_COLLECTION;
880
881 ite->collection = collection;
882 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
883
884 vgic_its_invalidate_cache(kvm);
885
886 return update_affinity(ite->irq, vcpu);
887 }
888
889 /*
890 * Check whether an ID can be stored into the corresponding guest table.
891 * For a direct table this is pretty easy, but gets a bit nasty for
892 * indirect tables. We check whether the resulting guest physical address
893 * is actually valid (covered by a memslot and guest accessible).
894 * For this we have to read the respective first level entry.
895 */
vgic_its_check_id(struct vgic_its * its,u64 baser,u32 id,gpa_t * eaddr)896 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
897 gpa_t *eaddr)
898 {
899 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
900 u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
901 phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
902 int esz = GITS_BASER_ENTRY_SIZE(baser);
903 int index, idx;
904 gfn_t gfn;
905 bool ret;
906
907 switch (type) {
908 case GITS_BASER_TYPE_DEVICE:
909 if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
910 return false;
911 break;
912 case GITS_BASER_TYPE_COLLECTION:
913 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
914 if (id >= BIT_ULL(16))
915 return false;
916 break;
917 default:
918 return false;
919 }
920
921 if (!(baser & GITS_BASER_INDIRECT)) {
922 phys_addr_t addr;
923
924 if (id >= (l1_tbl_size / esz))
925 return false;
926
927 addr = base + id * esz;
928 gfn = addr >> PAGE_SHIFT;
929
930 if (eaddr)
931 *eaddr = addr;
932
933 goto out;
934 }
935
936 /* calculate and check the index into the 1st level */
937 index = id / (SZ_64K / esz);
938 if (index >= (l1_tbl_size / sizeof(u64)))
939 return false;
940
941 /* Each 1st level entry is represented by a 64-bit value. */
942 if (kvm_read_guest_lock(its->dev->kvm,
943 base + index * sizeof(indirect_ptr),
944 &indirect_ptr, sizeof(indirect_ptr)))
945 return false;
946
947 indirect_ptr = le64_to_cpu(indirect_ptr);
948
949 /* check the valid bit of the first level entry */
950 if (!(indirect_ptr & BIT_ULL(63)))
951 return false;
952
953 /* Mask the guest physical address and calculate the frame number. */
954 indirect_ptr &= GENMASK_ULL(51, 16);
955
956 /* Find the address of the actual entry */
957 index = id % (SZ_64K / esz);
958 indirect_ptr += index * esz;
959 gfn = indirect_ptr >> PAGE_SHIFT;
960
961 if (eaddr)
962 *eaddr = indirect_ptr;
963
964 out:
965 idx = srcu_read_lock(&its->dev->kvm->srcu);
966 ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
967 srcu_read_unlock(&its->dev->kvm->srcu, idx);
968 return ret;
969 }
970
vgic_its_alloc_collection(struct vgic_its * its,struct its_collection ** colp,u32 coll_id)971 static int vgic_its_alloc_collection(struct vgic_its *its,
972 struct its_collection **colp,
973 u32 coll_id)
974 {
975 struct its_collection *collection;
976
977 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
978 return E_ITS_MAPC_COLLECTION_OOR;
979
980 collection = kzalloc(sizeof(*collection), GFP_KERNEL);
981 if (!collection)
982 return -ENOMEM;
983
984 collection->collection_id = coll_id;
985 collection->target_addr = COLLECTION_NOT_MAPPED;
986
987 list_add_tail(&collection->coll_list, &its->collection_list);
988 *colp = collection;
989
990 return 0;
991 }
992
vgic_its_free_collection(struct vgic_its * its,u32 coll_id)993 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
994 {
995 struct its_collection *collection;
996 struct its_device *device;
997 struct its_ite *ite;
998
999 /*
1000 * Clearing the mapping for that collection ID removes the
1001 * entry from the list. If there wasn't any before, we can
1002 * go home early.
1003 */
1004 collection = find_collection(its, coll_id);
1005 if (!collection)
1006 return;
1007
1008 for_each_lpi_its(device, ite, its)
1009 if (ite->collection &&
1010 ite->collection->collection_id == coll_id)
1011 ite->collection = NULL;
1012
1013 list_del(&collection->coll_list);
1014 kfree(collection);
1015 }
1016
1017 /* Must be called with its_lock mutex held */
vgic_its_alloc_ite(struct its_device * device,struct its_collection * collection,u32 event_id)1018 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1019 struct its_collection *collection,
1020 u32 event_id)
1021 {
1022 struct its_ite *ite;
1023
1024 ite = kzalloc(sizeof(*ite), GFP_KERNEL);
1025 if (!ite)
1026 return ERR_PTR(-ENOMEM);
1027
1028 ite->event_id = event_id;
1029 ite->collection = collection;
1030
1031 list_add_tail(&ite->ite_list, &device->itt_head);
1032 return ite;
1033 }
1034
1035 /*
1036 * The MAPTI and MAPI commands map LPIs to ITTEs.
1037 * Must be called with its_lock mutex held.
1038 */
vgic_its_cmd_handle_mapi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1039 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1040 u64 *its_cmd)
1041 {
1042 u32 device_id = its_cmd_get_deviceid(its_cmd);
1043 u32 event_id = its_cmd_get_id(its_cmd);
1044 u32 coll_id = its_cmd_get_collection(its_cmd);
1045 struct its_ite *ite;
1046 struct kvm_vcpu *vcpu = NULL;
1047 struct its_device *device;
1048 struct its_collection *collection, *new_coll = NULL;
1049 struct vgic_irq *irq;
1050 int lpi_nr;
1051
1052 device = find_its_device(its, device_id);
1053 if (!device)
1054 return E_ITS_MAPTI_UNMAPPED_DEVICE;
1055
1056 if (event_id >= BIT_ULL(device->num_eventid_bits))
1057 return E_ITS_MAPTI_ID_OOR;
1058
1059 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1060 lpi_nr = its_cmd_get_physical_id(its_cmd);
1061 else
1062 lpi_nr = event_id;
1063 if (lpi_nr < GIC_LPI_OFFSET ||
1064 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1065 return E_ITS_MAPTI_PHYSICALID_OOR;
1066
1067 /* If there is an existing mapping, behavior is UNPREDICTABLE. */
1068 if (find_ite(its, device_id, event_id))
1069 return 0;
1070
1071 collection = find_collection(its, coll_id);
1072 if (!collection) {
1073 int ret = vgic_its_alloc_collection(its, &collection, coll_id);
1074 if (ret)
1075 return ret;
1076 new_coll = collection;
1077 }
1078
1079 ite = vgic_its_alloc_ite(device, collection, event_id);
1080 if (IS_ERR(ite)) {
1081 if (new_coll)
1082 vgic_its_free_collection(its, coll_id);
1083 return PTR_ERR(ite);
1084 }
1085
1086 if (its_is_collection_mapped(collection))
1087 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1088
1089 irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1090 if (IS_ERR(irq)) {
1091 if (new_coll)
1092 vgic_its_free_collection(its, coll_id);
1093 its_free_ite(kvm, ite);
1094 return PTR_ERR(irq);
1095 }
1096 ite->irq = irq;
1097
1098 return 0;
1099 }
1100
1101 /* Requires the its_lock to be held. */
vgic_its_free_device(struct kvm * kvm,struct its_device * device)1102 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
1103 {
1104 struct its_ite *ite, *temp;
1105
1106 /*
1107 * The spec says that unmapping a device with still valid
1108 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1109 * since we cannot leave the memory unreferenced.
1110 */
1111 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1112 its_free_ite(kvm, ite);
1113
1114 vgic_its_invalidate_cache(kvm);
1115
1116 list_del(&device->dev_list);
1117 kfree(device);
1118 }
1119
1120 /* its lock must be held */
vgic_its_free_device_list(struct kvm * kvm,struct vgic_its * its)1121 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1122 {
1123 struct its_device *cur, *temp;
1124
1125 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1126 vgic_its_free_device(kvm, cur);
1127 }
1128
1129 /* its lock must be held */
vgic_its_free_collection_list(struct kvm * kvm,struct vgic_its * its)1130 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1131 {
1132 struct its_collection *cur, *temp;
1133
1134 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1135 vgic_its_free_collection(its, cur->collection_id);
1136 }
1137
1138 /* Must be called with its_lock mutex held */
vgic_its_alloc_device(struct vgic_its * its,u32 device_id,gpa_t itt_addr,u8 num_eventid_bits)1139 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1140 u32 device_id, gpa_t itt_addr,
1141 u8 num_eventid_bits)
1142 {
1143 struct its_device *device;
1144
1145 device = kzalloc(sizeof(*device), GFP_KERNEL);
1146 if (!device)
1147 return ERR_PTR(-ENOMEM);
1148
1149 device->device_id = device_id;
1150 device->itt_addr = itt_addr;
1151 device->num_eventid_bits = num_eventid_bits;
1152 INIT_LIST_HEAD(&device->itt_head);
1153
1154 list_add_tail(&device->dev_list, &its->device_list);
1155 return device;
1156 }
1157
1158 /*
1159 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1160 * Must be called with the its_lock mutex held.
1161 */
vgic_its_cmd_handle_mapd(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1162 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1163 u64 *its_cmd)
1164 {
1165 u32 device_id = its_cmd_get_deviceid(its_cmd);
1166 bool valid = its_cmd_get_validbit(its_cmd);
1167 u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1168 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1169 struct its_device *device;
1170
1171 if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1172 return E_ITS_MAPD_DEVICE_OOR;
1173
1174 if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1175 return E_ITS_MAPD_ITTSIZE_OOR;
1176
1177 device = find_its_device(its, device_id);
1178
1179 /*
1180 * The spec says that calling MAPD on an already mapped device
1181 * invalidates all cached data for this device. We implement this
1182 * by removing the mapping and re-establishing it.
1183 */
1184 if (device)
1185 vgic_its_free_device(kvm, device);
1186
1187 /*
1188 * The spec does not say whether unmapping a not-mapped device
1189 * is an error, so we are done in any case.
1190 */
1191 if (!valid)
1192 return 0;
1193
1194 device = vgic_its_alloc_device(its, device_id, itt_addr,
1195 num_eventid_bits);
1196
1197 return PTR_ERR_OR_ZERO(device);
1198 }
1199
1200 /*
1201 * The MAPC command maps collection IDs to redistributors.
1202 * Must be called with the its_lock mutex held.
1203 */
vgic_its_cmd_handle_mapc(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1204 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1205 u64 *its_cmd)
1206 {
1207 u16 coll_id;
1208 u32 target_addr;
1209 struct its_collection *collection;
1210 bool valid;
1211
1212 valid = its_cmd_get_validbit(its_cmd);
1213 coll_id = its_cmd_get_collection(its_cmd);
1214 target_addr = its_cmd_get_target_addr(its_cmd);
1215
1216 if (target_addr >= atomic_read(&kvm->online_vcpus))
1217 return E_ITS_MAPC_PROCNUM_OOR;
1218
1219 if (!valid) {
1220 vgic_its_free_collection(its, coll_id);
1221 vgic_its_invalidate_cache(kvm);
1222 } else {
1223 collection = find_collection(its, coll_id);
1224
1225 if (!collection) {
1226 int ret;
1227
1228 ret = vgic_its_alloc_collection(its, &collection,
1229 coll_id);
1230 if (ret)
1231 return ret;
1232 collection->target_addr = target_addr;
1233 } else {
1234 collection->target_addr = target_addr;
1235 update_affinity_collection(kvm, its, collection);
1236 }
1237 }
1238
1239 return 0;
1240 }
1241
1242 /*
1243 * The CLEAR command removes the pending state for a particular LPI.
1244 * Must be called with the its_lock mutex held.
1245 */
vgic_its_cmd_handle_clear(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1246 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1247 u64 *its_cmd)
1248 {
1249 u32 device_id = its_cmd_get_deviceid(its_cmd);
1250 u32 event_id = its_cmd_get_id(its_cmd);
1251 struct its_ite *ite;
1252
1253
1254 ite = find_ite(its, device_id, event_id);
1255 if (!ite)
1256 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1257
1258 ite->irq->pending_latch = false;
1259
1260 if (ite->irq->hw)
1261 return irq_set_irqchip_state(ite->irq->host_irq,
1262 IRQCHIP_STATE_PENDING, false);
1263
1264 return 0;
1265 }
1266
1267 /*
1268 * The INV command syncs the configuration bits from the memory table.
1269 * Must be called with the its_lock mutex held.
1270 */
vgic_its_cmd_handle_inv(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1271 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1272 u64 *its_cmd)
1273 {
1274 u32 device_id = its_cmd_get_deviceid(its_cmd);
1275 u32 event_id = its_cmd_get_id(its_cmd);
1276 struct its_ite *ite;
1277
1278
1279 ite = find_ite(its, device_id, event_id);
1280 if (!ite)
1281 return E_ITS_INV_UNMAPPED_INTERRUPT;
1282
1283 return update_lpi_config(kvm, ite->irq, NULL, true);
1284 }
1285
1286 /*
1287 * The INVALL command requests flushing of all IRQ data in this collection.
1288 * Find the VCPU mapped to that collection, then iterate over the VM's list
1289 * of mapped LPIs and update the configuration for each IRQ which targets
1290 * the specified vcpu. The configuration will be read from the in-memory
1291 * configuration table.
1292 * Must be called with the its_lock mutex held.
1293 */
vgic_its_cmd_handle_invall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1294 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1295 u64 *its_cmd)
1296 {
1297 u32 coll_id = its_cmd_get_collection(its_cmd);
1298 struct its_collection *collection;
1299 struct kvm_vcpu *vcpu;
1300 struct vgic_irq *irq;
1301 u32 *intids;
1302 int irq_count, i;
1303
1304 collection = find_collection(its, coll_id);
1305 if (!its_is_collection_mapped(collection))
1306 return E_ITS_INVALL_UNMAPPED_COLLECTION;
1307
1308 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1309
1310 irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1311 if (irq_count < 0)
1312 return irq_count;
1313
1314 for (i = 0; i < irq_count; i++) {
1315 irq = vgic_get_irq(kvm, NULL, intids[i]);
1316 if (!irq)
1317 continue;
1318 update_lpi_config(kvm, irq, vcpu, false);
1319 vgic_put_irq(kvm, irq);
1320 }
1321
1322 kfree(intids);
1323
1324 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1325 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1326
1327 return 0;
1328 }
1329
1330 /*
1331 * The MOVALL command moves the pending state of all IRQs targeting one
1332 * redistributor to another. We don't hold the pending state in the VCPUs,
1333 * but in the IRQs instead, so there is really not much to do for us here.
1334 * However the spec says that no IRQ must target the old redistributor
1335 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1336 * This command affects all LPIs in the system that target that redistributor.
1337 */
vgic_its_cmd_handle_movall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1338 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1339 u64 *its_cmd)
1340 {
1341 u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1342 u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1343 struct kvm_vcpu *vcpu1, *vcpu2;
1344 struct vgic_irq *irq;
1345 u32 *intids;
1346 int irq_count, i;
1347
1348 if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1349 target2_addr >= atomic_read(&kvm->online_vcpus))
1350 return E_ITS_MOVALL_PROCNUM_OOR;
1351
1352 if (target1_addr == target2_addr)
1353 return 0;
1354
1355 vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1356 vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1357
1358 irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1359 if (irq_count < 0)
1360 return irq_count;
1361
1362 for (i = 0; i < irq_count; i++) {
1363 irq = vgic_get_irq(kvm, NULL, intids[i]);
1364
1365 update_affinity(irq, vcpu2);
1366
1367 vgic_put_irq(kvm, irq);
1368 }
1369
1370 vgic_its_invalidate_cache(kvm);
1371
1372 kfree(intids);
1373 return 0;
1374 }
1375
1376 /*
1377 * The INT command injects the LPI associated with that DevID/EvID pair.
1378 * Must be called with the its_lock mutex held.
1379 */
vgic_its_cmd_handle_int(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1380 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1381 u64 *its_cmd)
1382 {
1383 u32 msi_data = its_cmd_get_id(its_cmd);
1384 u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1385
1386 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1387 }
1388
1389 /*
1390 * This function is called with the its_cmd lock held, but the ITS data
1391 * structure lock dropped.
1392 */
vgic_its_handle_command(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1393 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1394 u64 *its_cmd)
1395 {
1396 int ret = -ENODEV;
1397
1398 mutex_lock(&its->its_lock);
1399 switch (its_cmd_get_command(its_cmd)) {
1400 case GITS_CMD_MAPD:
1401 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1402 break;
1403 case GITS_CMD_MAPC:
1404 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1405 break;
1406 case GITS_CMD_MAPI:
1407 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1408 break;
1409 case GITS_CMD_MAPTI:
1410 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1411 break;
1412 case GITS_CMD_MOVI:
1413 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1414 break;
1415 case GITS_CMD_DISCARD:
1416 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1417 break;
1418 case GITS_CMD_CLEAR:
1419 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1420 break;
1421 case GITS_CMD_MOVALL:
1422 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1423 break;
1424 case GITS_CMD_INT:
1425 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1426 break;
1427 case GITS_CMD_INV:
1428 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1429 break;
1430 case GITS_CMD_INVALL:
1431 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1432 break;
1433 case GITS_CMD_SYNC:
1434 /* we ignore this command: we are in sync all of the time */
1435 ret = 0;
1436 break;
1437 }
1438 mutex_unlock(&its->its_lock);
1439
1440 return ret;
1441 }
1442
vgic_sanitise_its_baser(u64 reg)1443 static u64 vgic_sanitise_its_baser(u64 reg)
1444 {
1445 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1446 GITS_BASER_SHAREABILITY_SHIFT,
1447 vgic_sanitise_shareability);
1448 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1449 GITS_BASER_INNER_CACHEABILITY_SHIFT,
1450 vgic_sanitise_inner_cacheability);
1451 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1452 GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1453 vgic_sanitise_outer_cacheability);
1454
1455 /* We support only one (ITS) page size: 64K */
1456 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1457
1458 return reg;
1459 }
1460
vgic_sanitise_its_cbaser(u64 reg)1461 static u64 vgic_sanitise_its_cbaser(u64 reg)
1462 {
1463 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1464 GITS_CBASER_SHAREABILITY_SHIFT,
1465 vgic_sanitise_shareability);
1466 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1467 GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1468 vgic_sanitise_inner_cacheability);
1469 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1470 GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1471 vgic_sanitise_outer_cacheability);
1472
1473 /* Sanitise the physical address to be 64k aligned. */
1474 reg &= ~GENMASK_ULL(15, 12);
1475
1476 return reg;
1477 }
1478
vgic_mmio_read_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1479 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1480 struct vgic_its *its,
1481 gpa_t addr, unsigned int len)
1482 {
1483 return extract_bytes(its->cbaser, addr & 7, len);
1484 }
1485
vgic_mmio_write_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1486 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1487 gpa_t addr, unsigned int len,
1488 unsigned long val)
1489 {
1490 /* When GITS_CTLR.Enable is 1, this register is RO. */
1491 if (its->enabled)
1492 return;
1493
1494 mutex_lock(&its->cmd_lock);
1495 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1496 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1497 its->creadr = 0;
1498 /*
1499 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1500 * it to CREADR to make sure we start with an empty command buffer.
1501 */
1502 its->cwriter = its->creadr;
1503 mutex_unlock(&its->cmd_lock);
1504 }
1505
1506 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
1507 #define ITS_CMD_SIZE 32
1508 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
1509
1510 /* Must be called with the cmd_lock held. */
vgic_its_process_commands(struct kvm * kvm,struct vgic_its * its)1511 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1512 {
1513 gpa_t cbaser;
1514 u64 cmd_buf[4];
1515
1516 /* Commands are only processed when the ITS is enabled. */
1517 if (!its->enabled)
1518 return;
1519
1520 cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1521
1522 while (its->cwriter != its->creadr) {
1523 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1524 cmd_buf, ITS_CMD_SIZE);
1525 /*
1526 * If kvm_read_guest() fails, this could be due to the guest
1527 * programming a bogus value in CBASER or something else going
1528 * wrong from which we cannot easily recover.
1529 * According to section 6.3.2 in the GICv3 spec we can just
1530 * ignore that command then.
1531 */
1532 if (!ret)
1533 vgic_its_handle_command(kvm, its, cmd_buf);
1534
1535 its->creadr += ITS_CMD_SIZE;
1536 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1537 its->creadr = 0;
1538 }
1539 }
1540
1541 /*
1542 * By writing to CWRITER the guest announces new commands to be processed.
1543 * To avoid any races in the first place, we take the its_cmd lock, which
1544 * protects our ring buffer variables, so that there is only one user
1545 * per ITS handling commands at a given time.
1546 */
vgic_mmio_write_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1547 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1548 gpa_t addr, unsigned int len,
1549 unsigned long val)
1550 {
1551 u64 reg;
1552
1553 if (!its)
1554 return;
1555
1556 mutex_lock(&its->cmd_lock);
1557
1558 reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1559 reg = ITS_CMD_OFFSET(reg);
1560 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1561 mutex_unlock(&its->cmd_lock);
1562 return;
1563 }
1564 its->cwriter = reg;
1565
1566 vgic_its_process_commands(kvm, its);
1567
1568 mutex_unlock(&its->cmd_lock);
1569 }
1570
vgic_mmio_read_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1571 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1572 struct vgic_its *its,
1573 gpa_t addr, unsigned int len)
1574 {
1575 return extract_bytes(its->cwriter, addr & 0x7, len);
1576 }
1577
vgic_mmio_read_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1578 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1579 struct vgic_its *its,
1580 gpa_t addr, unsigned int len)
1581 {
1582 return extract_bytes(its->creadr, addr & 0x7, len);
1583 }
1584
vgic_mmio_uaccess_write_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1585 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1586 struct vgic_its *its,
1587 gpa_t addr, unsigned int len,
1588 unsigned long val)
1589 {
1590 u32 cmd_offset;
1591 int ret = 0;
1592
1593 mutex_lock(&its->cmd_lock);
1594
1595 if (its->enabled) {
1596 ret = -EBUSY;
1597 goto out;
1598 }
1599
1600 cmd_offset = ITS_CMD_OFFSET(val);
1601 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1602 ret = -EINVAL;
1603 goto out;
1604 }
1605
1606 its->creadr = cmd_offset;
1607 out:
1608 mutex_unlock(&its->cmd_lock);
1609 return ret;
1610 }
1611
1612 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
vgic_mmio_read_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1613 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1614 struct vgic_its *its,
1615 gpa_t addr, unsigned int len)
1616 {
1617 u64 reg;
1618
1619 switch (BASER_INDEX(addr)) {
1620 case 0:
1621 reg = its->baser_device_table;
1622 break;
1623 case 1:
1624 reg = its->baser_coll_table;
1625 break;
1626 default:
1627 reg = 0;
1628 break;
1629 }
1630
1631 return extract_bytes(reg, addr & 7, len);
1632 }
1633
1634 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
vgic_mmio_write_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1635 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1636 struct vgic_its *its,
1637 gpa_t addr, unsigned int len,
1638 unsigned long val)
1639 {
1640 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1641 u64 entry_size, table_type;
1642 u64 reg, *regptr, clearbits = 0;
1643
1644 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1645 if (its->enabled)
1646 return;
1647
1648 switch (BASER_INDEX(addr)) {
1649 case 0:
1650 regptr = &its->baser_device_table;
1651 entry_size = abi->dte_esz;
1652 table_type = GITS_BASER_TYPE_DEVICE;
1653 break;
1654 case 1:
1655 regptr = &its->baser_coll_table;
1656 entry_size = abi->cte_esz;
1657 table_type = GITS_BASER_TYPE_COLLECTION;
1658 clearbits = GITS_BASER_INDIRECT;
1659 break;
1660 default:
1661 return;
1662 }
1663
1664 reg = update_64bit_reg(*regptr, addr & 7, len, val);
1665 reg &= ~GITS_BASER_RO_MASK;
1666 reg &= ~clearbits;
1667
1668 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1669 reg |= table_type << GITS_BASER_TYPE_SHIFT;
1670 reg = vgic_sanitise_its_baser(reg);
1671
1672 *regptr = reg;
1673
1674 if (!(reg & GITS_BASER_VALID)) {
1675 /* Take the its_lock to prevent a race with a save/restore */
1676 mutex_lock(&its->its_lock);
1677 switch (table_type) {
1678 case GITS_BASER_TYPE_DEVICE:
1679 vgic_its_free_device_list(kvm, its);
1680 break;
1681 case GITS_BASER_TYPE_COLLECTION:
1682 vgic_its_free_collection_list(kvm, its);
1683 break;
1684 }
1685 mutex_unlock(&its->its_lock);
1686 }
1687 }
1688
vgic_mmio_read_its_ctlr(struct kvm * vcpu,struct vgic_its * its,gpa_t addr,unsigned int len)1689 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1690 struct vgic_its *its,
1691 gpa_t addr, unsigned int len)
1692 {
1693 u32 reg = 0;
1694
1695 mutex_lock(&its->cmd_lock);
1696 if (its->creadr == its->cwriter)
1697 reg |= GITS_CTLR_QUIESCENT;
1698 if (its->enabled)
1699 reg |= GITS_CTLR_ENABLE;
1700 mutex_unlock(&its->cmd_lock);
1701
1702 return reg;
1703 }
1704
vgic_mmio_write_its_ctlr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1705 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1706 gpa_t addr, unsigned int len,
1707 unsigned long val)
1708 {
1709 mutex_lock(&its->cmd_lock);
1710
1711 /*
1712 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1713 * device/collection BASER are invalid
1714 */
1715 if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1716 (!(its->baser_device_table & GITS_BASER_VALID) ||
1717 !(its->baser_coll_table & GITS_BASER_VALID) ||
1718 !(its->cbaser & GITS_CBASER_VALID)))
1719 goto out;
1720
1721 its->enabled = !!(val & GITS_CTLR_ENABLE);
1722 if (!its->enabled)
1723 vgic_its_invalidate_cache(kvm);
1724
1725 /*
1726 * Try to process any pending commands. This function bails out early
1727 * if the ITS is disabled or no commands have been queued.
1728 */
1729 vgic_its_process_commands(kvm, its);
1730
1731 out:
1732 mutex_unlock(&its->cmd_lock);
1733 }
1734
1735 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
1736 { \
1737 .reg_offset = off, \
1738 .len = length, \
1739 .access_flags = acc, \
1740 .its_read = rd, \
1741 .its_write = wr, \
1742 }
1743
1744 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1745 { \
1746 .reg_offset = off, \
1747 .len = length, \
1748 .access_flags = acc, \
1749 .its_read = rd, \
1750 .its_write = wr, \
1751 .uaccess_its_write = uwr, \
1752 }
1753
its_mmio_write_wi(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1754 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1755 gpa_t addr, unsigned int len, unsigned long val)
1756 {
1757 /* Ignore */
1758 }
1759
1760 static struct vgic_register_region its_registers[] = {
1761 REGISTER_ITS_DESC(GITS_CTLR,
1762 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1763 VGIC_ACCESS_32bit),
1764 REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1765 vgic_mmio_read_its_iidr, its_mmio_write_wi,
1766 vgic_mmio_uaccess_write_its_iidr, 4,
1767 VGIC_ACCESS_32bit),
1768 REGISTER_ITS_DESC(GITS_TYPER,
1769 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1770 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1771 REGISTER_ITS_DESC(GITS_CBASER,
1772 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1773 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1774 REGISTER_ITS_DESC(GITS_CWRITER,
1775 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1776 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1777 REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1778 vgic_mmio_read_its_creadr, its_mmio_write_wi,
1779 vgic_mmio_uaccess_write_its_creadr, 8,
1780 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1781 REGISTER_ITS_DESC(GITS_BASER,
1782 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1783 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1784 REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1785 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1786 VGIC_ACCESS_32bit),
1787 };
1788
1789 /* This is called on setting the LPI enable bit in the redistributor. */
vgic_enable_lpis(struct kvm_vcpu * vcpu)1790 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1791 {
1792 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1793 its_sync_lpi_pending_table(vcpu);
1794 }
1795
vgic_register_its_iodev(struct kvm * kvm,struct vgic_its * its,u64 addr)1796 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1797 u64 addr)
1798 {
1799 struct vgic_io_device *iodev = &its->iodev;
1800 int ret;
1801
1802 mutex_lock(&kvm->slots_lock);
1803 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1804 ret = -EBUSY;
1805 goto out;
1806 }
1807
1808 its->vgic_its_base = addr;
1809 iodev->regions = its_registers;
1810 iodev->nr_regions = ARRAY_SIZE(its_registers);
1811 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1812
1813 iodev->base_addr = its->vgic_its_base;
1814 iodev->iodev_type = IODEV_ITS;
1815 iodev->its = its;
1816 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1817 KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1818 out:
1819 mutex_unlock(&kvm->slots_lock);
1820
1821 return ret;
1822 }
1823
1824 /* Default is 16 cached LPIs per vcpu */
1825 #define LPI_DEFAULT_PCPU_CACHE_SIZE 16
1826
vgic_lpi_translation_cache_init(struct kvm * kvm)1827 void vgic_lpi_translation_cache_init(struct kvm *kvm)
1828 {
1829 struct vgic_dist *dist = &kvm->arch.vgic;
1830 unsigned int sz;
1831 int i;
1832
1833 if (!list_empty(&dist->lpi_translation_cache))
1834 return;
1835
1836 sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
1837
1838 for (i = 0; i < sz; i++) {
1839 struct vgic_translation_cache_entry *cte;
1840
1841 /* An allocation failure is not fatal */
1842 cte = kzalloc(sizeof(*cte), GFP_KERNEL);
1843 if (WARN_ON(!cte))
1844 break;
1845
1846 INIT_LIST_HEAD(&cte->entry);
1847 list_add(&cte->entry, &dist->lpi_translation_cache);
1848 }
1849 }
1850
vgic_lpi_translation_cache_destroy(struct kvm * kvm)1851 void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
1852 {
1853 struct vgic_dist *dist = &kvm->arch.vgic;
1854 struct vgic_translation_cache_entry *cte, *tmp;
1855
1856 vgic_its_invalidate_cache(kvm);
1857
1858 list_for_each_entry_safe(cte, tmp,
1859 &dist->lpi_translation_cache, entry) {
1860 list_del(&cte->entry);
1861 kfree(cte);
1862 }
1863 }
1864
1865 #define INITIAL_BASER_VALUE \
1866 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
1867 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
1868 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
1869 GITS_BASER_PAGE_SIZE_64K)
1870
1871 #define INITIAL_PROPBASER_VALUE \
1872 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
1873 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
1874 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1875
vgic_its_create(struct kvm_device * dev,u32 type)1876 static int vgic_its_create(struct kvm_device *dev, u32 type)
1877 {
1878 struct vgic_its *its;
1879
1880 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1881 return -ENODEV;
1882
1883 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1884 if (!its)
1885 return -ENOMEM;
1886
1887 if (vgic_initialized(dev->kvm)) {
1888 int ret = vgic_v4_init(dev->kvm);
1889 if (ret < 0) {
1890 kfree(its);
1891 return ret;
1892 }
1893
1894 vgic_lpi_translation_cache_init(dev->kvm);
1895 }
1896
1897 mutex_init(&its->its_lock);
1898 mutex_init(&its->cmd_lock);
1899
1900 its->vgic_its_base = VGIC_ADDR_UNDEF;
1901
1902 INIT_LIST_HEAD(&its->device_list);
1903 INIT_LIST_HEAD(&its->collection_list);
1904
1905 dev->kvm->arch.vgic.msis_require_devid = true;
1906 dev->kvm->arch.vgic.has_its = true;
1907 its->enabled = false;
1908 its->dev = dev;
1909
1910 its->baser_device_table = INITIAL_BASER_VALUE |
1911 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1912 its->baser_coll_table = INITIAL_BASER_VALUE |
1913 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1914 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1915
1916 dev->private = its;
1917
1918 return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1919 }
1920
vgic_its_destroy(struct kvm_device * kvm_dev)1921 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1922 {
1923 struct kvm *kvm = kvm_dev->kvm;
1924 struct vgic_its *its = kvm_dev->private;
1925
1926 mutex_lock(&its->its_lock);
1927
1928 vgic_its_free_device_list(kvm, its);
1929 vgic_its_free_collection_list(kvm, its);
1930
1931 mutex_unlock(&its->its_lock);
1932 kfree(its);
1933 kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
1934 }
1935
vgic_its_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)1936 static int vgic_its_has_attr_regs(struct kvm_device *dev,
1937 struct kvm_device_attr *attr)
1938 {
1939 const struct vgic_register_region *region;
1940 gpa_t offset = attr->attr;
1941 int align;
1942
1943 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1944
1945 if (offset & align)
1946 return -EINVAL;
1947
1948 region = vgic_find_mmio_region(its_registers,
1949 ARRAY_SIZE(its_registers),
1950 offset);
1951 if (!region)
1952 return -ENXIO;
1953
1954 return 0;
1955 }
1956
vgic_its_attr_regs_access(struct kvm_device * dev,struct kvm_device_attr * attr,u64 * reg,bool is_write)1957 static int vgic_its_attr_regs_access(struct kvm_device *dev,
1958 struct kvm_device_attr *attr,
1959 u64 *reg, bool is_write)
1960 {
1961 const struct vgic_register_region *region;
1962 struct vgic_its *its;
1963 gpa_t addr, offset;
1964 unsigned int len;
1965 int align, ret = 0;
1966
1967 its = dev->private;
1968 offset = attr->attr;
1969
1970 /*
1971 * Although the spec supports upper/lower 32-bit accesses to
1972 * 64-bit ITS registers, the userspace ABI requires 64-bit
1973 * accesses to all 64-bit wide registers. We therefore only
1974 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1975 * registers
1976 */
1977 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1978 align = 0x3;
1979 else
1980 align = 0x7;
1981
1982 if (offset & align)
1983 return -EINVAL;
1984
1985 mutex_lock(&dev->kvm->lock);
1986
1987 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1988 ret = -ENXIO;
1989 goto out;
1990 }
1991
1992 region = vgic_find_mmio_region(its_registers,
1993 ARRAY_SIZE(its_registers),
1994 offset);
1995 if (!region) {
1996 ret = -ENXIO;
1997 goto out;
1998 }
1999
2000 if (!lock_all_vcpus(dev->kvm)) {
2001 ret = -EBUSY;
2002 goto out;
2003 }
2004
2005 addr = its->vgic_its_base + offset;
2006
2007 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
2008
2009 if (is_write) {
2010 if (region->uaccess_its_write)
2011 ret = region->uaccess_its_write(dev->kvm, its, addr,
2012 len, *reg);
2013 else
2014 region->its_write(dev->kvm, its, addr, len, *reg);
2015 } else {
2016 *reg = region->its_read(dev->kvm, its, addr, len);
2017 }
2018 unlock_all_vcpus(dev->kvm);
2019 out:
2020 mutex_unlock(&dev->kvm->lock);
2021 return ret;
2022 }
2023
compute_next_devid_offset(struct list_head * h,struct its_device * dev)2024 static u32 compute_next_devid_offset(struct list_head *h,
2025 struct its_device *dev)
2026 {
2027 struct its_device *next;
2028 u32 next_offset;
2029
2030 if (list_is_last(&dev->dev_list, h))
2031 return 0;
2032 next = list_next_entry(dev, dev_list);
2033 next_offset = next->device_id - dev->device_id;
2034
2035 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2036 }
2037
compute_next_eventid_offset(struct list_head * h,struct its_ite * ite)2038 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2039 {
2040 struct its_ite *next;
2041 u32 next_offset;
2042
2043 if (list_is_last(&ite->ite_list, h))
2044 return 0;
2045 next = list_next_entry(ite, ite_list);
2046 next_offset = next->event_id - ite->event_id;
2047
2048 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2049 }
2050
2051 /**
2052 * entry_fn_t - Callback called on a table entry restore path
2053 * @its: its handle
2054 * @id: id of the entry
2055 * @entry: pointer to the entry
2056 * @opaque: pointer to an opaque data
2057 *
2058 * Return: < 0 on error, 0 if last element was identified, id offset to next
2059 * element otherwise
2060 */
2061 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2062 void *opaque);
2063
2064 /**
2065 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2066 * to each entry
2067 *
2068 * @its: its handle
2069 * @base: base gpa of the table
2070 * @size: size of the table in bytes
2071 * @esz: entry size in bytes
2072 * @start_id: the ID of the first entry in the table
2073 * (non zero for 2d level tables)
2074 * @fn: function to apply on each entry
2075 *
2076 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2077 * (the last element may not be found on second level tables)
2078 */
scan_its_table(struct vgic_its * its,gpa_t base,int size,u32 esz,int start_id,entry_fn_t fn,void * opaque)2079 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2080 int start_id, entry_fn_t fn, void *opaque)
2081 {
2082 struct kvm *kvm = its->dev->kvm;
2083 unsigned long len = size;
2084 int id = start_id;
2085 gpa_t gpa = base;
2086 char entry[ESZ_MAX];
2087 int ret;
2088
2089 memset(entry, 0, esz);
2090
2091 while (len > 0) {
2092 int next_offset;
2093 size_t byte_offset;
2094
2095 ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2096 if (ret)
2097 return ret;
2098
2099 next_offset = fn(its, id, entry, opaque);
2100 if (next_offset <= 0)
2101 return next_offset;
2102
2103 byte_offset = next_offset * esz;
2104 id += next_offset;
2105 gpa += byte_offset;
2106 len -= byte_offset;
2107 }
2108 return 1;
2109 }
2110
2111 /**
2112 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2113 */
vgic_its_save_ite(struct vgic_its * its,struct its_device * dev,struct its_ite * ite,gpa_t gpa,int ite_esz)2114 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2115 struct its_ite *ite, gpa_t gpa, int ite_esz)
2116 {
2117 struct kvm *kvm = its->dev->kvm;
2118 u32 next_offset;
2119 u64 val;
2120
2121 next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2122 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2123 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2124 ite->collection->collection_id;
2125 val = cpu_to_le64(val);
2126 return kvm_write_guest_lock(kvm, gpa, &val, ite_esz);
2127 }
2128
2129 /**
2130 * vgic_its_restore_ite - restore an interrupt translation entry
2131 * @event_id: id used for indexing
2132 * @ptr: pointer to the ITE entry
2133 * @opaque: pointer to the its_device
2134 */
vgic_its_restore_ite(struct vgic_its * its,u32 event_id,void * ptr,void * opaque)2135 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2136 void *ptr, void *opaque)
2137 {
2138 struct its_device *dev = (struct its_device *)opaque;
2139 struct its_collection *collection;
2140 struct kvm *kvm = its->dev->kvm;
2141 struct kvm_vcpu *vcpu = NULL;
2142 u64 val;
2143 u64 *p = (u64 *)ptr;
2144 struct vgic_irq *irq;
2145 u32 coll_id, lpi_id;
2146 struct its_ite *ite;
2147 u32 offset;
2148
2149 val = *p;
2150
2151 val = le64_to_cpu(val);
2152
2153 coll_id = val & KVM_ITS_ITE_ICID_MASK;
2154 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2155
2156 if (!lpi_id)
2157 return 1; /* invalid entry, no choice but to scan next entry */
2158
2159 if (lpi_id < VGIC_MIN_LPI)
2160 return -EINVAL;
2161
2162 offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2163 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2164 return -EINVAL;
2165
2166 collection = find_collection(its, coll_id);
2167 if (!collection)
2168 return -EINVAL;
2169
2170 ite = vgic_its_alloc_ite(dev, collection, event_id);
2171 if (IS_ERR(ite))
2172 return PTR_ERR(ite);
2173
2174 if (its_is_collection_mapped(collection))
2175 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
2176
2177 irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2178 if (IS_ERR(irq))
2179 return PTR_ERR(irq);
2180 ite->irq = irq;
2181
2182 return offset;
2183 }
2184
vgic_its_ite_cmp(void * priv,struct list_head * a,struct list_head * b)2185 static int vgic_its_ite_cmp(void *priv, struct list_head *a,
2186 struct list_head *b)
2187 {
2188 struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2189 struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2190
2191 if (itea->event_id < iteb->event_id)
2192 return -1;
2193 else
2194 return 1;
2195 }
2196
vgic_its_save_itt(struct vgic_its * its,struct its_device * device)2197 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2198 {
2199 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2200 gpa_t base = device->itt_addr;
2201 struct its_ite *ite;
2202 int ret;
2203 int ite_esz = abi->ite_esz;
2204
2205 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2206
2207 list_for_each_entry(ite, &device->itt_head, ite_list) {
2208 gpa_t gpa = base + ite->event_id * ite_esz;
2209
2210 /*
2211 * If an LPI carries the HW bit, this means that this
2212 * interrupt is controlled by GICv4, and we do not
2213 * have direct access to that state. Let's simply fail
2214 * the save operation...
2215 */
2216 if (ite->irq->hw)
2217 return -EACCES;
2218
2219 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2220 if (ret)
2221 return ret;
2222 }
2223 return 0;
2224 }
2225
2226 /**
2227 * vgic_its_restore_itt - restore the ITT of a device
2228 *
2229 * @its: its handle
2230 * @dev: device handle
2231 *
2232 * Return 0 on success, < 0 on error
2233 */
vgic_its_restore_itt(struct vgic_its * its,struct its_device * dev)2234 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2235 {
2236 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2237 gpa_t base = dev->itt_addr;
2238 int ret;
2239 int ite_esz = abi->ite_esz;
2240 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2241
2242 ret = scan_its_table(its, base, max_size, ite_esz, 0,
2243 vgic_its_restore_ite, dev);
2244
2245 /* scan_its_table returns +1 if all ITEs are invalid */
2246 if (ret > 0)
2247 ret = 0;
2248
2249 return ret;
2250 }
2251
2252 /**
2253 * vgic_its_save_dte - Save a device table entry at a given GPA
2254 *
2255 * @its: ITS handle
2256 * @dev: ITS device
2257 * @ptr: GPA
2258 */
vgic_its_save_dte(struct vgic_its * its,struct its_device * dev,gpa_t ptr,int dte_esz)2259 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2260 gpa_t ptr, int dte_esz)
2261 {
2262 struct kvm *kvm = its->dev->kvm;
2263 u64 val, itt_addr_field;
2264 u32 next_offset;
2265
2266 itt_addr_field = dev->itt_addr >> 8;
2267 next_offset = compute_next_devid_offset(&its->device_list, dev);
2268 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2269 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2270 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2271 (dev->num_eventid_bits - 1));
2272 val = cpu_to_le64(val);
2273 return kvm_write_guest_lock(kvm, ptr, &val, dte_esz);
2274 }
2275
2276 /**
2277 * vgic_its_restore_dte - restore a device table entry
2278 *
2279 * @its: its handle
2280 * @id: device id the DTE corresponds to
2281 * @ptr: kernel VA where the 8 byte DTE is located
2282 * @opaque: unused
2283 *
2284 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2285 * next dte otherwise
2286 */
vgic_its_restore_dte(struct vgic_its * its,u32 id,void * ptr,void * opaque)2287 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2288 void *ptr, void *opaque)
2289 {
2290 struct its_device *dev;
2291 gpa_t itt_addr;
2292 u8 num_eventid_bits;
2293 u64 entry = *(u64 *)ptr;
2294 bool valid;
2295 u32 offset;
2296 int ret;
2297
2298 entry = le64_to_cpu(entry);
2299
2300 valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2301 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2302 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2303 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2304
2305 if (!valid)
2306 return 1;
2307
2308 /* dte entry is valid */
2309 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2310
2311 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2312 if (IS_ERR(dev))
2313 return PTR_ERR(dev);
2314
2315 ret = vgic_its_restore_itt(its, dev);
2316 if (ret) {
2317 vgic_its_free_device(its->dev->kvm, dev);
2318 return ret;
2319 }
2320
2321 return offset;
2322 }
2323
vgic_its_device_cmp(void * priv,struct list_head * a,struct list_head * b)2324 static int vgic_its_device_cmp(void *priv, struct list_head *a,
2325 struct list_head *b)
2326 {
2327 struct its_device *deva = container_of(a, struct its_device, dev_list);
2328 struct its_device *devb = container_of(b, struct its_device, dev_list);
2329
2330 if (deva->device_id < devb->device_id)
2331 return -1;
2332 else
2333 return 1;
2334 }
2335
2336 /**
2337 * vgic_its_save_device_tables - Save the device table and all ITT
2338 * into guest RAM
2339 *
2340 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2341 * returns the GPA of the device entry
2342 */
vgic_its_save_device_tables(struct vgic_its * its)2343 static int vgic_its_save_device_tables(struct vgic_its *its)
2344 {
2345 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2346 u64 baser = its->baser_device_table;
2347 struct its_device *dev;
2348 int dte_esz = abi->dte_esz;
2349
2350 if (!(baser & GITS_BASER_VALID))
2351 return 0;
2352
2353 list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2354
2355 list_for_each_entry(dev, &its->device_list, dev_list) {
2356 int ret;
2357 gpa_t eaddr;
2358
2359 if (!vgic_its_check_id(its, baser,
2360 dev->device_id, &eaddr))
2361 return -EINVAL;
2362
2363 ret = vgic_its_save_itt(its, dev);
2364 if (ret)
2365 return ret;
2366
2367 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2368 if (ret)
2369 return ret;
2370 }
2371 return 0;
2372 }
2373
2374 /**
2375 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2376 *
2377 * @its: its handle
2378 * @id: index of the entry in the L1 table
2379 * @addr: kernel VA
2380 * @opaque: unused
2381 *
2382 * L1 table entries are scanned by steps of 1 entry
2383 * Return < 0 if error, 0 if last dte was found when scanning the L2
2384 * table, +1 otherwise (meaning next L1 entry must be scanned)
2385 */
handle_l1_dte(struct vgic_its * its,u32 id,void * addr,void * opaque)2386 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2387 void *opaque)
2388 {
2389 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2390 int l2_start_id = id * (SZ_64K / abi->dte_esz);
2391 u64 entry = *(u64 *)addr;
2392 int dte_esz = abi->dte_esz;
2393 gpa_t gpa;
2394 int ret;
2395
2396 entry = le64_to_cpu(entry);
2397
2398 if (!(entry & KVM_ITS_L1E_VALID_MASK))
2399 return 1;
2400
2401 gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2402
2403 ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2404 l2_start_id, vgic_its_restore_dte, NULL);
2405
2406 return ret;
2407 }
2408
2409 /**
2410 * vgic_its_restore_device_tables - Restore the device table and all ITT
2411 * from guest RAM to internal data structs
2412 */
vgic_its_restore_device_tables(struct vgic_its * its)2413 static int vgic_its_restore_device_tables(struct vgic_its *its)
2414 {
2415 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2416 u64 baser = its->baser_device_table;
2417 int l1_esz, ret;
2418 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2419 gpa_t l1_gpa;
2420
2421 if (!(baser & GITS_BASER_VALID))
2422 return 0;
2423
2424 l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2425
2426 if (baser & GITS_BASER_INDIRECT) {
2427 l1_esz = GITS_LVL1_ENTRY_SIZE;
2428 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2429 handle_l1_dte, NULL);
2430 } else {
2431 l1_esz = abi->dte_esz;
2432 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2433 vgic_its_restore_dte, NULL);
2434 }
2435
2436 /* scan_its_table returns +1 if all entries are invalid */
2437 if (ret > 0)
2438 ret = 0;
2439
2440 return ret;
2441 }
2442
vgic_its_save_cte(struct vgic_its * its,struct its_collection * collection,gpa_t gpa,int esz)2443 static int vgic_its_save_cte(struct vgic_its *its,
2444 struct its_collection *collection,
2445 gpa_t gpa, int esz)
2446 {
2447 u64 val;
2448
2449 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2450 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2451 collection->collection_id);
2452 val = cpu_to_le64(val);
2453 return kvm_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2454 }
2455
vgic_its_restore_cte(struct vgic_its * its,gpa_t gpa,int esz)2456 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2457 {
2458 struct its_collection *collection;
2459 struct kvm *kvm = its->dev->kvm;
2460 u32 target_addr, coll_id;
2461 u64 val;
2462 int ret;
2463
2464 BUG_ON(esz > sizeof(val));
2465 ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2466 if (ret)
2467 return ret;
2468 val = le64_to_cpu(val);
2469 if (!(val & KVM_ITS_CTE_VALID_MASK))
2470 return 0;
2471
2472 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2473 coll_id = val & KVM_ITS_CTE_ICID_MASK;
2474
2475 if (target_addr >= atomic_read(&kvm->online_vcpus))
2476 return -EINVAL;
2477
2478 collection = find_collection(its, coll_id);
2479 if (collection)
2480 return -EEXIST;
2481 ret = vgic_its_alloc_collection(its, &collection, coll_id);
2482 if (ret)
2483 return ret;
2484 collection->target_addr = target_addr;
2485 return 1;
2486 }
2487
2488 /**
2489 * vgic_its_save_collection_table - Save the collection table into
2490 * guest RAM
2491 */
vgic_its_save_collection_table(struct vgic_its * its)2492 static int vgic_its_save_collection_table(struct vgic_its *its)
2493 {
2494 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2495 u64 baser = its->baser_coll_table;
2496 gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2497 struct its_collection *collection;
2498 u64 val;
2499 size_t max_size, filled = 0;
2500 int ret, cte_esz = abi->cte_esz;
2501
2502 if (!(baser & GITS_BASER_VALID))
2503 return 0;
2504
2505 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2506
2507 list_for_each_entry(collection, &its->collection_list, coll_list) {
2508 ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2509 if (ret)
2510 return ret;
2511 gpa += cte_esz;
2512 filled += cte_esz;
2513 }
2514
2515 if (filled == max_size)
2516 return 0;
2517
2518 /*
2519 * table is not fully filled, add a last dummy element
2520 * with valid bit unset
2521 */
2522 val = 0;
2523 BUG_ON(cte_esz > sizeof(val));
2524 ret = kvm_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2525 return ret;
2526 }
2527
2528 /**
2529 * vgic_its_restore_collection_table - reads the collection table
2530 * in guest memory and restores the ITS internal state. Requires the
2531 * BASER registers to be restored before.
2532 */
vgic_its_restore_collection_table(struct vgic_its * its)2533 static int vgic_its_restore_collection_table(struct vgic_its *its)
2534 {
2535 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2536 u64 baser = its->baser_coll_table;
2537 int cte_esz = abi->cte_esz;
2538 size_t max_size, read = 0;
2539 gpa_t gpa;
2540 int ret;
2541
2542 if (!(baser & GITS_BASER_VALID))
2543 return 0;
2544
2545 gpa = GITS_BASER_ADDR_48_to_52(baser);
2546
2547 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2548
2549 while (read < max_size) {
2550 ret = vgic_its_restore_cte(its, gpa, cte_esz);
2551 if (ret <= 0)
2552 break;
2553 gpa += cte_esz;
2554 read += cte_esz;
2555 }
2556
2557 if (ret > 0)
2558 return 0;
2559
2560 return ret;
2561 }
2562
2563 /**
2564 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2565 * according to v0 ABI
2566 */
vgic_its_save_tables_v0(struct vgic_its * its)2567 static int vgic_its_save_tables_v0(struct vgic_its *its)
2568 {
2569 int ret;
2570
2571 ret = vgic_its_save_device_tables(its);
2572 if (ret)
2573 return ret;
2574
2575 return vgic_its_save_collection_table(its);
2576 }
2577
2578 /**
2579 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2580 * to internal data structs according to V0 ABI
2581 *
2582 */
vgic_its_restore_tables_v0(struct vgic_its * its)2583 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2584 {
2585 int ret;
2586
2587 ret = vgic_its_restore_collection_table(its);
2588 if (ret)
2589 return ret;
2590
2591 return vgic_its_restore_device_tables(its);
2592 }
2593
vgic_its_commit_v0(struct vgic_its * its)2594 static int vgic_its_commit_v0(struct vgic_its *its)
2595 {
2596 const struct vgic_its_abi *abi;
2597
2598 abi = vgic_its_get_abi(its);
2599 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2600 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2601
2602 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2603 << GITS_BASER_ENTRY_SIZE_SHIFT);
2604
2605 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2606 << GITS_BASER_ENTRY_SIZE_SHIFT);
2607 return 0;
2608 }
2609
vgic_its_reset(struct kvm * kvm,struct vgic_its * its)2610 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2611 {
2612 /* We need to keep the ABI specific field values */
2613 its->baser_coll_table &= ~GITS_BASER_VALID;
2614 its->baser_device_table &= ~GITS_BASER_VALID;
2615 its->cbaser = 0;
2616 its->creadr = 0;
2617 its->cwriter = 0;
2618 its->enabled = 0;
2619 vgic_its_free_device_list(kvm, its);
2620 vgic_its_free_collection_list(kvm, its);
2621 }
2622
vgic_its_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2623 static int vgic_its_has_attr(struct kvm_device *dev,
2624 struct kvm_device_attr *attr)
2625 {
2626 switch (attr->group) {
2627 case KVM_DEV_ARM_VGIC_GRP_ADDR:
2628 switch (attr->attr) {
2629 case KVM_VGIC_ITS_ADDR_TYPE:
2630 return 0;
2631 }
2632 break;
2633 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2634 switch (attr->attr) {
2635 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2636 return 0;
2637 case KVM_DEV_ARM_ITS_CTRL_RESET:
2638 return 0;
2639 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2640 return 0;
2641 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2642 return 0;
2643 }
2644 break;
2645 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2646 return vgic_its_has_attr_regs(dev, attr);
2647 }
2648 return -ENXIO;
2649 }
2650
vgic_its_ctrl(struct kvm * kvm,struct vgic_its * its,u64 attr)2651 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2652 {
2653 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2654 int ret = 0;
2655
2656 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2657 return 0;
2658
2659 mutex_lock(&kvm->lock);
2660 mutex_lock(&its->its_lock);
2661
2662 if (!lock_all_vcpus(kvm)) {
2663 mutex_unlock(&its->its_lock);
2664 mutex_unlock(&kvm->lock);
2665 return -EBUSY;
2666 }
2667
2668 switch (attr) {
2669 case KVM_DEV_ARM_ITS_CTRL_RESET:
2670 vgic_its_reset(kvm, its);
2671 break;
2672 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2673 ret = abi->save_tables(its);
2674 break;
2675 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2676 ret = abi->restore_tables(its);
2677 break;
2678 }
2679
2680 unlock_all_vcpus(kvm);
2681 mutex_unlock(&its->its_lock);
2682 mutex_unlock(&kvm->lock);
2683 return ret;
2684 }
2685
vgic_its_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2686 static int vgic_its_set_attr(struct kvm_device *dev,
2687 struct kvm_device_attr *attr)
2688 {
2689 struct vgic_its *its = dev->private;
2690 int ret;
2691
2692 switch (attr->group) {
2693 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2694 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2695 unsigned long type = (unsigned long)attr->attr;
2696 u64 addr;
2697
2698 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2699 return -ENODEV;
2700
2701 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2702 return -EFAULT;
2703
2704 ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2705 addr, SZ_64K);
2706 if (ret)
2707 return ret;
2708
2709 return vgic_register_its_iodev(dev->kvm, its, addr);
2710 }
2711 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2712 return vgic_its_ctrl(dev->kvm, its, attr->attr);
2713 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2714 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2715 u64 reg;
2716
2717 if (get_user(reg, uaddr))
2718 return -EFAULT;
2719
2720 return vgic_its_attr_regs_access(dev, attr, ®, true);
2721 }
2722 }
2723 return -ENXIO;
2724 }
2725
vgic_its_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2726 static int vgic_its_get_attr(struct kvm_device *dev,
2727 struct kvm_device_attr *attr)
2728 {
2729 switch (attr->group) {
2730 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2731 struct vgic_its *its = dev->private;
2732 u64 addr = its->vgic_its_base;
2733 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2734 unsigned long type = (unsigned long)attr->attr;
2735
2736 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2737 return -ENODEV;
2738
2739 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2740 return -EFAULT;
2741 break;
2742 }
2743 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2744 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2745 u64 reg;
2746 int ret;
2747
2748 ret = vgic_its_attr_regs_access(dev, attr, ®, false);
2749 if (ret)
2750 return ret;
2751 return put_user(reg, uaddr);
2752 }
2753 default:
2754 return -ENXIO;
2755 }
2756
2757 return 0;
2758 }
2759
2760 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2761 .name = "kvm-arm-vgic-its",
2762 .create = vgic_its_create,
2763 .destroy = vgic_its_destroy,
2764 .set_attr = vgic_its_set_attr,
2765 .get_attr = vgic_its_get_attr,
2766 .has_attr = vgic_its_has_attr,
2767 };
2768
kvm_vgic_register_its_device(void)2769 int kvm_vgic_register_its_device(void)
2770 {
2771 return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2772 KVM_DEV_TYPE_ARM_VGIC_ITS);
2773 }
2774