• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * GICv3 ITS emulation
4  *
5  * Copyright (C) 2015,2016 ARM Ltd.
6  * Author: Andre Przywara <andre.przywara@arm.com>
7  */
8 
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
16 
17 #include <linux/irqchip/arm-gic-v3.h>
18 
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
22 
23 #include "vgic.h"
24 #include "vgic-mmio.h"
25 
26 static int vgic_its_save_tables_v0(struct vgic_its *its);
27 static int vgic_its_restore_tables_v0(struct vgic_its *its);
28 static int vgic_its_commit_v0(struct vgic_its *its);
29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
30 			     struct kvm_vcpu *filter_vcpu, bool needs_inv);
31 
32 /*
33  * Creates a new (reference to a) struct vgic_irq for a given LPI.
34  * If this LPI is already mapped on another ITS, we increase its refcount
35  * and return a pointer to the existing structure.
36  * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
37  * This function returns a pointer to the _unlocked_ structure.
38  */
vgic_add_lpi(struct kvm * kvm,u32 intid,struct kvm_vcpu * vcpu)39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
40 				     struct kvm_vcpu *vcpu)
41 {
42 	struct vgic_dist *dist = &kvm->arch.vgic;
43 	struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
44 	unsigned long flags;
45 	int ret;
46 
47 	/* In this case there is no put, since we keep the reference. */
48 	if (irq)
49 		return irq;
50 
51 	irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
52 	if (!irq)
53 		return ERR_PTR(-ENOMEM);
54 
55 	INIT_LIST_HEAD(&irq->lpi_list);
56 	INIT_LIST_HEAD(&irq->ap_list);
57 	raw_spin_lock_init(&irq->irq_lock);
58 
59 	irq->config = VGIC_CONFIG_EDGE;
60 	kref_init(&irq->refcount);
61 	irq->intid = intid;
62 	irq->target_vcpu = vcpu;
63 	irq->group = 1;
64 
65 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
66 
67 	/*
68 	 * There could be a race with another vgic_add_lpi(), so we need to
69 	 * check that we don't add a second list entry with the same LPI.
70 	 */
71 	list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
72 		if (oldirq->intid != intid)
73 			continue;
74 
75 		/* Someone was faster with adding this LPI, lets use that. */
76 		kfree(irq);
77 		irq = oldirq;
78 
79 		/*
80 		 * This increases the refcount, the caller is expected to
81 		 * call vgic_put_irq() on the returned pointer once it's
82 		 * finished with the IRQ.
83 		 */
84 		vgic_get_irq_kref(irq);
85 
86 		goto out_unlock;
87 	}
88 
89 	list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
90 	dist->lpi_list_count++;
91 
92 out_unlock:
93 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
94 
95 	/*
96 	 * We "cache" the configuration table entries in our struct vgic_irq's.
97 	 * However we only have those structs for mapped IRQs, so we read in
98 	 * the respective config data from memory here upon mapping the LPI.
99 	 */
100 	ret = update_lpi_config(kvm, irq, NULL, false);
101 	if (ret)
102 		return ERR_PTR(ret);
103 
104 	ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
105 	if (ret)
106 		return ERR_PTR(ret);
107 
108 	return irq;
109 }
110 
111 struct its_device {
112 	struct list_head dev_list;
113 
114 	/* the head for the list of ITTEs */
115 	struct list_head itt_head;
116 	u32 num_eventid_bits;
117 	gpa_t itt_addr;
118 	u32 device_id;
119 };
120 
121 #define COLLECTION_NOT_MAPPED ((u32)~0)
122 
123 struct its_collection {
124 	struct list_head coll_list;
125 
126 	u32 collection_id;
127 	u32 target_addr;
128 };
129 
130 #define its_is_collection_mapped(coll) ((coll) && \
131 				((coll)->target_addr != COLLECTION_NOT_MAPPED))
132 
133 struct its_ite {
134 	struct list_head ite_list;
135 
136 	struct vgic_irq *irq;
137 	struct its_collection *collection;
138 	u32 event_id;
139 };
140 
141 struct vgic_translation_cache_entry {
142 	struct list_head	entry;
143 	phys_addr_t		db;
144 	u32			devid;
145 	u32			eventid;
146 	struct vgic_irq		*irq;
147 };
148 
149 /**
150  * struct vgic_its_abi - ITS abi ops and settings
151  * @cte_esz: collection table entry size
152  * @dte_esz: device table entry size
153  * @ite_esz: interrupt translation table entry size
154  * @save tables: save the ITS tables into guest RAM
155  * @restore_tables: restore the ITS internal structs from tables
156  *  stored in guest RAM
157  * @commit: initialize the registers which expose the ABI settings,
158  *  especially the entry sizes
159  */
160 struct vgic_its_abi {
161 	int cte_esz;
162 	int dte_esz;
163 	int ite_esz;
164 	int (*save_tables)(struct vgic_its *its);
165 	int (*restore_tables)(struct vgic_its *its);
166 	int (*commit)(struct vgic_its *its);
167 };
168 
169 #define ABI_0_ESZ	8
170 #define ESZ_MAX		ABI_0_ESZ
171 
172 static const struct vgic_its_abi its_table_abi_versions[] = {
173 	[0] = {
174 	 .cte_esz = ABI_0_ESZ,
175 	 .dte_esz = ABI_0_ESZ,
176 	 .ite_esz = ABI_0_ESZ,
177 	 .save_tables = vgic_its_save_tables_v0,
178 	 .restore_tables = vgic_its_restore_tables_v0,
179 	 .commit = vgic_its_commit_v0,
180 	},
181 };
182 
183 #define NR_ITS_ABIS	ARRAY_SIZE(its_table_abi_versions)
184 
vgic_its_get_abi(struct vgic_its * its)185 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
186 {
187 	return &its_table_abi_versions[its->abi_rev];
188 }
189 
vgic_its_set_abi(struct vgic_its * its,u32 rev)190 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
191 {
192 	const struct vgic_its_abi *abi;
193 
194 	its->abi_rev = rev;
195 	abi = vgic_its_get_abi(its);
196 	return abi->commit(its);
197 }
198 
199 /*
200  * Find and returns a device in the device table for an ITS.
201  * Must be called with the its_lock mutex held.
202  */
find_its_device(struct vgic_its * its,u32 device_id)203 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
204 {
205 	struct its_device *device;
206 
207 	list_for_each_entry(device, &its->device_list, dev_list)
208 		if (device_id == device->device_id)
209 			return device;
210 
211 	return NULL;
212 }
213 
214 /*
215  * Find and returns an interrupt translation table entry (ITTE) for a given
216  * Device ID/Event ID pair on an ITS.
217  * Must be called with the its_lock mutex held.
218  */
find_ite(struct vgic_its * its,u32 device_id,u32 event_id)219 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
220 				  u32 event_id)
221 {
222 	struct its_device *device;
223 	struct its_ite *ite;
224 
225 	device = find_its_device(its, device_id);
226 	if (device == NULL)
227 		return NULL;
228 
229 	list_for_each_entry(ite, &device->itt_head, ite_list)
230 		if (ite->event_id == event_id)
231 			return ite;
232 
233 	return NULL;
234 }
235 
236 /* To be used as an iterator this macro misses the enclosing parentheses */
237 #define for_each_lpi_its(dev, ite, its) \
238 	list_for_each_entry(dev, &(its)->device_list, dev_list) \
239 		list_for_each_entry(ite, &(dev)->itt_head, ite_list)
240 
241 #define GIC_LPI_OFFSET 8192
242 
243 #define VITS_TYPER_IDBITS 16
244 #define VITS_TYPER_DEVBITS 16
245 #define VITS_DTE_MAX_DEVID_OFFSET	(BIT(14) - 1)
246 #define VITS_ITE_MAX_EVENTID_OFFSET	(BIT(16) - 1)
247 
248 /*
249  * Finds and returns a collection in the ITS collection table.
250  * Must be called with the its_lock mutex held.
251  */
find_collection(struct vgic_its * its,int coll_id)252 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
253 {
254 	struct its_collection *collection;
255 
256 	list_for_each_entry(collection, &its->collection_list, coll_list) {
257 		if (coll_id == collection->collection_id)
258 			return collection;
259 	}
260 
261 	return NULL;
262 }
263 
264 #define LPI_PROP_ENABLE_BIT(p)	((p) & LPI_PROP_ENABLED)
265 #define LPI_PROP_PRIORITY(p)	((p) & 0xfc)
266 
267 /*
268  * Reads the configuration data for a given LPI from guest memory and
269  * updates the fields in struct vgic_irq.
270  * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
271  * VCPU. Unconditionally applies if filter_vcpu is NULL.
272  */
update_lpi_config(struct kvm * kvm,struct vgic_irq * irq,struct kvm_vcpu * filter_vcpu,bool needs_inv)273 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
274 			     struct kvm_vcpu *filter_vcpu, bool needs_inv)
275 {
276 	u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
277 	u8 prop;
278 	int ret;
279 	unsigned long flags;
280 
281 	ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
282 				  &prop, 1);
283 
284 	if (ret)
285 		return ret;
286 
287 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
288 
289 	if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
290 		irq->priority = LPI_PROP_PRIORITY(prop);
291 		irq->enabled = LPI_PROP_ENABLE_BIT(prop);
292 
293 		if (!irq->hw) {
294 			vgic_queue_irq_unlock(kvm, irq, flags);
295 			return 0;
296 		}
297 	}
298 
299 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
300 
301 	if (irq->hw)
302 		return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
303 
304 	return 0;
305 }
306 
307 /*
308  * Create a snapshot of the current LPIs targeting @vcpu, so that we can
309  * enumerate those LPIs without holding any lock.
310  * Returns their number and puts the kmalloc'ed array into intid_ptr.
311  */
vgic_copy_lpi_list(struct kvm * kvm,struct kvm_vcpu * vcpu,u32 ** intid_ptr)312 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
313 {
314 	struct vgic_dist *dist = &kvm->arch.vgic;
315 	struct vgic_irq *irq;
316 	unsigned long flags;
317 	u32 *intids;
318 	int irq_count, i = 0;
319 
320 	/*
321 	 * There is an obvious race between allocating the array and LPIs
322 	 * being mapped/unmapped. If we ended up here as a result of a
323 	 * command, we're safe (locks are held, preventing another
324 	 * command). If coming from another path (such as enabling LPIs),
325 	 * we must be careful not to overrun the array.
326 	 */
327 	irq_count = READ_ONCE(dist->lpi_list_count);
328 	intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
329 	if (!intids)
330 		return -ENOMEM;
331 
332 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
333 	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
334 		if (i == irq_count)
335 			break;
336 		/* We don't need to "get" the IRQ, as we hold the list lock. */
337 		if (vcpu && irq->target_vcpu != vcpu)
338 			continue;
339 		intids[i++] = irq->intid;
340 	}
341 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
342 
343 	*intid_ptr = intids;
344 	return i;
345 }
346 
update_affinity(struct vgic_irq * irq,struct kvm_vcpu * vcpu)347 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
348 {
349 	int ret = 0;
350 	unsigned long flags;
351 
352 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
353 	irq->target_vcpu = vcpu;
354 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
355 
356 	if (irq->hw) {
357 		struct its_vlpi_map map;
358 
359 		ret = its_get_vlpi(irq->host_irq, &map);
360 		if (ret)
361 			return ret;
362 
363 		map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
364 
365 		ret = its_map_vlpi(irq->host_irq, &map);
366 	}
367 
368 	return ret;
369 }
370 
371 /*
372  * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
373  * is targeting) to the VGIC's view, which deals with target VCPUs.
374  * Needs to be called whenever either the collection for a LPIs has
375  * changed or the collection itself got retargeted.
376  */
update_affinity_ite(struct kvm * kvm,struct its_ite * ite)377 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
378 {
379 	struct kvm_vcpu *vcpu;
380 
381 	if (!its_is_collection_mapped(ite->collection))
382 		return;
383 
384 	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
385 	update_affinity(ite->irq, vcpu);
386 }
387 
388 /*
389  * Updates the target VCPU for every LPI targeting this collection.
390  * Must be called with the its_lock mutex held.
391  */
update_affinity_collection(struct kvm * kvm,struct vgic_its * its,struct its_collection * coll)392 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
393 				       struct its_collection *coll)
394 {
395 	struct its_device *device;
396 	struct its_ite *ite;
397 
398 	for_each_lpi_its(device, ite, its) {
399 		if (!ite->collection || coll != ite->collection)
400 			continue;
401 
402 		update_affinity_ite(kvm, ite);
403 	}
404 }
405 
max_lpis_propbaser(u64 propbaser)406 static u32 max_lpis_propbaser(u64 propbaser)
407 {
408 	int nr_idbits = (propbaser & 0x1f) + 1;
409 
410 	return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
411 }
412 
413 /*
414  * Sync the pending table pending bit of LPIs targeting @vcpu
415  * with our own data structures. This relies on the LPI being
416  * mapped before.
417  */
its_sync_lpi_pending_table(struct kvm_vcpu * vcpu)418 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
419 {
420 	gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
421 	struct vgic_irq *irq;
422 	int last_byte_offset = -1;
423 	int ret = 0;
424 	u32 *intids;
425 	int nr_irqs, i;
426 	unsigned long flags;
427 	u8 pendmask;
428 
429 	nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
430 	if (nr_irqs < 0)
431 		return nr_irqs;
432 
433 	for (i = 0; i < nr_irqs; i++) {
434 		int byte_offset, bit_nr;
435 
436 		byte_offset = intids[i] / BITS_PER_BYTE;
437 		bit_nr = intids[i] % BITS_PER_BYTE;
438 
439 		/*
440 		 * For contiguously allocated LPIs chances are we just read
441 		 * this very same byte in the last iteration. Reuse that.
442 		 */
443 		if (byte_offset != last_byte_offset) {
444 			ret = kvm_read_guest_lock(vcpu->kvm,
445 						  pendbase + byte_offset,
446 						  &pendmask, 1);
447 			if (ret) {
448 				kfree(intids);
449 				return ret;
450 			}
451 			last_byte_offset = byte_offset;
452 		}
453 
454 		irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
455 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
456 		irq->pending_latch = pendmask & (1U << bit_nr);
457 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
458 		vgic_put_irq(vcpu->kvm, irq);
459 	}
460 
461 	kfree(intids);
462 
463 	return ret;
464 }
465 
vgic_mmio_read_its_typer(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)466 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
467 					      struct vgic_its *its,
468 					      gpa_t addr, unsigned int len)
469 {
470 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
471 	u64 reg = GITS_TYPER_PLPIS;
472 
473 	/*
474 	 * We use linear CPU numbers for redistributor addressing,
475 	 * so GITS_TYPER.PTA is 0.
476 	 * Also we force all PROPBASER registers to be the same, so
477 	 * CommonLPIAff is 0 as well.
478 	 * To avoid memory waste in the guest, we keep the number of IDBits and
479 	 * DevBits low - as least for the time being.
480 	 */
481 	reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
482 	reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
483 	reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
484 
485 	return extract_bytes(reg, addr & 7, len);
486 }
487 
vgic_mmio_read_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)488 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
489 					     struct vgic_its *its,
490 					     gpa_t addr, unsigned int len)
491 {
492 	u32 val;
493 
494 	val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
495 	val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
496 	return val;
497 }
498 
vgic_mmio_uaccess_write_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)499 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
500 					    struct vgic_its *its,
501 					    gpa_t addr, unsigned int len,
502 					    unsigned long val)
503 {
504 	u32 rev = GITS_IIDR_REV(val);
505 
506 	if (rev >= NR_ITS_ABIS)
507 		return -EINVAL;
508 	return vgic_its_set_abi(its, rev);
509 }
510 
vgic_mmio_read_its_idregs(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)511 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
512 					       struct vgic_its *its,
513 					       gpa_t addr, unsigned int len)
514 {
515 	switch (addr & 0xffff) {
516 	case GITS_PIDR0:
517 		return 0x92;	/* part number, bits[7:0] */
518 	case GITS_PIDR1:
519 		return 0xb4;	/* part number, bits[11:8] */
520 	case GITS_PIDR2:
521 		return GIC_PIDR2_ARCH_GICv3 | 0x0b;
522 	case GITS_PIDR4:
523 		return 0x40;	/* This is a 64K software visible page */
524 	/* The following are the ID registers for (any) GIC. */
525 	case GITS_CIDR0:
526 		return 0x0d;
527 	case GITS_CIDR1:
528 		return 0xf0;
529 	case GITS_CIDR2:
530 		return 0x05;
531 	case GITS_CIDR3:
532 		return 0xb1;
533 	}
534 
535 	return 0;
536 }
537 
__vgic_its_check_cache(struct vgic_dist * dist,phys_addr_t db,u32 devid,u32 eventid)538 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
539 					       phys_addr_t db,
540 					       u32 devid, u32 eventid)
541 {
542 	struct vgic_translation_cache_entry *cte;
543 
544 	list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
545 		/*
546 		 * If we hit a NULL entry, there is nothing after this
547 		 * point.
548 		 */
549 		if (!cte->irq)
550 			break;
551 
552 		if (cte->db != db || cte->devid != devid ||
553 		    cte->eventid != eventid)
554 			continue;
555 
556 		/*
557 		 * Move this entry to the head, as it is the most
558 		 * recently used.
559 		 */
560 		if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
561 			list_move(&cte->entry, &dist->lpi_translation_cache);
562 
563 		return cte->irq;
564 	}
565 
566 	return NULL;
567 }
568 
vgic_its_check_cache(struct kvm * kvm,phys_addr_t db,u32 devid,u32 eventid)569 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
570 					     u32 devid, u32 eventid)
571 {
572 	struct vgic_dist *dist = &kvm->arch.vgic;
573 	struct vgic_irq *irq;
574 	unsigned long flags;
575 
576 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
577 	irq = __vgic_its_check_cache(dist, db, devid, eventid);
578 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
579 
580 	return irq;
581 }
582 
vgic_its_cache_translation(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq * irq)583 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
584 				       u32 devid, u32 eventid,
585 				       struct vgic_irq *irq)
586 {
587 	struct vgic_dist *dist = &kvm->arch.vgic;
588 	struct vgic_translation_cache_entry *cte;
589 	unsigned long flags;
590 	phys_addr_t db;
591 
592 	/* Do not cache a directly injected interrupt */
593 	if (irq->hw)
594 		return;
595 
596 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
597 
598 	if (unlikely(list_empty(&dist->lpi_translation_cache)))
599 		goto out;
600 
601 	/*
602 	 * We could have raced with another CPU caching the same
603 	 * translation behind our back, so let's check it is not in
604 	 * already
605 	 */
606 	db = its->vgic_its_base + GITS_TRANSLATER;
607 	if (__vgic_its_check_cache(dist, db, devid, eventid))
608 		goto out;
609 
610 	/* Always reuse the last entry (LRU policy) */
611 	cte = list_last_entry(&dist->lpi_translation_cache,
612 			      typeof(*cte), entry);
613 
614 	/*
615 	 * Caching the translation implies having an extra reference
616 	 * to the interrupt, so drop the potential reference on what
617 	 * was in the cache, and increment it on the new interrupt.
618 	 */
619 	if (cte->irq)
620 		__vgic_put_lpi_locked(kvm, cte->irq);
621 
622 	vgic_get_irq_kref(irq);
623 
624 	cte->db		= db;
625 	cte->devid	= devid;
626 	cte->eventid	= eventid;
627 	cte->irq	= irq;
628 
629 	/* Move the new translation to the head of the list */
630 	list_move(&cte->entry, &dist->lpi_translation_cache);
631 
632 out:
633 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
634 }
635 
vgic_its_invalidate_cache(struct kvm * kvm)636 void vgic_its_invalidate_cache(struct kvm *kvm)
637 {
638 	struct vgic_dist *dist = &kvm->arch.vgic;
639 	struct vgic_translation_cache_entry *cte;
640 	unsigned long flags;
641 
642 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
643 
644 	list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
645 		/*
646 		 * If we hit a NULL entry, there is nothing after this
647 		 * point.
648 		 */
649 		if (!cte->irq)
650 			break;
651 
652 		__vgic_put_lpi_locked(kvm, cte->irq);
653 		cte->irq = NULL;
654 	}
655 
656 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
657 }
658 
vgic_its_resolve_lpi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq ** irq)659 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
660 			 u32 devid, u32 eventid, struct vgic_irq **irq)
661 {
662 	struct kvm_vcpu *vcpu;
663 	struct its_ite *ite;
664 
665 	if (!its->enabled)
666 		return -EBUSY;
667 
668 	ite = find_ite(its, devid, eventid);
669 	if (!ite || !its_is_collection_mapped(ite->collection))
670 		return E_ITS_INT_UNMAPPED_INTERRUPT;
671 
672 	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
673 	if (!vcpu)
674 		return E_ITS_INT_UNMAPPED_INTERRUPT;
675 
676 	if (!vcpu->arch.vgic_cpu.lpis_enabled)
677 		return -EBUSY;
678 
679 	vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
680 
681 	*irq = ite->irq;
682 	return 0;
683 }
684 
vgic_msi_to_its(struct kvm * kvm,struct kvm_msi * msi)685 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
686 {
687 	u64 address;
688 	struct kvm_io_device *kvm_io_dev;
689 	struct vgic_io_device *iodev;
690 
691 	if (!vgic_has_its(kvm))
692 		return ERR_PTR(-ENODEV);
693 
694 	if (!(msi->flags & KVM_MSI_VALID_DEVID))
695 		return ERR_PTR(-EINVAL);
696 
697 	address = (u64)msi->address_hi << 32 | msi->address_lo;
698 
699 	kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
700 	if (!kvm_io_dev)
701 		return ERR_PTR(-EINVAL);
702 
703 	if (kvm_io_dev->ops != &kvm_io_gic_ops)
704 		return ERR_PTR(-EINVAL);
705 
706 	iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
707 	if (iodev->iodev_type != IODEV_ITS)
708 		return ERR_PTR(-EINVAL);
709 
710 	return iodev->its;
711 }
712 
713 /*
714  * Find the target VCPU and the LPI number for a given devid/eventid pair
715  * and make this IRQ pending, possibly injecting it.
716  * Must be called with the its_lock mutex held.
717  * Returns 0 on success, a positive error value for any ITS mapping
718  * related errors and negative error values for generic errors.
719  */
vgic_its_trigger_msi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid)720 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
721 				u32 devid, u32 eventid)
722 {
723 	struct vgic_irq *irq = NULL;
724 	unsigned long flags;
725 	int err;
726 
727 	err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
728 	if (err)
729 		return err;
730 
731 	if (irq->hw)
732 		return irq_set_irqchip_state(irq->host_irq,
733 					     IRQCHIP_STATE_PENDING, true);
734 
735 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
736 	irq->pending_latch = true;
737 	vgic_queue_irq_unlock(kvm, irq, flags);
738 
739 	return 0;
740 }
741 
vgic_its_inject_cached_translation(struct kvm * kvm,struct kvm_msi * msi)742 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
743 {
744 	struct vgic_irq *irq;
745 	unsigned long flags;
746 	phys_addr_t db;
747 
748 	db = (u64)msi->address_hi << 32 | msi->address_lo;
749 	irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
750 
751 	if (!irq)
752 		return -1;
753 
754 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
755 	irq->pending_latch = true;
756 	vgic_queue_irq_unlock(kvm, irq, flags);
757 
758 	return 0;
759 }
760 
761 /*
762  * Queries the KVM IO bus framework to get the ITS pointer from the given
763  * doorbell address.
764  * We then call vgic_its_trigger_msi() with the decoded data.
765  * According to the KVM_SIGNAL_MSI API description returns 1 on success.
766  */
vgic_its_inject_msi(struct kvm * kvm,struct kvm_msi * msi)767 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
768 {
769 	struct vgic_its *its;
770 	int ret;
771 
772 	if (!vgic_its_inject_cached_translation(kvm, msi))
773 		return 1;
774 
775 	its = vgic_msi_to_its(kvm, msi);
776 	if (IS_ERR(its))
777 		return PTR_ERR(its);
778 
779 	mutex_lock(&its->its_lock);
780 	ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
781 	mutex_unlock(&its->its_lock);
782 
783 	if (ret < 0)
784 		return ret;
785 
786 	/*
787 	 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
788 	 * if the guest has blocked the MSI. So we map any LPI mapping
789 	 * related error to that.
790 	 */
791 	if (ret)
792 		return 0;
793 	else
794 		return 1;
795 }
796 
797 /* Requires the its_lock to be held. */
its_free_ite(struct kvm * kvm,struct its_ite * ite)798 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
799 {
800 	list_del(&ite->ite_list);
801 
802 	/* This put matches the get in vgic_add_lpi. */
803 	if (ite->irq) {
804 		if (ite->irq->hw)
805 			WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
806 
807 		vgic_put_irq(kvm, ite->irq);
808 	}
809 
810 	kfree(ite);
811 }
812 
its_cmd_mask_field(u64 * its_cmd,int word,int shift,int size)813 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
814 {
815 	return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
816 }
817 
818 #define its_cmd_get_command(cmd)	its_cmd_mask_field(cmd, 0,  0,  8)
819 #define its_cmd_get_deviceid(cmd)	its_cmd_mask_field(cmd, 0, 32, 32)
820 #define its_cmd_get_size(cmd)		(its_cmd_mask_field(cmd, 1,  0,  5) + 1)
821 #define its_cmd_get_id(cmd)		its_cmd_mask_field(cmd, 1,  0, 32)
822 #define its_cmd_get_physical_id(cmd)	its_cmd_mask_field(cmd, 1, 32, 32)
823 #define its_cmd_get_collection(cmd)	its_cmd_mask_field(cmd, 2,  0, 16)
824 #define its_cmd_get_ittaddr(cmd)	(its_cmd_mask_field(cmd, 2,  8, 44) << 8)
825 #define its_cmd_get_target_addr(cmd)	its_cmd_mask_field(cmd, 2, 16, 32)
826 #define its_cmd_get_validbit(cmd)	its_cmd_mask_field(cmd, 2, 63,  1)
827 
828 /*
829  * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
830  * Must be called with the its_lock mutex held.
831  */
vgic_its_cmd_handle_discard(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)832 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
833 				       u64 *its_cmd)
834 {
835 	u32 device_id = its_cmd_get_deviceid(its_cmd);
836 	u32 event_id = its_cmd_get_id(its_cmd);
837 	struct its_ite *ite;
838 
839 
840 	ite = find_ite(its, device_id, event_id);
841 	if (ite && ite->collection) {
842 		/*
843 		 * Though the spec talks about removing the pending state, we
844 		 * don't bother here since we clear the ITTE anyway and the
845 		 * pending state is a property of the ITTE struct.
846 		 */
847 		vgic_its_invalidate_cache(kvm);
848 
849 		its_free_ite(kvm, ite);
850 		return 0;
851 	}
852 
853 	return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
854 }
855 
856 /*
857  * The MOVI command moves an ITTE to a different collection.
858  * Must be called with the its_lock mutex held.
859  */
vgic_its_cmd_handle_movi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)860 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
861 				    u64 *its_cmd)
862 {
863 	u32 device_id = its_cmd_get_deviceid(its_cmd);
864 	u32 event_id = its_cmd_get_id(its_cmd);
865 	u32 coll_id = its_cmd_get_collection(its_cmd);
866 	struct kvm_vcpu *vcpu;
867 	struct its_ite *ite;
868 	struct its_collection *collection;
869 
870 	ite = find_ite(its, device_id, event_id);
871 	if (!ite)
872 		return E_ITS_MOVI_UNMAPPED_INTERRUPT;
873 
874 	if (!its_is_collection_mapped(ite->collection))
875 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
876 
877 	collection = find_collection(its, coll_id);
878 	if (!its_is_collection_mapped(collection))
879 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
880 
881 	ite->collection = collection;
882 	vcpu = kvm_get_vcpu(kvm, collection->target_addr);
883 
884 	vgic_its_invalidate_cache(kvm);
885 
886 	return update_affinity(ite->irq, vcpu);
887 }
888 
889 /*
890  * Check whether an ID can be stored into the corresponding guest table.
891  * For a direct table this is pretty easy, but gets a bit nasty for
892  * indirect tables. We check whether the resulting guest physical address
893  * is actually valid (covered by a memslot and guest accessible).
894  * For this we have to read the respective first level entry.
895  */
vgic_its_check_id(struct vgic_its * its,u64 baser,u32 id,gpa_t * eaddr)896 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
897 			      gpa_t *eaddr)
898 {
899 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
900 	u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
901 	phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
902 	int esz = GITS_BASER_ENTRY_SIZE(baser);
903 	int index, idx;
904 	gfn_t gfn;
905 	bool ret;
906 
907 	switch (type) {
908 	case GITS_BASER_TYPE_DEVICE:
909 		if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
910 			return false;
911 		break;
912 	case GITS_BASER_TYPE_COLLECTION:
913 		/* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
914 		if (id >= BIT_ULL(16))
915 			return false;
916 		break;
917 	default:
918 		return false;
919 	}
920 
921 	if (!(baser & GITS_BASER_INDIRECT)) {
922 		phys_addr_t addr;
923 
924 		if (id >= (l1_tbl_size / esz))
925 			return false;
926 
927 		addr = base + id * esz;
928 		gfn = addr >> PAGE_SHIFT;
929 
930 		if (eaddr)
931 			*eaddr = addr;
932 
933 		goto out;
934 	}
935 
936 	/* calculate and check the index into the 1st level */
937 	index = id / (SZ_64K / esz);
938 	if (index >= (l1_tbl_size / sizeof(u64)))
939 		return false;
940 
941 	/* Each 1st level entry is represented by a 64-bit value. */
942 	if (kvm_read_guest_lock(its->dev->kvm,
943 			   base + index * sizeof(indirect_ptr),
944 			   &indirect_ptr, sizeof(indirect_ptr)))
945 		return false;
946 
947 	indirect_ptr = le64_to_cpu(indirect_ptr);
948 
949 	/* check the valid bit of the first level entry */
950 	if (!(indirect_ptr & BIT_ULL(63)))
951 		return false;
952 
953 	/* Mask the guest physical address and calculate the frame number. */
954 	indirect_ptr &= GENMASK_ULL(51, 16);
955 
956 	/* Find the address of the actual entry */
957 	index = id % (SZ_64K / esz);
958 	indirect_ptr += index * esz;
959 	gfn = indirect_ptr >> PAGE_SHIFT;
960 
961 	if (eaddr)
962 		*eaddr = indirect_ptr;
963 
964 out:
965 	idx = srcu_read_lock(&its->dev->kvm->srcu);
966 	ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
967 	srcu_read_unlock(&its->dev->kvm->srcu, idx);
968 	return ret;
969 }
970 
vgic_its_alloc_collection(struct vgic_its * its,struct its_collection ** colp,u32 coll_id)971 static int vgic_its_alloc_collection(struct vgic_its *its,
972 				     struct its_collection **colp,
973 				     u32 coll_id)
974 {
975 	struct its_collection *collection;
976 
977 	if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
978 		return E_ITS_MAPC_COLLECTION_OOR;
979 
980 	collection = kzalloc(sizeof(*collection), GFP_KERNEL);
981 	if (!collection)
982 		return -ENOMEM;
983 
984 	collection->collection_id = coll_id;
985 	collection->target_addr = COLLECTION_NOT_MAPPED;
986 
987 	list_add_tail(&collection->coll_list, &its->collection_list);
988 	*colp = collection;
989 
990 	return 0;
991 }
992 
vgic_its_free_collection(struct vgic_its * its,u32 coll_id)993 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
994 {
995 	struct its_collection *collection;
996 	struct its_device *device;
997 	struct its_ite *ite;
998 
999 	/*
1000 	 * Clearing the mapping for that collection ID removes the
1001 	 * entry from the list. If there wasn't any before, we can
1002 	 * go home early.
1003 	 */
1004 	collection = find_collection(its, coll_id);
1005 	if (!collection)
1006 		return;
1007 
1008 	for_each_lpi_its(device, ite, its)
1009 		if (ite->collection &&
1010 		    ite->collection->collection_id == coll_id)
1011 			ite->collection = NULL;
1012 
1013 	list_del(&collection->coll_list);
1014 	kfree(collection);
1015 }
1016 
1017 /* Must be called with its_lock mutex held */
vgic_its_alloc_ite(struct its_device * device,struct its_collection * collection,u32 event_id)1018 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1019 					  struct its_collection *collection,
1020 					  u32 event_id)
1021 {
1022 	struct its_ite *ite;
1023 
1024 	ite = kzalloc(sizeof(*ite), GFP_KERNEL);
1025 	if (!ite)
1026 		return ERR_PTR(-ENOMEM);
1027 
1028 	ite->event_id	= event_id;
1029 	ite->collection = collection;
1030 
1031 	list_add_tail(&ite->ite_list, &device->itt_head);
1032 	return ite;
1033 }
1034 
1035 /*
1036  * The MAPTI and MAPI commands map LPIs to ITTEs.
1037  * Must be called with its_lock mutex held.
1038  */
vgic_its_cmd_handle_mapi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1039 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1040 				    u64 *its_cmd)
1041 {
1042 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1043 	u32 event_id = its_cmd_get_id(its_cmd);
1044 	u32 coll_id = its_cmd_get_collection(its_cmd);
1045 	struct its_ite *ite;
1046 	struct kvm_vcpu *vcpu = NULL;
1047 	struct its_device *device;
1048 	struct its_collection *collection, *new_coll = NULL;
1049 	struct vgic_irq *irq;
1050 	int lpi_nr;
1051 
1052 	device = find_its_device(its, device_id);
1053 	if (!device)
1054 		return E_ITS_MAPTI_UNMAPPED_DEVICE;
1055 
1056 	if (event_id >= BIT_ULL(device->num_eventid_bits))
1057 		return E_ITS_MAPTI_ID_OOR;
1058 
1059 	if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1060 		lpi_nr = its_cmd_get_physical_id(its_cmd);
1061 	else
1062 		lpi_nr = event_id;
1063 	if (lpi_nr < GIC_LPI_OFFSET ||
1064 	    lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1065 		return E_ITS_MAPTI_PHYSICALID_OOR;
1066 
1067 	/* If there is an existing mapping, behavior is UNPREDICTABLE. */
1068 	if (find_ite(its, device_id, event_id))
1069 		return 0;
1070 
1071 	collection = find_collection(its, coll_id);
1072 	if (!collection) {
1073 		int ret = vgic_its_alloc_collection(its, &collection, coll_id);
1074 		if (ret)
1075 			return ret;
1076 		new_coll = collection;
1077 	}
1078 
1079 	ite = vgic_its_alloc_ite(device, collection, event_id);
1080 	if (IS_ERR(ite)) {
1081 		if (new_coll)
1082 			vgic_its_free_collection(its, coll_id);
1083 		return PTR_ERR(ite);
1084 	}
1085 
1086 	if (its_is_collection_mapped(collection))
1087 		vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1088 
1089 	irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1090 	if (IS_ERR(irq)) {
1091 		if (new_coll)
1092 			vgic_its_free_collection(its, coll_id);
1093 		its_free_ite(kvm, ite);
1094 		return PTR_ERR(irq);
1095 	}
1096 	ite->irq = irq;
1097 
1098 	return 0;
1099 }
1100 
1101 /* Requires the its_lock to be held. */
vgic_its_free_device(struct kvm * kvm,struct its_device * device)1102 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
1103 {
1104 	struct its_ite *ite, *temp;
1105 
1106 	/*
1107 	 * The spec says that unmapping a device with still valid
1108 	 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1109 	 * since we cannot leave the memory unreferenced.
1110 	 */
1111 	list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1112 		its_free_ite(kvm, ite);
1113 
1114 	vgic_its_invalidate_cache(kvm);
1115 
1116 	list_del(&device->dev_list);
1117 	kfree(device);
1118 }
1119 
1120 /* its lock must be held */
vgic_its_free_device_list(struct kvm * kvm,struct vgic_its * its)1121 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1122 {
1123 	struct its_device *cur, *temp;
1124 
1125 	list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1126 		vgic_its_free_device(kvm, cur);
1127 }
1128 
1129 /* its lock must be held */
vgic_its_free_collection_list(struct kvm * kvm,struct vgic_its * its)1130 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1131 {
1132 	struct its_collection *cur, *temp;
1133 
1134 	list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1135 		vgic_its_free_collection(its, cur->collection_id);
1136 }
1137 
1138 /* Must be called with its_lock mutex held */
vgic_its_alloc_device(struct vgic_its * its,u32 device_id,gpa_t itt_addr,u8 num_eventid_bits)1139 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1140 						u32 device_id, gpa_t itt_addr,
1141 						u8 num_eventid_bits)
1142 {
1143 	struct its_device *device;
1144 
1145 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1146 	if (!device)
1147 		return ERR_PTR(-ENOMEM);
1148 
1149 	device->device_id = device_id;
1150 	device->itt_addr = itt_addr;
1151 	device->num_eventid_bits = num_eventid_bits;
1152 	INIT_LIST_HEAD(&device->itt_head);
1153 
1154 	list_add_tail(&device->dev_list, &its->device_list);
1155 	return device;
1156 }
1157 
1158 /*
1159  * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1160  * Must be called with the its_lock mutex held.
1161  */
vgic_its_cmd_handle_mapd(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1162 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1163 				    u64 *its_cmd)
1164 {
1165 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1166 	bool valid = its_cmd_get_validbit(its_cmd);
1167 	u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1168 	gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1169 	struct its_device *device;
1170 
1171 	if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1172 		return E_ITS_MAPD_DEVICE_OOR;
1173 
1174 	if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1175 		return E_ITS_MAPD_ITTSIZE_OOR;
1176 
1177 	device = find_its_device(its, device_id);
1178 
1179 	/*
1180 	 * The spec says that calling MAPD on an already mapped device
1181 	 * invalidates all cached data for this device. We implement this
1182 	 * by removing the mapping and re-establishing it.
1183 	 */
1184 	if (device)
1185 		vgic_its_free_device(kvm, device);
1186 
1187 	/*
1188 	 * The spec does not say whether unmapping a not-mapped device
1189 	 * is an error, so we are done in any case.
1190 	 */
1191 	if (!valid)
1192 		return 0;
1193 
1194 	device = vgic_its_alloc_device(its, device_id, itt_addr,
1195 				       num_eventid_bits);
1196 
1197 	return PTR_ERR_OR_ZERO(device);
1198 }
1199 
1200 /*
1201  * The MAPC command maps collection IDs to redistributors.
1202  * Must be called with the its_lock mutex held.
1203  */
vgic_its_cmd_handle_mapc(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1204 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1205 				    u64 *its_cmd)
1206 {
1207 	u16 coll_id;
1208 	u32 target_addr;
1209 	struct its_collection *collection;
1210 	bool valid;
1211 
1212 	valid = its_cmd_get_validbit(its_cmd);
1213 	coll_id = its_cmd_get_collection(its_cmd);
1214 	target_addr = its_cmd_get_target_addr(its_cmd);
1215 
1216 	if (target_addr >= atomic_read(&kvm->online_vcpus))
1217 		return E_ITS_MAPC_PROCNUM_OOR;
1218 
1219 	if (!valid) {
1220 		vgic_its_free_collection(its, coll_id);
1221 		vgic_its_invalidate_cache(kvm);
1222 	} else {
1223 		collection = find_collection(its, coll_id);
1224 
1225 		if (!collection) {
1226 			int ret;
1227 
1228 			ret = vgic_its_alloc_collection(its, &collection,
1229 							coll_id);
1230 			if (ret)
1231 				return ret;
1232 			collection->target_addr = target_addr;
1233 		} else {
1234 			collection->target_addr = target_addr;
1235 			update_affinity_collection(kvm, its, collection);
1236 		}
1237 	}
1238 
1239 	return 0;
1240 }
1241 
1242 /*
1243  * The CLEAR command removes the pending state for a particular LPI.
1244  * Must be called with the its_lock mutex held.
1245  */
vgic_its_cmd_handle_clear(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1246 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1247 				     u64 *its_cmd)
1248 {
1249 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1250 	u32 event_id = its_cmd_get_id(its_cmd);
1251 	struct its_ite *ite;
1252 
1253 
1254 	ite = find_ite(its, device_id, event_id);
1255 	if (!ite)
1256 		return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1257 
1258 	ite->irq->pending_latch = false;
1259 
1260 	if (ite->irq->hw)
1261 		return irq_set_irqchip_state(ite->irq->host_irq,
1262 					     IRQCHIP_STATE_PENDING, false);
1263 
1264 	return 0;
1265 }
1266 
1267 /*
1268  * The INV command syncs the configuration bits from the memory table.
1269  * Must be called with the its_lock mutex held.
1270  */
vgic_its_cmd_handle_inv(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1271 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1272 				   u64 *its_cmd)
1273 {
1274 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1275 	u32 event_id = its_cmd_get_id(its_cmd);
1276 	struct its_ite *ite;
1277 
1278 
1279 	ite = find_ite(its, device_id, event_id);
1280 	if (!ite)
1281 		return E_ITS_INV_UNMAPPED_INTERRUPT;
1282 
1283 	return update_lpi_config(kvm, ite->irq, NULL, true);
1284 }
1285 
1286 /*
1287  * The INVALL command requests flushing of all IRQ data in this collection.
1288  * Find the VCPU mapped to that collection, then iterate over the VM's list
1289  * of mapped LPIs and update the configuration for each IRQ which targets
1290  * the specified vcpu. The configuration will be read from the in-memory
1291  * configuration table.
1292  * Must be called with the its_lock mutex held.
1293  */
vgic_its_cmd_handle_invall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1294 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1295 				      u64 *its_cmd)
1296 {
1297 	u32 coll_id = its_cmd_get_collection(its_cmd);
1298 	struct its_collection *collection;
1299 	struct kvm_vcpu *vcpu;
1300 	struct vgic_irq *irq;
1301 	u32 *intids;
1302 	int irq_count, i;
1303 
1304 	collection = find_collection(its, coll_id);
1305 	if (!its_is_collection_mapped(collection))
1306 		return E_ITS_INVALL_UNMAPPED_COLLECTION;
1307 
1308 	vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1309 
1310 	irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1311 	if (irq_count < 0)
1312 		return irq_count;
1313 
1314 	for (i = 0; i < irq_count; i++) {
1315 		irq = vgic_get_irq(kvm, NULL, intids[i]);
1316 		if (!irq)
1317 			continue;
1318 		update_lpi_config(kvm, irq, vcpu, false);
1319 		vgic_put_irq(kvm, irq);
1320 	}
1321 
1322 	kfree(intids);
1323 
1324 	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1325 		its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1326 
1327 	return 0;
1328 }
1329 
1330 /*
1331  * The MOVALL command moves the pending state of all IRQs targeting one
1332  * redistributor to another. We don't hold the pending state in the VCPUs,
1333  * but in the IRQs instead, so there is really not much to do for us here.
1334  * However the spec says that no IRQ must target the old redistributor
1335  * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1336  * This command affects all LPIs in the system that target that redistributor.
1337  */
vgic_its_cmd_handle_movall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1338 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1339 				      u64 *its_cmd)
1340 {
1341 	u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1342 	u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1343 	struct kvm_vcpu *vcpu1, *vcpu2;
1344 	struct vgic_irq *irq;
1345 	u32 *intids;
1346 	int irq_count, i;
1347 
1348 	if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1349 	    target2_addr >= atomic_read(&kvm->online_vcpus))
1350 		return E_ITS_MOVALL_PROCNUM_OOR;
1351 
1352 	if (target1_addr == target2_addr)
1353 		return 0;
1354 
1355 	vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1356 	vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1357 
1358 	irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1359 	if (irq_count < 0)
1360 		return irq_count;
1361 
1362 	for (i = 0; i < irq_count; i++) {
1363 		irq = vgic_get_irq(kvm, NULL, intids[i]);
1364 
1365 		update_affinity(irq, vcpu2);
1366 
1367 		vgic_put_irq(kvm, irq);
1368 	}
1369 
1370 	vgic_its_invalidate_cache(kvm);
1371 
1372 	kfree(intids);
1373 	return 0;
1374 }
1375 
1376 /*
1377  * The INT command injects the LPI associated with that DevID/EvID pair.
1378  * Must be called with the its_lock mutex held.
1379  */
vgic_its_cmd_handle_int(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1380 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1381 				   u64 *its_cmd)
1382 {
1383 	u32 msi_data = its_cmd_get_id(its_cmd);
1384 	u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1385 
1386 	return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1387 }
1388 
1389 /*
1390  * This function is called with the its_cmd lock held, but the ITS data
1391  * structure lock dropped.
1392  */
vgic_its_handle_command(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1393 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1394 				   u64 *its_cmd)
1395 {
1396 	int ret = -ENODEV;
1397 
1398 	mutex_lock(&its->its_lock);
1399 	switch (its_cmd_get_command(its_cmd)) {
1400 	case GITS_CMD_MAPD:
1401 		ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1402 		break;
1403 	case GITS_CMD_MAPC:
1404 		ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1405 		break;
1406 	case GITS_CMD_MAPI:
1407 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1408 		break;
1409 	case GITS_CMD_MAPTI:
1410 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1411 		break;
1412 	case GITS_CMD_MOVI:
1413 		ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1414 		break;
1415 	case GITS_CMD_DISCARD:
1416 		ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1417 		break;
1418 	case GITS_CMD_CLEAR:
1419 		ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1420 		break;
1421 	case GITS_CMD_MOVALL:
1422 		ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1423 		break;
1424 	case GITS_CMD_INT:
1425 		ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1426 		break;
1427 	case GITS_CMD_INV:
1428 		ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1429 		break;
1430 	case GITS_CMD_INVALL:
1431 		ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1432 		break;
1433 	case GITS_CMD_SYNC:
1434 		/* we ignore this command: we are in sync all of the time */
1435 		ret = 0;
1436 		break;
1437 	}
1438 	mutex_unlock(&its->its_lock);
1439 
1440 	return ret;
1441 }
1442 
vgic_sanitise_its_baser(u64 reg)1443 static u64 vgic_sanitise_its_baser(u64 reg)
1444 {
1445 	reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1446 				  GITS_BASER_SHAREABILITY_SHIFT,
1447 				  vgic_sanitise_shareability);
1448 	reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1449 				  GITS_BASER_INNER_CACHEABILITY_SHIFT,
1450 				  vgic_sanitise_inner_cacheability);
1451 	reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1452 				  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1453 				  vgic_sanitise_outer_cacheability);
1454 
1455 	/* We support only one (ITS) page size: 64K */
1456 	reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1457 
1458 	return reg;
1459 }
1460 
vgic_sanitise_its_cbaser(u64 reg)1461 static u64 vgic_sanitise_its_cbaser(u64 reg)
1462 {
1463 	reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1464 				  GITS_CBASER_SHAREABILITY_SHIFT,
1465 				  vgic_sanitise_shareability);
1466 	reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1467 				  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1468 				  vgic_sanitise_inner_cacheability);
1469 	reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1470 				  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1471 				  vgic_sanitise_outer_cacheability);
1472 
1473 	/* Sanitise the physical address to be 64k aligned. */
1474 	reg &= ~GENMASK_ULL(15, 12);
1475 
1476 	return reg;
1477 }
1478 
vgic_mmio_read_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1479 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1480 					       struct vgic_its *its,
1481 					       gpa_t addr, unsigned int len)
1482 {
1483 	return extract_bytes(its->cbaser, addr & 7, len);
1484 }
1485 
vgic_mmio_write_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1486 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1487 				       gpa_t addr, unsigned int len,
1488 				       unsigned long val)
1489 {
1490 	/* When GITS_CTLR.Enable is 1, this register is RO. */
1491 	if (its->enabled)
1492 		return;
1493 
1494 	mutex_lock(&its->cmd_lock);
1495 	its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1496 	its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1497 	its->creadr = 0;
1498 	/*
1499 	 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1500 	 * it to CREADR to make sure we start with an empty command buffer.
1501 	 */
1502 	its->cwriter = its->creadr;
1503 	mutex_unlock(&its->cmd_lock);
1504 }
1505 
1506 #define ITS_CMD_BUFFER_SIZE(baser)	((((baser) & 0xff) + 1) << 12)
1507 #define ITS_CMD_SIZE			32
1508 #define ITS_CMD_OFFSET(reg)		((reg) & GENMASK(19, 5))
1509 
1510 /* Must be called with the cmd_lock held. */
vgic_its_process_commands(struct kvm * kvm,struct vgic_its * its)1511 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1512 {
1513 	gpa_t cbaser;
1514 	u64 cmd_buf[4];
1515 
1516 	/* Commands are only processed when the ITS is enabled. */
1517 	if (!its->enabled)
1518 		return;
1519 
1520 	cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1521 
1522 	while (its->cwriter != its->creadr) {
1523 		int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1524 					      cmd_buf, ITS_CMD_SIZE);
1525 		/*
1526 		 * If kvm_read_guest() fails, this could be due to the guest
1527 		 * programming a bogus value in CBASER or something else going
1528 		 * wrong from which we cannot easily recover.
1529 		 * According to section 6.3.2 in the GICv3 spec we can just
1530 		 * ignore that command then.
1531 		 */
1532 		if (!ret)
1533 			vgic_its_handle_command(kvm, its, cmd_buf);
1534 
1535 		its->creadr += ITS_CMD_SIZE;
1536 		if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1537 			its->creadr = 0;
1538 	}
1539 }
1540 
1541 /*
1542  * By writing to CWRITER the guest announces new commands to be processed.
1543  * To avoid any races in the first place, we take the its_cmd lock, which
1544  * protects our ring buffer variables, so that there is only one user
1545  * per ITS handling commands at a given time.
1546  */
vgic_mmio_write_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1547 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1548 					gpa_t addr, unsigned int len,
1549 					unsigned long val)
1550 {
1551 	u64 reg;
1552 
1553 	if (!its)
1554 		return;
1555 
1556 	mutex_lock(&its->cmd_lock);
1557 
1558 	reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1559 	reg = ITS_CMD_OFFSET(reg);
1560 	if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1561 		mutex_unlock(&its->cmd_lock);
1562 		return;
1563 	}
1564 	its->cwriter = reg;
1565 
1566 	vgic_its_process_commands(kvm, its);
1567 
1568 	mutex_unlock(&its->cmd_lock);
1569 }
1570 
vgic_mmio_read_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1571 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1572 						struct vgic_its *its,
1573 						gpa_t addr, unsigned int len)
1574 {
1575 	return extract_bytes(its->cwriter, addr & 0x7, len);
1576 }
1577 
vgic_mmio_read_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1578 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1579 					       struct vgic_its *its,
1580 					       gpa_t addr, unsigned int len)
1581 {
1582 	return extract_bytes(its->creadr, addr & 0x7, len);
1583 }
1584 
vgic_mmio_uaccess_write_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1585 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1586 					      struct vgic_its *its,
1587 					      gpa_t addr, unsigned int len,
1588 					      unsigned long val)
1589 {
1590 	u32 cmd_offset;
1591 	int ret = 0;
1592 
1593 	mutex_lock(&its->cmd_lock);
1594 
1595 	if (its->enabled) {
1596 		ret = -EBUSY;
1597 		goto out;
1598 	}
1599 
1600 	cmd_offset = ITS_CMD_OFFSET(val);
1601 	if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1602 		ret = -EINVAL;
1603 		goto out;
1604 	}
1605 
1606 	its->creadr = cmd_offset;
1607 out:
1608 	mutex_unlock(&its->cmd_lock);
1609 	return ret;
1610 }
1611 
1612 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
vgic_mmio_read_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1613 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1614 					      struct vgic_its *its,
1615 					      gpa_t addr, unsigned int len)
1616 {
1617 	u64 reg;
1618 
1619 	switch (BASER_INDEX(addr)) {
1620 	case 0:
1621 		reg = its->baser_device_table;
1622 		break;
1623 	case 1:
1624 		reg = its->baser_coll_table;
1625 		break;
1626 	default:
1627 		reg = 0;
1628 		break;
1629 	}
1630 
1631 	return extract_bytes(reg, addr & 7, len);
1632 }
1633 
1634 #define GITS_BASER_RO_MASK	(GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
vgic_mmio_write_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1635 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1636 				      struct vgic_its *its,
1637 				      gpa_t addr, unsigned int len,
1638 				      unsigned long val)
1639 {
1640 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1641 	u64 entry_size, table_type;
1642 	u64 reg, *regptr, clearbits = 0;
1643 
1644 	/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1645 	if (its->enabled)
1646 		return;
1647 
1648 	switch (BASER_INDEX(addr)) {
1649 	case 0:
1650 		regptr = &its->baser_device_table;
1651 		entry_size = abi->dte_esz;
1652 		table_type = GITS_BASER_TYPE_DEVICE;
1653 		break;
1654 	case 1:
1655 		regptr = &its->baser_coll_table;
1656 		entry_size = abi->cte_esz;
1657 		table_type = GITS_BASER_TYPE_COLLECTION;
1658 		clearbits = GITS_BASER_INDIRECT;
1659 		break;
1660 	default:
1661 		return;
1662 	}
1663 
1664 	reg = update_64bit_reg(*regptr, addr & 7, len, val);
1665 	reg &= ~GITS_BASER_RO_MASK;
1666 	reg &= ~clearbits;
1667 
1668 	reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1669 	reg |= table_type << GITS_BASER_TYPE_SHIFT;
1670 	reg = vgic_sanitise_its_baser(reg);
1671 
1672 	*regptr = reg;
1673 
1674 	if (!(reg & GITS_BASER_VALID)) {
1675 		/* Take the its_lock to prevent a race with a save/restore */
1676 		mutex_lock(&its->its_lock);
1677 		switch (table_type) {
1678 		case GITS_BASER_TYPE_DEVICE:
1679 			vgic_its_free_device_list(kvm, its);
1680 			break;
1681 		case GITS_BASER_TYPE_COLLECTION:
1682 			vgic_its_free_collection_list(kvm, its);
1683 			break;
1684 		}
1685 		mutex_unlock(&its->its_lock);
1686 	}
1687 }
1688 
vgic_mmio_read_its_ctlr(struct kvm * vcpu,struct vgic_its * its,gpa_t addr,unsigned int len)1689 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1690 					     struct vgic_its *its,
1691 					     gpa_t addr, unsigned int len)
1692 {
1693 	u32 reg = 0;
1694 
1695 	mutex_lock(&its->cmd_lock);
1696 	if (its->creadr == its->cwriter)
1697 		reg |= GITS_CTLR_QUIESCENT;
1698 	if (its->enabled)
1699 		reg |= GITS_CTLR_ENABLE;
1700 	mutex_unlock(&its->cmd_lock);
1701 
1702 	return reg;
1703 }
1704 
vgic_mmio_write_its_ctlr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1705 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1706 				     gpa_t addr, unsigned int len,
1707 				     unsigned long val)
1708 {
1709 	mutex_lock(&its->cmd_lock);
1710 
1711 	/*
1712 	 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1713 	 * device/collection BASER are invalid
1714 	 */
1715 	if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1716 		(!(its->baser_device_table & GITS_BASER_VALID) ||
1717 		 !(its->baser_coll_table & GITS_BASER_VALID) ||
1718 		 !(its->cbaser & GITS_CBASER_VALID)))
1719 		goto out;
1720 
1721 	its->enabled = !!(val & GITS_CTLR_ENABLE);
1722 	if (!its->enabled)
1723 		vgic_its_invalidate_cache(kvm);
1724 
1725 	/*
1726 	 * Try to process any pending commands. This function bails out early
1727 	 * if the ITS is disabled or no commands have been queued.
1728 	 */
1729 	vgic_its_process_commands(kvm, its);
1730 
1731 out:
1732 	mutex_unlock(&its->cmd_lock);
1733 }
1734 
1735 #define REGISTER_ITS_DESC(off, rd, wr, length, acc)		\
1736 {								\
1737 	.reg_offset = off,					\
1738 	.len = length,						\
1739 	.access_flags = acc,					\
1740 	.its_read = rd,						\
1741 	.its_write = wr,					\
1742 }
1743 
1744 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1745 {								\
1746 	.reg_offset = off,					\
1747 	.len = length,						\
1748 	.access_flags = acc,					\
1749 	.its_read = rd,						\
1750 	.its_write = wr,					\
1751 	.uaccess_its_write = uwr,				\
1752 }
1753 
its_mmio_write_wi(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1754 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1755 			      gpa_t addr, unsigned int len, unsigned long val)
1756 {
1757 	/* Ignore */
1758 }
1759 
1760 static struct vgic_register_region its_registers[] = {
1761 	REGISTER_ITS_DESC(GITS_CTLR,
1762 		vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1763 		VGIC_ACCESS_32bit),
1764 	REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1765 		vgic_mmio_read_its_iidr, its_mmio_write_wi,
1766 		vgic_mmio_uaccess_write_its_iidr, 4,
1767 		VGIC_ACCESS_32bit),
1768 	REGISTER_ITS_DESC(GITS_TYPER,
1769 		vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1770 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1771 	REGISTER_ITS_DESC(GITS_CBASER,
1772 		vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1773 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1774 	REGISTER_ITS_DESC(GITS_CWRITER,
1775 		vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1776 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1777 	REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1778 		vgic_mmio_read_its_creadr, its_mmio_write_wi,
1779 		vgic_mmio_uaccess_write_its_creadr, 8,
1780 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1781 	REGISTER_ITS_DESC(GITS_BASER,
1782 		vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1783 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1784 	REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1785 		vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1786 		VGIC_ACCESS_32bit),
1787 };
1788 
1789 /* This is called on setting the LPI enable bit in the redistributor. */
vgic_enable_lpis(struct kvm_vcpu * vcpu)1790 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1791 {
1792 	if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1793 		its_sync_lpi_pending_table(vcpu);
1794 }
1795 
vgic_register_its_iodev(struct kvm * kvm,struct vgic_its * its,u64 addr)1796 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1797 				   u64 addr)
1798 {
1799 	struct vgic_io_device *iodev = &its->iodev;
1800 	int ret;
1801 
1802 	mutex_lock(&kvm->slots_lock);
1803 	if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1804 		ret = -EBUSY;
1805 		goto out;
1806 	}
1807 
1808 	its->vgic_its_base = addr;
1809 	iodev->regions = its_registers;
1810 	iodev->nr_regions = ARRAY_SIZE(its_registers);
1811 	kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1812 
1813 	iodev->base_addr = its->vgic_its_base;
1814 	iodev->iodev_type = IODEV_ITS;
1815 	iodev->its = its;
1816 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1817 				      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1818 out:
1819 	mutex_unlock(&kvm->slots_lock);
1820 
1821 	return ret;
1822 }
1823 
1824 /* Default is 16 cached LPIs per vcpu */
1825 #define LPI_DEFAULT_PCPU_CACHE_SIZE	16
1826 
vgic_lpi_translation_cache_init(struct kvm * kvm)1827 void vgic_lpi_translation_cache_init(struct kvm *kvm)
1828 {
1829 	struct vgic_dist *dist = &kvm->arch.vgic;
1830 	unsigned int sz;
1831 	int i;
1832 
1833 	if (!list_empty(&dist->lpi_translation_cache))
1834 		return;
1835 
1836 	sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
1837 
1838 	for (i = 0; i < sz; i++) {
1839 		struct vgic_translation_cache_entry *cte;
1840 
1841 		/* An allocation failure is not fatal */
1842 		cte = kzalloc(sizeof(*cte), GFP_KERNEL);
1843 		if (WARN_ON(!cte))
1844 			break;
1845 
1846 		INIT_LIST_HEAD(&cte->entry);
1847 		list_add(&cte->entry, &dist->lpi_translation_cache);
1848 	}
1849 }
1850 
vgic_lpi_translation_cache_destroy(struct kvm * kvm)1851 void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
1852 {
1853 	struct vgic_dist *dist = &kvm->arch.vgic;
1854 	struct vgic_translation_cache_entry *cte, *tmp;
1855 
1856 	vgic_its_invalidate_cache(kvm);
1857 
1858 	list_for_each_entry_safe(cte, tmp,
1859 				 &dist->lpi_translation_cache, entry) {
1860 		list_del(&cte->entry);
1861 		kfree(cte);
1862 	}
1863 }
1864 
1865 #define INITIAL_BASER_VALUE						  \
1866 	(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)		| \
1867 	 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)		| \
1868 	 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)		| \
1869 	 GITS_BASER_PAGE_SIZE_64K)
1870 
1871 #define INITIAL_PROPBASER_VALUE						  \
1872 	(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)		| \
1873 	 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)	| \
1874 	 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1875 
vgic_its_create(struct kvm_device * dev,u32 type)1876 static int vgic_its_create(struct kvm_device *dev, u32 type)
1877 {
1878 	struct vgic_its *its;
1879 
1880 	if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1881 		return -ENODEV;
1882 
1883 	its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1884 	if (!its)
1885 		return -ENOMEM;
1886 
1887 	if (vgic_initialized(dev->kvm)) {
1888 		int ret = vgic_v4_init(dev->kvm);
1889 		if (ret < 0) {
1890 			kfree(its);
1891 			return ret;
1892 		}
1893 
1894 		vgic_lpi_translation_cache_init(dev->kvm);
1895 	}
1896 
1897 	mutex_init(&its->its_lock);
1898 	mutex_init(&its->cmd_lock);
1899 
1900 	its->vgic_its_base = VGIC_ADDR_UNDEF;
1901 
1902 	INIT_LIST_HEAD(&its->device_list);
1903 	INIT_LIST_HEAD(&its->collection_list);
1904 
1905 	dev->kvm->arch.vgic.msis_require_devid = true;
1906 	dev->kvm->arch.vgic.has_its = true;
1907 	its->enabled = false;
1908 	its->dev = dev;
1909 
1910 	its->baser_device_table = INITIAL_BASER_VALUE			|
1911 		((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1912 	its->baser_coll_table = INITIAL_BASER_VALUE |
1913 		((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1914 	dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1915 
1916 	dev->private = its;
1917 
1918 	return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1919 }
1920 
vgic_its_destroy(struct kvm_device * kvm_dev)1921 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1922 {
1923 	struct kvm *kvm = kvm_dev->kvm;
1924 	struct vgic_its *its = kvm_dev->private;
1925 
1926 	mutex_lock(&its->its_lock);
1927 
1928 	vgic_its_free_device_list(kvm, its);
1929 	vgic_its_free_collection_list(kvm, its);
1930 
1931 	mutex_unlock(&its->its_lock);
1932 	kfree(its);
1933 	kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
1934 }
1935 
vgic_its_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)1936 static int vgic_its_has_attr_regs(struct kvm_device *dev,
1937 				  struct kvm_device_attr *attr)
1938 {
1939 	const struct vgic_register_region *region;
1940 	gpa_t offset = attr->attr;
1941 	int align;
1942 
1943 	align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1944 
1945 	if (offset & align)
1946 		return -EINVAL;
1947 
1948 	region = vgic_find_mmio_region(its_registers,
1949 				       ARRAY_SIZE(its_registers),
1950 				       offset);
1951 	if (!region)
1952 		return -ENXIO;
1953 
1954 	return 0;
1955 }
1956 
vgic_its_attr_regs_access(struct kvm_device * dev,struct kvm_device_attr * attr,u64 * reg,bool is_write)1957 static int vgic_its_attr_regs_access(struct kvm_device *dev,
1958 				     struct kvm_device_attr *attr,
1959 				     u64 *reg, bool is_write)
1960 {
1961 	const struct vgic_register_region *region;
1962 	struct vgic_its *its;
1963 	gpa_t addr, offset;
1964 	unsigned int len;
1965 	int align, ret = 0;
1966 
1967 	its = dev->private;
1968 	offset = attr->attr;
1969 
1970 	/*
1971 	 * Although the spec supports upper/lower 32-bit accesses to
1972 	 * 64-bit ITS registers, the userspace ABI requires 64-bit
1973 	 * accesses to all 64-bit wide registers. We therefore only
1974 	 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1975 	 * registers
1976 	 */
1977 	if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1978 		align = 0x3;
1979 	else
1980 		align = 0x7;
1981 
1982 	if (offset & align)
1983 		return -EINVAL;
1984 
1985 	mutex_lock(&dev->kvm->lock);
1986 
1987 	if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1988 		ret = -ENXIO;
1989 		goto out;
1990 	}
1991 
1992 	region = vgic_find_mmio_region(its_registers,
1993 				       ARRAY_SIZE(its_registers),
1994 				       offset);
1995 	if (!region) {
1996 		ret = -ENXIO;
1997 		goto out;
1998 	}
1999 
2000 	if (!lock_all_vcpus(dev->kvm)) {
2001 		ret = -EBUSY;
2002 		goto out;
2003 	}
2004 
2005 	addr = its->vgic_its_base + offset;
2006 
2007 	len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
2008 
2009 	if (is_write) {
2010 		if (region->uaccess_its_write)
2011 			ret = region->uaccess_its_write(dev->kvm, its, addr,
2012 							len, *reg);
2013 		else
2014 			region->its_write(dev->kvm, its, addr, len, *reg);
2015 	} else {
2016 		*reg = region->its_read(dev->kvm, its, addr, len);
2017 	}
2018 	unlock_all_vcpus(dev->kvm);
2019 out:
2020 	mutex_unlock(&dev->kvm->lock);
2021 	return ret;
2022 }
2023 
compute_next_devid_offset(struct list_head * h,struct its_device * dev)2024 static u32 compute_next_devid_offset(struct list_head *h,
2025 				     struct its_device *dev)
2026 {
2027 	struct its_device *next;
2028 	u32 next_offset;
2029 
2030 	if (list_is_last(&dev->dev_list, h))
2031 		return 0;
2032 	next = list_next_entry(dev, dev_list);
2033 	next_offset = next->device_id - dev->device_id;
2034 
2035 	return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2036 }
2037 
compute_next_eventid_offset(struct list_head * h,struct its_ite * ite)2038 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2039 {
2040 	struct its_ite *next;
2041 	u32 next_offset;
2042 
2043 	if (list_is_last(&ite->ite_list, h))
2044 		return 0;
2045 	next = list_next_entry(ite, ite_list);
2046 	next_offset = next->event_id - ite->event_id;
2047 
2048 	return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2049 }
2050 
2051 /**
2052  * entry_fn_t - Callback called on a table entry restore path
2053  * @its: its handle
2054  * @id: id of the entry
2055  * @entry: pointer to the entry
2056  * @opaque: pointer to an opaque data
2057  *
2058  * Return: < 0 on error, 0 if last element was identified, id offset to next
2059  * element otherwise
2060  */
2061 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2062 			  void *opaque);
2063 
2064 /**
2065  * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2066  * to each entry
2067  *
2068  * @its: its handle
2069  * @base: base gpa of the table
2070  * @size: size of the table in bytes
2071  * @esz: entry size in bytes
2072  * @start_id: the ID of the first entry in the table
2073  * (non zero for 2d level tables)
2074  * @fn: function to apply on each entry
2075  *
2076  * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2077  * (the last element may not be found on second level tables)
2078  */
scan_its_table(struct vgic_its * its,gpa_t base,int size,u32 esz,int start_id,entry_fn_t fn,void * opaque)2079 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2080 			  int start_id, entry_fn_t fn, void *opaque)
2081 {
2082 	struct kvm *kvm = its->dev->kvm;
2083 	unsigned long len = size;
2084 	int id = start_id;
2085 	gpa_t gpa = base;
2086 	char entry[ESZ_MAX];
2087 	int ret;
2088 
2089 	memset(entry, 0, esz);
2090 
2091 	while (len > 0) {
2092 		int next_offset;
2093 		size_t byte_offset;
2094 
2095 		ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2096 		if (ret)
2097 			return ret;
2098 
2099 		next_offset = fn(its, id, entry, opaque);
2100 		if (next_offset <= 0)
2101 			return next_offset;
2102 
2103 		byte_offset = next_offset * esz;
2104 		id += next_offset;
2105 		gpa += byte_offset;
2106 		len -= byte_offset;
2107 	}
2108 	return 1;
2109 }
2110 
2111 /**
2112  * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2113  */
vgic_its_save_ite(struct vgic_its * its,struct its_device * dev,struct its_ite * ite,gpa_t gpa,int ite_esz)2114 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2115 			      struct its_ite *ite, gpa_t gpa, int ite_esz)
2116 {
2117 	struct kvm *kvm = its->dev->kvm;
2118 	u32 next_offset;
2119 	u64 val;
2120 
2121 	next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2122 	val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2123 	       ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2124 		ite->collection->collection_id;
2125 	val = cpu_to_le64(val);
2126 	return kvm_write_guest_lock(kvm, gpa, &val, ite_esz);
2127 }
2128 
2129 /**
2130  * vgic_its_restore_ite - restore an interrupt translation entry
2131  * @event_id: id used for indexing
2132  * @ptr: pointer to the ITE entry
2133  * @opaque: pointer to the its_device
2134  */
vgic_its_restore_ite(struct vgic_its * its,u32 event_id,void * ptr,void * opaque)2135 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2136 				void *ptr, void *opaque)
2137 {
2138 	struct its_device *dev = (struct its_device *)opaque;
2139 	struct its_collection *collection;
2140 	struct kvm *kvm = its->dev->kvm;
2141 	struct kvm_vcpu *vcpu = NULL;
2142 	u64 val;
2143 	u64 *p = (u64 *)ptr;
2144 	struct vgic_irq *irq;
2145 	u32 coll_id, lpi_id;
2146 	struct its_ite *ite;
2147 	u32 offset;
2148 
2149 	val = *p;
2150 
2151 	val = le64_to_cpu(val);
2152 
2153 	coll_id = val & KVM_ITS_ITE_ICID_MASK;
2154 	lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2155 
2156 	if (!lpi_id)
2157 		return 1; /* invalid entry, no choice but to scan next entry */
2158 
2159 	if (lpi_id < VGIC_MIN_LPI)
2160 		return -EINVAL;
2161 
2162 	offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2163 	if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2164 		return -EINVAL;
2165 
2166 	collection = find_collection(its, coll_id);
2167 	if (!collection)
2168 		return -EINVAL;
2169 
2170 	ite = vgic_its_alloc_ite(dev, collection, event_id);
2171 	if (IS_ERR(ite))
2172 		return PTR_ERR(ite);
2173 
2174 	if (its_is_collection_mapped(collection))
2175 		vcpu = kvm_get_vcpu(kvm, collection->target_addr);
2176 
2177 	irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2178 	if (IS_ERR(irq))
2179 		return PTR_ERR(irq);
2180 	ite->irq = irq;
2181 
2182 	return offset;
2183 }
2184 
vgic_its_ite_cmp(void * priv,struct list_head * a,struct list_head * b)2185 static int vgic_its_ite_cmp(void *priv, struct list_head *a,
2186 			    struct list_head *b)
2187 {
2188 	struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2189 	struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2190 
2191 	if (itea->event_id < iteb->event_id)
2192 		return -1;
2193 	else
2194 		return 1;
2195 }
2196 
vgic_its_save_itt(struct vgic_its * its,struct its_device * device)2197 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2198 {
2199 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2200 	gpa_t base = device->itt_addr;
2201 	struct its_ite *ite;
2202 	int ret;
2203 	int ite_esz = abi->ite_esz;
2204 
2205 	list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2206 
2207 	list_for_each_entry(ite, &device->itt_head, ite_list) {
2208 		gpa_t gpa = base + ite->event_id * ite_esz;
2209 
2210 		/*
2211 		 * If an LPI carries the HW bit, this means that this
2212 		 * interrupt is controlled by GICv4, and we do not
2213 		 * have direct access to that state. Let's simply fail
2214 		 * the save operation...
2215 		 */
2216 		if (ite->irq->hw)
2217 			return -EACCES;
2218 
2219 		ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2220 		if (ret)
2221 			return ret;
2222 	}
2223 	return 0;
2224 }
2225 
2226 /**
2227  * vgic_its_restore_itt - restore the ITT of a device
2228  *
2229  * @its: its handle
2230  * @dev: device handle
2231  *
2232  * Return 0 on success, < 0 on error
2233  */
vgic_its_restore_itt(struct vgic_its * its,struct its_device * dev)2234 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2235 {
2236 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2237 	gpa_t base = dev->itt_addr;
2238 	int ret;
2239 	int ite_esz = abi->ite_esz;
2240 	size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2241 
2242 	ret = scan_its_table(its, base, max_size, ite_esz, 0,
2243 			     vgic_its_restore_ite, dev);
2244 
2245 	/* scan_its_table returns +1 if all ITEs are invalid */
2246 	if (ret > 0)
2247 		ret = 0;
2248 
2249 	return ret;
2250 }
2251 
2252 /**
2253  * vgic_its_save_dte - Save a device table entry at a given GPA
2254  *
2255  * @its: ITS handle
2256  * @dev: ITS device
2257  * @ptr: GPA
2258  */
vgic_its_save_dte(struct vgic_its * its,struct its_device * dev,gpa_t ptr,int dte_esz)2259 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2260 			     gpa_t ptr, int dte_esz)
2261 {
2262 	struct kvm *kvm = its->dev->kvm;
2263 	u64 val, itt_addr_field;
2264 	u32 next_offset;
2265 
2266 	itt_addr_field = dev->itt_addr >> 8;
2267 	next_offset = compute_next_devid_offset(&its->device_list, dev);
2268 	val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2269 	       ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2270 	       (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2271 		(dev->num_eventid_bits - 1));
2272 	val = cpu_to_le64(val);
2273 	return kvm_write_guest_lock(kvm, ptr, &val, dte_esz);
2274 }
2275 
2276 /**
2277  * vgic_its_restore_dte - restore a device table entry
2278  *
2279  * @its: its handle
2280  * @id: device id the DTE corresponds to
2281  * @ptr: kernel VA where the 8 byte DTE is located
2282  * @opaque: unused
2283  *
2284  * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2285  * next dte otherwise
2286  */
vgic_its_restore_dte(struct vgic_its * its,u32 id,void * ptr,void * opaque)2287 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2288 				void *ptr, void *opaque)
2289 {
2290 	struct its_device *dev;
2291 	gpa_t itt_addr;
2292 	u8 num_eventid_bits;
2293 	u64 entry = *(u64 *)ptr;
2294 	bool valid;
2295 	u32 offset;
2296 	int ret;
2297 
2298 	entry = le64_to_cpu(entry);
2299 
2300 	valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2301 	num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2302 	itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2303 			>> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2304 
2305 	if (!valid)
2306 		return 1;
2307 
2308 	/* dte entry is valid */
2309 	offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2310 
2311 	dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2312 	if (IS_ERR(dev))
2313 		return PTR_ERR(dev);
2314 
2315 	ret = vgic_its_restore_itt(its, dev);
2316 	if (ret) {
2317 		vgic_its_free_device(its->dev->kvm, dev);
2318 		return ret;
2319 	}
2320 
2321 	return offset;
2322 }
2323 
vgic_its_device_cmp(void * priv,struct list_head * a,struct list_head * b)2324 static int vgic_its_device_cmp(void *priv, struct list_head *a,
2325 			       struct list_head *b)
2326 {
2327 	struct its_device *deva = container_of(a, struct its_device, dev_list);
2328 	struct its_device *devb = container_of(b, struct its_device, dev_list);
2329 
2330 	if (deva->device_id < devb->device_id)
2331 		return -1;
2332 	else
2333 		return 1;
2334 }
2335 
2336 /**
2337  * vgic_its_save_device_tables - Save the device table and all ITT
2338  * into guest RAM
2339  *
2340  * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2341  * returns the GPA of the device entry
2342  */
vgic_its_save_device_tables(struct vgic_its * its)2343 static int vgic_its_save_device_tables(struct vgic_its *its)
2344 {
2345 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2346 	u64 baser = its->baser_device_table;
2347 	struct its_device *dev;
2348 	int dte_esz = abi->dte_esz;
2349 
2350 	if (!(baser & GITS_BASER_VALID))
2351 		return 0;
2352 
2353 	list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2354 
2355 	list_for_each_entry(dev, &its->device_list, dev_list) {
2356 		int ret;
2357 		gpa_t eaddr;
2358 
2359 		if (!vgic_its_check_id(its, baser,
2360 				       dev->device_id, &eaddr))
2361 			return -EINVAL;
2362 
2363 		ret = vgic_its_save_itt(its, dev);
2364 		if (ret)
2365 			return ret;
2366 
2367 		ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2368 		if (ret)
2369 			return ret;
2370 	}
2371 	return 0;
2372 }
2373 
2374 /**
2375  * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2376  *
2377  * @its: its handle
2378  * @id: index of the entry in the L1 table
2379  * @addr: kernel VA
2380  * @opaque: unused
2381  *
2382  * L1 table entries are scanned by steps of 1 entry
2383  * Return < 0 if error, 0 if last dte was found when scanning the L2
2384  * table, +1 otherwise (meaning next L1 entry must be scanned)
2385  */
handle_l1_dte(struct vgic_its * its,u32 id,void * addr,void * opaque)2386 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2387 			 void *opaque)
2388 {
2389 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2390 	int l2_start_id = id * (SZ_64K / abi->dte_esz);
2391 	u64 entry = *(u64 *)addr;
2392 	int dte_esz = abi->dte_esz;
2393 	gpa_t gpa;
2394 	int ret;
2395 
2396 	entry = le64_to_cpu(entry);
2397 
2398 	if (!(entry & KVM_ITS_L1E_VALID_MASK))
2399 		return 1;
2400 
2401 	gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2402 
2403 	ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2404 			     l2_start_id, vgic_its_restore_dte, NULL);
2405 
2406 	return ret;
2407 }
2408 
2409 /**
2410  * vgic_its_restore_device_tables - Restore the device table and all ITT
2411  * from guest RAM to internal data structs
2412  */
vgic_its_restore_device_tables(struct vgic_its * its)2413 static int vgic_its_restore_device_tables(struct vgic_its *its)
2414 {
2415 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2416 	u64 baser = its->baser_device_table;
2417 	int l1_esz, ret;
2418 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2419 	gpa_t l1_gpa;
2420 
2421 	if (!(baser & GITS_BASER_VALID))
2422 		return 0;
2423 
2424 	l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2425 
2426 	if (baser & GITS_BASER_INDIRECT) {
2427 		l1_esz = GITS_LVL1_ENTRY_SIZE;
2428 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2429 				     handle_l1_dte, NULL);
2430 	} else {
2431 		l1_esz = abi->dte_esz;
2432 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2433 				     vgic_its_restore_dte, NULL);
2434 	}
2435 
2436 	/* scan_its_table returns +1 if all entries are invalid */
2437 	if (ret > 0)
2438 		ret = 0;
2439 
2440 	return ret;
2441 }
2442 
vgic_its_save_cte(struct vgic_its * its,struct its_collection * collection,gpa_t gpa,int esz)2443 static int vgic_its_save_cte(struct vgic_its *its,
2444 			     struct its_collection *collection,
2445 			     gpa_t gpa, int esz)
2446 {
2447 	u64 val;
2448 
2449 	val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2450 	       ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2451 	       collection->collection_id);
2452 	val = cpu_to_le64(val);
2453 	return kvm_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2454 }
2455 
vgic_its_restore_cte(struct vgic_its * its,gpa_t gpa,int esz)2456 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2457 {
2458 	struct its_collection *collection;
2459 	struct kvm *kvm = its->dev->kvm;
2460 	u32 target_addr, coll_id;
2461 	u64 val;
2462 	int ret;
2463 
2464 	BUG_ON(esz > sizeof(val));
2465 	ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2466 	if (ret)
2467 		return ret;
2468 	val = le64_to_cpu(val);
2469 	if (!(val & KVM_ITS_CTE_VALID_MASK))
2470 		return 0;
2471 
2472 	target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2473 	coll_id = val & KVM_ITS_CTE_ICID_MASK;
2474 
2475 	if (target_addr >= atomic_read(&kvm->online_vcpus))
2476 		return -EINVAL;
2477 
2478 	collection = find_collection(its, coll_id);
2479 	if (collection)
2480 		return -EEXIST;
2481 	ret = vgic_its_alloc_collection(its, &collection, coll_id);
2482 	if (ret)
2483 		return ret;
2484 	collection->target_addr = target_addr;
2485 	return 1;
2486 }
2487 
2488 /**
2489  * vgic_its_save_collection_table - Save the collection table into
2490  * guest RAM
2491  */
vgic_its_save_collection_table(struct vgic_its * its)2492 static int vgic_its_save_collection_table(struct vgic_its *its)
2493 {
2494 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2495 	u64 baser = its->baser_coll_table;
2496 	gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2497 	struct its_collection *collection;
2498 	u64 val;
2499 	size_t max_size, filled = 0;
2500 	int ret, cte_esz = abi->cte_esz;
2501 
2502 	if (!(baser & GITS_BASER_VALID))
2503 		return 0;
2504 
2505 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2506 
2507 	list_for_each_entry(collection, &its->collection_list, coll_list) {
2508 		ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2509 		if (ret)
2510 			return ret;
2511 		gpa += cte_esz;
2512 		filled += cte_esz;
2513 	}
2514 
2515 	if (filled == max_size)
2516 		return 0;
2517 
2518 	/*
2519 	 * table is not fully filled, add a last dummy element
2520 	 * with valid bit unset
2521 	 */
2522 	val = 0;
2523 	BUG_ON(cte_esz > sizeof(val));
2524 	ret = kvm_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2525 	return ret;
2526 }
2527 
2528 /**
2529  * vgic_its_restore_collection_table - reads the collection table
2530  * in guest memory and restores the ITS internal state. Requires the
2531  * BASER registers to be restored before.
2532  */
vgic_its_restore_collection_table(struct vgic_its * its)2533 static int vgic_its_restore_collection_table(struct vgic_its *its)
2534 {
2535 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2536 	u64 baser = its->baser_coll_table;
2537 	int cte_esz = abi->cte_esz;
2538 	size_t max_size, read = 0;
2539 	gpa_t gpa;
2540 	int ret;
2541 
2542 	if (!(baser & GITS_BASER_VALID))
2543 		return 0;
2544 
2545 	gpa = GITS_BASER_ADDR_48_to_52(baser);
2546 
2547 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2548 
2549 	while (read < max_size) {
2550 		ret = vgic_its_restore_cte(its, gpa, cte_esz);
2551 		if (ret <= 0)
2552 			break;
2553 		gpa += cte_esz;
2554 		read += cte_esz;
2555 	}
2556 
2557 	if (ret > 0)
2558 		return 0;
2559 
2560 	return ret;
2561 }
2562 
2563 /**
2564  * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2565  * according to v0 ABI
2566  */
vgic_its_save_tables_v0(struct vgic_its * its)2567 static int vgic_its_save_tables_v0(struct vgic_its *its)
2568 {
2569 	int ret;
2570 
2571 	ret = vgic_its_save_device_tables(its);
2572 	if (ret)
2573 		return ret;
2574 
2575 	return vgic_its_save_collection_table(its);
2576 }
2577 
2578 /**
2579  * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2580  * to internal data structs according to V0 ABI
2581  *
2582  */
vgic_its_restore_tables_v0(struct vgic_its * its)2583 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2584 {
2585 	int ret;
2586 
2587 	ret = vgic_its_restore_collection_table(its);
2588 	if (ret)
2589 		return ret;
2590 
2591 	return vgic_its_restore_device_tables(its);
2592 }
2593 
vgic_its_commit_v0(struct vgic_its * its)2594 static int vgic_its_commit_v0(struct vgic_its *its)
2595 {
2596 	const struct vgic_its_abi *abi;
2597 
2598 	abi = vgic_its_get_abi(its);
2599 	its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2600 	its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2601 
2602 	its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2603 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2604 
2605 	its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2606 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2607 	return 0;
2608 }
2609 
vgic_its_reset(struct kvm * kvm,struct vgic_its * its)2610 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2611 {
2612 	/* We need to keep the ABI specific field values */
2613 	its->baser_coll_table &= ~GITS_BASER_VALID;
2614 	its->baser_device_table &= ~GITS_BASER_VALID;
2615 	its->cbaser = 0;
2616 	its->creadr = 0;
2617 	its->cwriter = 0;
2618 	its->enabled = 0;
2619 	vgic_its_free_device_list(kvm, its);
2620 	vgic_its_free_collection_list(kvm, its);
2621 }
2622 
vgic_its_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2623 static int vgic_its_has_attr(struct kvm_device *dev,
2624 			     struct kvm_device_attr *attr)
2625 {
2626 	switch (attr->group) {
2627 	case KVM_DEV_ARM_VGIC_GRP_ADDR:
2628 		switch (attr->attr) {
2629 		case KVM_VGIC_ITS_ADDR_TYPE:
2630 			return 0;
2631 		}
2632 		break;
2633 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2634 		switch (attr->attr) {
2635 		case KVM_DEV_ARM_VGIC_CTRL_INIT:
2636 			return 0;
2637 		case KVM_DEV_ARM_ITS_CTRL_RESET:
2638 			return 0;
2639 		case KVM_DEV_ARM_ITS_SAVE_TABLES:
2640 			return 0;
2641 		case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2642 			return 0;
2643 		}
2644 		break;
2645 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2646 		return vgic_its_has_attr_regs(dev, attr);
2647 	}
2648 	return -ENXIO;
2649 }
2650 
vgic_its_ctrl(struct kvm * kvm,struct vgic_its * its,u64 attr)2651 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2652 {
2653 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2654 	int ret = 0;
2655 
2656 	if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2657 		return 0;
2658 
2659 	mutex_lock(&kvm->lock);
2660 	mutex_lock(&its->its_lock);
2661 
2662 	if (!lock_all_vcpus(kvm)) {
2663 		mutex_unlock(&its->its_lock);
2664 		mutex_unlock(&kvm->lock);
2665 		return -EBUSY;
2666 	}
2667 
2668 	switch (attr) {
2669 	case KVM_DEV_ARM_ITS_CTRL_RESET:
2670 		vgic_its_reset(kvm, its);
2671 		break;
2672 	case KVM_DEV_ARM_ITS_SAVE_TABLES:
2673 		ret = abi->save_tables(its);
2674 		break;
2675 	case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2676 		ret = abi->restore_tables(its);
2677 		break;
2678 	}
2679 
2680 	unlock_all_vcpus(kvm);
2681 	mutex_unlock(&its->its_lock);
2682 	mutex_unlock(&kvm->lock);
2683 	return ret;
2684 }
2685 
vgic_its_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2686 static int vgic_its_set_attr(struct kvm_device *dev,
2687 			     struct kvm_device_attr *attr)
2688 {
2689 	struct vgic_its *its = dev->private;
2690 	int ret;
2691 
2692 	switch (attr->group) {
2693 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2694 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2695 		unsigned long type = (unsigned long)attr->attr;
2696 		u64 addr;
2697 
2698 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2699 			return -ENODEV;
2700 
2701 		if (copy_from_user(&addr, uaddr, sizeof(addr)))
2702 			return -EFAULT;
2703 
2704 		ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2705 					addr, SZ_64K);
2706 		if (ret)
2707 			return ret;
2708 
2709 		return vgic_register_its_iodev(dev->kvm, its, addr);
2710 	}
2711 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2712 		return vgic_its_ctrl(dev->kvm, its, attr->attr);
2713 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2714 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2715 		u64 reg;
2716 
2717 		if (get_user(reg, uaddr))
2718 			return -EFAULT;
2719 
2720 		return vgic_its_attr_regs_access(dev, attr, &reg, true);
2721 	}
2722 	}
2723 	return -ENXIO;
2724 }
2725 
vgic_its_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2726 static int vgic_its_get_attr(struct kvm_device *dev,
2727 			     struct kvm_device_attr *attr)
2728 {
2729 	switch (attr->group) {
2730 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2731 		struct vgic_its *its = dev->private;
2732 		u64 addr = its->vgic_its_base;
2733 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2734 		unsigned long type = (unsigned long)attr->attr;
2735 
2736 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2737 			return -ENODEV;
2738 
2739 		if (copy_to_user(uaddr, &addr, sizeof(addr)))
2740 			return -EFAULT;
2741 		break;
2742 	}
2743 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2744 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2745 		u64 reg;
2746 		int ret;
2747 
2748 		ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2749 		if (ret)
2750 			return ret;
2751 		return put_user(reg, uaddr);
2752 	}
2753 	default:
2754 		return -ENXIO;
2755 	}
2756 
2757 	return 0;
2758 }
2759 
2760 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2761 	.name = "kvm-arm-vgic-its",
2762 	.create = vgic_its_create,
2763 	.destroy = vgic_its_destroy,
2764 	.set_attr = vgic_its_set_attr,
2765 	.get_attr = vgic_its_get_attr,
2766 	.has_attr = vgic_its_has_attr,
2767 };
2768 
kvm_vgic_register_its_device(void)2769 int kvm_vgic_register_its_device(void)
2770 {
2771 	return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2772 				       KVM_DEV_TYPE_ARM_VGIC_ITS);
2773 }
2774