1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VGIC MMIO handling functions
4 */
5
6 #include <linux/bitops.h>
7 #include <linux/bsearch.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <kvm/iodev.h>
11 #include <kvm/arm_arch_timer.h>
12 #include <kvm/arm_vgic.h>
13
14 #include "vgic.h"
15 #include "vgic-mmio.h"
16
vgic_mmio_read_raz(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)17 unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
18 gpa_t addr, unsigned int len)
19 {
20 return 0;
21 }
22
vgic_mmio_read_rao(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)23 unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
24 gpa_t addr, unsigned int len)
25 {
26 return -1UL;
27 }
28
vgic_mmio_write_wi(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)29 void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
30 unsigned int len, unsigned long val)
31 {
32 /* Ignore */
33 }
34
vgic_mmio_uaccess_write_wi(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)35 int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
36 unsigned int len, unsigned long val)
37 {
38 /* Ignore */
39 return 0;
40 }
41
vgic_mmio_read_group(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)42 unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu,
43 gpa_t addr, unsigned int len)
44 {
45 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
46 u32 value = 0;
47 int i;
48
49 /* Loop over all IRQs affected by this read */
50 for (i = 0; i < len * 8; i++) {
51 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
52
53 if (irq->group)
54 value |= BIT(i);
55
56 vgic_put_irq(vcpu->kvm, irq);
57 }
58
59 return value;
60 }
61
vgic_mmio_write_group(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)62 void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr,
63 unsigned int len, unsigned long val)
64 {
65 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
66 int i;
67 unsigned long flags;
68
69 for (i = 0; i < len * 8; i++) {
70 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
71
72 raw_spin_lock_irqsave(&irq->irq_lock, flags);
73 irq->group = !!(val & BIT(i));
74 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
75
76 vgic_put_irq(vcpu->kvm, irq);
77 }
78 }
79
80 /*
81 * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
82 * of the enabled bit, so there is only one function for both here.
83 */
vgic_mmio_read_enable(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)84 unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
85 gpa_t addr, unsigned int len)
86 {
87 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
88 u32 value = 0;
89 int i;
90
91 /* Loop over all IRQs affected by this read */
92 for (i = 0; i < len * 8; i++) {
93 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
94
95 if (irq->enabled)
96 value |= (1U << i);
97
98 vgic_put_irq(vcpu->kvm, irq);
99 }
100
101 return value;
102 }
103
vgic_mmio_write_senable(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)104 void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
105 gpa_t addr, unsigned int len,
106 unsigned long val)
107 {
108 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
109 int i;
110 unsigned long flags;
111
112 for_each_set_bit(i, &val, len * 8) {
113 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
114
115 raw_spin_lock_irqsave(&irq->irq_lock, flags);
116 if (vgic_irq_is_mapped_level(irq)) {
117 bool was_high = irq->line_level;
118
119 /*
120 * We need to update the state of the interrupt because
121 * the guest might have changed the state of the device
122 * while the interrupt was disabled at the VGIC level.
123 */
124 irq->line_level = vgic_get_phys_line_level(irq);
125 /*
126 * Deactivate the physical interrupt so the GIC will let
127 * us know when it is asserted again.
128 */
129 if (!irq->active && was_high && !irq->line_level)
130 vgic_irq_set_phys_active(irq, false);
131 }
132 irq->enabled = true;
133 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
134
135 vgic_put_irq(vcpu->kvm, irq);
136 }
137 }
138
vgic_mmio_write_cenable(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)139 void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
140 gpa_t addr, unsigned int len,
141 unsigned long val)
142 {
143 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
144 int i;
145 unsigned long flags;
146
147 for_each_set_bit(i, &val, len * 8) {
148 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
149
150 raw_spin_lock_irqsave(&irq->irq_lock, flags);
151
152 irq->enabled = false;
153
154 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
155 vgic_put_irq(vcpu->kvm, irq);
156 }
157 }
158
vgic_mmio_read_pending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)159 unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
160 gpa_t addr, unsigned int len)
161 {
162 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
163 u32 value = 0;
164 int i;
165
166 /* Loop over all IRQs affected by this read */
167 for (i = 0; i < len * 8; i++) {
168 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
169 unsigned long flags;
170
171 raw_spin_lock_irqsave(&irq->irq_lock, flags);
172 if (irq_is_pending(irq))
173 value |= (1U << i);
174 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
175
176 vgic_put_irq(vcpu->kvm, irq);
177 }
178
179 return value;
180 }
181
182 /*
183 * This function will return the VCPU that performed the MMIO access and
184 * trapped from within the VM, and will return NULL if this is a userspace
185 * access.
186 *
187 * We can disable preemption locally around accessing the per-CPU variable,
188 * and use the resolved vcpu pointer after enabling preemption again, because
189 * even if the current thread is migrated to another CPU, reading the per-CPU
190 * value later will give us the same value as we update the per-CPU variable
191 * in the preempt notifier handlers.
192 */
vgic_get_mmio_requester_vcpu(void)193 static struct kvm_vcpu *vgic_get_mmio_requester_vcpu(void)
194 {
195 struct kvm_vcpu *vcpu;
196
197 preempt_disable();
198 vcpu = kvm_arm_get_running_vcpu();
199 preempt_enable();
200 return vcpu;
201 }
202
203 /* Must be called with irq->irq_lock held */
vgic_hw_irq_spending(struct kvm_vcpu * vcpu,struct vgic_irq * irq,bool is_uaccess)204 static void vgic_hw_irq_spending(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
205 bool is_uaccess)
206 {
207 if (is_uaccess)
208 return;
209
210 irq->pending_latch = true;
211 vgic_irq_set_phys_active(irq, true);
212 }
213
is_vgic_v2_sgi(struct kvm_vcpu * vcpu,struct vgic_irq * irq)214 static bool is_vgic_v2_sgi(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
215 {
216 return (vgic_irq_is_sgi(irq->intid) &&
217 vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2);
218 }
219
vgic_mmio_write_spending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)220 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
221 gpa_t addr, unsigned int len,
222 unsigned long val)
223 {
224 bool is_uaccess = !vgic_get_mmio_requester_vcpu();
225 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
226 int i;
227 unsigned long flags;
228
229 for_each_set_bit(i, &val, len * 8) {
230 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
231
232 /* GICD_ISPENDR0 SGI bits are WI */
233 if (is_vgic_v2_sgi(vcpu, irq)) {
234 vgic_put_irq(vcpu->kvm, irq);
235 continue;
236 }
237
238 raw_spin_lock_irqsave(&irq->irq_lock, flags);
239 if (irq->hw)
240 vgic_hw_irq_spending(vcpu, irq, is_uaccess);
241 else
242 irq->pending_latch = true;
243 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
244 vgic_put_irq(vcpu->kvm, irq);
245 }
246 }
247
248 /* Must be called with irq->irq_lock held */
vgic_hw_irq_cpending(struct kvm_vcpu * vcpu,struct vgic_irq * irq,bool is_uaccess)249 static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
250 bool is_uaccess)
251 {
252 if (is_uaccess)
253 return;
254
255 irq->pending_latch = false;
256
257 /*
258 * We don't want the guest to effectively mask the physical
259 * interrupt by doing a write to SPENDR followed by a write to
260 * CPENDR for HW interrupts, so we clear the active state on
261 * the physical side if the virtual interrupt is not active.
262 * This may lead to taking an additional interrupt on the
263 * host, but that should not be a problem as the worst that
264 * can happen is an additional vgic injection. We also clear
265 * the pending state to maintain proper semantics for edge HW
266 * interrupts.
267 */
268 vgic_irq_set_phys_pending(irq, false);
269 if (!irq->active)
270 vgic_irq_set_phys_active(irq, false);
271 }
272
vgic_mmio_write_cpending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)273 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
274 gpa_t addr, unsigned int len,
275 unsigned long val)
276 {
277 bool is_uaccess = !vgic_get_mmio_requester_vcpu();
278 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
279 int i;
280 unsigned long flags;
281
282 for_each_set_bit(i, &val, len * 8) {
283 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
284
285 /* GICD_ICPENDR0 SGI bits are WI */
286 if (is_vgic_v2_sgi(vcpu, irq)) {
287 vgic_put_irq(vcpu->kvm, irq);
288 continue;
289 }
290
291 raw_spin_lock_irqsave(&irq->irq_lock, flags);
292
293 if (irq->hw)
294 vgic_hw_irq_cpending(vcpu, irq, is_uaccess);
295 else
296 irq->pending_latch = false;
297
298 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
299 vgic_put_irq(vcpu->kvm, irq);
300 }
301 }
302
vgic_mmio_read_active(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)303 unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
304 gpa_t addr, unsigned int len)
305 {
306 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
307 u32 value = 0;
308 int i;
309
310 /* Loop over all IRQs affected by this read */
311 for (i = 0; i < len * 8; i++) {
312 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
313
314 if (irq->active)
315 value |= (1U << i);
316
317 vgic_put_irq(vcpu->kvm, irq);
318 }
319
320 return value;
321 }
322
323 /* Must be called with irq->irq_lock held */
vgic_hw_irq_change_active(struct kvm_vcpu * vcpu,struct vgic_irq * irq,bool active,bool is_uaccess)324 static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
325 bool active, bool is_uaccess)
326 {
327 if (is_uaccess)
328 return;
329
330 irq->active = active;
331 vgic_irq_set_phys_active(irq, active);
332 }
333
vgic_mmio_change_active(struct kvm_vcpu * vcpu,struct vgic_irq * irq,bool active)334 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
335 bool active)
336 {
337 unsigned long flags;
338 struct kvm_vcpu *requester_vcpu = vgic_get_mmio_requester_vcpu();
339
340 raw_spin_lock_irqsave(&irq->irq_lock, flags);
341
342 if (irq->hw) {
343 vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
344 } else {
345 u32 model = vcpu->kvm->arch.vgic.vgic_model;
346 u8 active_source;
347
348 irq->active = active;
349
350 /*
351 * The GICv2 architecture indicates that the source CPUID for
352 * an SGI should be provided during an EOI which implies that
353 * the active state is stored somewhere, but at the same time
354 * this state is not architecturally exposed anywhere and we
355 * have no way of knowing the right source.
356 *
357 * This may lead to a VCPU not being able to receive
358 * additional instances of a particular SGI after migration
359 * for a GICv2 VM on some GIC implementations. Oh well.
360 */
361 active_source = (requester_vcpu) ? requester_vcpu->vcpu_id : 0;
362
363 if (model == KVM_DEV_TYPE_ARM_VGIC_V2 &&
364 active && vgic_irq_is_sgi(irq->intid))
365 irq->active_source = active_source;
366 }
367
368 if (irq->active)
369 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
370 else
371 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
372 }
373
374 /*
375 * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
376 * is not queued on some running VCPU's LRs, because then the change to the
377 * active state can be overwritten when the VCPU's state is synced coming back
378 * from the guest.
379 *
380 * For shared interrupts, we have to stop all the VCPUs because interrupts can
381 * be migrated while we don't hold the IRQ locks and we don't want to be
382 * chasing moving targets.
383 *
384 * For private interrupts we don't have to do anything because userspace
385 * accesses to the VGIC state already require all VCPUs to be stopped, and
386 * only the VCPU itself can modify its private interrupts active state, which
387 * guarantees that the VCPU is not running.
388 */
vgic_change_active_prepare(struct kvm_vcpu * vcpu,u32 intid)389 static void vgic_change_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
390 {
391 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
392 intid > VGIC_NR_PRIVATE_IRQS)
393 kvm_arm_halt_guest(vcpu->kvm);
394 }
395
396 /* See vgic_change_active_prepare */
vgic_change_active_finish(struct kvm_vcpu * vcpu,u32 intid)397 static void vgic_change_active_finish(struct kvm_vcpu *vcpu, u32 intid)
398 {
399 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
400 intid > VGIC_NR_PRIVATE_IRQS)
401 kvm_arm_resume_guest(vcpu->kvm);
402 }
403
__vgic_mmio_write_cactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)404 static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
405 gpa_t addr, unsigned int len,
406 unsigned long val)
407 {
408 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
409 int i;
410
411 for_each_set_bit(i, &val, len * 8) {
412 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
413 vgic_mmio_change_active(vcpu, irq, false);
414 vgic_put_irq(vcpu->kvm, irq);
415 }
416 }
417
vgic_mmio_write_cactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)418 void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
419 gpa_t addr, unsigned int len,
420 unsigned long val)
421 {
422 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
423
424 mutex_lock(&vcpu->kvm->lock);
425 vgic_change_active_prepare(vcpu, intid);
426
427 __vgic_mmio_write_cactive(vcpu, addr, len, val);
428
429 vgic_change_active_finish(vcpu, intid);
430 mutex_unlock(&vcpu->kvm->lock);
431 }
432
vgic_mmio_uaccess_write_cactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)433 int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
434 gpa_t addr, unsigned int len,
435 unsigned long val)
436 {
437 __vgic_mmio_write_cactive(vcpu, addr, len, val);
438 return 0;
439 }
440
__vgic_mmio_write_sactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)441 static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
442 gpa_t addr, unsigned int len,
443 unsigned long val)
444 {
445 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
446 int i;
447
448 for_each_set_bit(i, &val, len * 8) {
449 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
450 vgic_mmio_change_active(vcpu, irq, true);
451 vgic_put_irq(vcpu->kvm, irq);
452 }
453 }
454
vgic_mmio_write_sactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)455 void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
456 gpa_t addr, unsigned int len,
457 unsigned long val)
458 {
459 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
460
461 mutex_lock(&vcpu->kvm->lock);
462 vgic_change_active_prepare(vcpu, intid);
463
464 __vgic_mmio_write_sactive(vcpu, addr, len, val);
465
466 vgic_change_active_finish(vcpu, intid);
467 mutex_unlock(&vcpu->kvm->lock);
468 }
469
vgic_mmio_uaccess_write_sactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)470 int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
471 gpa_t addr, unsigned int len,
472 unsigned long val)
473 {
474 __vgic_mmio_write_sactive(vcpu, addr, len, val);
475 return 0;
476 }
477
vgic_mmio_read_priority(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)478 unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
479 gpa_t addr, unsigned int len)
480 {
481 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
482 int i;
483 u64 val = 0;
484
485 for (i = 0; i < len; i++) {
486 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
487
488 val |= (u64)irq->priority << (i * 8);
489
490 vgic_put_irq(vcpu->kvm, irq);
491 }
492
493 return val;
494 }
495
496 /*
497 * We currently don't handle changing the priority of an interrupt that
498 * is already pending on a VCPU. If there is a need for this, we would
499 * need to make this VCPU exit and re-evaluate the priorities, potentially
500 * leading to this interrupt getting presented now to the guest (if it has
501 * been masked by the priority mask before).
502 */
vgic_mmio_write_priority(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)503 void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
504 gpa_t addr, unsigned int len,
505 unsigned long val)
506 {
507 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
508 int i;
509 unsigned long flags;
510
511 for (i = 0; i < len; i++) {
512 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
513
514 raw_spin_lock_irqsave(&irq->irq_lock, flags);
515 /* Narrow the priority range to what we actually support */
516 irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
517 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
518
519 vgic_put_irq(vcpu->kvm, irq);
520 }
521 }
522
vgic_mmio_read_config(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)523 unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
524 gpa_t addr, unsigned int len)
525 {
526 u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
527 u32 value = 0;
528 int i;
529
530 for (i = 0; i < len * 4; i++) {
531 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
532
533 if (irq->config == VGIC_CONFIG_EDGE)
534 value |= (2U << (i * 2));
535
536 vgic_put_irq(vcpu->kvm, irq);
537 }
538
539 return value;
540 }
541
vgic_mmio_write_config(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)542 void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
543 gpa_t addr, unsigned int len,
544 unsigned long val)
545 {
546 u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
547 int i;
548 unsigned long flags;
549
550 for (i = 0; i < len * 4; i++) {
551 struct vgic_irq *irq;
552
553 /*
554 * The configuration cannot be changed for SGIs in general,
555 * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
556 * code relies on PPIs being level triggered, so we also
557 * make them read-only here.
558 */
559 if (intid + i < VGIC_NR_PRIVATE_IRQS)
560 continue;
561
562 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
563 raw_spin_lock_irqsave(&irq->irq_lock, flags);
564
565 if (test_bit(i * 2 + 1, &val))
566 irq->config = VGIC_CONFIG_EDGE;
567 else
568 irq->config = VGIC_CONFIG_LEVEL;
569
570 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
571 vgic_put_irq(vcpu->kvm, irq);
572 }
573 }
574
vgic_read_irq_line_level_info(struct kvm_vcpu * vcpu,u32 intid)575 u64 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
576 {
577 int i;
578 u64 val = 0;
579 int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
580
581 for (i = 0; i < 32; i++) {
582 struct vgic_irq *irq;
583
584 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
585 continue;
586
587 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
588 if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
589 val |= (1U << i);
590
591 vgic_put_irq(vcpu->kvm, irq);
592 }
593
594 return val;
595 }
596
vgic_write_irq_line_level_info(struct kvm_vcpu * vcpu,u32 intid,const u64 val)597 void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
598 const u64 val)
599 {
600 int i;
601 int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
602 unsigned long flags;
603
604 for (i = 0; i < 32; i++) {
605 struct vgic_irq *irq;
606 bool new_level;
607
608 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
609 continue;
610
611 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
612
613 /*
614 * Line level is set irrespective of irq type
615 * (level or edge) to avoid dependency that VM should
616 * restore irq config before line level.
617 */
618 new_level = !!(val & (1U << i));
619 raw_spin_lock_irqsave(&irq->irq_lock, flags);
620 irq->line_level = new_level;
621 if (new_level)
622 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
623 else
624 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
625
626 vgic_put_irq(vcpu->kvm, irq);
627 }
628 }
629
match_region(const void * key,const void * elt)630 static int match_region(const void *key, const void *elt)
631 {
632 const unsigned int offset = (unsigned long)key;
633 const struct vgic_register_region *region = elt;
634
635 if (offset < region->reg_offset)
636 return -1;
637
638 if (offset >= region->reg_offset + region->len)
639 return 1;
640
641 return 0;
642 }
643
644 const struct vgic_register_region *
vgic_find_mmio_region(const struct vgic_register_region * regions,int nr_regions,unsigned int offset)645 vgic_find_mmio_region(const struct vgic_register_region *regions,
646 int nr_regions, unsigned int offset)
647 {
648 return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
649 sizeof(regions[0]), match_region);
650 }
651
vgic_set_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcr)652 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
653 {
654 if (kvm_vgic_global_state.type == VGIC_V2)
655 vgic_v2_set_vmcr(vcpu, vmcr);
656 else
657 vgic_v3_set_vmcr(vcpu, vmcr);
658 }
659
vgic_get_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcr)660 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
661 {
662 if (kvm_vgic_global_state.type == VGIC_V2)
663 vgic_v2_get_vmcr(vcpu, vmcr);
664 else
665 vgic_v3_get_vmcr(vcpu, vmcr);
666 }
667
668 /*
669 * kvm_mmio_read_buf() returns a value in a format where it can be converted
670 * to a byte array and be directly observed as the guest wanted it to appear
671 * in memory if it had done the store itself, which is LE for the GIC, as the
672 * guest knows the GIC is always LE.
673 *
674 * We convert this value to the CPUs native format to deal with it as a data
675 * value.
676 */
vgic_data_mmio_bus_to_host(const void * val,unsigned int len)677 unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
678 {
679 unsigned long data = kvm_mmio_read_buf(val, len);
680
681 switch (len) {
682 case 1:
683 return data;
684 case 2:
685 return le16_to_cpu(data);
686 case 4:
687 return le32_to_cpu(data);
688 default:
689 return le64_to_cpu(data);
690 }
691 }
692
693 /*
694 * kvm_mmio_write_buf() expects a value in a format such that if converted to
695 * a byte array it is observed as the guest would see it if it could perform
696 * the load directly. Since the GIC is LE, and the guest knows this, the
697 * guest expects a value in little endian format.
698 *
699 * We convert the data value from the CPUs native format to LE so that the
700 * value is returned in the proper format.
701 */
vgic_data_host_to_mmio_bus(void * buf,unsigned int len,unsigned long data)702 void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
703 unsigned long data)
704 {
705 switch (len) {
706 case 1:
707 break;
708 case 2:
709 data = cpu_to_le16(data);
710 break;
711 case 4:
712 data = cpu_to_le32(data);
713 break;
714 default:
715 data = cpu_to_le64(data);
716 }
717
718 kvm_mmio_write_buf(buf, len, data);
719 }
720
721 static
kvm_to_vgic_iodev(const struct kvm_io_device * dev)722 struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
723 {
724 return container_of(dev, struct vgic_io_device, dev);
725 }
726
check_region(const struct kvm * kvm,const struct vgic_register_region * region,gpa_t addr,int len)727 static bool check_region(const struct kvm *kvm,
728 const struct vgic_register_region *region,
729 gpa_t addr, int len)
730 {
731 int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
732
733 switch (len) {
734 case sizeof(u8):
735 flags = VGIC_ACCESS_8bit;
736 break;
737 case sizeof(u32):
738 flags = VGIC_ACCESS_32bit;
739 break;
740 case sizeof(u64):
741 flags = VGIC_ACCESS_64bit;
742 break;
743 default:
744 return false;
745 }
746
747 if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
748 if (!region->bits_per_irq)
749 return true;
750
751 /* Do we access a non-allocated IRQ? */
752 return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
753 }
754
755 return false;
756 }
757
758 const struct vgic_register_region *
vgic_get_mmio_region(struct kvm_vcpu * vcpu,struct vgic_io_device * iodev,gpa_t addr,int len)759 vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
760 gpa_t addr, int len)
761 {
762 const struct vgic_register_region *region;
763
764 region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
765 addr - iodev->base_addr);
766 if (!region || !check_region(vcpu->kvm, region, addr, len))
767 return NULL;
768
769 return region;
770 }
771
vgic_uaccess_read(struct kvm_vcpu * vcpu,struct kvm_io_device * dev,gpa_t addr,u32 * val)772 static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
773 gpa_t addr, u32 *val)
774 {
775 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
776 const struct vgic_register_region *region;
777 struct kvm_vcpu *r_vcpu;
778
779 region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
780 if (!region) {
781 *val = 0;
782 return 0;
783 }
784
785 r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
786 if (region->uaccess_read)
787 *val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
788 else
789 *val = region->read(r_vcpu, addr, sizeof(u32));
790
791 return 0;
792 }
793
vgic_uaccess_write(struct kvm_vcpu * vcpu,struct kvm_io_device * dev,gpa_t addr,const u32 * val)794 static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
795 gpa_t addr, const u32 *val)
796 {
797 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
798 const struct vgic_register_region *region;
799 struct kvm_vcpu *r_vcpu;
800
801 region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
802 if (!region)
803 return 0;
804
805 r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
806 if (region->uaccess_write)
807 return region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
808
809 region->write(r_vcpu, addr, sizeof(u32), *val);
810 return 0;
811 }
812
813 /*
814 * Userland access to VGIC registers.
815 */
vgic_uaccess(struct kvm_vcpu * vcpu,struct vgic_io_device * dev,bool is_write,int offset,u32 * val)816 int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
817 bool is_write, int offset, u32 *val)
818 {
819 if (is_write)
820 return vgic_uaccess_write(vcpu, &dev->dev, offset, val);
821 else
822 return vgic_uaccess_read(vcpu, &dev->dev, offset, val);
823 }
824
dispatch_mmio_read(struct kvm_vcpu * vcpu,struct kvm_io_device * dev,gpa_t addr,int len,void * val)825 static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
826 gpa_t addr, int len, void *val)
827 {
828 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
829 const struct vgic_register_region *region;
830 unsigned long data = 0;
831
832 region = vgic_get_mmio_region(vcpu, iodev, addr, len);
833 if (!region) {
834 memset(val, 0, len);
835 return 0;
836 }
837
838 switch (iodev->iodev_type) {
839 case IODEV_CPUIF:
840 data = region->read(vcpu, addr, len);
841 break;
842 case IODEV_DIST:
843 data = region->read(vcpu, addr, len);
844 break;
845 case IODEV_REDIST:
846 data = region->read(iodev->redist_vcpu, addr, len);
847 break;
848 case IODEV_ITS:
849 data = region->its_read(vcpu->kvm, iodev->its, addr, len);
850 break;
851 }
852
853 vgic_data_host_to_mmio_bus(val, len, data);
854 return 0;
855 }
856
dispatch_mmio_write(struct kvm_vcpu * vcpu,struct kvm_io_device * dev,gpa_t addr,int len,const void * val)857 static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
858 gpa_t addr, int len, const void *val)
859 {
860 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
861 const struct vgic_register_region *region;
862 unsigned long data = vgic_data_mmio_bus_to_host(val, len);
863
864 region = vgic_get_mmio_region(vcpu, iodev, addr, len);
865 if (!region)
866 return 0;
867
868 switch (iodev->iodev_type) {
869 case IODEV_CPUIF:
870 region->write(vcpu, addr, len, data);
871 break;
872 case IODEV_DIST:
873 region->write(vcpu, addr, len, data);
874 break;
875 case IODEV_REDIST:
876 region->write(iodev->redist_vcpu, addr, len, data);
877 break;
878 case IODEV_ITS:
879 region->its_write(vcpu->kvm, iodev->its, addr, len, data);
880 break;
881 }
882
883 return 0;
884 }
885
886 struct kvm_io_device_ops kvm_io_gic_ops = {
887 .read = dispatch_mmio_read,
888 .write = dispatch_mmio_write,
889 };
890
vgic_register_dist_iodev(struct kvm * kvm,gpa_t dist_base_address,enum vgic_type type)891 int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
892 enum vgic_type type)
893 {
894 struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
895 int ret = 0;
896 unsigned int len;
897
898 switch (type) {
899 case VGIC_V2:
900 len = vgic_v2_init_dist_iodev(io_device);
901 break;
902 case VGIC_V3:
903 len = vgic_v3_init_dist_iodev(io_device);
904 break;
905 default:
906 BUG_ON(1);
907 }
908
909 io_device->base_addr = dist_base_address;
910 io_device->iodev_type = IODEV_DIST;
911 io_device->redist_vcpu = NULL;
912
913 mutex_lock(&kvm->slots_lock);
914 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
915 len, &io_device->dev);
916 mutex_unlock(&kvm->slots_lock);
917
918 return ret;
919 }
920