1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/err.h>
7 #include <linux/uuid.h>
8 #include "ctree.h"
9 #include "transaction.h"
10 #include "disk-io.h"
11 #include "print-tree.h"
12 #include "qgroup.h"
13 #include "space-info.h"
14
15 /*
16 * Read a root item from the tree. In case we detect a root item smaller then
17 * sizeof(root_item), we know it's an old version of the root structure and
18 * initialize all new fields to zero. The same happens if we detect mismatching
19 * generation numbers as then we know the root was once mounted with an older
20 * kernel that was not aware of the root item structure change.
21 */
btrfs_read_root_item(struct extent_buffer * eb,int slot,struct btrfs_root_item * item)22 static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
23 struct btrfs_root_item *item)
24 {
25 uuid_le uuid;
26 u32 len;
27 int need_reset = 0;
28
29 len = btrfs_item_size_nr(eb, slot);
30 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
31 min_t(u32, len, sizeof(*item)));
32 if (len < sizeof(*item))
33 need_reset = 1;
34 if (!need_reset && btrfs_root_generation(item)
35 != btrfs_root_generation_v2(item)) {
36 if (btrfs_root_generation_v2(item) != 0) {
37 btrfs_warn(eb->fs_info,
38 "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
39 }
40 need_reset = 1;
41 }
42 if (need_reset) {
43 memset(&item->generation_v2, 0,
44 sizeof(*item) - offsetof(struct btrfs_root_item,
45 generation_v2));
46
47 uuid_le_gen(&uuid);
48 memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
49 }
50 }
51
52 /*
53 * btrfs_find_root - lookup the root by the key.
54 * root: the root of the root tree
55 * search_key: the key to search
56 * path: the path we search
57 * root_item: the root item of the tree we look for
58 * root_key: the root key of the tree we look for
59 *
60 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
61 * of the search key, just lookup the root with the highest offset for a
62 * given objectid.
63 *
64 * If we find something return 0, otherwise > 0, < 0 on error.
65 */
btrfs_find_root(struct btrfs_root * root,const struct btrfs_key * search_key,struct btrfs_path * path,struct btrfs_root_item * root_item,struct btrfs_key * root_key)66 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
67 struct btrfs_path *path, struct btrfs_root_item *root_item,
68 struct btrfs_key *root_key)
69 {
70 struct btrfs_key found_key;
71 struct extent_buffer *l;
72 int ret;
73 int slot;
74
75 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
76 if (ret < 0)
77 return ret;
78
79 if (search_key->offset != -1ULL) { /* the search key is exact */
80 if (ret > 0)
81 goto out;
82 } else {
83 BUG_ON(ret == 0); /* Logical error */
84 if (path->slots[0] == 0)
85 goto out;
86 path->slots[0]--;
87 ret = 0;
88 }
89
90 l = path->nodes[0];
91 slot = path->slots[0];
92
93 btrfs_item_key_to_cpu(l, &found_key, slot);
94 if (found_key.objectid != search_key->objectid ||
95 found_key.type != BTRFS_ROOT_ITEM_KEY) {
96 ret = 1;
97 goto out;
98 }
99
100 if (root_item)
101 btrfs_read_root_item(l, slot, root_item);
102 if (root_key)
103 memcpy(root_key, &found_key, sizeof(found_key));
104 out:
105 btrfs_release_path(path);
106 return ret;
107 }
108
btrfs_set_root_node(struct btrfs_root_item * item,struct extent_buffer * node)109 void btrfs_set_root_node(struct btrfs_root_item *item,
110 struct extent_buffer *node)
111 {
112 btrfs_set_root_bytenr(item, node->start);
113 btrfs_set_root_level(item, btrfs_header_level(node));
114 btrfs_set_root_generation(item, btrfs_header_generation(node));
115 }
116
117 /*
118 * copy the data in 'item' into the btree
119 */
btrfs_update_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * key,struct btrfs_root_item * item)120 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
121 *root, struct btrfs_key *key, struct btrfs_root_item
122 *item)
123 {
124 struct btrfs_fs_info *fs_info = root->fs_info;
125 struct btrfs_path *path;
126 struct extent_buffer *l;
127 int ret;
128 int slot;
129 unsigned long ptr;
130 u32 old_len;
131
132 path = btrfs_alloc_path();
133 if (!path)
134 return -ENOMEM;
135
136 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
137 if (ret < 0)
138 goto out;
139
140 if (ret > 0) {
141 btrfs_crit(fs_info,
142 "unable to find root key (%llu %u %llu) in tree %llu",
143 key->objectid, key->type, key->offset,
144 root->root_key.objectid);
145 ret = -EUCLEAN;
146 btrfs_abort_transaction(trans, ret);
147 goto out;
148 }
149
150 l = path->nodes[0];
151 slot = path->slots[0];
152 ptr = btrfs_item_ptr_offset(l, slot);
153 old_len = btrfs_item_size_nr(l, slot);
154
155 /*
156 * If this is the first time we update the root item which originated
157 * from an older kernel, we need to enlarge the item size to make room
158 * for the added fields.
159 */
160 if (old_len < sizeof(*item)) {
161 btrfs_release_path(path);
162 ret = btrfs_search_slot(trans, root, key, path,
163 -1, 1);
164 if (ret < 0) {
165 btrfs_abort_transaction(trans, ret);
166 goto out;
167 }
168
169 ret = btrfs_del_item(trans, root, path);
170 if (ret < 0) {
171 btrfs_abort_transaction(trans, ret);
172 goto out;
173 }
174 btrfs_release_path(path);
175 ret = btrfs_insert_empty_item(trans, root, path,
176 key, sizeof(*item));
177 if (ret < 0) {
178 btrfs_abort_transaction(trans, ret);
179 goto out;
180 }
181 l = path->nodes[0];
182 slot = path->slots[0];
183 ptr = btrfs_item_ptr_offset(l, slot);
184 }
185
186 /*
187 * Update generation_v2 so at the next mount we know the new root
188 * fields are valid.
189 */
190 btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
191
192 write_extent_buffer(l, item, ptr, sizeof(*item));
193 btrfs_mark_buffer_dirty(path->nodes[0]);
194 out:
195 btrfs_free_path(path);
196 return ret;
197 }
198
btrfs_insert_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_root_item * item)199 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
200 const struct btrfs_key *key, struct btrfs_root_item *item)
201 {
202 /*
203 * Make sure generation v1 and v2 match. See update_root for details.
204 */
205 btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
206 return btrfs_insert_item(trans, root, key, item, sizeof(*item));
207 }
208
btrfs_find_orphan_roots(struct btrfs_fs_info * fs_info)209 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
210 {
211 struct btrfs_root *tree_root = fs_info->tree_root;
212 struct extent_buffer *leaf;
213 struct btrfs_path *path;
214 struct btrfs_key key;
215 struct btrfs_key root_key;
216 struct btrfs_root *root;
217 int err = 0;
218 int ret;
219
220 path = btrfs_alloc_path();
221 if (!path)
222 return -ENOMEM;
223
224 key.objectid = BTRFS_ORPHAN_OBJECTID;
225 key.type = BTRFS_ORPHAN_ITEM_KEY;
226 key.offset = 0;
227
228 root_key.type = BTRFS_ROOT_ITEM_KEY;
229 root_key.offset = (u64)-1;
230
231 while (1) {
232 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
233 if (ret < 0) {
234 err = ret;
235 break;
236 }
237
238 leaf = path->nodes[0];
239 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
240 ret = btrfs_next_leaf(tree_root, path);
241 if (ret < 0)
242 err = ret;
243 if (ret != 0)
244 break;
245 leaf = path->nodes[0];
246 }
247
248 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
249 btrfs_release_path(path);
250
251 if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
252 key.type != BTRFS_ORPHAN_ITEM_KEY)
253 break;
254
255 root_key.objectid = key.offset;
256 key.offset++;
257
258 /*
259 * The root might have been inserted already, as before we look
260 * for orphan roots, log replay might have happened, which
261 * triggers a transaction commit and qgroup accounting, which
262 * in turn reads and inserts fs roots while doing backref
263 * walking.
264 */
265 root = btrfs_lookup_fs_root(fs_info, root_key.objectid);
266 if (root) {
267 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
268 &root->state));
269 if (btrfs_root_refs(&root->root_item) == 0) {
270 set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
271 btrfs_add_dead_root(root);
272 }
273 continue;
274 }
275
276 root = btrfs_read_fs_root(tree_root, &root_key);
277 err = PTR_ERR_OR_ZERO(root);
278 if (err && err != -ENOENT) {
279 break;
280 } else if (err == -ENOENT) {
281 struct btrfs_trans_handle *trans;
282
283 btrfs_release_path(path);
284
285 trans = btrfs_join_transaction(tree_root);
286 if (IS_ERR(trans)) {
287 err = PTR_ERR(trans);
288 btrfs_handle_fs_error(fs_info, err,
289 "Failed to start trans to delete orphan item");
290 break;
291 }
292 err = btrfs_del_orphan_item(trans, tree_root,
293 root_key.objectid);
294 btrfs_end_transaction(trans);
295 if (err) {
296 btrfs_handle_fs_error(fs_info, err,
297 "Failed to delete root orphan item");
298 break;
299 }
300 continue;
301 }
302
303 err = btrfs_init_fs_root(root);
304 if (err) {
305 btrfs_free_fs_root(root);
306 break;
307 }
308
309 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
310
311 err = btrfs_insert_fs_root(fs_info, root);
312 if (err) {
313 BUG_ON(err == -EEXIST);
314 btrfs_free_fs_root(root);
315 break;
316 }
317
318 if (btrfs_root_refs(&root->root_item) == 0) {
319 set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
320 btrfs_add_dead_root(root);
321 }
322 }
323
324 btrfs_free_path(path);
325 return err;
326 }
327
328 /* drop the root item for 'key' from the tree root */
btrfs_del_root(struct btrfs_trans_handle * trans,const struct btrfs_key * key)329 int btrfs_del_root(struct btrfs_trans_handle *trans,
330 const struct btrfs_key *key)
331 {
332 struct btrfs_root *root = trans->fs_info->tree_root;
333 struct btrfs_path *path;
334 int ret;
335
336 path = btrfs_alloc_path();
337 if (!path)
338 return -ENOMEM;
339 ret = btrfs_search_slot(trans, root, key, path, -1, 1);
340 if (ret < 0)
341 goto out;
342
343 BUG_ON(ret != 0);
344
345 ret = btrfs_del_item(trans, root, path);
346 out:
347 btrfs_free_path(path);
348 return ret;
349 }
350
btrfs_del_root_ref(struct btrfs_trans_handle * trans,u64 root_id,u64 ref_id,u64 dirid,u64 * sequence,const char * name,int name_len)351 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
352 u64 ref_id, u64 dirid, u64 *sequence, const char *name,
353 int name_len)
354
355 {
356 struct btrfs_root *tree_root = trans->fs_info->tree_root;
357 struct btrfs_path *path;
358 struct btrfs_root_ref *ref;
359 struct extent_buffer *leaf;
360 struct btrfs_key key;
361 unsigned long ptr;
362 int err = 0;
363 int ret;
364
365 path = btrfs_alloc_path();
366 if (!path)
367 return -ENOMEM;
368
369 key.objectid = root_id;
370 key.type = BTRFS_ROOT_BACKREF_KEY;
371 key.offset = ref_id;
372 again:
373 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
374 if (ret < 0) {
375 err = ret;
376 goto out;
377 } else if (ret == 0) {
378 leaf = path->nodes[0];
379 ref = btrfs_item_ptr(leaf, path->slots[0],
380 struct btrfs_root_ref);
381 ptr = (unsigned long)(ref + 1);
382 if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
383 (btrfs_root_ref_name_len(leaf, ref) != name_len) ||
384 memcmp_extent_buffer(leaf, name, ptr, name_len)) {
385 err = -ENOENT;
386 goto out;
387 }
388 *sequence = btrfs_root_ref_sequence(leaf, ref);
389
390 ret = btrfs_del_item(trans, tree_root, path);
391 if (ret) {
392 err = ret;
393 goto out;
394 }
395 } else
396 err = -ENOENT;
397
398 if (key.type == BTRFS_ROOT_BACKREF_KEY) {
399 btrfs_release_path(path);
400 key.objectid = ref_id;
401 key.type = BTRFS_ROOT_REF_KEY;
402 key.offset = root_id;
403 goto again;
404 }
405
406 out:
407 btrfs_free_path(path);
408 return err;
409 }
410
411 /*
412 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY
413 * or BTRFS_ROOT_BACKREF_KEY.
414 *
415 * The dirid, sequence, name and name_len refer to the directory entry
416 * that is referencing the root.
417 *
418 * For a forward ref, the root_id is the id of the tree referencing
419 * the root and ref_id is the id of the subvol or snapshot.
420 *
421 * For a back ref the root_id is the id of the subvol or snapshot and
422 * ref_id is the id of the tree referencing it.
423 *
424 * Will return 0, -ENOMEM, or anything from the CoW path
425 */
btrfs_add_root_ref(struct btrfs_trans_handle * trans,u64 root_id,u64 ref_id,u64 dirid,u64 sequence,const char * name,int name_len)426 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
427 u64 ref_id, u64 dirid, u64 sequence, const char *name,
428 int name_len)
429 {
430 struct btrfs_root *tree_root = trans->fs_info->tree_root;
431 struct btrfs_key key;
432 int ret;
433 struct btrfs_path *path;
434 struct btrfs_root_ref *ref;
435 struct extent_buffer *leaf;
436 unsigned long ptr;
437
438 path = btrfs_alloc_path();
439 if (!path)
440 return -ENOMEM;
441
442 key.objectid = root_id;
443 key.type = BTRFS_ROOT_BACKREF_KEY;
444 key.offset = ref_id;
445 again:
446 ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
447 sizeof(*ref) + name_len);
448 if (ret) {
449 btrfs_abort_transaction(trans, ret);
450 btrfs_free_path(path);
451 return ret;
452 }
453
454 leaf = path->nodes[0];
455 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
456 btrfs_set_root_ref_dirid(leaf, ref, dirid);
457 btrfs_set_root_ref_sequence(leaf, ref, sequence);
458 btrfs_set_root_ref_name_len(leaf, ref, name_len);
459 ptr = (unsigned long)(ref + 1);
460 write_extent_buffer(leaf, name, ptr, name_len);
461 btrfs_mark_buffer_dirty(leaf);
462
463 if (key.type == BTRFS_ROOT_BACKREF_KEY) {
464 btrfs_release_path(path);
465 key.objectid = ref_id;
466 key.type = BTRFS_ROOT_REF_KEY;
467 key.offset = root_id;
468 goto again;
469 }
470
471 btrfs_free_path(path);
472 return 0;
473 }
474
475 /*
476 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
477 * for subvolumes. To work around this problem, we steal a bit from
478 * root_item->inode_item->flags, and use it to indicate if those fields
479 * have been properly initialized.
480 */
btrfs_check_and_init_root_item(struct btrfs_root_item * root_item)481 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
482 {
483 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
484
485 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
486 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
487 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
488 btrfs_set_root_flags(root_item, 0);
489 btrfs_set_root_limit(root_item, 0);
490 }
491 }
492
btrfs_update_root_times(struct btrfs_trans_handle * trans,struct btrfs_root * root)493 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
494 struct btrfs_root *root)
495 {
496 struct btrfs_root_item *item = &root->root_item;
497 struct timespec64 ct;
498
499 ktime_get_real_ts64(&ct);
500 spin_lock(&root->root_item_lock);
501 btrfs_set_root_ctransid(item, trans->transid);
502 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
503 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
504 spin_unlock(&root->root_item_lock);
505 }
506
507 /*
508 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
509 * root: the root of the parent directory
510 * rsv: block reservation
511 * items: the number of items that we need do reservation
512 * use_global_rsv: allow fallback to the global block reservation
513 *
514 * This function is used to reserve the space for snapshot/subvolume
515 * creation and deletion. Those operations are different with the
516 * common file/directory operations, they change two fs/file trees
517 * and root tree, the number of items that the qgroup reserves is
518 * different with the free space reservation. So we can not use
519 * the space reservation mechanism in start_transaction().
520 */
btrfs_subvolume_reserve_metadata(struct btrfs_root * root,struct btrfs_block_rsv * rsv,int items,bool use_global_rsv)521 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
522 struct btrfs_block_rsv *rsv, int items,
523 bool use_global_rsv)
524 {
525 u64 qgroup_num_bytes = 0;
526 u64 num_bytes;
527 int ret;
528 struct btrfs_fs_info *fs_info = root->fs_info;
529 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
530
531 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
532 /* One for parent inode, two for dir entries */
533 qgroup_num_bytes = 3 * fs_info->nodesize;
534 ret = btrfs_qgroup_reserve_meta_prealloc(root,
535 qgroup_num_bytes, true);
536 if (ret)
537 return ret;
538 }
539
540 num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
541 rsv->space_info = btrfs_find_space_info(fs_info,
542 BTRFS_BLOCK_GROUP_METADATA);
543 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
544 BTRFS_RESERVE_FLUSH_ALL);
545
546 if (ret == -ENOSPC && use_global_rsv)
547 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
548
549 if (ret && qgroup_num_bytes)
550 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
551
552 return ret;
553 }
554
btrfs_subvolume_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv)555 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
556 struct btrfs_block_rsv *rsv)
557 {
558 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
559 }
560