• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 2007 Oracle.  All rights reserved.
4   */
5  
6  #include <linux/err.h>
7  #include <linux/uuid.h>
8  #include "ctree.h"
9  #include "transaction.h"
10  #include "disk-io.h"
11  #include "print-tree.h"
12  #include "qgroup.h"
13  #include "space-info.h"
14  
15  /*
16   * Read a root item from the tree. In case we detect a root item smaller then
17   * sizeof(root_item), we know it's an old version of the root structure and
18   * initialize all new fields to zero. The same happens if we detect mismatching
19   * generation numbers as then we know the root was once mounted with an older
20   * kernel that was not aware of the root item structure change.
21   */
btrfs_read_root_item(struct extent_buffer * eb,int slot,struct btrfs_root_item * item)22  static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
23  				struct btrfs_root_item *item)
24  {
25  	uuid_le uuid;
26  	u32 len;
27  	int need_reset = 0;
28  
29  	len = btrfs_item_size_nr(eb, slot);
30  	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
31  			   min_t(u32, len, sizeof(*item)));
32  	if (len < sizeof(*item))
33  		need_reset = 1;
34  	if (!need_reset && btrfs_root_generation(item)
35  		!= btrfs_root_generation_v2(item)) {
36  		if (btrfs_root_generation_v2(item) != 0) {
37  			btrfs_warn(eb->fs_info,
38  					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
39  		}
40  		need_reset = 1;
41  	}
42  	if (need_reset) {
43  		memset(&item->generation_v2, 0,
44  			sizeof(*item) - offsetof(struct btrfs_root_item,
45  					generation_v2));
46  
47  		uuid_le_gen(&uuid);
48  		memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
49  	}
50  }
51  
52  /*
53   * btrfs_find_root - lookup the root by the key.
54   * root: the root of the root tree
55   * search_key: the key to search
56   * path: the path we search
57   * root_item: the root item of the tree we look for
58   * root_key: the root key of the tree we look for
59   *
60   * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
61   * of the search key, just lookup the root with the highest offset for a
62   * given objectid.
63   *
64   * If we find something return 0, otherwise > 0, < 0 on error.
65   */
btrfs_find_root(struct btrfs_root * root,const struct btrfs_key * search_key,struct btrfs_path * path,struct btrfs_root_item * root_item,struct btrfs_key * root_key)66  int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
67  		    struct btrfs_path *path, struct btrfs_root_item *root_item,
68  		    struct btrfs_key *root_key)
69  {
70  	struct btrfs_key found_key;
71  	struct extent_buffer *l;
72  	int ret;
73  	int slot;
74  
75  	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
76  	if (ret < 0)
77  		return ret;
78  
79  	if (search_key->offset != -1ULL) {	/* the search key is exact */
80  		if (ret > 0)
81  			goto out;
82  	} else {
83  		BUG_ON(ret == 0);		/* Logical error */
84  		if (path->slots[0] == 0)
85  			goto out;
86  		path->slots[0]--;
87  		ret = 0;
88  	}
89  
90  	l = path->nodes[0];
91  	slot = path->slots[0];
92  
93  	btrfs_item_key_to_cpu(l, &found_key, slot);
94  	if (found_key.objectid != search_key->objectid ||
95  	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
96  		ret = 1;
97  		goto out;
98  	}
99  
100  	if (root_item)
101  		btrfs_read_root_item(l, slot, root_item);
102  	if (root_key)
103  		memcpy(root_key, &found_key, sizeof(found_key));
104  out:
105  	btrfs_release_path(path);
106  	return ret;
107  }
108  
btrfs_set_root_node(struct btrfs_root_item * item,struct extent_buffer * node)109  void btrfs_set_root_node(struct btrfs_root_item *item,
110  			 struct extent_buffer *node)
111  {
112  	btrfs_set_root_bytenr(item, node->start);
113  	btrfs_set_root_level(item, btrfs_header_level(node));
114  	btrfs_set_root_generation(item, btrfs_header_generation(node));
115  }
116  
117  /*
118   * copy the data in 'item' into the btree
119   */
btrfs_update_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * key,struct btrfs_root_item * item)120  int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
121  		      *root, struct btrfs_key *key, struct btrfs_root_item
122  		      *item)
123  {
124  	struct btrfs_fs_info *fs_info = root->fs_info;
125  	struct btrfs_path *path;
126  	struct extent_buffer *l;
127  	int ret;
128  	int slot;
129  	unsigned long ptr;
130  	u32 old_len;
131  
132  	path = btrfs_alloc_path();
133  	if (!path)
134  		return -ENOMEM;
135  
136  	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
137  	if (ret < 0)
138  		goto out;
139  
140  	if (ret > 0) {
141  		btrfs_crit(fs_info,
142  			"unable to find root key (%llu %u %llu) in tree %llu",
143  			key->objectid, key->type, key->offset,
144  			root->root_key.objectid);
145  		ret = -EUCLEAN;
146  		btrfs_abort_transaction(trans, ret);
147  		goto out;
148  	}
149  
150  	l = path->nodes[0];
151  	slot = path->slots[0];
152  	ptr = btrfs_item_ptr_offset(l, slot);
153  	old_len = btrfs_item_size_nr(l, slot);
154  
155  	/*
156  	 * If this is the first time we update the root item which originated
157  	 * from an older kernel, we need to enlarge the item size to make room
158  	 * for the added fields.
159  	 */
160  	if (old_len < sizeof(*item)) {
161  		btrfs_release_path(path);
162  		ret = btrfs_search_slot(trans, root, key, path,
163  				-1, 1);
164  		if (ret < 0) {
165  			btrfs_abort_transaction(trans, ret);
166  			goto out;
167  		}
168  
169  		ret = btrfs_del_item(trans, root, path);
170  		if (ret < 0) {
171  			btrfs_abort_transaction(trans, ret);
172  			goto out;
173  		}
174  		btrfs_release_path(path);
175  		ret = btrfs_insert_empty_item(trans, root, path,
176  				key, sizeof(*item));
177  		if (ret < 0) {
178  			btrfs_abort_transaction(trans, ret);
179  			goto out;
180  		}
181  		l = path->nodes[0];
182  		slot = path->slots[0];
183  		ptr = btrfs_item_ptr_offset(l, slot);
184  	}
185  
186  	/*
187  	 * Update generation_v2 so at the next mount we know the new root
188  	 * fields are valid.
189  	 */
190  	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
191  
192  	write_extent_buffer(l, item, ptr, sizeof(*item));
193  	btrfs_mark_buffer_dirty(path->nodes[0]);
194  out:
195  	btrfs_free_path(path);
196  	return ret;
197  }
198  
btrfs_insert_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_root_item * item)199  int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
200  		      const struct btrfs_key *key, struct btrfs_root_item *item)
201  {
202  	/*
203  	 * Make sure generation v1 and v2 match. See update_root for details.
204  	 */
205  	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
206  	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
207  }
208  
btrfs_find_orphan_roots(struct btrfs_fs_info * fs_info)209  int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
210  {
211  	struct btrfs_root *tree_root = fs_info->tree_root;
212  	struct extent_buffer *leaf;
213  	struct btrfs_path *path;
214  	struct btrfs_key key;
215  	struct btrfs_key root_key;
216  	struct btrfs_root *root;
217  	int err = 0;
218  	int ret;
219  
220  	path = btrfs_alloc_path();
221  	if (!path)
222  		return -ENOMEM;
223  
224  	key.objectid = BTRFS_ORPHAN_OBJECTID;
225  	key.type = BTRFS_ORPHAN_ITEM_KEY;
226  	key.offset = 0;
227  
228  	root_key.type = BTRFS_ROOT_ITEM_KEY;
229  	root_key.offset = (u64)-1;
230  
231  	while (1) {
232  		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
233  		if (ret < 0) {
234  			err = ret;
235  			break;
236  		}
237  
238  		leaf = path->nodes[0];
239  		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
240  			ret = btrfs_next_leaf(tree_root, path);
241  			if (ret < 0)
242  				err = ret;
243  			if (ret != 0)
244  				break;
245  			leaf = path->nodes[0];
246  		}
247  
248  		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
249  		btrfs_release_path(path);
250  
251  		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
252  		    key.type != BTRFS_ORPHAN_ITEM_KEY)
253  			break;
254  
255  		root_key.objectid = key.offset;
256  		key.offset++;
257  
258  		/*
259  		 * The root might have been inserted already, as before we look
260  		 * for orphan roots, log replay might have happened, which
261  		 * triggers a transaction commit and qgroup accounting, which
262  		 * in turn reads and inserts fs roots while doing backref
263  		 * walking.
264  		 */
265  		root = btrfs_lookup_fs_root(fs_info, root_key.objectid);
266  		if (root) {
267  			WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
268  					  &root->state));
269  			if (btrfs_root_refs(&root->root_item) == 0) {
270  				set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
271  				btrfs_add_dead_root(root);
272  			}
273  			continue;
274  		}
275  
276  		root = btrfs_read_fs_root(tree_root, &root_key);
277  		err = PTR_ERR_OR_ZERO(root);
278  		if (err && err != -ENOENT) {
279  			break;
280  		} else if (err == -ENOENT) {
281  			struct btrfs_trans_handle *trans;
282  
283  			btrfs_release_path(path);
284  
285  			trans = btrfs_join_transaction(tree_root);
286  			if (IS_ERR(trans)) {
287  				err = PTR_ERR(trans);
288  				btrfs_handle_fs_error(fs_info, err,
289  					    "Failed to start trans to delete orphan item");
290  				break;
291  			}
292  			err = btrfs_del_orphan_item(trans, tree_root,
293  						    root_key.objectid);
294  			btrfs_end_transaction(trans);
295  			if (err) {
296  				btrfs_handle_fs_error(fs_info, err,
297  					    "Failed to delete root orphan item");
298  				break;
299  			}
300  			continue;
301  		}
302  
303  		err = btrfs_init_fs_root(root);
304  		if (err) {
305  			btrfs_free_fs_root(root);
306  			break;
307  		}
308  
309  		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
310  
311  		err = btrfs_insert_fs_root(fs_info, root);
312  		if (err) {
313  			BUG_ON(err == -EEXIST);
314  			btrfs_free_fs_root(root);
315  			break;
316  		}
317  
318  		if (btrfs_root_refs(&root->root_item) == 0) {
319  			set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
320  			btrfs_add_dead_root(root);
321  		}
322  	}
323  
324  	btrfs_free_path(path);
325  	return err;
326  }
327  
328  /* drop the root item for 'key' from the tree root */
btrfs_del_root(struct btrfs_trans_handle * trans,const struct btrfs_key * key)329  int btrfs_del_root(struct btrfs_trans_handle *trans,
330  		   const struct btrfs_key *key)
331  {
332  	struct btrfs_root *root = trans->fs_info->tree_root;
333  	struct btrfs_path *path;
334  	int ret;
335  
336  	path = btrfs_alloc_path();
337  	if (!path)
338  		return -ENOMEM;
339  	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
340  	if (ret < 0)
341  		goto out;
342  
343  	BUG_ON(ret != 0);
344  
345  	ret = btrfs_del_item(trans, root, path);
346  out:
347  	btrfs_free_path(path);
348  	return ret;
349  }
350  
btrfs_del_root_ref(struct btrfs_trans_handle * trans,u64 root_id,u64 ref_id,u64 dirid,u64 * sequence,const char * name,int name_len)351  int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
352  		       u64 ref_id, u64 dirid, u64 *sequence, const char *name,
353  		       int name_len)
354  
355  {
356  	struct btrfs_root *tree_root = trans->fs_info->tree_root;
357  	struct btrfs_path *path;
358  	struct btrfs_root_ref *ref;
359  	struct extent_buffer *leaf;
360  	struct btrfs_key key;
361  	unsigned long ptr;
362  	int err = 0;
363  	int ret;
364  
365  	path = btrfs_alloc_path();
366  	if (!path)
367  		return -ENOMEM;
368  
369  	key.objectid = root_id;
370  	key.type = BTRFS_ROOT_BACKREF_KEY;
371  	key.offset = ref_id;
372  again:
373  	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
374  	if (ret < 0) {
375  		err = ret;
376  		goto out;
377  	} else if (ret == 0) {
378  		leaf = path->nodes[0];
379  		ref = btrfs_item_ptr(leaf, path->slots[0],
380  				     struct btrfs_root_ref);
381  		ptr = (unsigned long)(ref + 1);
382  		if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
383  		    (btrfs_root_ref_name_len(leaf, ref) != name_len) ||
384  		    memcmp_extent_buffer(leaf, name, ptr, name_len)) {
385  			err = -ENOENT;
386  			goto out;
387  		}
388  		*sequence = btrfs_root_ref_sequence(leaf, ref);
389  
390  		ret = btrfs_del_item(trans, tree_root, path);
391  		if (ret) {
392  			err = ret;
393  			goto out;
394  		}
395  	} else
396  		err = -ENOENT;
397  
398  	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
399  		btrfs_release_path(path);
400  		key.objectid = ref_id;
401  		key.type = BTRFS_ROOT_REF_KEY;
402  		key.offset = root_id;
403  		goto again;
404  	}
405  
406  out:
407  	btrfs_free_path(path);
408  	return err;
409  }
410  
411  /*
412   * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
413   * or BTRFS_ROOT_BACKREF_KEY.
414   *
415   * The dirid, sequence, name and name_len refer to the directory entry
416   * that is referencing the root.
417   *
418   * For a forward ref, the root_id is the id of the tree referencing
419   * the root and ref_id is the id of the subvol  or snapshot.
420   *
421   * For a back ref the root_id is the id of the subvol or snapshot and
422   * ref_id is the id of the tree referencing it.
423   *
424   * Will return 0, -ENOMEM, or anything from the CoW path
425   */
btrfs_add_root_ref(struct btrfs_trans_handle * trans,u64 root_id,u64 ref_id,u64 dirid,u64 sequence,const char * name,int name_len)426  int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
427  		       u64 ref_id, u64 dirid, u64 sequence, const char *name,
428  		       int name_len)
429  {
430  	struct btrfs_root *tree_root = trans->fs_info->tree_root;
431  	struct btrfs_key key;
432  	int ret;
433  	struct btrfs_path *path;
434  	struct btrfs_root_ref *ref;
435  	struct extent_buffer *leaf;
436  	unsigned long ptr;
437  
438  	path = btrfs_alloc_path();
439  	if (!path)
440  		return -ENOMEM;
441  
442  	key.objectid = root_id;
443  	key.type = BTRFS_ROOT_BACKREF_KEY;
444  	key.offset = ref_id;
445  again:
446  	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
447  				      sizeof(*ref) + name_len);
448  	if (ret) {
449  		btrfs_abort_transaction(trans, ret);
450  		btrfs_free_path(path);
451  		return ret;
452  	}
453  
454  	leaf = path->nodes[0];
455  	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
456  	btrfs_set_root_ref_dirid(leaf, ref, dirid);
457  	btrfs_set_root_ref_sequence(leaf, ref, sequence);
458  	btrfs_set_root_ref_name_len(leaf, ref, name_len);
459  	ptr = (unsigned long)(ref + 1);
460  	write_extent_buffer(leaf, name, ptr, name_len);
461  	btrfs_mark_buffer_dirty(leaf);
462  
463  	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
464  		btrfs_release_path(path);
465  		key.objectid = ref_id;
466  		key.type = BTRFS_ROOT_REF_KEY;
467  		key.offset = root_id;
468  		goto again;
469  	}
470  
471  	btrfs_free_path(path);
472  	return 0;
473  }
474  
475  /*
476   * Old btrfs forgets to init root_item->flags and root_item->byte_limit
477   * for subvolumes. To work around this problem, we steal a bit from
478   * root_item->inode_item->flags, and use it to indicate if those fields
479   * have been properly initialized.
480   */
btrfs_check_and_init_root_item(struct btrfs_root_item * root_item)481  void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
482  {
483  	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
484  
485  	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
486  		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
487  		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
488  		btrfs_set_root_flags(root_item, 0);
489  		btrfs_set_root_limit(root_item, 0);
490  	}
491  }
492  
btrfs_update_root_times(struct btrfs_trans_handle * trans,struct btrfs_root * root)493  void btrfs_update_root_times(struct btrfs_trans_handle *trans,
494  			     struct btrfs_root *root)
495  {
496  	struct btrfs_root_item *item = &root->root_item;
497  	struct timespec64 ct;
498  
499  	ktime_get_real_ts64(&ct);
500  	spin_lock(&root->root_item_lock);
501  	btrfs_set_root_ctransid(item, trans->transid);
502  	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
503  	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
504  	spin_unlock(&root->root_item_lock);
505  }
506  
507  /*
508   * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
509   * root: the root of the parent directory
510   * rsv: block reservation
511   * items: the number of items that we need do reservation
512   * use_global_rsv: allow fallback to the global block reservation
513   *
514   * This function is used to reserve the space for snapshot/subvolume
515   * creation and deletion. Those operations are different with the
516   * common file/directory operations, they change two fs/file trees
517   * and root tree, the number of items that the qgroup reserves is
518   * different with the free space reservation. So we can not use
519   * the space reservation mechanism in start_transaction().
520   */
btrfs_subvolume_reserve_metadata(struct btrfs_root * root,struct btrfs_block_rsv * rsv,int items,bool use_global_rsv)521  int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
522  				     struct btrfs_block_rsv *rsv, int items,
523  				     bool use_global_rsv)
524  {
525  	u64 qgroup_num_bytes = 0;
526  	u64 num_bytes;
527  	int ret;
528  	struct btrfs_fs_info *fs_info = root->fs_info;
529  	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
530  
531  	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
532  		/* One for parent inode, two for dir entries */
533  		qgroup_num_bytes = 3 * fs_info->nodesize;
534  		ret = btrfs_qgroup_reserve_meta_prealloc(root,
535  				qgroup_num_bytes, true);
536  		if (ret)
537  			return ret;
538  	}
539  
540  	num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
541  	rsv->space_info = btrfs_find_space_info(fs_info,
542  					    BTRFS_BLOCK_GROUP_METADATA);
543  	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
544  				  BTRFS_RESERVE_FLUSH_ALL);
545  
546  	if (ret == -ENOSPC && use_global_rsv)
547  		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
548  
549  	if (ret && qgroup_num_bytes)
550  		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
551  
552  	return ret;
553  }
554  
btrfs_subvolume_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv)555  void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
556  				      struct btrfs_block_rsv *rsv)
557  {
558  	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
559  }
560