• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/err.h>
7 #include <linux/uuid.h>
8 #include "ctree.h"
9 #include "transaction.h"
10 #include "disk-io.h"
11 #include "print-tree.h"
12 #include "qgroup.h"
13 #include "space-info.h"
14 
15 /*
16  * Read a root item from the tree. In case we detect a root item smaller then
17  * sizeof(root_item), we know it's an old version of the root structure and
18  * initialize all new fields to zero. The same happens if we detect mismatching
19  * generation numbers as then we know the root was once mounted with an older
20  * kernel that was not aware of the root item structure change.
21  */
btrfs_read_root_item(struct extent_buffer * eb,int slot,struct btrfs_root_item * item)22 static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
23 				struct btrfs_root_item *item)
24 {
25 	uuid_le uuid;
26 	u32 len;
27 	int need_reset = 0;
28 
29 	len = btrfs_item_size_nr(eb, slot);
30 	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
31 			   min_t(u32, len, sizeof(*item)));
32 	if (len < sizeof(*item))
33 		need_reset = 1;
34 	if (!need_reset && btrfs_root_generation(item)
35 		!= btrfs_root_generation_v2(item)) {
36 		if (btrfs_root_generation_v2(item) != 0) {
37 			btrfs_warn(eb->fs_info,
38 					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
39 		}
40 		need_reset = 1;
41 	}
42 	if (need_reset) {
43 		memset(&item->generation_v2, 0,
44 			sizeof(*item) - offsetof(struct btrfs_root_item,
45 					generation_v2));
46 
47 		uuid_le_gen(&uuid);
48 		memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
49 	}
50 }
51 
52 /*
53  * btrfs_find_root - lookup the root by the key.
54  * root: the root of the root tree
55  * search_key: the key to search
56  * path: the path we search
57  * root_item: the root item of the tree we look for
58  * root_key: the root key of the tree we look for
59  *
60  * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
61  * of the search key, just lookup the root with the highest offset for a
62  * given objectid.
63  *
64  * If we find something return 0, otherwise > 0, < 0 on error.
65  */
btrfs_find_root(struct btrfs_root * root,const struct btrfs_key * search_key,struct btrfs_path * path,struct btrfs_root_item * root_item,struct btrfs_key * root_key)66 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
67 		    struct btrfs_path *path, struct btrfs_root_item *root_item,
68 		    struct btrfs_key *root_key)
69 {
70 	struct btrfs_key found_key;
71 	struct extent_buffer *l;
72 	int ret;
73 	int slot;
74 
75 	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
76 	if (ret < 0)
77 		return ret;
78 
79 	if (search_key->offset != -1ULL) {	/* the search key is exact */
80 		if (ret > 0)
81 			goto out;
82 	} else {
83 		BUG_ON(ret == 0);		/* Logical error */
84 		if (path->slots[0] == 0)
85 			goto out;
86 		path->slots[0]--;
87 		ret = 0;
88 	}
89 
90 	l = path->nodes[0];
91 	slot = path->slots[0];
92 
93 	btrfs_item_key_to_cpu(l, &found_key, slot);
94 	if (found_key.objectid != search_key->objectid ||
95 	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
96 		ret = 1;
97 		goto out;
98 	}
99 
100 	if (root_item)
101 		btrfs_read_root_item(l, slot, root_item);
102 	if (root_key)
103 		memcpy(root_key, &found_key, sizeof(found_key));
104 out:
105 	btrfs_release_path(path);
106 	return ret;
107 }
108 
btrfs_set_root_node(struct btrfs_root_item * item,struct extent_buffer * node)109 void btrfs_set_root_node(struct btrfs_root_item *item,
110 			 struct extent_buffer *node)
111 {
112 	btrfs_set_root_bytenr(item, node->start);
113 	btrfs_set_root_level(item, btrfs_header_level(node));
114 	btrfs_set_root_generation(item, btrfs_header_generation(node));
115 }
116 
117 /*
118  * copy the data in 'item' into the btree
119  */
btrfs_update_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_key * key,struct btrfs_root_item * item)120 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
121 		      *root, struct btrfs_key *key, struct btrfs_root_item
122 		      *item)
123 {
124 	struct btrfs_fs_info *fs_info = root->fs_info;
125 	struct btrfs_path *path;
126 	struct extent_buffer *l;
127 	int ret;
128 	int slot;
129 	unsigned long ptr;
130 	u32 old_len;
131 
132 	path = btrfs_alloc_path();
133 	if (!path)
134 		return -ENOMEM;
135 
136 	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
137 	if (ret < 0)
138 		goto out;
139 
140 	if (ret > 0) {
141 		btrfs_crit(fs_info,
142 			"unable to find root key (%llu %u %llu) in tree %llu",
143 			key->objectid, key->type, key->offset,
144 			root->root_key.objectid);
145 		ret = -EUCLEAN;
146 		btrfs_abort_transaction(trans, ret);
147 		goto out;
148 	}
149 
150 	l = path->nodes[0];
151 	slot = path->slots[0];
152 	ptr = btrfs_item_ptr_offset(l, slot);
153 	old_len = btrfs_item_size_nr(l, slot);
154 
155 	/*
156 	 * If this is the first time we update the root item which originated
157 	 * from an older kernel, we need to enlarge the item size to make room
158 	 * for the added fields.
159 	 */
160 	if (old_len < sizeof(*item)) {
161 		btrfs_release_path(path);
162 		ret = btrfs_search_slot(trans, root, key, path,
163 				-1, 1);
164 		if (ret < 0) {
165 			btrfs_abort_transaction(trans, ret);
166 			goto out;
167 		}
168 
169 		ret = btrfs_del_item(trans, root, path);
170 		if (ret < 0) {
171 			btrfs_abort_transaction(trans, ret);
172 			goto out;
173 		}
174 		btrfs_release_path(path);
175 		ret = btrfs_insert_empty_item(trans, root, path,
176 				key, sizeof(*item));
177 		if (ret < 0) {
178 			btrfs_abort_transaction(trans, ret);
179 			goto out;
180 		}
181 		l = path->nodes[0];
182 		slot = path->slots[0];
183 		ptr = btrfs_item_ptr_offset(l, slot);
184 	}
185 
186 	/*
187 	 * Update generation_v2 so at the next mount we know the new root
188 	 * fields are valid.
189 	 */
190 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
191 
192 	write_extent_buffer(l, item, ptr, sizeof(*item));
193 	btrfs_mark_buffer_dirty(path->nodes[0]);
194 out:
195 	btrfs_free_path(path);
196 	return ret;
197 }
198 
btrfs_insert_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_root_item * item)199 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
200 		      const struct btrfs_key *key, struct btrfs_root_item *item)
201 {
202 	/*
203 	 * Make sure generation v1 and v2 match. See update_root for details.
204 	 */
205 	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
206 	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
207 }
208 
btrfs_find_orphan_roots(struct btrfs_fs_info * fs_info)209 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
210 {
211 	struct btrfs_root *tree_root = fs_info->tree_root;
212 	struct extent_buffer *leaf;
213 	struct btrfs_path *path;
214 	struct btrfs_key key;
215 	struct btrfs_key root_key;
216 	struct btrfs_root *root;
217 	int err = 0;
218 	int ret;
219 
220 	path = btrfs_alloc_path();
221 	if (!path)
222 		return -ENOMEM;
223 
224 	key.objectid = BTRFS_ORPHAN_OBJECTID;
225 	key.type = BTRFS_ORPHAN_ITEM_KEY;
226 	key.offset = 0;
227 
228 	root_key.type = BTRFS_ROOT_ITEM_KEY;
229 	root_key.offset = (u64)-1;
230 
231 	while (1) {
232 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
233 		if (ret < 0) {
234 			err = ret;
235 			break;
236 		}
237 
238 		leaf = path->nodes[0];
239 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
240 			ret = btrfs_next_leaf(tree_root, path);
241 			if (ret < 0)
242 				err = ret;
243 			if (ret != 0)
244 				break;
245 			leaf = path->nodes[0];
246 		}
247 
248 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
249 		btrfs_release_path(path);
250 
251 		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
252 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
253 			break;
254 
255 		root_key.objectid = key.offset;
256 		key.offset++;
257 
258 		/*
259 		 * The root might have been inserted already, as before we look
260 		 * for orphan roots, log replay might have happened, which
261 		 * triggers a transaction commit and qgroup accounting, which
262 		 * in turn reads and inserts fs roots while doing backref
263 		 * walking.
264 		 */
265 		root = btrfs_lookup_fs_root(fs_info, root_key.objectid);
266 		if (root) {
267 			WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
268 					  &root->state));
269 			if (btrfs_root_refs(&root->root_item) == 0) {
270 				set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
271 				btrfs_add_dead_root(root);
272 			}
273 			continue;
274 		}
275 
276 		root = btrfs_read_fs_root(tree_root, &root_key);
277 		err = PTR_ERR_OR_ZERO(root);
278 		if (err && err != -ENOENT) {
279 			break;
280 		} else if (err == -ENOENT) {
281 			struct btrfs_trans_handle *trans;
282 
283 			btrfs_release_path(path);
284 
285 			trans = btrfs_join_transaction(tree_root);
286 			if (IS_ERR(trans)) {
287 				err = PTR_ERR(trans);
288 				btrfs_handle_fs_error(fs_info, err,
289 					    "Failed to start trans to delete orphan item");
290 				break;
291 			}
292 			err = btrfs_del_orphan_item(trans, tree_root,
293 						    root_key.objectid);
294 			btrfs_end_transaction(trans);
295 			if (err) {
296 				btrfs_handle_fs_error(fs_info, err,
297 					    "Failed to delete root orphan item");
298 				break;
299 			}
300 			continue;
301 		}
302 
303 		err = btrfs_init_fs_root(root);
304 		if (err) {
305 			btrfs_free_fs_root(root);
306 			break;
307 		}
308 
309 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
310 
311 		err = btrfs_insert_fs_root(fs_info, root);
312 		if (err) {
313 			BUG_ON(err == -EEXIST);
314 			btrfs_free_fs_root(root);
315 			break;
316 		}
317 
318 		if (btrfs_root_refs(&root->root_item) == 0) {
319 			set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
320 			btrfs_add_dead_root(root);
321 		}
322 	}
323 
324 	btrfs_free_path(path);
325 	return err;
326 }
327 
328 /* drop the root item for 'key' from the tree root */
btrfs_del_root(struct btrfs_trans_handle * trans,const struct btrfs_key * key)329 int btrfs_del_root(struct btrfs_trans_handle *trans,
330 		   const struct btrfs_key *key)
331 {
332 	struct btrfs_root *root = trans->fs_info->tree_root;
333 	struct btrfs_path *path;
334 	int ret;
335 
336 	path = btrfs_alloc_path();
337 	if (!path)
338 		return -ENOMEM;
339 	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
340 	if (ret < 0)
341 		goto out;
342 
343 	BUG_ON(ret != 0);
344 
345 	ret = btrfs_del_item(trans, root, path);
346 out:
347 	btrfs_free_path(path);
348 	return ret;
349 }
350 
btrfs_del_root_ref(struct btrfs_trans_handle * trans,u64 root_id,u64 ref_id,u64 dirid,u64 * sequence,const char * name,int name_len)351 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
352 		       u64 ref_id, u64 dirid, u64 *sequence, const char *name,
353 		       int name_len)
354 
355 {
356 	struct btrfs_root *tree_root = trans->fs_info->tree_root;
357 	struct btrfs_path *path;
358 	struct btrfs_root_ref *ref;
359 	struct extent_buffer *leaf;
360 	struct btrfs_key key;
361 	unsigned long ptr;
362 	int err = 0;
363 	int ret;
364 
365 	path = btrfs_alloc_path();
366 	if (!path)
367 		return -ENOMEM;
368 
369 	key.objectid = root_id;
370 	key.type = BTRFS_ROOT_BACKREF_KEY;
371 	key.offset = ref_id;
372 again:
373 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
374 	if (ret < 0) {
375 		err = ret;
376 		goto out;
377 	} else if (ret == 0) {
378 		leaf = path->nodes[0];
379 		ref = btrfs_item_ptr(leaf, path->slots[0],
380 				     struct btrfs_root_ref);
381 		ptr = (unsigned long)(ref + 1);
382 		if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
383 		    (btrfs_root_ref_name_len(leaf, ref) != name_len) ||
384 		    memcmp_extent_buffer(leaf, name, ptr, name_len)) {
385 			err = -ENOENT;
386 			goto out;
387 		}
388 		*sequence = btrfs_root_ref_sequence(leaf, ref);
389 
390 		ret = btrfs_del_item(trans, tree_root, path);
391 		if (ret) {
392 			err = ret;
393 			goto out;
394 		}
395 	} else
396 		err = -ENOENT;
397 
398 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
399 		btrfs_release_path(path);
400 		key.objectid = ref_id;
401 		key.type = BTRFS_ROOT_REF_KEY;
402 		key.offset = root_id;
403 		goto again;
404 	}
405 
406 out:
407 	btrfs_free_path(path);
408 	return err;
409 }
410 
411 /*
412  * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
413  * or BTRFS_ROOT_BACKREF_KEY.
414  *
415  * The dirid, sequence, name and name_len refer to the directory entry
416  * that is referencing the root.
417  *
418  * For a forward ref, the root_id is the id of the tree referencing
419  * the root and ref_id is the id of the subvol  or snapshot.
420  *
421  * For a back ref the root_id is the id of the subvol or snapshot and
422  * ref_id is the id of the tree referencing it.
423  *
424  * Will return 0, -ENOMEM, or anything from the CoW path
425  */
btrfs_add_root_ref(struct btrfs_trans_handle * trans,u64 root_id,u64 ref_id,u64 dirid,u64 sequence,const char * name,int name_len)426 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
427 		       u64 ref_id, u64 dirid, u64 sequence, const char *name,
428 		       int name_len)
429 {
430 	struct btrfs_root *tree_root = trans->fs_info->tree_root;
431 	struct btrfs_key key;
432 	int ret;
433 	struct btrfs_path *path;
434 	struct btrfs_root_ref *ref;
435 	struct extent_buffer *leaf;
436 	unsigned long ptr;
437 
438 	path = btrfs_alloc_path();
439 	if (!path)
440 		return -ENOMEM;
441 
442 	key.objectid = root_id;
443 	key.type = BTRFS_ROOT_BACKREF_KEY;
444 	key.offset = ref_id;
445 again:
446 	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
447 				      sizeof(*ref) + name_len);
448 	if (ret) {
449 		btrfs_abort_transaction(trans, ret);
450 		btrfs_free_path(path);
451 		return ret;
452 	}
453 
454 	leaf = path->nodes[0];
455 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
456 	btrfs_set_root_ref_dirid(leaf, ref, dirid);
457 	btrfs_set_root_ref_sequence(leaf, ref, sequence);
458 	btrfs_set_root_ref_name_len(leaf, ref, name_len);
459 	ptr = (unsigned long)(ref + 1);
460 	write_extent_buffer(leaf, name, ptr, name_len);
461 	btrfs_mark_buffer_dirty(leaf);
462 
463 	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
464 		btrfs_release_path(path);
465 		key.objectid = ref_id;
466 		key.type = BTRFS_ROOT_REF_KEY;
467 		key.offset = root_id;
468 		goto again;
469 	}
470 
471 	btrfs_free_path(path);
472 	return 0;
473 }
474 
475 /*
476  * Old btrfs forgets to init root_item->flags and root_item->byte_limit
477  * for subvolumes. To work around this problem, we steal a bit from
478  * root_item->inode_item->flags, and use it to indicate if those fields
479  * have been properly initialized.
480  */
btrfs_check_and_init_root_item(struct btrfs_root_item * root_item)481 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
482 {
483 	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
484 
485 	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
486 		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
487 		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
488 		btrfs_set_root_flags(root_item, 0);
489 		btrfs_set_root_limit(root_item, 0);
490 	}
491 }
492 
btrfs_update_root_times(struct btrfs_trans_handle * trans,struct btrfs_root * root)493 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
494 			     struct btrfs_root *root)
495 {
496 	struct btrfs_root_item *item = &root->root_item;
497 	struct timespec64 ct;
498 
499 	ktime_get_real_ts64(&ct);
500 	spin_lock(&root->root_item_lock);
501 	btrfs_set_root_ctransid(item, trans->transid);
502 	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
503 	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
504 	spin_unlock(&root->root_item_lock);
505 }
506 
507 /*
508  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
509  * root: the root of the parent directory
510  * rsv: block reservation
511  * items: the number of items that we need do reservation
512  * use_global_rsv: allow fallback to the global block reservation
513  *
514  * This function is used to reserve the space for snapshot/subvolume
515  * creation and deletion. Those operations are different with the
516  * common file/directory operations, they change two fs/file trees
517  * and root tree, the number of items that the qgroup reserves is
518  * different with the free space reservation. So we can not use
519  * the space reservation mechanism in start_transaction().
520  */
btrfs_subvolume_reserve_metadata(struct btrfs_root * root,struct btrfs_block_rsv * rsv,int items,bool use_global_rsv)521 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
522 				     struct btrfs_block_rsv *rsv, int items,
523 				     bool use_global_rsv)
524 {
525 	u64 qgroup_num_bytes = 0;
526 	u64 num_bytes;
527 	int ret;
528 	struct btrfs_fs_info *fs_info = root->fs_info;
529 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
530 
531 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
532 		/* One for parent inode, two for dir entries */
533 		qgroup_num_bytes = 3 * fs_info->nodesize;
534 		ret = btrfs_qgroup_reserve_meta_prealloc(root,
535 				qgroup_num_bytes, true);
536 		if (ret)
537 			return ret;
538 	}
539 
540 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
541 	rsv->space_info = btrfs_find_space_info(fs_info,
542 					    BTRFS_BLOCK_GROUP_METADATA);
543 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
544 				  BTRFS_RESERVE_FLUSH_ALL);
545 
546 	if (ret == -ENOSPC && use_global_rsv)
547 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
548 
549 	if (ret && qgroup_num_bytes)
550 		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
551 
552 	return ret;
553 }
554 
btrfs_subvolume_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * rsv)555 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
556 				      struct btrfs_block_rsv *rsv)
557 {
558 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
559 }
560