1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Functions to manage eBPF programs attached to cgroups
4 *
5 * Copyright (c) 2016 Daniel Mack
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/atomic.h>
10 #include <linux/cgroup.h>
11 #include <linux/filter.h>
12 #include <linux/slab.h>
13 #include <linux/sysctl.h>
14 #include <linux/string.h>
15 #include <linux/bpf.h>
16 #include <linux/bpf-cgroup.h>
17 #include <net/sock.h>
18 #include <net/bpf_sk_storage.h>
19
20 #include "../cgroup/cgroup-internal.h"
21
22 DEFINE_STATIC_KEY_FALSE(cgroup_bpf_enabled_key);
23 EXPORT_SYMBOL(cgroup_bpf_enabled_key);
24
cgroup_bpf_offline(struct cgroup * cgrp)25 void cgroup_bpf_offline(struct cgroup *cgrp)
26 {
27 cgroup_get(cgrp);
28 percpu_ref_kill(&cgrp->bpf.refcnt);
29 }
30
31 /**
32 * cgroup_bpf_release() - put references of all bpf programs and
33 * release all cgroup bpf data
34 * @work: work structure embedded into the cgroup to modify
35 */
cgroup_bpf_release(struct work_struct * work)36 static void cgroup_bpf_release(struct work_struct *work)
37 {
38 struct cgroup *p, *cgrp = container_of(work, struct cgroup,
39 bpf.release_work);
40 enum bpf_cgroup_storage_type stype;
41 struct bpf_prog_array *old_array;
42 unsigned int type;
43
44 mutex_lock(&cgroup_mutex);
45
46 for (type = 0; type < ARRAY_SIZE(cgrp->bpf.progs); type++) {
47 struct list_head *progs = &cgrp->bpf.progs[type];
48 struct bpf_prog_list *pl, *tmp;
49
50 list_for_each_entry_safe(pl, tmp, progs, node) {
51 list_del(&pl->node);
52 bpf_prog_put(pl->prog);
53 for_each_cgroup_storage_type(stype) {
54 bpf_cgroup_storage_unlink(pl->storage[stype]);
55 bpf_cgroup_storage_free(pl->storage[stype]);
56 }
57 kfree(pl);
58 static_branch_dec(&cgroup_bpf_enabled_key);
59 }
60 old_array = rcu_dereference_protected(
61 cgrp->bpf.effective[type],
62 lockdep_is_held(&cgroup_mutex));
63 bpf_prog_array_free(old_array);
64 }
65
66 mutex_unlock(&cgroup_mutex);
67
68 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
69 cgroup_bpf_put(p);
70
71 percpu_ref_exit(&cgrp->bpf.refcnt);
72 cgroup_put(cgrp);
73 }
74
75 /**
76 * cgroup_bpf_release_fn() - callback used to schedule releasing
77 * of bpf cgroup data
78 * @ref: percpu ref counter structure
79 */
cgroup_bpf_release_fn(struct percpu_ref * ref)80 static void cgroup_bpf_release_fn(struct percpu_ref *ref)
81 {
82 struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt);
83
84 INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release);
85 queue_work(system_wq, &cgrp->bpf.release_work);
86 }
87
88 /* count number of elements in the list.
89 * it's slow but the list cannot be long
90 */
prog_list_length(struct list_head * head)91 static u32 prog_list_length(struct list_head *head)
92 {
93 struct bpf_prog_list *pl;
94 u32 cnt = 0;
95
96 list_for_each_entry(pl, head, node) {
97 if (!pl->prog)
98 continue;
99 cnt++;
100 }
101 return cnt;
102 }
103
104 /* if parent has non-overridable prog attached,
105 * disallow attaching new programs to the descendent cgroup.
106 * if parent has overridable or multi-prog, allow attaching
107 */
hierarchy_allows_attach(struct cgroup * cgrp,enum bpf_attach_type type,u32 new_flags)108 static bool hierarchy_allows_attach(struct cgroup *cgrp,
109 enum bpf_attach_type type,
110 u32 new_flags)
111 {
112 struct cgroup *p;
113
114 p = cgroup_parent(cgrp);
115 if (!p)
116 return true;
117 do {
118 u32 flags = p->bpf.flags[type];
119 u32 cnt;
120
121 if (flags & BPF_F_ALLOW_MULTI)
122 return true;
123 cnt = prog_list_length(&p->bpf.progs[type]);
124 WARN_ON_ONCE(cnt > 1);
125 if (cnt == 1)
126 return !!(flags & BPF_F_ALLOW_OVERRIDE);
127 p = cgroup_parent(p);
128 } while (p);
129 return true;
130 }
131
132 /* compute a chain of effective programs for a given cgroup:
133 * start from the list of programs in this cgroup and add
134 * all parent programs.
135 * Note that parent's F_ALLOW_OVERRIDE-type program is yielding
136 * to programs in this cgroup
137 */
compute_effective_progs(struct cgroup * cgrp,enum bpf_attach_type type,struct bpf_prog_array ** array)138 static int compute_effective_progs(struct cgroup *cgrp,
139 enum bpf_attach_type type,
140 struct bpf_prog_array **array)
141 {
142 enum bpf_cgroup_storage_type stype;
143 struct bpf_prog_array *progs;
144 struct bpf_prog_list *pl;
145 struct cgroup *p = cgrp;
146 int cnt = 0;
147
148 /* count number of effective programs by walking parents */
149 do {
150 if (cnt == 0 || (p->bpf.flags[type] & BPF_F_ALLOW_MULTI))
151 cnt += prog_list_length(&p->bpf.progs[type]);
152 p = cgroup_parent(p);
153 } while (p);
154
155 progs = bpf_prog_array_alloc(cnt, GFP_KERNEL);
156 if (!progs)
157 return -ENOMEM;
158
159 /* populate the array with effective progs */
160 cnt = 0;
161 p = cgrp;
162 do {
163 if (cnt > 0 && !(p->bpf.flags[type] & BPF_F_ALLOW_MULTI))
164 continue;
165
166 list_for_each_entry(pl, &p->bpf.progs[type], node) {
167 if (!pl->prog)
168 continue;
169
170 progs->items[cnt].prog = pl->prog;
171 for_each_cgroup_storage_type(stype)
172 progs->items[cnt].cgroup_storage[stype] =
173 pl->storage[stype];
174 cnt++;
175 }
176 } while ((p = cgroup_parent(p)));
177
178 *array = progs;
179 return 0;
180 }
181
activate_effective_progs(struct cgroup * cgrp,enum bpf_attach_type type,struct bpf_prog_array * old_array)182 static void activate_effective_progs(struct cgroup *cgrp,
183 enum bpf_attach_type type,
184 struct bpf_prog_array *old_array)
185 {
186 rcu_swap_protected(cgrp->bpf.effective[type], old_array,
187 lockdep_is_held(&cgroup_mutex));
188 /* free prog array after grace period, since __cgroup_bpf_run_*()
189 * might be still walking the array
190 */
191 bpf_prog_array_free(old_array);
192 }
193
194 /**
195 * cgroup_bpf_inherit() - inherit effective programs from parent
196 * @cgrp: the cgroup to modify
197 */
cgroup_bpf_inherit(struct cgroup * cgrp)198 int cgroup_bpf_inherit(struct cgroup *cgrp)
199 {
200 /* has to use marco instead of const int, since compiler thinks
201 * that array below is variable length
202 */
203 #define NR ARRAY_SIZE(cgrp->bpf.effective)
204 struct bpf_prog_array *arrays[NR] = {};
205 struct cgroup *p;
206 int ret, i;
207
208 ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0,
209 GFP_KERNEL);
210 if (ret)
211 return ret;
212
213 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
214 cgroup_bpf_get(p);
215
216 for (i = 0; i < NR; i++)
217 INIT_LIST_HEAD(&cgrp->bpf.progs[i]);
218
219 for (i = 0; i < NR; i++)
220 if (compute_effective_progs(cgrp, i, &arrays[i]))
221 goto cleanup;
222
223 for (i = 0; i < NR; i++)
224 activate_effective_progs(cgrp, i, arrays[i]);
225
226 return 0;
227 cleanup:
228 for (i = 0; i < NR; i++)
229 bpf_prog_array_free(arrays[i]);
230
231 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
232 cgroup_bpf_put(p);
233
234 percpu_ref_exit(&cgrp->bpf.refcnt);
235
236 return -ENOMEM;
237 }
238
update_effective_progs(struct cgroup * cgrp,enum bpf_attach_type type)239 static int update_effective_progs(struct cgroup *cgrp,
240 enum bpf_attach_type type)
241 {
242 struct cgroup_subsys_state *css;
243 int err;
244
245 /* allocate and recompute effective prog arrays */
246 css_for_each_descendant_pre(css, &cgrp->self) {
247 struct cgroup *desc = container_of(css, struct cgroup, self);
248
249 if (percpu_ref_is_zero(&desc->bpf.refcnt))
250 continue;
251
252 err = compute_effective_progs(desc, type, &desc->bpf.inactive);
253 if (err)
254 goto cleanup;
255 }
256
257 /* all allocations were successful. Activate all prog arrays */
258 css_for_each_descendant_pre(css, &cgrp->self) {
259 struct cgroup *desc = container_of(css, struct cgroup, self);
260
261 if (percpu_ref_is_zero(&desc->bpf.refcnt)) {
262 if (unlikely(desc->bpf.inactive)) {
263 bpf_prog_array_free(desc->bpf.inactive);
264 desc->bpf.inactive = NULL;
265 }
266 continue;
267 }
268
269 activate_effective_progs(desc, type, desc->bpf.inactive);
270 desc->bpf.inactive = NULL;
271 }
272
273 return 0;
274
275 cleanup:
276 /* oom while computing effective. Free all computed effective arrays
277 * since they were not activated
278 */
279 css_for_each_descendant_pre(css, &cgrp->self) {
280 struct cgroup *desc = container_of(css, struct cgroup, self);
281
282 bpf_prog_array_free(desc->bpf.inactive);
283 desc->bpf.inactive = NULL;
284 }
285
286 return err;
287 }
288
289 #define BPF_CGROUP_MAX_PROGS 64
290
291 /**
292 * __cgroup_bpf_attach() - Attach the program to a cgroup, and
293 * propagate the change to descendants
294 * @cgrp: The cgroup which descendants to traverse
295 * @prog: A program to attach
296 * @type: Type of attach operation
297 * @flags: Option flags
298 *
299 * Must be called with cgroup_mutex held.
300 */
__cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type,u32 flags)301 int __cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
302 enum bpf_attach_type type, u32 flags)
303 {
304 struct list_head *progs = &cgrp->bpf.progs[type];
305 struct bpf_prog *old_prog = NULL;
306 struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
307 struct bpf_cgroup_storage *old_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
308 enum bpf_cgroup_storage_type stype;
309 struct bpf_prog_list *pl;
310 bool pl_was_allocated;
311 int err;
312
313 if ((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI))
314 /* invalid combination */
315 return -EINVAL;
316
317 if (!hierarchy_allows_attach(cgrp, type, flags))
318 return -EPERM;
319
320 if (!list_empty(progs) && cgrp->bpf.flags[type] != flags)
321 /* Disallow attaching non-overridable on top
322 * of existing overridable in this cgroup.
323 * Disallow attaching multi-prog if overridable or none
324 */
325 return -EPERM;
326
327 if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS)
328 return -E2BIG;
329
330 for_each_cgroup_storage_type(stype) {
331 storage[stype] = bpf_cgroup_storage_alloc(prog, stype);
332 if (IS_ERR(storage[stype])) {
333 storage[stype] = NULL;
334 for_each_cgroup_storage_type(stype)
335 bpf_cgroup_storage_free(storage[stype]);
336 return -ENOMEM;
337 }
338 }
339
340 if (flags & BPF_F_ALLOW_MULTI) {
341 list_for_each_entry(pl, progs, node) {
342 if (pl->prog == prog) {
343 /* disallow attaching the same prog twice */
344 for_each_cgroup_storage_type(stype)
345 bpf_cgroup_storage_free(storage[stype]);
346 return -EINVAL;
347 }
348 }
349
350 pl = kmalloc(sizeof(*pl), GFP_KERNEL);
351 if (!pl) {
352 for_each_cgroup_storage_type(stype)
353 bpf_cgroup_storage_free(storage[stype]);
354 return -ENOMEM;
355 }
356
357 pl_was_allocated = true;
358 pl->prog = prog;
359 for_each_cgroup_storage_type(stype)
360 pl->storage[stype] = storage[stype];
361 list_add_tail(&pl->node, progs);
362 } else {
363 if (list_empty(progs)) {
364 pl = kmalloc(sizeof(*pl), GFP_KERNEL);
365 if (!pl) {
366 for_each_cgroup_storage_type(stype)
367 bpf_cgroup_storage_free(storage[stype]);
368 return -ENOMEM;
369 }
370 pl_was_allocated = true;
371 list_add_tail(&pl->node, progs);
372 } else {
373 pl = list_first_entry(progs, typeof(*pl), node);
374 old_prog = pl->prog;
375 for_each_cgroup_storage_type(stype) {
376 old_storage[stype] = pl->storage[stype];
377 bpf_cgroup_storage_unlink(old_storage[stype]);
378 }
379 pl_was_allocated = false;
380 }
381 pl->prog = prog;
382 for_each_cgroup_storage_type(stype)
383 pl->storage[stype] = storage[stype];
384 }
385
386 cgrp->bpf.flags[type] = flags;
387
388 err = update_effective_progs(cgrp, type);
389 if (err)
390 goto cleanup;
391
392 static_branch_inc(&cgroup_bpf_enabled_key);
393 for_each_cgroup_storage_type(stype) {
394 if (!old_storage[stype])
395 continue;
396 bpf_cgroup_storage_free(old_storage[stype]);
397 }
398 if (old_prog) {
399 bpf_prog_put(old_prog);
400 static_branch_dec(&cgroup_bpf_enabled_key);
401 }
402 for_each_cgroup_storage_type(stype)
403 bpf_cgroup_storage_link(storage[stype], cgrp, type);
404 return 0;
405
406 cleanup:
407 /* and cleanup the prog list */
408 pl->prog = old_prog;
409 for_each_cgroup_storage_type(stype) {
410 bpf_cgroup_storage_free(pl->storage[stype]);
411 pl->storage[stype] = old_storage[stype];
412 bpf_cgroup_storage_link(old_storage[stype], cgrp, type);
413 }
414 if (pl_was_allocated) {
415 list_del(&pl->node);
416 kfree(pl);
417 }
418 return err;
419 }
420
421 /**
422 * __cgroup_bpf_detach() - Detach the program from a cgroup, and
423 * propagate the change to descendants
424 * @cgrp: The cgroup which descendants to traverse
425 * @prog: A program to detach or NULL
426 * @type: Type of detach operation
427 *
428 * Must be called with cgroup_mutex held.
429 */
__cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type)430 int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
431 enum bpf_attach_type type)
432 {
433 struct list_head *progs = &cgrp->bpf.progs[type];
434 enum bpf_cgroup_storage_type stype;
435 u32 flags = cgrp->bpf.flags[type];
436 struct bpf_prog *old_prog = NULL;
437 struct bpf_prog_list *pl;
438 int err;
439
440 if (flags & BPF_F_ALLOW_MULTI) {
441 if (!prog)
442 /* to detach MULTI prog the user has to specify valid FD
443 * of the program to be detached
444 */
445 return -EINVAL;
446 } else {
447 if (list_empty(progs))
448 /* report error when trying to detach and nothing is attached */
449 return -ENOENT;
450 }
451
452 if (flags & BPF_F_ALLOW_MULTI) {
453 /* find the prog and detach it */
454 list_for_each_entry(pl, progs, node) {
455 if (pl->prog != prog)
456 continue;
457 old_prog = prog;
458 /* mark it deleted, so it's ignored while
459 * recomputing effective
460 */
461 pl->prog = NULL;
462 break;
463 }
464 if (!old_prog)
465 return -ENOENT;
466 } else {
467 /* to maintain backward compatibility NONE and OVERRIDE cgroups
468 * allow detaching with invalid FD (prog==NULL)
469 */
470 pl = list_first_entry(progs, typeof(*pl), node);
471 old_prog = pl->prog;
472 pl->prog = NULL;
473 }
474
475 err = update_effective_progs(cgrp, type);
476 if (err)
477 goto cleanup;
478
479 /* now can actually delete it from this cgroup list */
480 list_del(&pl->node);
481 for_each_cgroup_storage_type(stype) {
482 bpf_cgroup_storage_unlink(pl->storage[stype]);
483 bpf_cgroup_storage_free(pl->storage[stype]);
484 }
485 kfree(pl);
486 if (list_empty(progs))
487 /* last program was detached, reset flags to zero */
488 cgrp->bpf.flags[type] = 0;
489
490 bpf_prog_put(old_prog);
491 static_branch_dec(&cgroup_bpf_enabled_key);
492 return 0;
493
494 cleanup:
495 /* and restore back old_prog */
496 pl->prog = old_prog;
497 return err;
498 }
499
500 /* Must be called with cgroup_mutex held to avoid races. */
__cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)501 int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
502 union bpf_attr __user *uattr)
503 {
504 __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
505 enum bpf_attach_type type = attr->query.attach_type;
506 struct list_head *progs = &cgrp->bpf.progs[type];
507 u32 flags = cgrp->bpf.flags[type];
508 struct bpf_prog_array *effective;
509 int cnt, ret = 0, i;
510
511 effective = rcu_dereference_protected(cgrp->bpf.effective[type],
512 lockdep_is_held(&cgroup_mutex));
513
514 if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE)
515 cnt = bpf_prog_array_length(effective);
516 else
517 cnt = prog_list_length(progs);
518
519 if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
520 return -EFAULT;
521 if (copy_to_user(&uattr->query.prog_cnt, &cnt, sizeof(cnt)))
522 return -EFAULT;
523 if (attr->query.prog_cnt == 0 || !prog_ids || !cnt)
524 /* return early if user requested only program count + flags */
525 return 0;
526 if (attr->query.prog_cnt < cnt) {
527 cnt = attr->query.prog_cnt;
528 ret = -ENOSPC;
529 }
530
531 if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) {
532 return bpf_prog_array_copy_to_user(effective, prog_ids, cnt);
533 } else {
534 struct bpf_prog_list *pl;
535 u32 id;
536
537 i = 0;
538 list_for_each_entry(pl, progs, node) {
539 id = pl->prog->aux->id;
540 if (copy_to_user(prog_ids + i, &id, sizeof(id)))
541 return -EFAULT;
542 if (++i == cnt)
543 break;
544 }
545 }
546 return ret;
547 }
548
cgroup_bpf_prog_attach(const union bpf_attr * attr,enum bpf_prog_type ptype,struct bpf_prog * prog)549 int cgroup_bpf_prog_attach(const union bpf_attr *attr,
550 enum bpf_prog_type ptype, struct bpf_prog *prog)
551 {
552 struct cgroup *cgrp;
553 int ret;
554
555 cgrp = cgroup_get_from_fd(attr->target_fd);
556 if (IS_ERR(cgrp))
557 return PTR_ERR(cgrp);
558
559 ret = cgroup_bpf_attach(cgrp, prog, attr->attach_type,
560 attr->attach_flags);
561 cgroup_put(cgrp);
562 return ret;
563 }
564
cgroup_bpf_prog_detach(const union bpf_attr * attr,enum bpf_prog_type ptype)565 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype)
566 {
567 struct bpf_prog *prog;
568 struct cgroup *cgrp;
569 int ret;
570
571 cgrp = cgroup_get_from_fd(attr->target_fd);
572 if (IS_ERR(cgrp))
573 return PTR_ERR(cgrp);
574
575 prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype);
576 if (IS_ERR(prog))
577 prog = NULL;
578
579 ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type, 0);
580 if (prog)
581 bpf_prog_put(prog);
582
583 cgroup_put(cgrp);
584 return ret;
585 }
586
cgroup_bpf_prog_query(const union bpf_attr * attr,union bpf_attr __user * uattr)587 int cgroup_bpf_prog_query(const union bpf_attr *attr,
588 union bpf_attr __user *uattr)
589 {
590 struct cgroup *cgrp;
591 int ret;
592
593 cgrp = cgroup_get_from_fd(attr->query.target_fd);
594 if (IS_ERR(cgrp))
595 return PTR_ERR(cgrp);
596
597 ret = cgroup_bpf_query(cgrp, attr, uattr);
598
599 cgroup_put(cgrp);
600 return ret;
601 }
602
603 /**
604 * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering
605 * @sk: The socket sending or receiving traffic
606 * @skb: The skb that is being sent or received
607 * @type: The type of program to be exectuted
608 *
609 * If no socket is passed, or the socket is not of type INET or INET6,
610 * this function does nothing and returns 0.
611 *
612 * The program type passed in via @type must be suitable for network
613 * filtering. No further check is performed to assert that.
614 *
615 * For egress packets, this function can return:
616 * NET_XMIT_SUCCESS (0) - continue with packet output
617 * NET_XMIT_DROP (1) - drop packet and notify TCP to call cwr
618 * NET_XMIT_CN (2) - continue with packet output and notify TCP
619 * to call cwr
620 * -EPERM - drop packet
621 *
622 * For ingress packets, this function will return -EPERM if any
623 * attached program was found and if it returned != 1 during execution.
624 * Otherwise 0 is returned.
625 */
__cgroup_bpf_run_filter_skb(struct sock * sk,struct sk_buff * skb,enum bpf_attach_type type)626 int __cgroup_bpf_run_filter_skb(struct sock *sk,
627 struct sk_buff *skb,
628 enum bpf_attach_type type)
629 {
630 unsigned int offset = skb->data - skb_network_header(skb);
631 struct sock *save_sk;
632 void *saved_data_end;
633 struct cgroup *cgrp;
634 int ret;
635
636 if (!sk || !sk_fullsock(sk))
637 return 0;
638
639 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
640 return 0;
641
642 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
643 save_sk = skb->sk;
644 skb->sk = sk;
645 __skb_push(skb, offset);
646
647 /* compute pointers for the bpf prog */
648 bpf_compute_and_save_data_end(skb, &saved_data_end);
649
650 if (type == BPF_CGROUP_INET_EGRESS) {
651 ret = BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY(
652 cgrp->bpf.effective[type], skb, __bpf_prog_run_save_cb);
653 } else {
654 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], skb,
655 __bpf_prog_run_save_cb);
656 ret = (ret == 1 ? 0 : -EPERM);
657 }
658 bpf_restore_data_end(skb, saved_data_end);
659 __skb_pull(skb, offset);
660 skb->sk = save_sk;
661
662 return ret;
663 }
664 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb);
665
666 /**
667 * __cgroup_bpf_run_filter_sk() - Run a program on a sock
668 * @sk: sock structure to manipulate
669 * @type: The type of program to be exectuted
670 *
671 * socket is passed is expected to be of type INET or INET6.
672 *
673 * The program type passed in via @type must be suitable for sock
674 * filtering. No further check is performed to assert that.
675 *
676 * This function will return %-EPERM if any if an attached program was found
677 * and if it returned != 1 during execution. In all other cases, 0 is returned.
678 */
__cgroup_bpf_run_filter_sk(struct sock * sk,enum bpf_attach_type type)679 int __cgroup_bpf_run_filter_sk(struct sock *sk,
680 enum bpf_attach_type type)
681 {
682 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
683 int ret;
684
685 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sk, BPF_PROG_RUN);
686 return ret == 1 ? 0 : -EPERM;
687 }
688 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk);
689
690 /**
691 * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and
692 * provided by user sockaddr
693 * @sk: sock struct that will use sockaddr
694 * @uaddr: sockaddr struct provided by user
695 * @type: The type of program to be exectuted
696 * @t_ctx: Pointer to attach type specific context
697 *
698 * socket is expected to be of type INET or INET6.
699 *
700 * This function will return %-EPERM if an attached program is found and
701 * returned value != 1 during execution. In all other cases, 0 is returned.
702 */
__cgroup_bpf_run_filter_sock_addr(struct sock * sk,struct sockaddr * uaddr,enum bpf_attach_type type,void * t_ctx)703 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk,
704 struct sockaddr *uaddr,
705 enum bpf_attach_type type,
706 void *t_ctx)
707 {
708 struct bpf_sock_addr_kern ctx = {
709 .sk = sk,
710 .uaddr = uaddr,
711 .t_ctx = t_ctx,
712 };
713 struct sockaddr_storage unspec;
714 struct cgroup *cgrp;
715 int ret;
716
717 /* Check socket family since not all sockets represent network
718 * endpoint (e.g. AF_UNIX).
719 */
720 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
721 return 0;
722
723 if (!ctx.uaddr) {
724 memset(&unspec, 0, sizeof(unspec));
725 ctx.uaddr = (struct sockaddr *)&unspec;
726 }
727
728 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
729 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN);
730
731 return ret == 1 ? 0 : -EPERM;
732 }
733 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr);
734
735 /**
736 * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock
737 * @sk: socket to get cgroup from
738 * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains
739 * sk with connection information (IP addresses, etc.) May not contain
740 * cgroup info if it is a req sock.
741 * @type: The type of program to be exectuted
742 *
743 * socket passed is expected to be of type INET or INET6.
744 *
745 * The program type passed in via @type must be suitable for sock_ops
746 * filtering. No further check is performed to assert that.
747 *
748 * This function will return %-EPERM if any if an attached program was found
749 * and if it returned != 1 during execution. In all other cases, 0 is returned.
750 */
__cgroup_bpf_run_filter_sock_ops(struct sock * sk,struct bpf_sock_ops_kern * sock_ops,enum bpf_attach_type type)751 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk,
752 struct bpf_sock_ops_kern *sock_ops,
753 enum bpf_attach_type type)
754 {
755 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
756 int ret;
757
758 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sock_ops,
759 BPF_PROG_RUN);
760 return ret == 1 ? 0 : -EPERM;
761 }
762 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops);
763
__cgroup_bpf_check_dev_permission(short dev_type,u32 major,u32 minor,short access,enum bpf_attach_type type)764 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor,
765 short access, enum bpf_attach_type type)
766 {
767 struct cgroup *cgrp;
768 struct bpf_cgroup_dev_ctx ctx = {
769 .access_type = (access << 16) | dev_type,
770 .major = major,
771 .minor = minor,
772 };
773 int allow = 1;
774
775 rcu_read_lock();
776 cgrp = task_dfl_cgroup(current);
777 allow = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx,
778 BPF_PROG_RUN);
779 rcu_read_unlock();
780
781 return !allow;
782 }
783 EXPORT_SYMBOL(__cgroup_bpf_check_dev_permission);
784
785 static const struct bpf_func_proto *
cgroup_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)786 cgroup_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
787 {
788 switch (func_id) {
789 case BPF_FUNC_map_lookup_elem:
790 return &bpf_map_lookup_elem_proto;
791 case BPF_FUNC_map_update_elem:
792 return &bpf_map_update_elem_proto;
793 case BPF_FUNC_map_delete_elem:
794 return &bpf_map_delete_elem_proto;
795 case BPF_FUNC_map_push_elem:
796 return &bpf_map_push_elem_proto;
797 case BPF_FUNC_map_pop_elem:
798 return &bpf_map_pop_elem_proto;
799 case BPF_FUNC_map_peek_elem:
800 return &bpf_map_peek_elem_proto;
801 case BPF_FUNC_get_current_uid_gid:
802 return &bpf_get_current_uid_gid_proto;
803 case BPF_FUNC_get_local_storage:
804 return &bpf_get_local_storage_proto;
805 case BPF_FUNC_get_current_cgroup_id:
806 return &bpf_get_current_cgroup_id_proto;
807 case BPF_FUNC_trace_printk:
808 if (capable(CAP_SYS_ADMIN))
809 return bpf_get_trace_printk_proto();
810 /* fall through */
811 default:
812 return NULL;
813 }
814 }
815
816 static const struct bpf_func_proto *
cgroup_dev_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)817 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
818 {
819 return cgroup_base_func_proto(func_id, prog);
820 }
821
cgroup_dev_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)822 static bool cgroup_dev_is_valid_access(int off, int size,
823 enum bpf_access_type type,
824 const struct bpf_prog *prog,
825 struct bpf_insn_access_aux *info)
826 {
827 const int size_default = sizeof(__u32);
828
829 if (type == BPF_WRITE)
830 return false;
831
832 if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx))
833 return false;
834 /* The verifier guarantees that size > 0. */
835 if (off % size != 0)
836 return false;
837
838 switch (off) {
839 case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type):
840 bpf_ctx_record_field_size(info, size_default);
841 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
842 return false;
843 break;
844 default:
845 if (size != size_default)
846 return false;
847 }
848
849 return true;
850 }
851
852 const struct bpf_prog_ops cg_dev_prog_ops = {
853 };
854
855 const struct bpf_verifier_ops cg_dev_verifier_ops = {
856 .get_func_proto = cgroup_dev_func_proto,
857 .is_valid_access = cgroup_dev_is_valid_access,
858 };
859
860 /**
861 * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl
862 *
863 * @head: sysctl table header
864 * @table: sysctl table
865 * @write: sysctl is being read (= 0) or written (= 1)
866 * @buf: pointer to buffer passed by user space
867 * @pcount: value-result argument: value is size of buffer pointed to by @buf,
868 * result is size of @new_buf if program set new value, initial value
869 * otherwise
870 * @ppos: value-result argument: value is position at which read from or write
871 * to sysctl is happening, result is new position if program overrode it,
872 * initial value otherwise
873 * @new_buf: pointer to pointer to new buffer that will be allocated if program
874 * overrides new value provided by user space on sysctl write
875 * NOTE: it's caller responsibility to free *new_buf if it was set
876 * @type: type of program to be executed
877 *
878 * Program is run when sysctl is being accessed, either read or written, and
879 * can allow or deny such access.
880 *
881 * This function will return %-EPERM if an attached program is found and
882 * returned value != 1 during execution. In all other cases 0 is returned.
883 */
__cgroup_bpf_run_filter_sysctl(struct ctl_table_header * head,struct ctl_table * table,int write,void __user * buf,size_t * pcount,loff_t * ppos,void ** new_buf,enum bpf_attach_type type)884 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head,
885 struct ctl_table *table, int write,
886 void __user *buf, size_t *pcount,
887 loff_t *ppos, void **new_buf,
888 enum bpf_attach_type type)
889 {
890 struct bpf_sysctl_kern ctx = {
891 .head = head,
892 .table = table,
893 .write = write,
894 .ppos = ppos,
895 .cur_val = NULL,
896 .cur_len = PAGE_SIZE,
897 .new_val = NULL,
898 .new_len = 0,
899 .new_updated = 0,
900 };
901 struct cgroup *cgrp;
902 int ret;
903
904 ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL);
905 if (ctx.cur_val) {
906 mm_segment_t old_fs;
907 loff_t pos = 0;
908
909 old_fs = get_fs();
910 set_fs(KERNEL_DS);
911 if (table->proc_handler(table, 0, (void __user *)ctx.cur_val,
912 &ctx.cur_len, &pos)) {
913 /* Let BPF program decide how to proceed. */
914 ctx.cur_len = 0;
915 }
916 set_fs(old_fs);
917 } else {
918 /* Let BPF program decide how to proceed. */
919 ctx.cur_len = 0;
920 }
921
922 if (write && buf && *pcount) {
923 /* BPF program should be able to override new value with a
924 * buffer bigger than provided by user.
925 */
926 ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL);
927 ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount);
928 if (!ctx.new_val ||
929 copy_from_user(ctx.new_val, buf, ctx.new_len))
930 /* Let BPF program decide how to proceed. */
931 ctx.new_len = 0;
932 }
933
934 rcu_read_lock();
935 cgrp = task_dfl_cgroup(current);
936 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN);
937 rcu_read_unlock();
938
939 kfree(ctx.cur_val);
940
941 if (ret == 1 && ctx.new_updated) {
942 *new_buf = ctx.new_val;
943 *pcount = ctx.new_len;
944 } else {
945 kfree(ctx.new_val);
946 }
947
948 return ret == 1 ? 0 : -EPERM;
949 }
950 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sysctl);
951
952 #ifdef CONFIG_NET
__cgroup_bpf_prog_array_is_empty(struct cgroup * cgrp,enum bpf_attach_type attach_type)953 static bool __cgroup_bpf_prog_array_is_empty(struct cgroup *cgrp,
954 enum bpf_attach_type attach_type)
955 {
956 struct bpf_prog_array *prog_array;
957 bool empty;
958
959 rcu_read_lock();
960 prog_array = rcu_dereference(cgrp->bpf.effective[attach_type]);
961 empty = bpf_prog_array_is_empty(prog_array);
962 rcu_read_unlock();
963
964 return empty;
965 }
966
sockopt_alloc_buf(struct bpf_sockopt_kern * ctx,int max_optlen)967 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen)
968 {
969 if (unlikely(max_optlen < 0))
970 return -EINVAL;
971
972 if (unlikely(max_optlen > PAGE_SIZE)) {
973 /* We don't expose optvals that are greater than PAGE_SIZE
974 * to the BPF program.
975 */
976 max_optlen = PAGE_SIZE;
977 }
978
979 ctx->optval = kzalloc(max_optlen, GFP_USER);
980 if (!ctx->optval)
981 return -ENOMEM;
982
983 ctx->optval_end = ctx->optval + max_optlen;
984
985 return max_optlen;
986 }
987
sockopt_free_buf(struct bpf_sockopt_kern * ctx)988 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx)
989 {
990 kfree(ctx->optval);
991 }
992
__cgroup_bpf_run_filter_setsockopt(struct sock * sk,int * level,int * optname,char __user * optval,int * optlen,char ** kernel_optval)993 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level,
994 int *optname, char __user *optval,
995 int *optlen, char **kernel_optval)
996 {
997 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
998 struct bpf_sockopt_kern ctx = {
999 .sk = sk,
1000 .level = *level,
1001 .optname = *optname,
1002 };
1003 int ret, max_optlen;
1004
1005 /* Opportunistic check to see whether we have any BPF program
1006 * attached to the hook so we don't waste time allocating
1007 * memory and locking the socket.
1008 */
1009 if (!cgroup_bpf_enabled ||
1010 __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_SETSOCKOPT))
1011 return 0;
1012
1013 /* Allocate a bit more than the initial user buffer for
1014 * BPF program. The canonical use case is overriding
1015 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic).
1016 */
1017 max_optlen = max_t(int, 16, *optlen);
1018
1019 max_optlen = sockopt_alloc_buf(&ctx, max_optlen);
1020 if (max_optlen < 0)
1021 return max_optlen;
1022
1023 ctx.optlen = *optlen;
1024
1025 if (copy_from_user(ctx.optval, optval, min(*optlen, max_optlen)) != 0) {
1026 ret = -EFAULT;
1027 goto out;
1028 }
1029
1030 lock_sock(sk);
1031 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_SETSOCKOPT],
1032 &ctx, BPF_PROG_RUN);
1033 release_sock(sk);
1034
1035 if (!ret) {
1036 ret = -EPERM;
1037 goto out;
1038 }
1039
1040 if (ctx.optlen == -1) {
1041 /* optlen set to -1, bypass kernel */
1042 ret = 1;
1043 } else if (ctx.optlen > max_optlen || ctx.optlen < -1) {
1044 /* optlen is out of bounds */
1045 ret = -EFAULT;
1046 } else {
1047 /* optlen within bounds, run kernel handler */
1048 ret = 0;
1049
1050 /* export any potential modifications */
1051 *level = ctx.level;
1052 *optname = ctx.optname;
1053
1054 /* optlen == 0 from BPF indicates that we should
1055 * use original userspace data.
1056 */
1057 if (ctx.optlen != 0) {
1058 *optlen = ctx.optlen;
1059 *kernel_optval = ctx.optval;
1060 /* export and don't free sockopt buf */
1061 return 0;
1062 }
1063 }
1064
1065 out:
1066 sockopt_free_buf(&ctx);
1067 return ret;
1068 }
1069 EXPORT_SYMBOL(__cgroup_bpf_run_filter_setsockopt);
1070
__cgroup_bpf_run_filter_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen,int max_optlen,int retval)1071 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level,
1072 int optname, char __user *optval,
1073 int __user *optlen, int max_optlen,
1074 int retval)
1075 {
1076 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1077 struct bpf_sockopt_kern ctx = {
1078 .sk = sk,
1079 .level = level,
1080 .optname = optname,
1081 .retval = retval,
1082 };
1083 int ret;
1084
1085 /* Opportunistic check to see whether we have any BPF program
1086 * attached to the hook so we don't waste time allocating
1087 * memory and locking the socket.
1088 */
1089 if (!cgroup_bpf_enabled ||
1090 __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_GETSOCKOPT))
1091 return retval;
1092
1093 ctx.optlen = max_optlen;
1094
1095 max_optlen = sockopt_alloc_buf(&ctx, max_optlen);
1096 if (max_optlen < 0)
1097 return max_optlen;
1098
1099 if (!retval) {
1100 /* If kernel getsockopt finished successfully,
1101 * copy whatever was returned to the user back
1102 * into our temporary buffer. Set optlen to the
1103 * one that kernel returned as well to let
1104 * BPF programs inspect the value.
1105 */
1106
1107 if (get_user(ctx.optlen, optlen)) {
1108 ret = -EFAULT;
1109 goto out;
1110 }
1111
1112 if (ctx.optlen < 0) {
1113 ret = -EFAULT;
1114 goto out;
1115 }
1116
1117 if (copy_from_user(ctx.optval, optval,
1118 min(ctx.optlen, max_optlen)) != 0) {
1119 ret = -EFAULT;
1120 goto out;
1121 }
1122 }
1123
1124 lock_sock(sk);
1125 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_GETSOCKOPT],
1126 &ctx, BPF_PROG_RUN);
1127 release_sock(sk);
1128
1129 if (!ret) {
1130 ret = -EPERM;
1131 goto out;
1132 }
1133
1134 if (optval && (ctx.optlen > max_optlen || ctx.optlen < 0)) {
1135 ret = -EFAULT;
1136 goto out;
1137 }
1138
1139 /* BPF programs only allowed to set retval to 0, not some
1140 * arbitrary value.
1141 */
1142 if (ctx.retval != 0 && ctx.retval != retval) {
1143 ret = -EFAULT;
1144 goto out;
1145 }
1146
1147 if (ctx.optlen != 0) {
1148 if (optval && copy_to_user(optval, ctx.optval, ctx.optlen)) {
1149 ret = -EFAULT;
1150 goto out;
1151 }
1152 if (put_user(ctx.optlen, optlen)) {
1153 ret = -EFAULT;
1154 goto out;
1155 }
1156 }
1157
1158 ret = ctx.retval;
1159
1160 out:
1161 sockopt_free_buf(&ctx);
1162 return ret;
1163 }
1164 EXPORT_SYMBOL(__cgroup_bpf_run_filter_getsockopt);
1165 #endif
1166
sysctl_cpy_dir(const struct ctl_dir * dir,char ** bufp,size_t * lenp)1167 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp,
1168 size_t *lenp)
1169 {
1170 ssize_t tmp_ret = 0, ret;
1171
1172 if (dir->header.parent) {
1173 tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp);
1174 if (tmp_ret < 0)
1175 return tmp_ret;
1176 }
1177
1178 ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp);
1179 if (ret < 0)
1180 return ret;
1181 *bufp += ret;
1182 *lenp -= ret;
1183 ret += tmp_ret;
1184
1185 /* Avoid leading slash. */
1186 if (!ret)
1187 return ret;
1188
1189 tmp_ret = strscpy(*bufp, "/", *lenp);
1190 if (tmp_ret < 0)
1191 return tmp_ret;
1192 *bufp += tmp_ret;
1193 *lenp -= tmp_ret;
1194
1195 return ret + tmp_ret;
1196 }
1197
BPF_CALL_4(bpf_sysctl_get_name,struct bpf_sysctl_kern *,ctx,char *,buf,size_t,buf_len,u64,flags)1198 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf,
1199 size_t, buf_len, u64, flags)
1200 {
1201 ssize_t tmp_ret = 0, ret;
1202
1203 if (!buf)
1204 return -EINVAL;
1205
1206 if (!(flags & BPF_F_SYSCTL_BASE_NAME)) {
1207 if (!ctx->head)
1208 return -EINVAL;
1209 tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len);
1210 if (tmp_ret < 0)
1211 return tmp_ret;
1212 }
1213
1214 ret = strscpy(buf, ctx->table->procname, buf_len);
1215
1216 return ret < 0 ? ret : tmp_ret + ret;
1217 }
1218
1219 static const struct bpf_func_proto bpf_sysctl_get_name_proto = {
1220 .func = bpf_sysctl_get_name,
1221 .gpl_only = false,
1222 .ret_type = RET_INTEGER,
1223 .arg1_type = ARG_PTR_TO_CTX,
1224 .arg2_type = ARG_PTR_TO_MEM,
1225 .arg3_type = ARG_CONST_SIZE,
1226 .arg4_type = ARG_ANYTHING,
1227 };
1228
copy_sysctl_value(char * dst,size_t dst_len,char * src,size_t src_len)1229 static int copy_sysctl_value(char *dst, size_t dst_len, char *src,
1230 size_t src_len)
1231 {
1232 if (!dst)
1233 return -EINVAL;
1234
1235 if (!dst_len)
1236 return -E2BIG;
1237
1238 if (!src || !src_len) {
1239 memset(dst, 0, dst_len);
1240 return -EINVAL;
1241 }
1242
1243 memcpy(dst, src, min(dst_len, src_len));
1244
1245 if (dst_len > src_len) {
1246 memset(dst + src_len, '\0', dst_len - src_len);
1247 return src_len;
1248 }
1249
1250 dst[dst_len - 1] = '\0';
1251
1252 return -E2BIG;
1253 }
1254
BPF_CALL_3(bpf_sysctl_get_current_value,struct bpf_sysctl_kern *,ctx,char *,buf,size_t,buf_len)1255 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx,
1256 char *, buf, size_t, buf_len)
1257 {
1258 return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len);
1259 }
1260
1261 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = {
1262 .func = bpf_sysctl_get_current_value,
1263 .gpl_only = false,
1264 .ret_type = RET_INTEGER,
1265 .arg1_type = ARG_PTR_TO_CTX,
1266 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
1267 .arg3_type = ARG_CONST_SIZE,
1268 };
1269
BPF_CALL_3(bpf_sysctl_get_new_value,struct bpf_sysctl_kern *,ctx,char *,buf,size_t,buf_len)1270 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf,
1271 size_t, buf_len)
1272 {
1273 if (!ctx->write) {
1274 if (buf && buf_len)
1275 memset(buf, '\0', buf_len);
1276 return -EINVAL;
1277 }
1278 return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len);
1279 }
1280
1281 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = {
1282 .func = bpf_sysctl_get_new_value,
1283 .gpl_only = false,
1284 .ret_type = RET_INTEGER,
1285 .arg1_type = ARG_PTR_TO_CTX,
1286 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
1287 .arg3_type = ARG_CONST_SIZE,
1288 };
1289
BPF_CALL_3(bpf_sysctl_set_new_value,struct bpf_sysctl_kern *,ctx,const char *,buf,size_t,buf_len)1290 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx,
1291 const char *, buf, size_t, buf_len)
1292 {
1293 if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len)
1294 return -EINVAL;
1295
1296 if (buf_len > PAGE_SIZE - 1)
1297 return -E2BIG;
1298
1299 memcpy(ctx->new_val, buf, buf_len);
1300 ctx->new_len = buf_len;
1301 ctx->new_updated = 1;
1302
1303 return 0;
1304 }
1305
1306 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = {
1307 .func = bpf_sysctl_set_new_value,
1308 .gpl_only = false,
1309 .ret_type = RET_INTEGER,
1310 .arg1_type = ARG_PTR_TO_CTX,
1311 .arg2_type = ARG_PTR_TO_MEM,
1312 .arg3_type = ARG_CONST_SIZE,
1313 };
1314
1315 static const struct bpf_func_proto *
sysctl_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1316 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1317 {
1318 switch (func_id) {
1319 case BPF_FUNC_strtol:
1320 return &bpf_strtol_proto;
1321 case BPF_FUNC_strtoul:
1322 return &bpf_strtoul_proto;
1323 case BPF_FUNC_sysctl_get_name:
1324 return &bpf_sysctl_get_name_proto;
1325 case BPF_FUNC_sysctl_get_current_value:
1326 return &bpf_sysctl_get_current_value_proto;
1327 case BPF_FUNC_sysctl_get_new_value:
1328 return &bpf_sysctl_get_new_value_proto;
1329 case BPF_FUNC_sysctl_set_new_value:
1330 return &bpf_sysctl_set_new_value_proto;
1331 default:
1332 return cgroup_base_func_proto(func_id, prog);
1333 }
1334 }
1335
sysctl_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1336 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type,
1337 const struct bpf_prog *prog,
1338 struct bpf_insn_access_aux *info)
1339 {
1340 const int size_default = sizeof(__u32);
1341
1342 if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size)
1343 return false;
1344
1345 switch (off) {
1346 case bpf_ctx_range(struct bpf_sysctl, write):
1347 if (type != BPF_READ)
1348 return false;
1349 bpf_ctx_record_field_size(info, size_default);
1350 return bpf_ctx_narrow_access_ok(off, size, size_default);
1351 case bpf_ctx_range(struct bpf_sysctl, file_pos):
1352 if (type == BPF_READ) {
1353 bpf_ctx_record_field_size(info, size_default);
1354 return bpf_ctx_narrow_access_ok(off, size, size_default);
1355 } else {
1356 return size == size_default;
1357 }
1358 default:
1359 return false;
1360 }
1361 }
1362
sysctl_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)1363 static u32 sysctl_convert_ctx_access(enum bpf_access_type type,
1364 const struct bpf_insn *si,
1365 struct bpf_insn *insn_buf,
1366 struct bpf_prog *prog, u32 *target_size)
1367 {
1368 struct bpf_insn *insn = insn_buf;
1369 u32 read_size;
1370
1371 switch (si->off) {
1372 case offsetof(struct bpf_sysctl, write):
1373 *insn++ = BPF_LDX_MEM(
1374 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
1375 bpf_target_off(struct bpf_sysctl_kern, write,
1376 FIELD_SIZEOF(struct bpf_sysctl_kern,
1377 write),
1378 target_size));
1379 break;
1380 case offsetof(struct bpf_sysctl, file_pos):
1381 /* ppos is a pointer so it should be accessed via indirect
1382 * loads and stores. Also for stores additional temporary
1383 * register is used since neither src_reg nor dst_reg can be
1384 * overridden.
1385 */
1386 if (type == BPF_WRITE) {
1387 int treg = BPF_REG_9;
1388
1389 if (si->src_reg == treg || si->dst_reg == treg)
1390 --treg;
1391 if (si->src_reg == treg || si->dst_reg == treg)
1392 --treg;
1393 *insn++ = BPF_STX_MEM(
1394 BPF_DW, si->dst_reg, treg,
1395 offsetof(struct bpf_sysctl_kern, tmp_reg));
1396 *insn++ = BPF_LDX_MEM(
1397 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1398 treg, si->dst_reg,
1399 offsetof(struct bpf_sysctl_kern, ppos));
1400 *insn++ = BPF_STX_MEM(
1401 BPF_SIZEOF(u32), treg, si->src_reg,
1402 bpf_ctx_narrow_access_offset(
1403 0, sizeof(u32), sizeof(loff_t)));
1404 *insn++ = BPF_LDX_MEM(
1405 BPF_DW, treg, si->dst_reg,
1406 offsetof(struct bpf_sysctl_kern, tmp_reg));
1407 } else {
1408 *insn++ = BPF_LDX_MEM(
1409 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1410 si->dst_reg, si->src_reg,
1411 offsetof(struct bpf_sysctl_kern, ppos));
1412 read_size = bpf_size_to_bytes(BPF_SIZE(si->code));
1413 *insn++ = BPF_LDX_MEM(
1414 BPF_SIZE(si->code), si->dst_reg, si->dst_reg,
1415 bpf_ctx_narrow_access_offset(
1416 0, read_size, sizeof(loff_t)));
1417 }
1418 *target_size = sizeof(u32);
1419 break;
1420 }
1421
1422 return insn - insn_buf;
1423 }
1424
1425 const struct bpf_verifier_ops cg_sysctl_verifier_ops = {
1426 .get_func_proto = sysctl_func_proto,
1427 .is_valid_access = sysctl_is_valid_access,
1428 .convert_ctx_access = sysctl_convert_ctx_access,
1429 };
1430
1431 const struct bpf_prog_ops cg_sysctl_prog_ops = {
1432 };
1433
1434 static const struct bpf_func_proto *
cg_sockopt_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1435 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1436 {
1437 switch (func_id) {
1438 #ifdef CONFIG_NET
1439 case BPF_FUNC_sk_storage_get:
1440 return &bpf_sk_storage_get_proto;
1441 case BPF_FUNC_sk_storage_delete:
1442 return &bpf_sk_storage_delete_proto;
1443 #endif
1444 #ifdef CONFIG_INET
1445 case BPF_FUNC_tcp_sock:
1446 return &bpf_tcp_sock_proto;
1447 #endif
1448 default:
1449 return cgroup_base_func_proto(func_id, prog);
1450 }
1451 }
1452
cg_sockopt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1453 static bool cg_sockopt_is_valid_access(int off, int size,
1454 enum bpf_access_type type,
1455 const struct bpf_prog *prog,
1456 struct bpf_insn_access_aux *info)
1457 {
1458 const int size_default = sizeof(__u32);
1459
1460 if (off < 0 || off >= sizeof(struct bpf_sockopt))
1461 return false;
1462
1463 if (off % size != 0)
1464 return false;
1465
1466 if (type == BPF_WRITE) {
1467 switch (off) {
1468 case offsetof(struct bpf_sockopt, retval):
1469 if (size != size_default)
1470 return false;
1471 return prog->expected_attach_type ==
1472 BPF_CGROUP_GETSOCKOPT;
1473 case offsetof(struct bpf_sockopt, optname):
1474 /* fallthrough */
1475 case offsetof(struct bpf_sockopt, level):
1476 if (size != size_default)
1477 return false;
1478 return prog->expected_attach_type ==
1479 BPF_CGROUP_SETSOCKOPT;
1480 case offsetof(struct bpf_sockopt, optlen):
1481 return size == size_default;
1482 default:
1483 return false;
1484 }
1485 }
1486
1487 switch (off) {
1488 case offsetof(struct bpf_sockopt, sk):
1489 if (size != sizeof(__u64))
1490 return false;
1491 info->reg_type = PTR_TO_SOCKET;
1492 break;
1493 case offsetof(struct bpf_sockopt, optval):
1494 if (size != sizeof(__u64))
1495 return false;
1496 info->reg_type = PTR_TO_PACKET;
1497 break;
1498 case offsetof(struct bpf_sockopt, optval_end):
1499 if (size != sizeof(__u64))
1500 return false;
1501 info->reg_type = PTR_TO_PACKET_END;
1502 break;
1503 case offsetof(struct bpf_sockopt, retval):
1504 if (size != size_default)
1505 return false;
1506 return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT;
1507 default:
1508 if (size != size_default)
1509 return false;
1510 break;
1511 }
1512 return true;
1513 }
1514
1515 #define CG_SOCKOPT_ACCESS_FIELD(T, F) \
1516 T(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F), \
1517 si->dst_reg, si->src_reg, \
1518 offsetof(struct bpf_sockopt_kern, F))
1519
cg_sockopt_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)1520 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type,
1521 const struct bpf_insn *si,
1522 struct bpf_insn *insn_buf,
1523 struct bpf_prog *prog,
1524 u32 *target_size)
1525 {
1526 struct bpf_insn *insn = insn_buf;
1527
1528 switch (si->off) {
1529 case offsetof(struct bpf_sockopt, sk):
1530 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, sk);
1531 break;
1532 case offsetof(struct bpf_sockopt, level):
1533 if (type == BPF_WRITE)
1534 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, level);
1535 else
1536 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, level);
1537 break;
1538 case offsetof(struct bpf_sockopt, optname):
1539 if (type == BPF_WRITE)
1540 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optname);
1541 else
1542 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optname);
1543 break;
1544 case offsetof(struct bpf_sockopt, optlen):
1545 if (type == BPF_WRITE)
1546 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optlen);
1547 else
1548 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optlen);
1549 break;
1550 case offsetof(struct bpf_sockopt, retval):
1551 if (type == BPF_WRITE)
1552 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, retval);
1553 else
1554 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, retval);
1555 break;
1556 case offsetof(struct bpf_sockopt, optval):
1557 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval);
1558 break;
1559 case offsetof(struct bpf_sockopt, optval_end):
1560 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval_end);
1561 break;
1562 }
1563
1564 return insn - insn_buf;
1565 }
1566
cg_sockopt_get_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)1567 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf,
1568 bool direct_write,
1569 const struct bpf_prog *prog)
1570 {
1571 /* Nothing to do for sockopt argument. The data is kzalloc'ated.
1572 */
1573 return 0;
1574 }
1575
1576 const struct bpf_verifier_ops cg_sockopt_verifier_ops = {
1577 .get_func_proto = cg_sockopt_func_proto,
1578 .is_valid_access = cg_sockopt_is_valid_access,
1579 .convert_ctx_access = cg_sockopt_convert_ctx_access,
1580 .gen_prologue = cg_sockopt_get_prologue,
1581 };
1582
1583 const struct bpf_prog_ops cg_sockopt_prog_ops = {
1584 };
1585