1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Functions to manage eBPF programs attached to cgroups 4 * 5 * Copyright (c) 2016 Daniel Mack 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/atomic.h> 10 #include <linux/cgroup.h> 11 #include <linux/filter.h> 12 #include <linux/slab.h> 13 #include <linux/sysctl.h> 14 #include <linux/string.h> 15 #include <linux/bpf.h> 16 #include <linux/bpf-cgroup.h> 17 #include <net/sock.h> 18 #include <net/bpf_sk_storage.h> 19 20 #include "../cgroup/cgroup-internal.h" 21 22 DEFINE_STATIC_KEY_FALSE(cgroup_bpf_enabled_key); 23 EXPORT_SYMBOL(cgroup_bpf_enabled_key); 24 cgroup_bpf_offline(struct cgroup * cgrp)25 void cgroup_bpf_offline(struct cgroup *cgrp) 26 { 27 cgroup_get(cgrp); 28 percpu_ref_kill(&cgrp->bpf.refcnt); 29 } 30 31 /** 32 * cgroup_bpf_release() - put references of all bpf programs and 33 * release all cgroup bpf data 34 * @work: work structure embedded into the cgroup to modify 35 */ cgroup_bpf_release(struct work_struct * work)36 static void cgroup_bpf_release(struct work_struct *work) 37 { 38 struct cgroup *p, *cgrp = container_of(work, struct cgroup, 39 bpf.release_work); 40 enum bpf_cgroup_storage_type stype; 41 struct bpf_prog_array *old_array; 42 unsigned int type; 43 44 mutex_lock(&cgroup_mutex); 45 46 for (type = 0; type < ARRAY_SIZE(cgrp->bpf.progs); type++) { 47 struct list_head *progs = &cgrp->bpf.progs[type]; 48 struct bpf_prog_list *pl, *tmp; 49 50 list_for_each_entry_safe(pl, tmp, progs, node) { 51 list_del(&pl->node); 52 bpf_prog_put(pl->prog); 53 for_each_cgroup_storage_type(stype) { 54 bpf_cgroup_storage_unlink(pl->storage[stype]); 55 bpf_cgroup_storage_free(pl->storage[stype]); 56 } 57 kfree(pl); 58 static_branch_dec(&cgroup_bpf_enabled_key); 59 } 60 old_array = rcu_dereference_protected( 61 cgrp->bpf.effective[type], 62 lockdep_is_held(&cgroup_mutex)); 63 bpf_prog_array_free(old_array); 64 } 65 66 mutex_unlock(&cgroup_mutex); 67 68 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 69 cgroup_bpf_put(p); 70 71 percpu_ref_exit(&cgrp->bpf.refcnt); 72 cgroup_put(cgrp); 73 } 74 75 /** 76 * cgroup_bpf_release_fn() - callback used to schedule releasing 77 * of bpf cgroup data 78 * @ref: percpu ref counter structure 79 */ cgroup_bpf_release_fn(struct percpu_ref * ref)80 static void cgroup_bpf_release_fn(struct percpu_ref *ref) 81 { 82 struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt); 83 84 INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release); 85 queue_work(system_wq, &cgrp->bpf.release_work); 86 } 87 88 /* count number of elements in the list. 89 * it's slow but the list cannot be long 90 */ prog_list_length(struct list_head * head)91 static u32 prog_list_length(struct list_head *head) 92 { 93 struct bpf_prog_list *pl; 94 u32 cnt = 0; 95 96 list_for_each_entry(pl, head, node) { 97 if (!pl->prog) 98 continue; 99 cnt++; 100 } 101 return cnt; 102 } 103 104 /* if parent has non-overridable prog attached, 105 * disallow attaching new programs to the descendent cgroup. 106 * if parent has overridable or multi-prog, allow attaching 107 */ hierarchy_allows_attach(struct cgroup * cgrp,enum bpf_attach_type type,u32 new_flags)108 static bool hierarchy_allows_attach(struct cgroup *cgrp, 109 enum bpf_attach_type type, 110 u32 new_flags) 111 { 112 struct cgroup *p; 113 114 p = cgroup_parent(cgrp); 115 if (!p) 116 return true; 117 do { 118 u32 flags = p->bpf.flags[type]; 119 u32 cnt; 120 121 if (flags & BPF_F_ALLOW_MULTI) 122 return true; 123 cnt = prog_list_length(&p->bpf.progs[type]); 124 WARN_ON_ONCE(cnt > 1); 125 if (cnt == 1) 126 return !!(flags & BPF_F_ALLOW_OVERRIDE); 127 p = cgroup_parent(p); 128 } while (p); 129 return true; 130 } 131 132 /* compute a chain of effective programs for a given cgroup: 133 * start from the list of programs in this cgroup and add 134 * all parent programs. 135 * Note that parent's F_ALLOW_OVERRIDE-type program is yielding 136 * to programs in this cgroup 137 */ compute_effective_progs(struct cgroup * cgrp,enum bpf_attach_type type,struct bpf_prog_array ** array)138 static int compute_effective_progs(struct cgroup *cgrp, 139 enum bpf_attach_type type, 140 struct bpf_prog_array **array) 141 { 142 enum bpf_cgroup_storage_type stype; 143 struct bpf_prog_array *progs; 144 struct bpf_prog_list *pl; 145 struct cgroup *p = cgrp; 146 int cnt = 0; 147 148 /* count number of effective programs by walking parents */ 149 do { 150 if (cnt == 0 || (p->bpf.flags[type] & BPF_F_ALLOW_MULTI)) 151 cnt += prog_list_length(&p->bpf.progs[type]); 152 p = cgroup_parent(p); 153 } while (p); 154 155 progs = bpf_prog_array_alloc(cnt, GFP_KERNEL); 156 if (!progs) 157 return -ENOMEM; 158 159 /* populate the array with effective progs */ 160 cnt = 0; 161 p = cgrp; 162 do { 163 if (cnt > 0 && !(p->bpf.flags[type] & BPF_F_ALLOW_MULTI)) 164 continue; 165 166 list_for_each_entry(pl, &p->bpf.progs[type], node) { 167 if (!pl->prog) 168 continue; 169 170 progs->items[cnt].prog = pl->prog; 171 for_each_cgroup_storage_type(stype) 172 progs->items[cnt].cgroup_storage[stype] = 173 pl->storage[stype]; 174 cnt++; 175 } 176 } while ((p = cgroup_parent(p))); 177 178 *array = progs; 179 return 0; 180 } 181 activate_effective_progs(struct cgroup * cgrp,enum bpf_attach_type type,struct bpf_prog_array * old_array)182 static void activate_effective_progs(struct cgroup *cgrp, 183 enum bpf_attach_type type, 184 struct bpf_prog_array *old_array) 185 { 186 rcu_swap_protected(cgrp->bpf.effective[type], old_array, 187 lockdep_is_held(&cgroup_mutex)); 188 /* free prog array after grace period, since __cgroup_bpf_run_*() 189 * might be still walking the array 190 */ 191 bpf_prog_array_free(old_array); 192 } 193 194 /** 195 * cgroup_bpf_inherit() - inherit effective programs from parent 196 * @cgrp: the cgroup to modify 197 */ cgroup_bpf_inherit(struct cgroup * cgrp)198 int cgroup_bpf_inherit(struct cgroup *cgrp) 199 { 200 /* has to use marco instead of const int, since compiler thinks 201 * that array below is variable length 202 */ 203 #define NR ARRAY_SIZE(cgrp->bpf.effective) 204 struct bpf_prog_array *arrays[NR] = {}; 205 struct cgroup *p; 206 int ret, i; 207 208 ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0, 209 GFP_KERNEL); 210 if (ret) 211 return ret; 212 213 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 214 cgroup_bpf_get(p); 215 216 for (i = 0; i < NR; i++) 217 INIT_LIST_HEAD(&cgrp->bpf.progs[i]); 218 219 for (i = 0; i < NR; i++) 220 if (compute_effective_progs(cgrp, i, &arrays[i])) 221 goto cleanup; 222 223 for (i = 0; i < NR; i++) 224 activate_effective_progs(cgrp, i, arrays[i]); 225 226 return 0; 227 cleanup: 228 for (i = 0; i < NR; i++) 229 bpf_prog_array_free(arrays[i]); 230 231 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p)) 232 cgroup_bpf_put(p); 233 234 percpu_ref_exit(&cgrp->bpf.refcnt); 235 236 return -ENOMEM; 237 } 238 update_effective_progs(struct cgroup * cgrp,enum bpf_attach_type type)239 static int update_effective_progs(struct cgroup *cgrp, 240 enum bpf_attach_type type) 241 { 242 struct cgroup_subsys_state *css; 243 int err; 244 245 /* allocate and recompute effective prog arrays */ 246 css_for_each_descendant_pre(css, &cgrp->self) { 247 struct cgroup *desc = container_of(css, struct cgroup, self); 248 249 if (percpu_ref_is_zero(&desc->bpf.refcnt)) 250 continue; 251 252 err = compute_effective_progs(desc, type, &desc->bpf.inactive); 253 if (err) 254 goto cleanup; 255 } 256 257 /* all allocations were successful. Activate all prog arrays */ 258 css_for_each_descendant_pre(css, &cgrp->self) { 259 struct cgroup *desc = container_of(css, struct cgroup, self); 260 261 if (percpu_ref_is_zero(&desc->bpf.refcnt)) { 262 if (unlikely(desc->bpf.inactive)) { 263 bpf_prog_array_free(desc->bpf.inactive); 264 desc->bpf.inactive = NULL; 265 } 266 continue; 267 } 268 269 activate_effective_progs(desc, type, desc->bpf.inactive); 270 desc->bpf.inactive = NULL; 271 } 272 273 return 0; 274 275 cleanup: 276 /* oom while computing effective. Free all computed effective arrays 277 * since they were not activated 278 */ 279 css_for_each_descendant_pre(css, &cgrp->self) { 280 struct cgroup *desc = container_of(css, struct cgroup, self); 281 282 bpf_prog_array_free(desc->bpf.inactive); 283 desc->bpf.inactive = NULL; 284 } 285 286 return err; 287 } 288 289 #define BPF_CGROUP_MAX_PROGS 64 290 291 /** 292 * __cgroup_bpf_attach() - Attach the program to a cgroup, and 293 * propagate the change to descendants 294 * @cgrp: The cgroup which descendants to traverse 295 * @prog: A program to attach 296 * @type: Type of attach operation 297 * @flags: Option flags 298 * 299 * Must be called with cgroup_mutex held. 300 */ __cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type,u32 flags)301 int __cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog, 302 enum bpf_attach_type type, u32 flags) 303 { 304 struct list_head *progs = &cgrp->bpf.progs[type]; 305 struct bpf_prog *old_prog = NULL; 306 struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {}; 307 struct bpf_cgroup_storage *old_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {}; 308 enum bpf_cgroup_storage_type stype; 309 struct bpf_prog_list *pl; 310 bool pl_was_allocated; 311 int err; 312 313 if ((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) 314 /* invalid combination */ 315 return -EINVAL; 316 317 if (!hierarchy_allows_attach(cgrp, type, flags)) 318 return -EPERM; 319 320 if (!list_empty(progs) && cgrp->bpf.flags[type] != flags) 321 /* Disallow attaching non-overridable on top 322 * of existing overridable in this cgroup. 323 * Disallow attaching multi-prog if overridable or none 324 */ 325 return -EPERM; 326 327 if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS) 328 return -E2BIG; 329 330 for_each_cgroup_storage_type(stype) { 331 storage[stype] = bpf_cgroup_storage_alloc(prog, stype); 332 if (IS_ERR(storage[stype])) { 333 storage[stype] = NULL; 334 for_each_cgroup_storage_type(stype) 335 bpf_cgroup_storage_free(storage[stype]); 336 return -ENOMEM; 337 } 338 } 339 340 if (flags & BPF_F_ALLOW_MULTI) { 341 list_for_each_entry(pl, progs, node) { 342 if (pl->prog == prog) { 343 /* disallow attaching the same prog twice */ 344 for_each_cgroup_storage_type(stype) 345 bpf_cgroup_storage_free(storage[stype]); 346 return -EINVAL; 347 } 348 } 349 350 pl = kmalloc(sizeof(*pl), GFP_KERNEL); 351 if (!pl) { 352 for_each_cgroup_storage_type(stype) 353 bpf_cgroup_storage_free(storage[stype]); 354 return -ENOMEM; 355 } 356 357 pl_was_allocated = true; 358 pl->prog = prog; 359 for_each_cgroup_storage_type(stype) 360 pl->storage[stype] = storage[stype]; 361 list_add_tail(&pl->node, progs); 362 } else { 363 if (list_empty(progs)) { 364 pl = kmalloc(sizeof(*pl), GFP_KERNEL); 365 if (!pl) { 366 for_each_cgroup_storage_type(stype) 367 bpf_cgroup_storage_free(storage[stype]); 368 return -ENOMEM; 369 } 370 pl_was_allocated = true; 371 list_add_tail(&pl->node, progs); 372 } else { 373 pl = list_first_entry(progs, typeof(*pl), node); 374 old_prog = pl->prog; 375 for_each_cgroup_storage_type(stype) { 376 old_storage[stype] = pl->storage[stype]; 377 bpf_cgroup_storage_unlink(old_storage[stype]); 378 } 379 pl_was_allocated = false; 380 } 381 pl->prog = prog; 382 for_each_cgroup_storage_type(stype) 383 pl->storage[stype] = storage[stype]; 384 } 385 386 cgrp->bpf.flags[type] = flags; 387 388 err = update_effective_progs(cgrp, type); 389 if (err) 390 goto cleanup; 391 392 static_branch_inc(&cgroup_bpf_enabled_key); 393 for_each_cgroup_storage_type(stype) { 394 if (!old_storage[stype]) 395 continue; 396 bpf_cgroup_storage_free(old_storage[stype]); 397 } 398 if (old_prog) { 399 bpf_prog_put(old_prog); 400 static_branch_dec(&cgroup_bpf_enabled_key); 401 } 402 for_each_cgroup_storage_type(stype) 403 bpf_cgroup_storage_link(storage[stype], cgrp, type); 404 return 0; 405 406 cleanup: 407 /* and cleanup the prog list */ 408 pl->prog = old_prog; 409 for_each_cgroup_storage_type(stype) { 410 bpf_cgroup_storage_free(pl->storage[stype]); 411 pl->storage[stype] = old_storage[stype]; 412 bpf_cgroup_storage_link(old_storage[stype], cgrp, type); 413 } 414 if (pl_was_allocated) { 415 list_del(&pl->node); 416 kfree(pl); 417 } 418 return err; 419 } 420 421 /** 422 * __cgroup_bpf_detach() - Detach the program from a cgroup, and 423 * propagate the change to descendants 424 * @cgrp: The cgroup which descendants to traverse 425 * @prog: A program to detach or NULL 426 * @type: Type of detach operation 427 * 428 * Must be called with cgroup_mutex held. 429 */ __cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type)430 int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog, 431 enum bpf_attach_type type) 432 { 433 struct list_head *progs = &cgrp->bpf.progs[type]; 434 enum bpf_cgroup_storage_type stype; 435 u32 flags = cgrp->bpf.flags[type]; 436 struct bpf_prog *old_prog = NULL; 437 struct bpf_prog_list *pl; 438 int err; 439 440 if (flags & BPF_F_ALLOW_MULTI) { 441 if (!prog) 442 /* to detach MULTI prog the user has to specify valid FD 443 * of the program to be detached 444 */ 445 return -EINVAL; 446 } else { 447 if (list_empty(progs)) 448 /* report error when trying to detach and nothing is attached */ 449 return -ENOENT; 450 } 451 452 if (flags & BPF_F_ALLOW_MULTI) { 453 /* find the prog and detach it */ 454 list_for_each_entry(pl, progs, node) { 455 if (pl->prog != prog) 456 continue; 457 old_prog = prog; 458 /* mark it deleted, so it's ignored while 459 * recomputing effective 460 */ 461 pl->prog = NULL; 462 break; 463 } 464 if (!old_prog) 465 return -ENOENT; 466 } else { 467 /* to maintain backward compatibility NONE and OVERRIDE cgroups 468 * allow detaching with invalid FD (prog==NULL) 469 */ 470 pl = list_first_entry(progs, typeof(*pl), node); 471 old_prog = pl->prog; 472 pl->prog = NULL; 473 } 474 475 err = update_effective_progs(cgrp, type); 476 if (err) 477 goto cleanup; 478 479 /* now can actually delete it from this cgroup list */ 480 list_del(&pl->node); 481 for_each_cgroup_storage_type(stype) { 482 bpf_cgroup_storage_unlink(pl->storage[stype]); 483 bpf_cgroup_storage_free(pl->storage[stype]); 484 } 485 kfree(pl); 486 if (list_empty(progs)) 487 /* last program was detached, reset flags to zero */ 488 cgrp->bpf.flags[type] = 0; 489 490 bpf_prog_put(old_prog); 491 static_branch_dec(&cgroup_bpf_enabled_key); 492 return 0; 493 494 cleanup: 495 /* and restore back old_prog */ 496 pl->prog = old_prog; 497 return err; 498 } 499 500 /* Must be called with cgroup_mutex held to avoid races. */ __cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)501 int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr, 502 union bpf_attr __user *uattr) 503 { 504 __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids); 505 enum bpf_attach_type type = attr->query.attach_type; 506 struct list_head *progs = &cgrp->bpf.progs[type]; 507 u32 flags = cgrp->bpf.flags[type]; 508 struct bpf_prog_array *effective; 509 int cnt, ret = 0, i; 510 511 effective = rcu_dereference_protected(cgrp->bpf.effective[type], 512 lockdep_is_held(&cgroup_mutex)); 513 514 if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) 515 cnt = bpf_prog_array_length(effective); 516 else 517 cnt = prog_list_length(progs); 518 519 if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags))) 520 return -EFAULT; 521 if (copy_to_user(&uattr->query.prog_cnt, &cnt, sizeof(cnt))) 522 return -EFAULT; 523 if (attr->query.prog_cnt == 0 || !prog_ids || !cnt) 524 /* return early if user requested only program count + flags */ 525 return 0; 526 if (attr->query.prog_cnt < cnt) { 527 cnt = attr->query.prog_cnt; 528 ret = -ENOSPC; 529 } 530 531 if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) { 532 return bpf_prog_array_copy_to_user(effective, prog_ids, cnt); 533 } else { 534 struct bpf_prog_list *pl; 535 u32 id; 536 537 i = 0; 538 list_for_each_entry(pl, progs, node) { 539 id = pl->prog->aux->id; 540 if (copy_to_user(prog_ids + i, &id, sizeof(id))) 541 return -EFAULT; 542 if (++i == cnt) 543 break; 544 } 545 } 546 return ret; 547 } 548 cgroup_bpf_prog_attach(const union bpf_attr * attr,enum bpf_prog_type ptype,struct bpf_prog * prog)549 int cgroup_bpf_prog_attach(const union bpf_attr *attr, 550 enum bpf_prog_type ptype, struct bpf_prog *prog) 551 { 552 struct cgroup *cgrp; 553 int ret; 554 555 cgrp = cgroup_get_from_fd(attr->target_fd); 556 if (IS_ERR(cgrp)) 557 return PTR_ERR(cgrp); 558 559 ret = cgroup_bpf_attach(cgrp, prog, attr->attach_type, 560 attr->attach_flags); 561 cgroup_put(cgrp); 562 return ret; 563 } 564 cgroup_bpf_prog_detach(const union bpf_attr * attr,enum bpf_prog_type ptype)565 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype) 566 { 567 struct bpf_prog *prog; 568 struct cgroup *cgrp; 569 int ret; 570 571 cgrp = cgroup_get_from_fd(attr->target_fd); 572 if (IS_ERR(cgrp)) 573 return PTR_ERR(cgrp); 574 575 prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype); 576 if (IS_ERR(prog)) 577 prog = NULL; 578 579 ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type, 0); 580 if (prog) 581 bpf_prog_put(prog); 582 583 cgroup_put(cgrp); 584 return ret; 585 } 586 cgroup_bpf_prog_query(const union bpf_attr * attr,union bpf_attr __user * uattr)587 int cgroup_bpf_prog_query(const union bpf_attr *attr, 588 union bpf_attr __user *uattr) 589 { 590 struct cgroup *cgrp; 591 int ret; 592 593 cgrp = cgroup_get_from_fd(attr->query.target_fd); 594 if (IS_ERR(cgrp)) 595 return PTR_ERR(cgrp); 596 597 ret = cgroup_bpf_query(cgrp, attr, uattr); 598 599 cgroup_put(cgrp); 600 return ret; 601 } 602 603 /** 604 * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering 605 * @sk: The socket sending or receiving traffic 606 * @skb: The skb that is being sent or received 607 * @type: The type of program to be exectuted 608 * 609 * If no socket is passed, or the socket is not of type INET or INET6, 610 * this function does nothing and returns 0. 611 * 612 * The program type passed in via @type must be suitable for network 613 * filtering. No further check is performed to assert that. 614 * 615 * For egress packets, this function can return: 616 * NET_XMIT_SUCCESS (0) - continue with packet output 617 * NET_XMIT_DROP (1) - drop packet and notify TCP to call cwr 618 * NET_XMIT_CN (2) - continue with packet output and notify TCP 619 * to call cwr 620 * -EPERM - drop packet 621 * 622 * For ingress packets, this function will return -EPERM if any 623 * attached program was found and if it returned != 1 during execution. 624 * Otherwise 0 is returned. 625 */ __cgroup_bpf_run_filter_skb(struct sock * sk,struct sk_buff * skb,enum bpf_attach_type type)626 int __cgroup_bpf_run_filter_skb(struct sock *sk, 627 struct sk_buff *skb, 628 enum bpf_attach_type type) 629 { 630 unsigned int offset = skb->data - skb_network_header(skb); 631 struct sock *save_sk; 632 void *saved_data_end; 633 struct cgroup *cgrp; 634 int ret; 635 636 if (!sk || !sk_fullsock(sk)) 637 return 0; 638 639 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6) 640 return 0; 641 642 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 643 save_sk = skb->sk; 644 skb->sk = sk; 645 __skb_push(skb, offset); 646 647 /* compute pointers for the bpf prog */ 648 bpf_compute_and_save_data_end(skb, &saved_data_end); 649 650 if (type == BPF_CGROUP_INET_EGRESS) { 651 ret = BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY( 652 cgrp->bpf.effective[type], skb, __bpf_prog_run_save_cb); 653 } else { 654 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], skb, 655 __bpf_prog_run_save_cb); 656 ret = (ret == 1 ? 0 : -EPERM); 657 } 658 bpf_restore_data_end(skb, saved_data_end); 659 __skb_pull(skb, offset); 660 skb->sk = save_sk; 661 662 return ret; 663 } 664 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb); 665 666 /** 667 * __cgroup_bpf_run_filter_sk() - Run a program on a sock 668 * @sk: sock structure to manipulate 669 * @type: The type of program to be exectuted 670 * 671 * socket is passed is expected to be of type INET or INET6. 672 * 673 * The program type passed in via @type must be suitable for sock 674 * filtering. No further check is performed to assert that. 675 * 676 * This function will return %-EPERM if any if an attached program was found 677 * and if it returned != 1 during execution. In all other cases, 0 is returned. 678 */ __cgroup_bpf_run_filter_sk(struct sock * sk,enum bpf_attach_type type)679 int __cgroup_bpf_run_filter_sk(struct sock *sk, 680 enum bpf_attach_type type) 681 { 682 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 683 int ret; 684 685 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sk, BPF_PROG_RUN); 686 return ret == 1 ? 0 : -EPERM; 687 } 688 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk); 689 690 /** 691 * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and 692 * provided by user sockaddr 693 * @sk: sock struct that will use sockaddr 694 * @uaddr: sockaddr struct provided by user 695 * @type: The type of program to be exectuted 696 * @t_ctx: Pointer to attach type specific context 697 * 698 * socket is expected to be of type INET or INET6. 699 * 700 * This function will return %-EPERM if an attached program is found and 701 * returned value != 1 during execution. In all other cases, 0 is returned. 702 */ __cgroup_bpf_run_filter_sock_addr(struct sock * sk,struct sockaddr * uaddr,enum bpf_attach_type type,void * t_ctx)703 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk, 704 struct sockaddr *uaddr, 705 enum bpf_attach_type type, 706 void *t_ctx) 707 { 708 struct bpf_sock_addr_kern ctx = { 709 .sk = sk, 710 .uaddr = uaddr, 711 .t_ctx = t_ctx, 712 }; 713 struct sockaddr_storage unspec; 714 struct cgroup *cgrp; 715 int ret; 716 717 /* Check socket family since not all sockets represent network 718 * endpoint (e.g. AF_UNIX). 719 */ 720 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6) 721 return 0; 722 723 if (!ctx.uaddr) { 724 memset(&unspec, 0, sizeof(unspec)); 725 ctx.uaddr = (struct sockaddr *)&unspec; 726 } 727 728 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 729 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN); 730 731 return ret == 1 ? 0 : -EPERM; 732 } 733 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr); 734 735 /** 736 * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock 737 * @sk: socket to get cgroup from 738 * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains 739 * sk with connection information (IP addresses, etc.) May not contain 740 * cgroup info if it is a req sock. 741 * @type: The type of program to be exectuted 742 * 743 * socket passed is expected to be of type INET or INET6. 744 * 745 * The program type passed in via @type must be suitable for sock_ops 746 * filtering. No further check is performed to assert that. 747 * 748 * This function will return %-EPERM if any if an attached program was found 749 * and if it returned != 1 during execution. In all other cases, 0 is returned. 750 */ __cgroup_bpf_run_filter_sock_ops(struct sock * sk,struct bpf_sock_ops_kern * sock_ops,enum bpf_attach_type type)751 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk, 752 struct bpf_sock_ops_kern *sock_ops, 753 enum bpf_attach_type type) 754 { 755 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 756 int ret; 757 758 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sock_ops, 759 BPF_PROG_RUN); 760 return ret == 1 ? 0 : -EPERM; 761 } 762 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops); 763 __cgroup_bpf_check_dev_permission(short dev_type,u32 major,u32 minor,short access,enum bpf_attach_type type)764 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor, 765 short access, enum bpf_attach_type type) 766 { 767 struct cgroup *cgrp; 768 struct bpf_cgroup_dev_ctx ctx = { 769 .access_type = (access << 16) | dev_type, 770 .major = major, 771 .minor = minor, 772 }; 773 int allow = 1; 774 775 rcu_read_lock(); 776 cgrp = task_dfl_cgroup(current); 777 allow = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, 778 BPF_PROG_RUN); 779 rcu_read_unlock(); 780 781 return !allow; 782 } 783 EXPORT_SYMBOL(__cgroup_bpf_check_dev_permission); 784 785 static const struct bpf_func_proto * cgroup_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)786 cgroup_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 787 { 788 switch (func_id) { 789 case BPF_FUNC_map_lookup_elem: 790 return &bpf_map_lookup_elem_proto; 791 case BPF_FUNC_map_update_elem: 792 return &bpf_map_update_elem_proto; 793 case BPF_FUNC_map_delete_elem: 794 return &bpf_map_delete_elem_proto; 795 case BPF_FUNC_map_push_elem: 796 return &bpf_map_push_elem_proto; 797 case BPF_FUNC_map_pop_elem: 798 return &bpf_map_pop_elem_proto; 799 case BPF_FUNC_map_peek_elem: 800 return &bpf_map_peek_elem_proto; 801 case BPF_FUNC_get_current_uid_gid: 802 return &bpf_get_current_uid_gid_proto; 803 case BPF_FUNC_get_local_storage: 804 return &bpf_get_local_storage_proto; 805 case BPF_FUNC_get_current_cgroup_id: 806 return &bpf_get_current_cgroup_id_proto; 807 case BPF_FUNC_trace_printk: 808 if (capable(CAP_SYS_ADMIN)) 809 return bpf_get_trace_printk_proto(); 810 /* fall through */ 811 default: 812 return NULL; 813 } 814 } 815 816 static const struct bpf_func_proto * cgroup_dev_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)817 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 818 { 819 return cgroup_base_func_proto(func_id, prog); 820 } 821 cgroup_dev_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)822 static bool cgroup_dev_is_valid_access(int off, int size, 823 enum bpf_access_type type, 824 const struct bpf_prog *prog, 825 struct bpf_insn_access_aux *info) 826 { 827 const int size_default = sizeof(__u32); 828 829 if (type == BPF_WRITE) 830 return false; 831 832 if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx)) 833 return false; 834 /* The verifier guarantees that size > 0. */ 835 if (off % size != 0) 836 return false; 837 838 switch (off) { 839 case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type): 840 bpf_ctx_record_field_size(info, size_default); 841 if (!bpf_ctx_narrow_access_ok(off, size, size_default)) 842 return false; 843 break; 844 default: 845 if (size != size_default) 846 return false; 847 } 848 849 return true; 850 } 851 852 const struct bpf_prog_ops cg_dev_prog_ops = { 853 }; 854 855 const struct bpf_verifier_ops cg_dev_verifier_ops = { 856 .get_func_proto = cgroup_dev_func_proto, 857 .is_valid_access = cgroup_dev_is_valid_access, 858 }; 859 860 /** 861 * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl 862 * 863 * @head: sysctl table header 864 * @table: sysctl table 865 * @write: sysctl is being read (= 0) or written (= 1) 866 * @buf: pointer to buffer passed by user space 867 * @pcount: value-result argument: value is size of buffer pointed to by @buf, 868 * result is size of @new_buf if program set new value, initial value 869 * otherwise 870 * @ppos: value-result argument: value is position at which read from or write 871 * to sysctl is happening, result is new position if program overrode it, 872 * initial value otherwise 873 * @new_buf: pointer to pointer to new buffer that will be allocated if program 874 * overrides new value provided by user space on sysctl write 875 * NOTE: it's caller responsibility to free *new_buf if it was set 876 * @type: type of program to be executed 877 * 878 * Program is run when sysctl is being accessed, either read or written, and 879 * can allow or deny such access. 880 * 881 * This function will return %-EPERM if an attached program is found and 882 * returned value != 1 during execution. In all other cases 0 is returned. 883 */ __cgroup_bpf_run_filter_sysctl(struct ctl_table_header * head,struct ctl_table * table,int write,void __user * buf,size_t * pcount,loff_t * ppos,void ** new_buf,enum bpf_attach_type type)884 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head, 885 struct ctl_table *table, int write, 886 void __user *buf, size_t *pcount, 887 loff_t *ppos, void **new_buf, 888 enum bpf_attach_type type) 889 { 890 struct bpf_sysctl_kern ctx = { 891 .head = head, 892 .table = table, 893 .write = write, 894 .ppos = ppos, 895 .cur_val = NULL, 896 .cur_len = PAGE_SIZE, 897 .new_val = NULL, 898 .new_len = 0, 899 .new_updated = 0, 900 }; 901 struct cgroup *cgrp; 902 int ret; 903 904 ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL); 905 if (ctx.cur_val) { 906 mm_segment_t old_fs; 907 loff_t pos = 0; 908 909 old_fs = get_fs(); 910 set_fs(KERNEL_DS); 911 if (table->proc_handler(table, 0, (void __user *)ctx.cur_val, 912 &ctx.cur_len, &pos)) { 913 /* Let BPF program decide how to proceed. */ 914 ctx.cur_len = 0; 915 } 916 set_fs(old_fs); 917 } else { 918 /* Let BPF program decide how to proceed. */ 919 ctx.cur_len = 0; 920 } 921 922 if (write && buf && *pcount) { 923 /* BPF program should be able to override new value with a 924 * buffer bigger than provided by user. 925 */ 926 ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL); 927 ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount); 928 if (!ctx.new_val || 929 copy_from_user(ctx.new_val, buf, ctx.new_len)) 930 /* Let BPF program decide how to proceed. */ 931 ctx.new_len = 0; 932 } 933 934 rcu_read_lock(); 935 cgrp = task_dfl_cgroup(current); 936 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN); 937 rcu_read_unlock(); 938 939 kfree(ctx.cur_val); 940 941 if (ret == 1 && ctx.new_updated) { 942 *new_buf = ctx.new_val; 943 *pcount = ctx.new_len; 944 } else { 945 kfree(ctx.new_val); 946 } 947 948 return ret == 1 ? 0 : -EPERM; 949 } 950 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sysctl); 951 952 #ifdef CONFIG_NET __cgroup_bpf_prog_array_is_empty(struct cgroup * cgrp,enum bpf_attach_type attach_type)953 static bool __cgroup_bpf_prog_array_is_empty(struct cgroup *cgrp, 954 enum bpf_attach_type attach_type) 955 { 956 struct bpf_prog_array *prog_array; 957 bool empty; 958 959 rcu_read_lock(); 960 prog_array = rcu_dereference(cgrp->bpf.effective[attach_type]); 961 empty = bpf_prog_array_is_empty(prog_array); 962 rcu_read_unlock(); 963 964 return empty; 965 } 966 sockopt_alloc_buf(struct bpf_sockopt_kern * ctx,int max_optlen)967 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen) 968 { 969 if (unlikely(max_optlen < 0)) 970 return -EINVAL; 971 972 if (unlikely(max_optlen > PAGE_SIZE)) { 973 /* We don't expose optvals that are greater than PAGE_SIZE 974 * to the BPF program. 975 */ 976 max_optlen = PAGE_SIZE; 977 } 978 979 ctx->optval = kzalloc(max_optlen, GFP_USER); 980 if (!ctx->optval) 981 return -ENOMEM; 982 983 ctx->optval_end = ctx->optval + max_optlen; 984 985 return max_optlen; 986 } 987 sockopt_free_buf(struct bpf_sockopt_kern * ctx)988 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx) 989 { 990 kfree(ctx->optval); 991 } 992 __cgroup_bpf_run_filter_setsockopt(struct sock * sk,int * level,int * optname,char __user * optval,int * optlen,char ** kernel_optval)993 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level, 994 int *optname, char __user *optval, 995 int *optlen, char **kernel_optval) 996 { 997 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 998 struct bpf_sockopt_kern ctx = { 999 .sk = sk, 1000 .level = *level, 1001 .optname = *optname, 1002 }; 1003 int ret, max_optlen; 1004 1005 /* Opportunistic check to see whether we have any BPF program 1006 * attached to the hook so we don't waste time allocating 1007 * memory and locking the socket. 1008 */ 1009 if (!cgroup_bpf_enabled || 1010 __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_SETSOCKOPT)) 1011 return 0; 1012 1013 /* Allocate a bit more than the initial user buffer for 1014 * BPF program. The canonical use case is overriding 1015 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic). 1016 */ 1017 max_optlen = max_t(int, 16, *optlen); 1018 1019 max_optlen = sockopt_alloc_buf(&ctx, max_optlen); 1020 if (max_optlen < 0) 1021 return max_optlen; 1022 1023 ctx.optlen = *optlen; 1024 1025 if (copy_from_user(ctx.optval, optval, min(*optlen, max_optlen)) != 0) { 1026 ret = -EFAULT; 1027 goto out; 1028 } 1029 1030 lock_sock(sk); 1031 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_SETSOCKOPT], 1032 &ctx, BPF_PROG_RUN); 1033 release_sock(sk); 1034 1035 if (!ret) { 1036 ret = -EPERM; 1037 goto out; 1038 } 1039 1040 if (ctx.optlen == -1) { 1041 /* optlen set to -1, bypass kernel */ 1042 ret = 1; 1043 } else if (ctx.optlen > max_optlen || ctx.optlen < -1) { 1044 /* optlen is out of bounds */ 1045 ret = -EFAULT; 1046 } else { 1047 /* optlen within bounds, run kernel handler */ 1048 ret = 0; 1049 1050 /* export any potential modifications */ 1051 *level = ctx.level; 1052 *optname = ctx.optname; 1053 1054 /* optlen == 0 from BPF indicates that we should 1055 * use original userspace data. 1056 */ 1057 if (ctx.optlen != 0) { 1058 *optlen = ctx.optlen; 1059 *kernel_optval = ctx.optval; 1060 /* export and don't free sockopt buf */ 1061 return 0; 1062 } 1063 } 1064 1065 out: 1066 sockopt_free_buf(&ctx); 1067 return ret; 1068 } 1069 EXPORT_SYMBOL(__cgroup_bpf_run_filter_setsockopt); 1070 __cgroup_bpf_run_filter_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen,int max_optlen,int retval)1071 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level, 1072 int optname, char __user *optval, 1073 int __user *optlen, int max_optlen, 1074 int retval) 1075 { 1076 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); 1077 struct bpf_sockopt_kern ctx = { 1078 .sk = sk, 1079 .level = level, 1080 .optname = optname, 1081 .retval = retval, 1082 }; 1083 int ret; 1084 1085 /* Opportunistic check to see whether we have any BPF program 1086 * attached to the hook so we don't waste time allocating 1087 * memory and locking the socket. 1088 */ 1089 if (!cgroup_bpf_enabled || 1090 __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_GETSOCKOPT)) 1091 return retval; 1092 1093 ctx.optlen = max_optlen; 1094 1095 max_optlen = sockopt_alloc_buf(&ctx, max_optlen); 1096 if (max_optlen < 0) 1097 return max_optlen; 1098 1099 if (!retval) { 1100 /* If kernel getsockopt finished successfully, 1101 * copy whatever was returned to the user back 1102 * into our temporary buffer. Set optlen to the 1103 * one that kernel returned as well to let 1104 * BPF programs inspect the value. 1105 */ 1106 1107 if (get_user(ctx.optlen, optlen)) { 1108 ret = -EFAULT; 1109 goto out; 1110 } 1111 1112 if (ctx.optlen < 0) { 1113 ret = -EFAULT; 1114 goto out; 1115 } 1116 1117 if (copy_from_user(ctx.optval, optval, 1118 min(ctx.optlen, max_optlen)) != 0) { 1119 ret = -EFAULT; 1120 goto out; 1121 } 1122 } 1123 1124 lock_sock(sk); 1125 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_GETSOCKOPT], 1126 &ctx, BPF_PROG_RUN); 1127 release_sock(sk); 1128 1129 if (!ret) { 1130 ret = -EPERM; 1131 goto out; 1132 } 1133 1134 if (optval && (ctx.optlen > max_optlen || ctx.optlen < 0)) { 1135 ret = -EFAULT; 1136 goto out; 1137 } 1138 1139 /* BPF programs only allowed to set retval to 0, not some 1140 * arbitrary value. 1141 */ 1142 if (ctx.retval != 0 && ctx.retval != retval) { 1143 ret = -EFAULT; 1144 goto out; 1145 } 1146 1147 if (ctx.optlen != 0) { 1148 if (optval && copy_to_user(optval, ctx.optval, ctx.optlen)) { 1149 ret = -EFAULT; 1150 goto out; 1151 } 1152 if (put_user(ctx.optlen, optlen)) { 1153 ret = -EFAULT; 1154 goto out; 1155 } 1156 } 1157 1158 ret = ctx.retval; 1159 1160 out: 1161 sockopt_free_buf(&ctx); 1162 return ret; 1163 } 1164 EXPORT_SYMBOL(__cgroup_bpf_run_filter_getsockopt); 1165 #endif 1166 sysctl_cpy_dir(const struct ctl_dir * dir,char ** bufp,size_t * lenp)1167 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp, 1168 size_t *lenp) 1169 { 1170 ssize_t tmp_ret = 0, ret; 1171 1172 if (dir->header.parent) { 1173 tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp); 1174 if (tmp_ret < 0) 1175 return tmp_ret; 1176 } 1177 1178 ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp); 1179 if (ret < 0) 1180 return ret; 1181 *bufp += ret; 1182 *lenp -= ret; 1183 ret += tmp_ret; 1184 1185 /* Avoid leading slash. */ 1186 if (!ret) 1187 return ret; 1188 1189 tmp_ret = strscpy(*bufp, "/", *lenp); 1190 if (tmp_ret < 0) 1191 return tmp_ret; 1192 *bufp += tmp_ret; 1193 *lenp -= tmp_ret; 1194 1195 return ret + tmp_ret; 1196 } 1197 BPF_CALL_4(bpf_sysctl_get_name,struct bpf_sysctl_kern *,ctx,char *,buf,size_t,buf_len,u64,flags)1198 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf, 1199 size_t, buf_len, u64, flags) 1200 { 1201 ssize_t tmp_ret = 0, ret; 1202 1203 if (!buf) 1204 return -EINVAL; 1205 1206 if (!(flags & BPF_F_SYSCTL_BASE_NAME)) { 1207 if (!ctx->head) 1208 return -EINVAL; 1209 tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len); 1210 if (tmp_ret < 0) 1211 return tmp_ret; 1212 } 1213 1214 ret = strscpy(buf, ctx->table->procname, buf_len); 1215 1216 return ret < 0 ? ret : tmp_ret + ret; 1217 } 1218 1219 static const struct bpf_func_proto bpf_sysctl_get_name_proto = { 1220 .func = bpf_sysctl_get_name, 1221 .gpl_only = false, 1222 .ret_type = RET_INTEGER, 1223 .arg1_type = ARG_PTR_TO_CTX, 1224 .arg2_type = ARG_PTR_TO_MEM, 1225 .arg3_type = ARG_CONST_SIZE, 1226 .arg4_type = ARG_ANYTHING, 1227 }; 1228 copy_sysctl_value(char * dst,size_t dst_len,char * src,size_t src_len)1229 static int copy_sysctl_value(char *dst, size_t dst_len, char *src, 1230 size_t src_len) 1231 { 1232 if (!dst) 1233 return -EINVAL; 1234 1235 if (!dst_len) 1236 return -E2BIG; 1237 1238 if (!src || !src_len) { 1239 memset(dst, 0, dst_len); 1240 return -EINVAL; 1241 } 1242 1243 memcpy(dst, src, min(dst_len, src_len)); 1244 1245 if (dst_len > src_len) { 1246 memset(dst + src_len, '\0', dst_len - src_len); 1247 return src_len; 1248 } 1249 1250 dst[dst_len - 1] = '\0'; 1251 1252 return -E2BIG; 1253 } 1254 BPF_CALL_3(bpf_sysctl_get_current_value,struct bpf_sysctl_kern *,ctx,char *,buf,size_t,buf_len)1255 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx, 1256 char *, buf, size_t, buf_len) 1257 { 1258 return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len); 1259 } 1260 1261 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = { 1262 .func = bpf_sysctl_get_current_value, 1263 .gpl_only = false, 1264 .ret_type = RET_INTEGER, 1265 .arg1_type = ARG_PTR_TO_CTX, 1266 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1267 .arg3_type = ARG_CONST_SIZE, 1268 }; 1269 BPF_CALL_3(bpf_sysctl_get_new_value,struct bpf_sysctl_kern *,ctx,char *,buf,size_t,buf_len)1270 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf, 1271 size_t, buf_len) 1272 { 1273 if (!ctx->write) { 1274 if (buf && buf_len) 1275 memset(buf, '\0', buf_len); 1276 return -EINVAL; 1277 } 1278 return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len); 1279 } 1280 1281 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = { 1282 .func = bpf_sysctl_get_new_value, 1283 .gpl_only = false, 1284 .ret_type = RET_INTEGER, 1285 .arg1_type = ARG_PTR_TO_CTX, 1286 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 1287 .arg3_type = ARG_CONST_SIZE, 1288 }; 1289 BPF_CALL_3(bpf_sysctl_set_new_value,struct bpf_sysctl_kern *,ctx,const char *,buf,size_t,buf_len)1290 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx, 1291 const char *, buf, size_t, buf_len) 1292 { 1293 if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len) 1294 return -EINVAL; 1295 1296 if (buf_len > PAGE_SIZE - 1) 1297 return -E2BIG; 1298 1299 memcpy(ctx->new_val, buf, buf_len); 1300 ctx->new_len = buf_len; 1301 ctx->new_updated = 1; 1302 1303 return 0; 1304 } 1305 1306 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = { 1307 .func = bpf_sysctl_set_new_value, 1308 .gpl_only = false, 1309 .ret_type = RET_INTEGER, 1310 .arg1_type = ARG_PTR_TO_CTX, 1311 .arg2_type = ARG_PTR_TO_MEM, 1312 .arg3_type = ARG_CONST_SIZE, 1313 }; 1314 1315 static const struct bpf_func_proto * sysctl_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1316 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1317 { 1318 switch (func_id) { 1319 case BPF_FUNC_strtol: 1320 return &bpf_strtol_proto; 1321 case BPF_FUNC_strtoul: 1322 return &bpf_strtoul_proto; 1323 case BPF_FUNC_sysctl_get_name: 1324 return &bpf_sysctl_get_name_proto; 1325 case BPF_FUNC_sysctl_get_current_value: 1326 return &bpf_sysctl_get_current_value_proto; 1327 case BPF_FUNC_sysctl_get_new_value: 1328 return &bpf_sysctl_get_new_value_proto; 1329 case BPF_FUNC_sysctl_set_new_value: 1330 return &bpf_sysctl_set_new_value_proto; 1331 default: 1332 return cgroup_base_func_proto(func_id, prog); 1333 } 1334 } 1335 sysctl_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1336 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type, 1337 const struct bpf_prog *prog, 1338 struct bpf_insn_access_aux *info) 1339 { 1340 const int size_default = sizeof(__u32); 1341 1342 if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size) 1343 return false; 1344 1345 switch (off) { 1346 case bpf_ctx_range(struct bpf_sysctl, write): 1347 if (type != BPF_READ) 1348 return false; 1349 bpf_ctx_record_field_size(info, size_default); 1350 return bpf_ctx_narrow_access_ok(off, size, size_default); 1351 case bpf_ctx_range(struct bpf_sysctl, file_pos): 1352 if (type == BPF_READ) { 1353 bpf_ctx_record_field_size(info, size_default); 1354 return bpf_ctx_narrow_access_ok(off, size, size_default); 1355 } else { 1356 return size == size_default; 1357 } 1358 default: 1359 return false; 1360 } 1361 } 1362 sysctl_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)1363 static u32 sysctl_convert_ctx_access(enum bpf_access_type type, 1364 const struct bpf_insn *si, 1365 struct bpf_insn *insn_buf, 1366 struct bpf_prog *prog, u32 *target_size) 1367 { 1368 struct bpf_insn *insn = insn_buf; 1369 u32 read_size; 1370 1371 switch (si->off) { 1372 case offsetof(struct bpf_sysctl, write): 1373 *insn++ = BPF_LDX_MEM( 1374 BPF_SIZE(si->code), si->dst_reg, si->src_reg, 1375 bpf_target_off(struct bpf_sysctl_kern, write, 1376 FIELD_SIZEOF(struct bpf_sysctl_kern, 1377 write), 1378 target_size)); 1379 break; 1380 case offsetof(struct bpf_sysctl, file_pos): 1381 /* ppos is a pointer so it should be accessed via indirect 1382 * loads and stores. Also for stores additional temporary 1383 * register is used since neither src_reg nor dst_reg can be 1384 * overridden. 1385 */ 1386 if (type == BPF_WRITE) { 1387 int treg = BPF_REG_9; 1388 1389 if (si->src_reg == treg || si->dst_reg == treg) 1390 --treg; 1391 if (si->src_reg == treg || si->dst_reg == treg) 1392 --treg; 1393 *insn++ = BPF_STX_MEM( 1394 BPF_DW, si->dst_reg, treg, 1395 offsetof(struct bpf_sysctl_kern, tmp_reg)); 1396 *insn++ = BPF_LDX_MEM( 1397 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), 1398 treg, si->dst_reg, 1399 offsetof(struct bpf_sysctl_kern, ppos)); 1400 *insn++ = BPF_STX_MEM( 1401 BPF_SIZEOF(u32), treg, si->src_reg, 1402 bpf_ctx_narrow_access_offset( 1403 0, sizeof(u32), sizeof(loff_t))); 1404 *insn++ = BPF_LDX_MEM( 1405 BPF_DW, treg, si->dst_reg, 1406 offsetof(struct bpf_sysctl_kern, tmp_reg)); 1407 } else { 1408 *insn++ = BPF_LDX_MEM( 1409 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos), 1410 si->dst_reg, si->src_reg, 1411 offsetof(struct bpf_sysctl_kern, ppos)); 1412 read_size = bpf_size_to_bytes(BPF_SIZE(si->code)); 1413 *insn++ = BPF_LDX_MEM( 1414 BPF_SIZE(si->code), si->dst_reg, si->dst_reg, 1415 bpf_ctx_narrow_access_offset( 1416 0, read_size, sizeof(loff_t))); 1417 } 1418 *target_size = sizeof(u32); 1419 break; 1420 } 1421 1422 return insn - insn_buf; 1423 } 1424 1425 const struct bpf_verifier_ops cg_sysctl_verifier_ops = { 1426 .get_func_proto = sysctl_func_proto, 1427 .is_valid_access = sysctl_is_valid_access, 1428 .convert_ctx_access = sysctl_convert_ctx_access, 1429 }; 1430 1431 const struct bpf_prog_ops cg_sysctl_prog_ops = { 1432 }; 1433 1434 static const struct bpf_func_proto * cg_sockopt_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1435 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 1436 { 1437 switch (func_id) { 1438 #ifdef CONFIG_NET 1439 case BPF_FUNC_sk_storage_get: 1440 return &bpf_sk_storage_get_proto; 1441 case BPF_FUNC_sk_storage_delete: 1442 return &bpf_sk_storage_delete_proto; 1443 #endif 1444 #ifdef CONFIG_INET 1445 case BPF_FUNC_tcp_sock: 1446 return &bpf_tcp_sock_proto; 1447 #endif 1448 default: 1449 return cgroup_base_func_proto(func_id, prog); 1450 } 1451 } 1452 cg_sockopt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1453 static bool cg_sockopt_is_valid_access(int off, int size, 1454 enum bpf_access_type type, 1455 const struct bpf_prog *prog, 1456 struct bpf_insn_access_aux *info) 1457 { 1458 const int size_default = sizeof(__u32); 1459 1460 if (off < 0 || off >= sizeof(struct bpf_sockopt)) 1461 return false; 1462 1463 if (off % size != 0) 1464 return false; 1465 1466 if (type == BPF_WRITE) { 1467 switch (off) { 1468 case offsetof(struct bpf_sockopt, retval): 1469 if (size != size_default) 1470 return false; 1471 return prog->expected_attach_type == 1472 BPF_CGROUP_GETSOCKOPT; 1473 case offsetof(struct bpf_sockopt, optname): 1474 /* fallthrough */ 1475 case offsetof(struct bpf_sockopt, level): 1476 if (size != size_default) 1477 return false; 1478 return prog->expected_attach_type == 1479 BPF_CGROUP_SETSOCKOPT; 1480 case offsetof(struct bpf_sockopt, optlen): 1481 return size == size_default; 1482 default: 1483 return false; 1484 } 1485 } 1486 1487 switch (off) { 1488 case offsetof(struct bpf_sockopt, sk): 1489 if (size != sizeof(__u64)) 1490 return false; 1491 info->reg_type = PTR_TO_SOCKET; 1492 break; 1493 case offsetof(struct bpf_sockopt, optval): 1494 if (size != sizeof(__u64)) 1495 return false; 1496 info->reg_type = PTR_TO_PACKET; 1497 break; 1498 case offsetof(struct bpf_sockopt, optval_end): 1499 if (size != sizeof(__u64)) 1500 return false; 1501 info->reg_type = PTR_TO_PACKET_END; 1502 break; 1503 case offsetof(struct bpf_sockopt, retval): 1504 if (size != size_default) 1505 return false; 1506 return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT; 1507 default: 1508 if (size != size_default) 1509 return false; 1510 break; 1511 } 1512 return true; 1513 } 1514 1515 #define CG_SOCKOPT_ACCESS_FIELD(T, F) \ 1516 T(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F), \ 1517 si->dst_reg, si->src_reg, \ 1518 offsetof(struct bpf_sockopt_kern, F)) 1519 cg_sockopt_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)1520 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type, 1521 const struct bpf_insn *si, 1522 struct bpf_insn *insn_buf, 1523 struct bpf_prog *prog, 1524 u32 *target_size) 1525 { 1526 struct bpf_insn *insn = insn_buf; 1527 1528 switch (si->off) { 1529 case offsetof(struct bpf_sockopt, sk): 1530 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, sk); 1531 break; 1532 case offsetof(struct bpf_sockopt, level): 1533 if (type == BPF_WRITE) 1534 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, level); 1535 else 1536 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, level); 1537 break; 1538 case offsetof(struct bpf_sockopt, optname): 1539 if (type == BPF_WRITE) 1540 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optname); 1541 else 1542 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optname); 1543 break; 1544 case offsetof(struct bpf_sockopt, optlen): 1545 if (type == BPF_WRITE) 1546 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optlen); 1547 else 1548 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optlen); 1549 break; 1550 case offsetof(struct bpf_sockopt, retval): 1551 if (type == BPF_WRITE) 1552 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, retval); 1553 else 1554 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, retval); 1555 break; 1556 case offsetof(struct bpf_sockopt, optval): 1557 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval); 1558 break; 1559 case offsetof(struct bpf_sockopt, optval_end): 1560 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval_end); 1561 break; 1562 } 1563 1564 return insn - insn_buf; 1565 } 1566 cg_sockopt_get_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)1567 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf, 1568 bool direct_write, 1569 const struct bpf_prog *prog) 1570 { 1571 /* Nothing to do for sockopt argument. The data is kzalloc'ated. 1572 */ 1573 return 0; 1574 } 1575 1576 const struct bpf_verifier_ops cg_sockopt_verifier_ops = { 1577 .get_func_proto = cg_sockopt_func_proto, 1578 .is_valid_access = cg_sockopt_is_valid_access, 1579 .convert_ctx_access = cg_sockopt_convert_ctx_access, 1580 .gen_prologue = cg_sockopt_get_prologue, 1581 }; 1582 1583 const struct bpf_prog_ops cg_sockopt_prog_ops = { 1584 }; 1585