• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Functions to manage eBPF programs attached to cgroups
4   *
5   * Copyright (c) 2016 Daniel Mack
6   */
7  
8  #include <linux/kernel.h>
9  #include <linux/atomic.h>
10  #include <linux/cgroup.h>
11  #include <linux/filter.h>
12  #include <linux/slab.h>
13  #include <linux/sysctl.h>
14  #include <linux/string.h>
15  #include <linux/bpf.h>
16  #include <linux/bpf-cgroup.h>
17  #include <net/sock.h>
18  #include <net/bpf_sk_storage.h>
19  
20  #include "../cgroup/cgroup-internal.h"
21  
22  DEFINE_STATIC_KEY_FALSE(cgroup_bpf_enabled_key);
23  EXPORT_SYMBOL(cgroup_bpf_enabled_key);
24  
cgroup_bpf_offline(struct cgroup * cgrp)25  void cgroup_bpf_offline(struct cgroup *cgrp)
26  {
27  	cgroup_get(cgrp);
28  	percpu_ref_kill(&cgrp->bpf.refcnt);
29  }
30  
31  /**
32   * cgroup_bpf_release() - put references of all bpf programs and
33   *                        release all cgroup bpf data
34   * @work: work structure embedded into the cgroup to modify
35   */
cgroup_bpf_release(struct work_struct * work)36  static void cgroup_bpf_release(struct work_struct *work)
37  {
38  	struct cgroup *p, *cgrp = container_of(work, struct cgroup,
39  					       bpf.release_work);
40  	enum bpf_cgroup_storage_type stype;
41  	struct bpf_prog_array *old_array;
42  	unsigned int type;
43  
44  	mutex_lock(&cgroup_mutex);
45  
46  	for (type = 0; type < ARRAY_SIZE(cgrp->bpf.progs); type++) {
47  		struct list_head *progs = &cgrp->bpf.progs[type];
48  		struct bpf_prog_list *pl, *tmp;
49  
50  		list_for_each_entry_safe(pl, tmp, progs, node) {
51  			list_del(&pl->node);
52  			bpf_prog_put(pl->prog);
53  			for_each_cgroup_storage_type(stype) {
54  				bpf_cgroup_storage_unlink(pl->storage[stype]);
55  				bpf_cgroup_storage_free(pl->storage[stype]);
56  			}
57  			kfree(pl);
58  			static_branch_dec(&cgroup_bpf_enabled_key);
59  		}
60  		old_array = rcu_dereference_protected(
61  				cgrp->bpf.effective[type],
62  				lockdep_is_held(&cgroup_mutex));
63  		bpf_prog_array_free(old_array);
64  	}
65  
66  	mutex_unlock(&cgroup_mutex);
67  
68  	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
69  		cgroup_bpf_put(p);
70  
71  	percpu_ref_exit(&cgrp->bpf.refcnt);
72  	cgroup_put(cgrp);
73  }
74  
75  /**
76   * cgroup_bpf_release_fn() - callback used to schedule releasing
77   *                           of bpf cgroup data
78   * @ref: percpu ref counter structure
79   */
cgroup_bpf_release_fn(struct percpu_ref * ref)80  static void cgroup_bpf_release_fn(struct percpu_ref *ref)
81  {
82  	struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt);
83  
84  	INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release);
85  	queue_work(system_wq, &cgrp->bpf.release_work);
86  }
87  
88  /* count number of elements in the list.
89   * it's slow but the list cannot be long
90   */
prog_list_length(struct list_head * head)91  static u32 prog_list_length(struct list_head *head)
92  {
93  	struct bpf_prog_list *pl;
94  	u32 cnt = 0;
95  
96  	list_for_each_entry(pl, head, node) {
97  		if (!pl->prog)
98  			continue;
99  		cnt++;
100  	}
101  	return cnt;
102  }
103  
104  /* if parent has non-overridable prog attached,
105   * disallow attaching new programs to the descendent cgroup.
106   * if parent has overridable or multi-prog, allow attaching
107   */
hierarchy_allows_attach(struct cgroup * cgrp,enum bpf_attach_type type,u32 new_flags)108  static bool hierarchy_allows_attach(struct cgroup *cgrp,
109  				    enum bpf_attach_type type,
110  				    u32 new_flags)
111  {
112  	struct cgroup *p;
113  
114  	p = cgroup_parent(cgrp);
115  	if (!p)
116  		return true;
117  	do {
118  		u32 flags = p->bpf.flags[type];
119  		u32 cnt;
120  
121  		if (flags & BPF_F_ALLOW_MULTI)
122  			return true;
123  		cnt = prog_list_length(&p->bpf.progs[type]);
124  		WARN_ON_ONCE(cnt > 1);
125  		if (cnt == 1)
126  			return !!(flags & BPF_F_ALLOW_OVERRIDE);
127  		p = cgroup_parent(p);
128  	} while (p);
129  	return true;
130  }
131  
132  /* compute a chain of effective programs for a given cgroup:
133   * start from the list of programs in this cgroup and add
134   * all parent programs.
135   * Note that parent's F_ALLOW_OVERRIDE-type program is yielding
136   * to programs in this cgroup
137   */
compute_effective_progs(struct cgroup * cgrp,enum bpf_attach_type type,struct bpf_prog_array ** array)138  static int compute_effective_progs(struct cgroup *cgrp,
139  				   enum bpf_attach_type type,
140  				   struct bpf_prog_array **array)
141  {
142  	enum bpf_cgroup_storage_type stype;
143  	struct bpf_prog_array *progs;
144  	struct bpf_prog_list *pl;
145  	struct cgroup *p = cgrp;
146  	int cnt = 0;
147  
148  	/* count number of effective programs by walking parents */
149  	do {
150  		if (cnt == 0 || (p->bpf.flags[type] & BPF_F_ALLOW_MULTI))
151  			cnt += prog_list_length(&p->bpf.progs[type]);
152  		p = cgroup_parent(p);
153  	} while (p);
154  
155  	progs = bpf_prog_array_alloc(cnt, GFP_KERNEL);
156  	if (!progs)
157  		return -ENOMEM;
158  
159  	/* populate the array with effective progs */
160  	cnt = 0;
161  	p = cgrp;
162  	do {
163  		if (cnt > 0 && !(p->bpf.flags[type] & BPF_F_ALLOW_MULTI))
164  			continue;
165  
166  		list_for_each_entry(pl, &p->bpf.progs[type], node) {
167  			if (!pl->prog)
168  				continue;
169  
170  			progs->items[cnt].prog = pl->prog;
171  			for_each_cgroup_storage_type(stype)
172  				progs->items[cnt].cgroup_storage[stype] =
173  					pl->storage[stype];
174  			cnt++;
175  		}
176  	} while ((p = cgroup_parent(p)));
177  
178  	*array = progs;
179  	return 0;
180  }
181  
activate_effective_progs(struct cgroup * cgrp,enum bpf_attach_type type,struct bpf_prog_array * old_array)182  static void activate_effective_progs(struct cgroup *cgrp,
183  				     enum bpf_attach_type type,
184  				     struct bpf_prog_array *old_array)
185  {
186  	rcu_swap_protected(cgrp->bpf.effective[type], old_array,
187  			   lockdep_is_held(&cgroup_mutex));
188  	/* free prog array after grace period, since __cgroup_bpf_run_*()
189  	 * might be still walking the array
190  	 */
191  	bpf_prog_array_free(old_array);
192  }
193  
194  /**
195   * cgroup_bpf_inherit() - inherit effective programs from parent
196   * @cgrp: the cgroup to modify
197   */
cgroup_bpf_inherit(struct cgroup * cgrp)198  int cgroup_bpf_inherit(struct cgroup *cgrp)
199  {
200  /* has to use marco instead of const int, since compiler thinks
201   * that array below is variable length
202   */
203  #define	NR ARRAY_SIZE(cgrp->bpf.effective)
204  	struct bpf_prog_array *arrays[NR] = {};
205  	struct cgroup *p;
206  	int ret, i;
207  
208  	ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0,
209  			      GFP_KERNEL);
210  	if (ret)
211  		return ret;
212  
213  	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
214  		cgroup_bpf_get(p);
215  
216  	for (i = 0; i < NR; i++)
217  		INIT_LIST_HEAD(&cgrp->bpf.progs[i]);
218  
219  	for (i = 0; i < NR; i++)
220  		if (compute_effective_progs(cgrp, i, &arrays[i]))
221  			goto cleanup;
222  
223  	for (i = 0; i < NR; i++)
224  		activate_effective_progs(cgrp, i, arrays[i]);
225  
226  	return 0;
227  cleanup:
228  	for (i = 0; i < NR; i++)
229  		bpf_prog_array_free(arrays[i]);
230  
231  	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
232  		cgroup_bpf_put(p);
233  
234  	percpu_ref_exit(&cgrp->bpf.refcnt);
235  
236  	return -ENOMEM;
237  }
238  
update_effective_progs(struct cgroup * cgrp,enum bpf_attach_type type)239  static int update_effective_progs(struct cgroup *cgrp,
240  				  enum bpf_attach_type type)
241  {
242  	struct cgroup_subsys_state *css;
243  	int err;
244  
245  	/* allocate and recompute effective prog arrays */
246  	css_for_each_descendant_pre(css, &cgrp->self) {
247  		struct cgroup *desc = container_of(css, struct cgroup, self);
248  
249  		if (percpu_ref_is_zero(&desc->bpf.refcnt))
250  			continue;
251  
252  		err = compute_effective_progs(desc, type, &desc->bpf.inactive);
253  		if (err)
254  			goto cleanup;
255  	}
256  
257  	/* all allocations were successful. Activate all prog arrays */
258  	css_for_each_descendant_pre(css, &cgrp->self) {
259  		struct cgroup *desc = container_of(css, struct cgroup, self);
260  
261  		if (percpu_ref_is_zero(&desc->bpf.refcnt)) {
262  			if (unlikely(desc->bpf.inactive)) {
263  				bpf_prog_array_free(desc->bpf.inactive);
264  				desc->bpf.inactive = NULL;
265  			}
266  			continue;
267  		}
268  
269  		activate_effective_progs(desc, type, desc->bpf.inactive);
270  		desc->bpf.inactive = NULL;
271  	}
272  
273  	return 0;
274  
275  cleanup:
276  	/* oom while computing effective. Free all computed effective arrays
277  	 * since they were not activated
278  	 */
279  	css_for_each_descendant_pre(css, &cgrp->self) {
280  		struct cgroup *desc = container_of(css, struct cgroup, self);
281  
282  		bpf_prog_array_free(desc->bpf.inactive);
283  		desc->bpf.inactive = NULL;
284  	}
285  
286  	return err;
287  }
288  
289  #define BPF_CGROUP_MAX_PROGS 64
290  
291  /**
292   * __cgroup_bpf_attach() - Attach the program to a cgroup, and
293   *                         propagate the change to descendants
294   * @cgrp: The cgroup which descendants to traverse
295   * @prog: A program to attach
296   * @type: Type of attach operation
297   * @flags: Option flags
298   *
299   * Must be called with cgroup_mutex held.
300   */
__cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type,u32 flags)301  int __cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
302  			enum bpf_attach_type type, u32 flags)
303  {
304  	struct list_head *progs = &cgrp->bpf.progs[type];
305  	struct bpf_prog *old_prog = NULL;
306  	struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
307  	struct bpf_cgroup_storage *old_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
308  	enum bpf_cgroup_storage_type stype;
309  	struct bpf_prog_list *pl;
310  	bool pl_was_allocated;
311  	int err;
312  
313  	if ((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI))
314  		/* invalid combination */
315  		return -EINVAL;
316  
317  	if (!hierarchy_allows_attach(cgrp, type, flags))
318  		return -EPERM;
319  
320  	if (!list_empty(progs) && cgrp->bpf.flags[type] != flags)
321  		/* Disallow attaching non-overridable on top
322  		 * of existing overridable in this cgroup.
323  		 * Disallow attaching multi-prog if overridable or none
324  		 */
325  		return -EPERM;
326  
327  	if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS)
328  		return -E2BIG;
329  
330  	for_each_cgroup_storage_type(stype) {
331  		storage[stype] = bpf_cgroup_storage_alloc(prog, stype);
332  		if (IS_ERR(storage[stype])) {
333  			storage[stype] = NULL;
334  			for_each_cgroup_storage_type(stype)
335  				bpf_cgroup_storage_free(storage[stype]);
336  			return -ENOMEM;
337  		}
338  	}
339  
340  	if (flags & BPF_F_ALLOW_MULTI) {
341  		list_for_each_entry(pl, progs, node) {
342  			if (pl->prog == prog) {
343  				/* disallow attaching the same prog twice */
344  				for_each_cgroup_storage_type(stype)
345  					bpf_cgroup_storage_free(storage[stype]);
346  				return -EINVAL;
347  			}
348  		}
349  
350  		pl = kmalloc(sizeof(*pl), GFP_KERNEL);
351  		if (!pl) {
352  			for_each_cgroup_storage_type(stype)
353  				bpf_cgroup_storage_free(storage[stype]);
354  			return -ENOMEM;
355  		}
356  
357  		pl_was_allocated = true;
358  		pl->prog = prog;
359  		for_each_cgroup_storage_type(stype)
360  			pl->storage[stype] = storage[stype];
361  		list_add_tail(&pl->node, progs);
362  	} else {
363  		if (list_empty(progs)) {
364  			pl = kmalloc(sizeof(*pl), GFP_KERNEL);
365  			if (!pl) {
366  				for_each_cgroup_storage_type(stype)
367  					bpf_cgroup_storage_free(storage[stype]);
368  				return -ENOMEM;
369  			}
370  			pl_was_allocated = true;
371  			list_add_tail(&pl->node, progs);
372  		} else {
373  			pl = list_first_entry(progs, typeof(*pl), node);
374  			old_prog = pl->prog;
375  			for_each_cgroup_storage_type(stype) {
376  				old_storage[stype] = pl->storage[stype];
377  				bpf_cgroup_storage_unlink(old_storage[stype]);
378  			}
379  			pl_was_allocated = false;
380  		}
381  		pl->prog = prog;
382  		for_each_cgroup_storage_type(stype)
383  			pl->storage[stype] = storage[stype];
384  	}
385  
386  	cgrp->bpf.flags[type] = flags;
387  
388  	err = update_effective_progs(cgrp, type);
389  	if (err)
390  		goto cleanup;
391  
392  	static_branch_inc(&cgroup_bpf_enabled_key);
393  	for_each_cgroup_storage_type(stype) {
394  		if (!old_storage[stype])
395  			continue;
396  		bpf_cgroup_storage_free(old_storage[stype]);
397  	}
398  	if (old_prog) {
399  		bpf_prog_put(old_prog);
400  		static_branch_dec(&cgroup_bpf_enabled_key);
401  	}
402  	for_each_cgroup_storage_type(stype)
403  		bpf_cgroup_storage_link(storage[stype], cgrp, type);
404  	return 0;
405  
406  cleanup:
407  	/* and cleanup the prog list */
408  	pl->prog = old_prog;
409  	for_each_cgroup_storage_type(stype) {
410  		bpf_cgroup_storage_free(pl->storage[stype]);
411  		pl->storage[stype] = old_storage[stype];
412  		bpf_cgroup_storage_link(old_storage[stype], cgrp, type);
413  	}
414  	if (pl_was_allocated) {
415  		list_del(&pl->node);
416  		kfree(pl);
417  	}
418  	return err;
419  }
420  
421  /**
422   * __cgroup_bpf_detach() - Detach the program from a cgroup, and
423   *                         propagate the change to descendants
424   * @cgrp: The cgroup which descendants to traverse
425   * @prog: A program to detach or NULL
426   * @type: Type of detach operation
427   *
428   * Must be called with cgroup_mutex held.
429   */
__cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type)430  int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
431  			enum bpf_attach_type type)
432  {
433  	struct list_head *progs = &cgrp->bpf.progs[type];
434  	enum bpf_cgroup_storage_type stype;
435  	u32 flags = cgrp->bpf.flags[type];
436  	struct bpf_prog *old_prog = NULL;
437  	struct bpf_prog_list *pl;
438  	int err;
439  
440  	if (flags & BPF_F_ALLOW_MULTI) {
441  		if (!prog)
442  			/* to detach MULTI prog the user has to specify valid FD
443  			 * of the program to be detached
444  			 */
445  			return -EINVAL;
446  	} else {
447  		if (list_empty(progs))
448  			/* report error when trying to detach and nothing is attached */
449  			return -ENOENT;
450  	}
451  
452  	if (flags & BPF_F_ALLOW_MULTI) {
453  		/* find the prog and detach it */
454  		list_for_each_entry(pl, progs, node) {
455  			if (pl->prog != prog)
456  				continue;
457  			old_prog = prog;
458  			/* mark it deleted, so it's ignored while
459  			 * recomputing effective
460  			 */
461  			pl->prog = NULL;
462  			break;
463  		}
464  		if (!old_prog)
465  			return -ENOENT;
466  	} else {
467  		/* to maintain backward compatibility NONE and OVERRIDE cgroups
468  		 * allow detaching with invalid FD (prog==NULL)
469  		 */
470  		pl = list_first_entry(progs, typeof(*pl), node);
471  		old_prog = pl->prog;
472  		pl->prog = NULL;
473  	}
474  
475  	err = update_effective_progs(cgrp, type);
476  	if (err)
477  		goto cleanup;
478  
479  	/* now can actually delete it from this cgroup list */
480  	list_del(&pl->node);
481  	for_each_cgroup_storage_type(stype) {
482  		bpf_cgroup_storage_unlink(pl->storage[stype]);
483  		bpf_cgroup_storage_free(pl->storage[stype]);
484  	}
485  	kfree(pl);
486  	if (list_empty(progs))
487  		/* last program was detached, reset flags to zero */
488  		cgrp->bpf.flags[type] = 0;
489  
490  	bpf_prog_put(old_prog);
491  	static_branch_dec(&cgroup_bpf_enabled_key);
492  	return 0;
493  
494  cleanup:
495  	/* and restore back old_prog */
496  	pl->prog = old_prog;
497  	return err;
498  }
499  
500  /* Must be called with cgroup_mutex held to avoid races. */
__cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)501  int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
502  		       union bpf_attr __user *uattr)
503  {
504  	__u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
505  	enum bpf_attach_type type = attr->query.attach_type;
506  	struct list_head *progs = &cgrp->bpf.progs[type];
507  	u32 flags = cgrp->bpf.flags[type];
508  	struct bpf_prog_array *effective;
509  	int cnt, ret = 0, i;
510  
511  	effective = rcu_dereference_protected(cgrp->bpf.effective[type],
512  					      lockdep_is_held(&cgroup_mutex));
513  
514  	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE)
515  		cnt = bpf_prog_array_length(effective);
516  	else
517  		cnt = prog_list_length(progs);
518  
519  	if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
520  		return -EFAULT;
521  	if (copy_to_user(&uattr->query.prog_cnt, &cnt, sizeof(cnt)))
522  		return -EFAULT;
523  	if (attr->query.prog_cnt == 0 || !prog_ids || !cnt)
524  		/* return early if user requested only program count + flags */
525  		return 0;
526  	if (attr->query.prog_cnt < cnt) {
527  		cnt = attr->query.prog_cnt;
528  		ret = -ENOSPC;
529  	}
530  
531  	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) {
532  		return bpf_prog_array_copy_to_user(effective, prog_ids, cnt);
533  	} else {
534  		struct bpf_prog_list *pl;
535  		u32 id;
536  
537  		i = 0;
538  		list_for_each_entry(pl, progs, node) {
539  			id = pl->prog->aux->id;
540  			if (copy_to_user(prog_ids + i, &id, sizeof(id)))
541  				return -EFAULT;
542  			if (++i == cnt)
543  				break;
544  		}
545  	}
546  	return ret;
547  }
548  
cgroup_bpf_prog_attach(const union bpf_attr * attr,enum bpf_prog_type ptype,struct bpf_prog * prog)549  int cgroup_bpf_prog_attach(const union bpf_attr *attr,
550  			   enum bpf_prog_type ptype, struct bpf_prog *prog)
551  {
552  	struct cgroup *cgrp;
553  	int ret;
554  
555  	cgrp = cgroup_get_from_fd(attr->target_fd);
556  	if (IS_ERR(cgrp))
557  		return PTR_ERR(cgrp);
558  
559  	ret = cgroup_bpf_attach(cgrp, prog, attr->attach_type,
560  				attr->attach_flags);
561  	cgroup_put(cgrp);
562  	return ret;
563  }
564  
cgroup_bpf_prog_detach(const union bpf_attr * attr,enum bpf_prog_type ptype)565  int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype)
566  {
567  	struct bpf_prog *prog;
568  	struct cgroup *cgrp;
569  	int ret;
570  
571  	cgrp = cgroup_get_from_fd(attr->target_fd);
572  	if (IS_ERR(cgrp))
573  		return PTR_ERR(cgrp);
574  
575  	prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype);
576  	if (IS_ERR(prog))
577  		prog = NULL;
578  
579  	ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type, 0);
580  	if (prog)
581  		bpf_prog_put(prog);
582  
583  	cgroup_put(cgrp);
584  	return ret;
585  }
586  
cgroup_bpf_prog_query(const union bpf_attr * attr,union bpf_attr __user * uattr)587  int cgroup_bpf_prog_query(const union bpf_attr *attr,
588  			  union bpf_attr __user *uattr)
589  {
590  	struct cgroup *cgrp;
591  	int ret;
592  
593  	cgrp = cgroup_get_from_fd(attr->query.target_fd);
594  	if (IS_ERR(cgrp))
595  		return PTR_ERR(cgrp);
596  
597  	ret = cgroup_bpf_query(cgrp, attr, uattr);
598  
599  	cgroup_put(cgrp);
600  	return ret;
601  }
602  
603  /**
604   * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering
605   * @sk: The socket sending or receiving traffic
606   * @skb: The skb that is being sent or received
607   * @type: The type of program to be exectuted
608   *
609   * If no socket is passed, or the socket is not of type INET or INET6,
610   * this function does nothing and returns 0.
611   *
612   * The program type passed in via @type must be suitable for network
613   * filtering. No further check is performed to assert that.
614   *
615   * For egress packets, this function can return:
616   *   NET_XMIT_SUCCESS    (0)	- continue with packet output
617   *   NET_XMIT_DROP       (1)	- drop packet and notify TCP to call cwr
618   *   NET_XMIT_CN         (2)	- continue with packet output and notify TCP
619   *				  to call cwr
620   *   -EPERM			- drop packet
621   *
622   * For ingress packets, this function will return -EPERM if any
623   * attached program was found and if it returned != 1 during execution.
624   * Otherwise 0 is returned.
625   */
__cgroup_bpf_run_filter_skb(struct sock * sk,struct sk_buff * skb,enum bpf_attach_type type)626  int __cgroup_bpf_run_filter_skb(struct sock *sk,
627  				struct sk_buff *skb,
628  				enum bpf_attach_type type)
629  {
630  	unsigned int offset = skb->data - skb_network_header(skb);
631  	struct sock *save_sk;
632  	void *saved_data_end;
633  	struct cgroup *cgrp;
634  	int ret;
635  
636  	if (!sk || !sk_fullsock(sk))
637  		return 0;
638  
639  	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
640  		return 0;
641  
642  	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
643  	save_sk = skb->sk;
644  	skb->sk = sk;
645  	__skb_push(skb, offset);
646  
647  	/* compute pointers for the bpf prog */
648  	bpf_compute_and_save_data_end(skb, &saved_data_end);
649  
650  	if (type == BPF_CGROUP_INET_EGRESS) {
651  		ret = BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY(
652  			cgrp->bpf.effective[type], skb, __bpf_prog_run_save_cb);
653  	} else {
654  		ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], skb,
655  					  __bpf_prog_run_save_cb);
656  		ret = (ret == 1 ? 0 : -EPERM);
657  	}
658  	bpf_restore_data_end(skb, saved_data_end);
659  	__skb_pull(skb, offset);
660  	skb->sk = save_sk;
661  
662  	return ret;
663  }
664  EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb);
665  
666  /**
667   * __cgroup_bpf_run_filter_sk() - Run a program on a sock
668   * @sk: sock structure to manipulate
669   * @type: The type of program to be exectuted
670   *
671   * socket is passed is expected to be of type INET or INET6.
672   *
673   * The program type passed in via @type must be suitable for sock
674   * filtering. No further check is performed to assert that.
675   *
676   * This function will return %-EPERM if any if an attached program was found
677   * and if it returned != 1 during execution. In all other cases, 0 is returned.
678   */
__cgroup_bpf_run_filter_sk(struct sock * sk,enum bpf_attach_type type)679  int __cgroup_bpf_run_filter_sk(struct sock *sk,
680  			       enum bpf_attach_type type)
681  {
682  	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
683  	int ret;
684  
685  	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sk, BPF_PROG_RUN);
686  	return ret == 1 ? 0 : -EPERM;
687  }
688  EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk);
689  
690  /**
691   * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and
692   *                                       provided by user sockaddr
693   * @sk: sock struct that will use sockaddr
694   * @uaddr: sockaddr struct provided by user
695   * @type: The type of program to be exectuted
696   * @t_ctx: Pointer to attach type specific context
697   *
698   * socket is expected to be of type INET or INET6.
699   *
700   * This function will return %-EPERM if an attached program is found and
701   * returned value != 1 during execution. In all other cases, 0 is returned.
702   */
__cgroup_bpf_run_filter_sock_addr(struct sock * sk,struct sockaddr * uaddr,enum bpf_attach_type type,void * t_ctx)703  int __cgroup_bpf_run_filter_sock_addr(struct sock *sk,
704  				      struct sockaddr *uaddr,
705  				      enum bpf_attach_type type,
706  				      void *t_ctx)
707  {
708  	struct bpf_sock_addr_kern ctx = {
709  		.sk = sk,
710  		.uaddr = uaddr,
711  		.t_ctx = t_ctx,
712  	};
713  	struct sockaddr_storage unspec;
714  	struct cgroup *cgrp;
715  	int ret;
716  
717  	/* Check socket family since not all sockets represent network
718  	 * endpoint (e.g. AF_UNIX).
719  	 */
720  	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
721  		return 0;
722  
723  	if (!ctx.uaddr) {
724  		memset(&unspec, 0, sizeof(unspec));
725  		ctx.uaddr = (struct sockaddr *)&unspec;
726  	}
727  
728  	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
729  	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN);
730  
731  	return ret == 1 ? 0 : -EPERM;
732  }
733  EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr);
734  
735  /**
736   * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock
737   * @sk: socket to get cgroup from
738   * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains
739   * sk with connection information (IP addresses, etc.) May not contain
740   * cgroup info if it is a req sock.
741   * @type: The type of program to be exectuted
742   *
743   * socket passed is expected to be of type INET or INET6.
744   *
745   * The program type passed in via @type must be suitable for sock_ops
746   * filtering. No further check is performed to assert that.
747   *
748   * This function will return %-EPERM if any if an attached program was found
749   * and if it returned != 1 during execution. In all other cases, 0 is returned.
750   */
__cgroup_bpf_run_filter_sock_ops(struct sock * sk,struct bpf_sock_ops_kern * sock_ops,enum bpf_attach_type type)751  int __cgroup_bpf_run_filter_sock_ops(struct sock *sk,
752  				     struct bpf_sock_ops_kern *sock_ops,
753  				     enum bpf_attach_type type)
754  {
755  	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
756  	int ret;
757  
758  	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sock_ops,
759  				 BPF_PROG_RUN);
760  	return ret == 1 ? 0 : -EPERM;
761  }
762  EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops);
763  
__cgroup_bpf_check_dev_permission(short dev_type,u32 major,u32 minor,short access,enum bpf_attach_type type)764  int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor,
765  				      short access, enum bpf_attach_type type)
766  {
767  	struct cgroup *cgrp;
768  	struct bpf_cgroup_dev_ctx ctx = {
769  		.access_type = (access << 16) | dev_type,
770  		.major = major,
771  		.minor = minor,
772  	};
773  	int allow = 1;
774  
775  	rcu_read_lock();
776  	cgrp = task_dfl_cgroup(current);
777  	allow = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx,
778  				   BPF_PROG_RUN);
779  	rcu_read_unlock();
780  
781  	return !allow;
782  }
783  EXPORT_SYMBOL(__cgroup_bpf_check_dev_permission);
784  
785  static const struct bpf_func_proto *
cgroup_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)786  cgroup_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
787  {
788  	switch (func_id) {
789  	case BPF_FUNC_map_lookup_elem:
790  		return &bpf_map_lookup_elem_proto;
791  	case BPF_FUNC_map_update_elem:
792  		return &bpf_map_update_elem_proto;
793  	case BPF_FUNC_map_delete_elem:
794  		return &bpf_map_delete_elem_proto;
795  	case BPF_FUNC_map_push_elem:
796  		return &bpf_map_push_elem_proto;
797  	case BPF_FUNC_map_pop_elem:
798  		return &bpf_map_pop_elem_proto;
799  	case BPF_FUNC_map_peek_elem:
800  		return &bpf_map_peek_elem_proto;
801  	case BPF_FUNC_get_current_uid_gid:
802  		return &bpf_get_current_uid_gid_proto;
803  	case BPF_FUNC_get_local_storage:
804  		return &bpf_get_local_storage_proto;
805  	case BPF_FUNC_get_current_cgroup_id:
806  		return &bpf_get_current_cgroup_id_proto;
807  	case BPF_FUNC_trace_printk:
808  		if (capable(CAP_SYS_ADMIN))
809  			return bpf_get_trace_printk_proto();
810  		/* fall through */
811  	default:
812  		return NULL;
813  	}
814  }
815  
816  static const struct bpf_func_proto *
cgroup_dev_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)817  cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
818  {
819  	return cgroup_base_func_proto(func_id, prog);
820  }
821  
cgroup_dev_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)822  static bool cgroup_dev_is_valid_access(int off, int size,
823  				       enum bpf_access_type type,
824  				       const struct bpf_prog *prog,
825  				       struct bpf_insn_access_aux *info)
826  {
827  	const int size_default = sizeof(__u32);
828  
829  	if (type == BPF_WRITE)
830  		return false;
831  
832  	if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx))
833  		return false;
834  	/* The verifier guarantees that size > 0. */
835  	if (off % size != 0)
836  		return false;
837  
838  	switch (off) {
839  	case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type):
840  		bpf_ctx_record_field_size(info, size_default);
841  		if (!bpf_ctx_narrow_access_ok(off, size, size_default))
842  			return false;
843  		break;
844  	default:
845  		if (size != size_default)
846  			return false;
847  	}
848  
849  	return true;
850  }
851  
852  const struct bpf_prog_ops cg_dev_prog_ops = {
853  };
854  
855  const struct bpf_verifier_ops cg_dev_verifier_ops = {
856  	.get_func_proto		= cgroup_dev_func_proto,
857  	.is_valid_access	= cgroup_dev_is_valid_access,
858  };
859  
860  /**
861   * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl
862   *
863   * @head: sysctl table header
864   * @table: sysctl table
865   * @write: sysctl is being read (= 0) or written (= 1)
866   * @buf: pointer to buffer passed by user space
867   * @pcount: value-result argument: value is size of buffer pointed to by @buf,
868   *	result is size of @new_buf if program set new value, initial value
869   *	otherwise
870   * @ppos: value-result argument: value is position at which read from or write
871   *	to sysctl is happening, result is new position if program overrode it,
872   *	initial value otherwise
873   * @new_buf: pointer to pointer to new buffer that will be allocated if program
874   *	overrides new value provided by user space on sysctl write
875   *	NOTE: it's caller responsibility to free *new_buf if it was set
876   * @type: type of program to be executed
877   *
878   * Program is run when sysctl is being accessed, either read or written, and
879   * can allow or deny such access.
880   *
881   * This function will return %-EPERM if an attached program is found and
882   * returned value != 1 during execution. In all other cases 0 is returned.
883   */
__cgroup_bpf_run_filter_sysctl(struct ctl_table_header * head,struct ctl_table * table,int write,void __user * buf,size_t * pcount,loff_t * ppos,void ** new_buf,enum bpf_attach_type type)884  int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head,
885  				   struct ctl_table *table, int write,
886  				   void __user *buf, size_t *pcount,
887  				   loff_t *ppos, void **new_buf,
888  				   enum bpf_attach_type type)
889  {
890  	struct bpf_sysctl_kern ctx = {
891  		.head = head,
892  		.table = table,
893  		.write = write,
894  		.ppos = ppos,
895  		.cur_val = NULL,
896  		.cur_len = PAGE_SIZE,
897  		.new_val = NULL,
898  		.new_len = 0,
899  		.new_updated = 0,
900  	};
901  	struct cgroup *cgrp;
902  	int ret;
903  
904  	ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL);
905  	if (ctx.cur_val) {
906  		mm_segment_t old_fs;
907  		loff_t pos = 0;
908  
909  		old_fs = get_fs();
910  		set_fs(KERNEL_DS);
911  		if (table->proc_handler(table, 0, (void __user *)ctx.cur_val,
912  					&ctx.cur_len, &pos)) {
913  			/* Let BPF program decide how to proceed. */
914  			ctx.cur_len = 0;
915  		}
916  		set_fs(old_fs);
917  	} else {
918  		/* Let BPF program decide how to proceed. */
919  		ctx.cur_len = 0;
920  	}
921  
922  	if (write && buf && *pcount) {
923  		/* BPF program should be able to override new value with a
924  		 * buffer bigger than provided by user.
925  		 */
926  		ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL);
927  		ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount);
928  		if (!ctx.new_val ||
929  		    copy_from_user(ctx.new_val, buf, ctx.new_len))
930  			/* Let BPF program decide how to proceed. */
931  			ctx.new_len = 0;
932  	}
933  
934  	rcu_read_lock();
935  	cgrp = task_dfl_cgroup(current);
936  	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN);
937  	rcu_read_unlock();
938  
939  	kfree(ctx.cur_val);
940  
941  	if (ret == 1 && ctx.new_updated) {
942  		*new_buf = ctx.new_val;
943  		*pcount = ctx.new_len;
944  	} else {
945  		kfree(ctx.new_val);
946  	}
947  
948  	return ret == 1 ? 0 : -EPERM;
949  }
950  EXPORT_SYMBOL(__cgroup_bpf_run_filter_sysctl);
951  
952  #ifdef CONFIG_NET
__cgroup_bpf_prog_array_is_empty(struct cgroup * cgrp,enum bpf_attach_type attach_type)953  static bool __cgroup_bpf_prog_array_is_empty(struct cgroup *cgrp,
954  					     enum bpf_attach_type attach_type)
955  {
956  	struct bpf_prog_array *prog_array;
957  	bool empty;
958  
959  	rcu_read_lock();
960  	prog_array = rcu_dereference(cgrp->bpf.effective[attach_type]);
961  	empty = bpf_prog_array_is_empty(prog_array);
962  	rcu_read_unlock();
963  
964  	return empty;
965  }
966  
sockopt_alloc_buf(struct bpf_sockopt_kern * ctx,int max_optlen)967  static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen)
968  {
969  	if (unlikely(max_optlen < 0))
970  		return -EINVAL;
971  
972  	if (unlikely(max_optlen > PAGE_SIZE)) {
973  		/* We don't expose optvals that are greater than PAGE_SIZE
974  		 * to the BPF program.
975  		 */
976  		max_optlen = PAGE_SIZE;
977  	}
978  
979  	ctx->optval = kzalloc(max_optlen, GFP_USER);
980  	if (!ctx->optval)
981  		return -ENOMEM;
982  
983  	ctx->optval_end = ctx->optval + max_optlen;
984  
985  	return max_optlen;
986  }
987  
sockopt_free_buf(struct bpf_sockopt_kern * ctx)988  static void sockopt_free_buf(struct bpf_sockopt_kern *ctx)
989  {
990  	kfree(ctx->optval);
991  }
992  
__cgroup_bpf_run_filter_setsockopt(struct sock * sk,int * level,int * optname,char __user * optval,int * optlen,char ** kernel_optval)993  int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level,
994  				       int *optname, char __user *optval,
995  				       int *optlen, char **kernel_optval)
996  {
997  	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
998  	struct bpf_sockopt_kern ctx = {
999  		.sk = sk,
1000  		.level = *level,
1001  		.optname = *optname,
1002  	};
1003  	int ret, max_optlen;
1004  
1005  	/* Opportunistic check to see whether we have any BPF program
1006  	 * attached to the hook so we don't waste time allocating
1007  	 * memory and locking the socket.
1008  	 */
1009  	if (!cgroup_bpf_enabled ||
1010  	    __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_SETSOCKOPT))
1011  		return 0;
1012  
1013  	/* Allocate a bit more than the initial user buffer for
1014  	 * BPF program. The canonical use case is overriding
1015  	 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic).
1016  	 */
1017  	max_optlen = max_t(int, 16, *optlen);
1018  
1019  	max_optlen = sockopt_alloc_buf(&ctx, max_optlen);
1020  	if (max_optlen < 0)
1021  		return max_optlen;
1022  
1023  	ctx.optlen = *optlen;
1024  
1025  	if (copy_from_user(ctx.optval, optval, min(*optlen, max_optlen)) != 0) {
1026  		ret = -EFAULT;
1027  		goto out;
1028  	}
1029  
1030  	lock_sock(sk);
1031  	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_SETSOCKOPT],
1032  				 &ctx, BPF_PROG_RUN);
1033  	release_sock(sk);
1034  
1035  	if (!ret) {
1036  		ret = -EPERM;
1037  		goto out;
1038  	}
1039  
1040  	if (ctx.optlen == -1) {
1041  		/* optlen set to -1, bypass kernel */
1042  		ret = 1;
1043  	} else if (ctx.optlen > max_optlen || ctx.optlen < -1) {
1044  		/* optlen is out of bounds */
1045  		ret = -EFAULT;
1046  	} else {
1047  		/* optlen within bounds, run kernel handler */
1048  		ret = 0;
1049  
1050  		/* export any potential modifications */
1051  		*level = ctx.level;
1052  		*optname = ctx.optname;
1053  
1054  		/* optlen == 0 from BPF indicates that we should
1055  		 * use original userspace data.
1056  		 */
1057  		if (ctx.optlen != 0) {
1058  			*optlen = ctx.optlen;
1059  			*kernel_optval = ctx.optval;
1060  			/* export and don't free sockopt buf */
1061  			return 0;
1062  		}
1063  	}
1064  
1065  out:
1066  	sockopt_free_buf(&ctx);
1067  	return ret;
1068  }
1069  EXPORT_SYMBOL(__cgroup_bpf_run_filter_setsockopt);
1070  
__cgroup_bpf_run_filter_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen,int max_optlen,int retval)1071  int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level,
1072  				       int optname, char __user *optval,
1073  				       int __user *optlen, int max_optlen,
1074  				       int retval)
1075  {
1076  	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1077  	struct bpf_sockopt_kern ctx = {
1078  		.sk = sk,
1079  		.level = level,
1080  		.optname = optname,
1081  		.retval = retval,
1082  	};
1083  	int ret;
1084  
1085  	/* Opportunistic check to see whether we have any BPF program
1086  	 * attached to the hook so we don't waste time allocating
1087  	 * memory and locking the socket.
1088  	 */
1089  	if (!cgroup_bpf_enabled ||
1090  	    __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_GETSOCKOPT))
1091  		return retval;
1092  
1093  	ctx.optlen = max_optlen;
1094  
1095  	max_optlen = sockopt_alloc_buf(&ctx, max_optlen);
1096  	if (max_optlen < 0)
1097  		return max_optlen;
1098  
1099  	if (!retval) {
1100  		/* If kernel getsockopt finished successfully,
1101  		 * copy whatever was returned to the user back
1102  		 * into our temporary buffer. Set optlen to the
1103  		 * one that kernel returned as well to let
1104  		 * BPF programs inspect the value.
1105  		 */
1106  
1107  		if (get_user(ctx.optlen, optlen)) {
1108  			ret = -EFAULT;
1109  			goto out;
1110  		}
1111  
1112  		if (ctx.optlen < 0) {
1113  			ret = -EFAULT;
1114  			goto out;
1115  		}
1116  
1117  		if (copy_from_user(ctx.optval, optval,
1118  				   min(ctx.optlen, max_optlen)) != 0) {
1119  			ret = -EFAULT;
1120  			goto out;
1121  		}
1122  	}
1123  
1124  	lock_sock(sk);
1125  	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_GETSOCKOPT],
1126  				 &ctx, BPF_PROG_RUN);
1127  	release_sock(sk);
1128  
1129  	if (!ret) {
1130  		ret = -EPERM;
1131  		goto out;
1132  	}
1133  
1134  	if (optval && (ctx.optlen > max_optlen || ctx.optlen < 0)) {
1135  		ret = -EFAULT;
1136  		goto out;
1137  	}
1138  
1139  	/* BPF programs only allowed to set retval to 0, not some
1140  	 * arbitrary value.
1141  	 */
1142  	if (ctx.retval != 0 && ctx.retval != retval) {
1143  		ret = -EFAULT;
1144  		goto out;
1145  	}
1146  
1147  	if (ctx.optlen != 0) {
1148  		if (optval && copy_to_user(optval, ctx.optval, ctx.optlen)) {
1149  			ret = -EFAULT;
1150  			goto out;
1151  		}
1152  		if (put_user(ctx.optlen, optlen)) {
1153  			ret = -EFAULT;
1154  			goto out;
1155  		}
1156  	}
1157  
1158  	ret = ctx.retval;
1159  
1160  out:
1161  	sockopt_free_buf(&ctx);
1162  	return ret;
1163  }
1164  EXPORT_SYMBOL(__cgroup_bpf_run_filter_getsockopt);
1165  #endif
1166  
sysctl_cpy_dir(const struct ctl_dir * dir,char ** bufp,size_t * lenp)1167  static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp,
1168  			      size_t *lenp)
1169  {
1170  	ssize_t tmp_ret = 0, ret;
1171  
1172  	if (dir->header.parent) {
1173  		tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp);
1174  		if (tmp_ret < 0)
1175  			return tmp_ret;
1176  	}
1177  
1178  	ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp);
1179  	if (ret < 0)
1180  		return ret;
1181  	*bufp += ret;
1182  	*lenp -= ret;
1183  	ret += tmp_ret;
1184  
1185  	/* Avoid leading slash. */
1186  	if (!ret)
1187  		return ret;
1188  
1189  	tmp_ret = strscpy(*bufp, "/", *lenp);
1190  	if (tmp_ret < 0)
1191  		return tmp_ret;
1192  	*bufp += tmp_ret;
1193  	*lenp -= tmp_ret;
1194  
1195  	return ret + tmp_ret;
1196  }
1197  
BPF_CALL_4(bpf_sysctl_get_name,struct bpf_sysctl_kern *,ctx,char *,buf,size_t,buf_len,u64,flags)1198  BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf,
1199  	   size_t, buf_len, u64, flags)
1200  {
1201  	ssize_t tmp_ret = 0, ret;
1202  
1203  	if (!buf)
1204  		return -EINVAL;
1205  
1206  	if (!(flags & BPF_F_SYSCTL_BASE_NAME)) {
1207  		if (!ctx->head)
1208  			return -EINVAL;
1209  		tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len);
1210  		if (tmp_ret < 0)
1211  			return tmp_ret;
1212  	}
1213  
1214  	ret = strscpy(buf, ctx->table->procname, buf_len);
1215  
1216  	return ret < 0 ? ret : tmp_ret + ret;
1217  }
1218  
1219  static const struct bpf_func_proto bpf_sysctl_get_name_proto = {
1220  	.func		= bpf_sysctl_get_name,
1221  	.gpl_only	= false,
1222  	.ret_type	= RET_INTEGER,
1223  	.arg1_type	= ARG_PTR_TO_CTX,
1224  	.arg2_type	= ARG_PTR_TO_MEM,
1225  	.arg3_type	= ARG_CONST_SIZE,
1226  	.arg4_type	= ARG_ANYTHING,
1227  };
1228  
copy_sysctl_value(char * dst,size_t dst_len,char * src,size_t src_len)1229  static int copy_sysctl_value(char *dst, size_t dst_len, char *src,
1230  			     size_t src_len)
1231  {
1232  	if (!dst)
1233  		return -EINVAL;
1234  
1235  	if (!dst_len)
1236  		return -E2BIG;
1237  
1238  	if (!src || !src_len) {
1239  		memset(dst, 0, dst_len);
1240  		return -EINVAL;
1241  	}
1242  
1243  	memcpy(dst, src, min(dst_len, src_len));
1244  
1245  	if (dst_len > src_len) {
1246  		memset(dst + src_len, '\0', dst_len - src_len);
1247  		return src_len;
1248  	}
1249  
1250  	dst[dst_len - 1] = '\0';
1251  
1252  	return -E2BIG;
1253  }
1254  
BPF_CALL_3(bpf_sysctl_get_current_value,struct bpf_sysctl_kern *,ctx,char *,buf,size_t,buf_len)1255  BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx,
1256  	   char *, buf, size_t, buf_len)
1257  {
1258  	return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len);
1259  }
1260  
1261  static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = {
1262  	.func		= bpf_sysctl_get_current_value,
1263  	.gpl_only	= false,
1264  	.ret_type	= RET_INTEGER,
1265  	.arg1_type	= ARG_PTR_TO_CTX,
1266  	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1267  	.arg3_type	= ARG_CONST_SIZE,
1268  };
1269  
BPF_CALL_3(bpf_sysctl_get_new_value,struct bpf_sysctl_kern *,ctx,char *,buf,size_t,buf_len)1270  BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf,
1271  	   size_t, buf_len)
1272  {
1273  	if (!ctx->write) {
1274  		if (buf && buf_len)
1275  			memset(buf, '\0', buf_len);
1276  		return -EINVAL;
1277  	}
1278  	return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len);
1279  }
1280  
1281  static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = {
1282  	.func		= bpf_sysctl_get_new_value,
1283  	.gpl_only	= false,
1284  	.ret_type	= RET_INTEGER,
1285  	.arg1_type	= ARG_PTR_TO_CTX,
1286  	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1287  	.arg3_type	= ARG_CONST_SIZE,
1288  };
1289  
BPF_CALL_3(bpf_sysctl_set_new_value,struct bpf_sysctl_kern *,ctx,const char *,buf,size_t,buf_len)1290  BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx,
1291  	   const char *, buf, size_t, buf_len)
1292  {
1293  	if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len)
1294  		return -EINVAL;
1295  
1296  	if (buf_len > PAGE_SIZE - 1)
1297  		return -E2BIG;
1298  
1299  	memcpy(ctx->new_val, buf, buf_len);
1300  	ctx->new_len = buf_len;
1301  	ctx->new_updated = 1;
1302  
1303  	return 0;
1304  }
1305  
1306  static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = {
1307  	.func		= bpf_sysctl_set_new_value,
1308  	.gpl_only	= false,
1309  	.ret_type	= RET_INTEGER,
1310  	.arg1_type	= ARG_PTR_TO_CTX,
1311  	.arg2_type	= ARG_PTR_TO_MEM,
1312  	.arg3_type	= ARG_CONST_SIZE,
1313  };
1314  
1315  static const struct bpf_func_proto *
sysctl_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1316  sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1317  {
1318  	switch (func_id) {
1319  	case BPF_FUNC_strtol:
1320  		return &bpf_strtol_proto;
1321  	case BPF_FUNC_strtoul:
1322  		return &bpf_strtoul_proto;
1323  	case BPF_FUNC_sysctl_get_name:
1324  		return &bpf_sysctl_get_name_proto;
1325  	case BPF_FUNC_sysctl_get_current_value:
1326  		return &bpf_sysctl_get_current_value_proto;
1327  	case BPF_FUNC_sysctl_get_new_value:
1328  		return &bpf_sysctl_get_new_value_proto;
1329  	case BPF_FUNC_sysctl_set_new_value:
1330  		return &bpf_sysctl_set_new_value_proto;
1331  	default:
1332  		return cgroup_base_func_proto(func_id, prog);
1333  	}
1334  }
1335  
sysctl_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1336  static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type,
1337  				   const struct bpf_prog *prog,
1338  				   struct bpf_insn_access_aux *info)
1339  {
1340  	const int size_default = sizeof(__u32);
1341  
1342  	if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size)
1343  		return false;
1344  
1345  	switch (off) {
1346  	case bpf_ctx_range(struct bpf_sysctl, write):
1347  		if (type != BPF_READ)
1348  			return false;
1349  		bpf_ctx_record_field_size(info, size_default);
1350  		return bpf_ctx_narrow_access_ok(off, size, size_default);
1351  	case bpf_ctx_range(struct bpf_sysctl, file_pos):
1352  		if (type == BPF_READ) {
1353  			bpf_ctx_record_field_size(info, size_default);
1354  			return bpf_ctx_narrow_access_ok(off, size, size_default);
1355  		} else {
1356  			return size == size_default;
1357  		}
1358  	default:
1359  		return false;
1360  	}
1361  }
1362  
sysctl_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)1363  static u32 sysctl_convert_ctx_access(enum bpf_access_type type,
1364  				     const struct bpf_insn *si,
1365  				     struct bpf_insn *insn_buf,
1366  				     struct bpf_prog *prog, u32 *target_size)
1367  {
1368  	struct bpf_insn *insn = insn_buf;
1369  	u32 read_size;
1370  
1371  	switch (si->off) {
1372  	case offsetof(struct bpf_sysctl, write):
1373  		*insn++ = BPF_LDX_MEM(
1374  			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
1375  			bpf_target_off(struct bpf_sysctl_kern, write,
1376  				       FIELD_SIZEOF(struct bpf_sysctl_kern,
1377  						    write),
1378  				       target_size));
1379  		break;
1380  	case offsetof(struct bpf_sysctl, file_pos):
1381  		/* ppos is a pointer so it should be accessed via indirect
1382  		 * loads and stores. Also for stores additional temporary
1383  		 * register is used since neither src_reg nor dst_reg can be
1384  		 * overridden.
1385  		 */
1386  		if (type == BPF_WRITE) {
1387  			int treg = BPF_REG_9;
1388  
1389  			if (si->src_reg == treg || si->dst_reg == treg)
1390  				--treg;
1391  			if (si->src_reg == treg || si->dst_reg == treg)
1392  				--treg;
1393  			*insn++ = BPF_STX_MEM(
1394  				BPF_DW, si->dst_reg, treg,
1395  				offsetof(struct bpf_sysctl_kern, tmp_reg));
1396  			*insn++ = BPF_LDX_MEM(
1397  				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1398  				treg, si->dst_reg,
1399  				offsetof(struct bpf_sysctl_kern, ppos));
1400  			*insn++ = BPF_STX_MEM(
1401  				BPF_SIZEOF(u32), treg, si->src_reg,
1402  				bpf_ctx_narrow_access_offset(
1403  					0, sizeof(u32), sizeof(loff_t)));
1404  			*insn++ = BPF_LDX_MEM(
1405  				BPF_DW, treg, si->dst_reg,
1406  				offsetof(struct bpf_sysctl_kern, tmp_reg));
1407  		} else {
1408  			*insn++ = BPF_LDX_MEM(
1409  				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1410  				si->dst_reg, si->src_reg,
1411  				offsetof(struct bpf_sysctl_kern, ppos));
1412  			read_size = bpf_size_to_bytes(BPF_SIZE(si->code));
1413  			*insn++ = BPF_LDX_MEM(
1414  				BPF_SIZE(si->code), si->dst_reg, si->dst_reg,
1415  				bpf_ctx_narrow_access_offset(
1416  					0, read_size, sizeof(loff_t)));
1417  		}
1418  		*target_size = sizeof(u32);
1419  		break;
1420  	}
1421  
1422  	return insn - insn_buf;
1423  }
1424  
1425  const struct bpf_verifier_ops cg_sysctl_verifier_ops = {
1426  	.get_func_proto		= sysctl_func_proto,
1427  	.is_valid_access	= sysctl_is_valid_access,
1428  	.convert_ctx_access	= sysctl_convert_ctx_access,
1429  };
1430  
1431  const struct bpf_prog_ops cg_sysctl_prog_ops = {
1432  };
1433  
1434  static const struct bpf_func_proto *
cg_sockopt_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1435  cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1436  {
1437  	switch (func_id) {
1438  #ifdef CONFIG_NET
1439  	case BPF_FUNC_sk_storage_get:
1440  		return &bpf_sk_storage_get_proto;
1441  	case BPF_FUNC_sk_storage_delete:
1442  		return &bpf_sk_storage_delete_proto;
1443  #endif
1444  #ifdef CONFIG_INET
1445  	case BPF_FUNC_tcp_sock:
1446  		return &bpf_tcp_sock_proto;
1447  #endif
1448  	default:
1449  		return cgroup_base_func_proto(func_id, prog);
1450  	}
1451  }
1452  
cg_sockopt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1453  static bool cg_sockopt_is_valid_access(int off, int size,
1454  				       enum bpf_access_type type,
1455  				       const struct bpf_prog *prog,
1456  				       struct bpf_insn_access_aux *info)
1457  {
1458  	const int size_default = sizeof(__u32);
1459  
1460  	if (off < 0 || off >= sizeof(struct bpf_sockopt))
1461  		return false;
1462  
1463  	if (off % size != 0)
1464  		return false;
1465  
1466  	if (type == BPF_WRITE) {
1467  		switch (off) {
1468  		case offsetof(struct bpf_sockopt, retval):
1469  			if (size != size_default)
1470  				return false;
1471  			return prog->expected_attach_type ==
1472  				BPF_CGROUP_GETSOCKOPT;
1473  		case offsetof(struct bpf_sockopt, optname):
1474  			/* fallthrough */
1475  		case offsetof(struct bpf_sockopt, level):
1476  			if (size != size_default)
1477  				return false;
1478  			return prog->expected_attach_type ==
1479  				BPF_CGROUP_SETSOCKOPT;
1480  		case offsetof(struct bpf_sockopt, optlen):
1481  			return size == size_default;
1482  		default:
1483  			return false;
1484  		}
1485  	}
1486  
1487  	switch (off) {
1488  	case offsetof(struct bpf_sockopt, sk):
1489  		if (size != sizeof(__u64))
1490  			return false;
1491  		info->reg_type = PTR_TO_SOCKET;
1492  		break;
1493  	case offsetof(struct bpf_sockopt, optval):
1494  		if (size != sizeof(__u64))
1495  			return false;
1496  		info->reg_type = PTR_TO_PACKET;
1497  		break;
1498  	case offsetof(struct bpf_sockopt, optval_end):
1499  		if (size != sizeof(__u64))
1500  			return false;
1501  		info->reg_type = PTR_TO_PACKET_END;
1502  		break;
1503  	case offsetof(struct bpf_sockopt, retval):
1504  		if (size != size_default)
1505  			return false;
1506  		return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT;
1507  	default:
1508  		if (size != size_default)
1509  			return false;
1510  		break;
1511  	}
1512  	return true;
1513  }
1514  
1515  #define CG_SOCKOPT_ACCESS_FIELD(T, F)					\
1516  	T(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F),			\
1517  	  si->dst_reg, si->src_reg,					\
1518  	  offsetof(struct bpf_sockopt_kern, F))
1519  
cg_sockopt_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)1520  static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type,
1521  					 const struct bpf_insn *si,
1522  					 struct bpf_insn *insn_buf,
1523  					 struct bpf_prog *prog,
1524  					 u32 *target_size)
1525  {
1526  	struct bpf_insn *insn = insn_buf;
1527  
1528  	switch (si->off) {
1529  	case offsetof(struct bpf_sockopt, sk):
1530  		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, sk);
1531  		break;
1532  	case offsetof(struct bpf_sockopt, level):
1533  		if (type == BPF_WRITE)
1534  			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, level);
1535  		else
1536  			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, level);
1537  		break;
1538  	case offsetof(struct bpf_sockopt, optname):
1539  		if (type == BPF_WRITE)
1540  			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optname);
1541  		else
1542  			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optname);
1543  		break;
1544  	case offsetof(struct bpf_sockopt, optlen):
1545  		if (type == BPF_WRITE)
1546  			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optlen);
1547  		else
1548  			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optlen);
1549  		break;
1550  	case offsetof(struct bpf_sockopt, retval):
1551  		if (type == BPF_WRITE)
1552  			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, retval);
1553  		else
1554  			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, retval);
1555  		break;
1556  	case offsetof(struct bpf_sockopt, optval):
1557  		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval);
1558  		break;
1559  	case offsetof(struct bpf_sockopt, optval_end):
1560  		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval_end);
1561  		break;
1562  	}
1563  
1564  	return insn - insn_buf;
1565  }
1566  
cg_sockopt_get_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)1567  static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf,
1568  				   bool direct_write,
1569  				   const struct bpf_prog *prog)
1570  {
1571  	/* Nothing to do for sockopt argument. The data is kzalloc'ated.
1572  	 */
1573  	return 0;
1574  }
1575  
1576  const struct bpf_verifier_ops cg_sockopt_verifier_ops = {
1577  	.get_func_proto		= cg_sockopt_func_proto,
1578  	.is_valid_access	= cg_sockopt_is_valid_access,
1579  	.convert_ctx_access	= cg_sockopt_convert_ctx_access,
1580  	.gen_prologue		= cg_sockopt_get_prologue,
1581  };
1582  
1583  const struct bpf_prog_ops cg_sockopt_prog_ops = {
1584  };
1585