1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54
55 #include "workqueue_internal.h"
56
57 #include <trace/hooks/wqlockup.h>
58 /* events/workqueue.h uses default TRACE_INCLUDE_PATH */
59 #undef TRACE_INCLUDE_PATH
60
61 enum {
62 /*
63 * worker_pool flags
64 *
65 * A bound pool is either associated or disassociated with its CPU.
66 * While associated (!DISASSOCIATED), all workers are bound to the
67 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 * is in effect.
69 *
70 * While DISASSOCIATED, the cpu may be offline and all workers have
71 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 * be executing on any CPU. The pool behaves as an unbound one.
73 *
74 * Note that DISASSOCIATED should be flipped only while holding
75 * wq_pool_attach_mutex to avoid changing binding state while
76 * worker_attach_to_pool() is in progress.
77 */
78 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
79 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
80
81 /* worker flags */
82 WORKER_DIE = 1 << 1, /* die die die */
83 WORKER_IDLE = 1 << 2, /* is idle */
84 WORKER_PREP = 1 << 3, /* preparing to run works */
85 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
86 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
87 WORKER_REBOUND = 1 << 8, /* worker was rebound */
88
89 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
90 WORKER_UNBOUND | WORKER_REBOUND,
91
92 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
93
94 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
95 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
96
97 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
98 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
99
100 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
101 /* call for help after 10ms
102 (min two ticks) */
103 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
104 CREATE_COOLDOWN = HZ, /* time to breath after fail */
105
106 /*
107 * Rescue workers are used only on emergencies and shared by
108 * all cpus. Give MIN_NICE.
109 */
110 RESCUER_NICE_LEVEL = MIN_NICE,
111 HIGHPRI_NICE_LEVEL = MIN_NICE,
112
113 WQ_NAME_LEN = 24,
114 };
115
116 /*
117 * Structure fields follow one of the following exclusion rules.
118 *
119 * I: Modifiable by initialization/destruction paths and read-only for
120 * everyone else.
121 *
122 * P: Preemption protected. Disabling preemption is enough and should
123 * only be modified and accessed from the local cpu.
124 *
125 * L: pool->lock protected. Access with pool->lock held.
126 *
127 * X: During normal operation, modification requires pool->lock and should
128 * be done only from local cpu. Either disabling preemption on local
129 * cpu or grabbing pool->lock is enough for read access. If
130 * POOL_DISASSOCIATED is set, it's identical to L.
131 *
132 * A: wq_pool_attach_mutex protected.
133 *
134 * PL: wq_pool_mutex protected.
135 *
136 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
137 *
138 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
139 *
140 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
141 * RCU for reads.
142 *
143 * WQ: wq->mutex protected.
144 *
145 * WR: wq->mutex protected for writes. RCU protected for reads.
146 *
147 * MD: wq_mayday_lock protected.
148 */
149
150 /* struct worker is defined in workqueue_internal.h */
151
152 struct worker_pool {
153 spinlock_t lock; /* the pool lock */
154 int cpu; /* I: the associated cpu */
155 int node; /* I: the associated node ID */
156 int id; /* I: pool ID */
157 unsigned int flags; /* X: flags */
158
159 unsigned long watchdog_ts; /* L: watchdog timestamp */
160
161 struct list_head worklist; /* L: list of pending works */
162
163 int nr_workers; /* L: total number of workers */
164 int nr_idle; /* L: currently idle workers */
165
166 struct list_head idle_list; /* X: list of idle workers */
167 struct timer_list idle_timer; /* L: worker idle timeout */
168 struct timer_list mayday_timer; /* L: SOS timer for workers */
169
170 /* a workers is either on busy_hash or idle_list, or the manager */
171 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
172 /* L: hash of busy workers */
173
174 struct worker *manager; /* L: purely informational */
175 struct list_head workers; /* A: attached workers */
176 struct completion *detach_completion; /* all workers detached */
177
178 struct ida worker_ida; /* worker IDs for task name */
179
180 struct workqueue_attrs *attrs; /* I: worker attributes */
181 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
182 int refcnt; /* PL: refcnt for unbound pools */
183
184 /*
185 * The current concurrency level. As it's likely to be accessed
186 * from other CPUs during try_to_wake_up(), put it in a separate
187 * cacheline.
188 */
189 atomic_t nr_running ____cacheline_aligned_in_smp;
190
191 /*
192 * Destruction of pool is RCU protected to allow dereferences
193 * from get_work_pool().
194 */
195 struct rcu_head rcu;
196 } ____cacheline_aligned_in_smp;
197
198 /*
199 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
200 * of work_struct->data are used for flags and the remaining high bits
201 * point to the pwq; thus, pwqs need to be aligned at two's power of the
202 * number of flag bits.
203 */
204 struct pool_workqueue {
205 struct worker_pool *pool; /* I: the associated pool */
206 struct workqueue_struct *wq; /* I: the owning workqueue */
207 int work_color; /* L: current color */
208 int flush_color; /* L: flushing color */
209 int refcnt; /* L: reference count */
210 int nr_in_flight[WORK_NR_COLORS];
211 /* L: nr of in_flight works */
212 int nr_active; /* L: nr of active works */
213 int max_active; /* L: max active works */
214 struct list_head delayed_works; /* L: delayed works */
215 struct list_head pwqs_node; /* WR: node on wq->pwqs */
216 struct list_head mayday_node; /* MD: node on wq->maydays */
217
218 /*
219 * Release of unbound pwq is punted to system_wq. See put_pwq()
220 * and pwq_unbound_release_workfn() for details. pool_workqueue
221 * itself is also RCU protected so that the first pwq can be
222 * determined without grabbing wq->mutex.
223 */
224 struct work_struct unbound_release_work;
225 struct rcu_head rcu;
226 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
227
228 /*
229 * Structure used to wait for workqueue flush.
230 */
231 struct wq_flusher {
232 struct list_head list; /* WQ: list of flushers */
233 int flush_color; /* WQ: flush color waiting for */
234 struct completion done; /* flush completion */
235 };
236
237 struct wq_device;
238
239 /*
240 * The externally visible workqueue. It relays the issued work items to
241 * the appropriate worker_pool through its pool_workqueues.
242 */
243 struct workqueue_struct {
244 struct list_head pwqs; /* WR: all pwqs of this wq */
245 struct list_head list; /* PR: list of all workqueues */
246
247 struct mutex mutex; /* protects this wq */
248 int work_color; /* WQ: current work color */
249 int flush_color; /* WQ: current flush color */
250 atomic_t nr_pwqs_to_flush; /* flush in progress */
251 struct wq_flusher *first_flusher; /* WQ: first flusher */
252 struct list_head flusher_queue; /* WQ: flush waiters */
253 struct list_head flusher_overflow; /* WQ: flush overflow list */
254
255 struct list_head maydays; /* MD: pwqs requesting rescue */
256 struct worker *rescuer; /* I: rescue worker */
257
258 int nr_drainers; /* WQ: drain in progress */
259 int saved_max_active; /* WQ: saved pwq max_active */
260
261 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
262 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
263
264 #ifdef CONFIG_SYSFS
265 struct wq_device *wq_dev; /* I: for sysfs interface */
266 #endif
267 #ifdef CONFIG_LOCKDEP
268 char *lock_name;
269 struct lock_class_key key;
270 struct lockdep_map lockdep_map;
271 #endif
272 char name[WQ_NAME_LEN]; /* I: workqueue name */
273
274 /*
275 * Destruction of workqueue_struct is RCU protected to allow walking
276 * the workqueues list without grabbing wq_pool_mutex.
277 * This is used to dump all workqueues from sysrq.
278 */
279 struct rcu_head rcu;
280
281 /* hot fields used during command issue, aligned to cacheline */
282 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
283 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
284 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
285 };
286
287 static struct kmem_cache *pwq_cache;
288
289 static cpumask_var_t *wq_numa_possible_cpumask;
290 /* possible CPUs of each node */
291
292 static bool wq_disable_numa;
293 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
294
295 /* see the comment above the definition of WQ_POWER_EFFICIENT */
296 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
297 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
298
299 static bool wq_online; /* can kworkers be created yet? */
300
301 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
302
303 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
304 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
305
306 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
307 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
308 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
309 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
310
311 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
312 static bool workqueue_freezing; /* PL: have wqs started freezing? */
313
314 /* PL: allowable cpus for unbound wqs and work items */
315 static cpumask_var_t wq_unbound_cpumask;
316
317 /* CPU where unbound work was last round robin scheduled from this CPU */
318 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
319
320 /*
321 * Local execution of unbound work items is no longer guaranteed. The
322 * following always forces round-robin CPU selection on unbound work items
323 * to uncover usages which depend on it.
324 */
325 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
326 static bool wq_debug_force_rr_cpu = true;
327 #else
328 static bool wq_debug_force_rr_cpu = false;
329 #endif
330 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
331
332 /* the per-cpu worker pools */
333 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
334
335 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
336
337 /* PL: hash of all unbound pools keyed by pool->attrs */
338 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
339
340 /* I: attributes used when instantiating standard unbound pools on demand */
341 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
342
343 /* I: attributes used when instantiating ordered pools on demand */
344 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
345
346 struct workqueue_struct *system_wq __read_mostly;
347 EXPORT_SYMBOL(system_wq);
348 struct workqueue_struct *system_highpri_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_highpri_wq);
350 struct workqueue_struct *system_long_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_long_wq);
352 struct workqueue_struct *system_unbound_wq __read_mostly;
353 EXPORT_SYMBOL_GPL(system_unbound_wq);
354 struct workqueue_struct *system_freezable_wq __read_mostly;
355 EXPORT_SYMBOL_GPL(system_freezable_wq);
356 struct workqueue_struct *system_power_efficient_wq __read_mostly;
357 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
358 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
359 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
360
361 static int worker_thread(void *__worker);
362 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
363
364 #define CREATE_TRACE_POINTS
365 #include <trace/events/workqueue.h>
366
367 #define assert_rcu_or_pool_mutex() \
368 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
369 !lockdep_is_held(&wq_pool_mutex), \
370 "RCU or wq_pool_mutex should be held")
371
372 #define assert_rcu_or_wq_mutex(wq) \
373 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
374 !lockdep_is_held(&wq->mutex), \
375 "RCU or wq->mutex should be held")
376
377 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
378 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
379 !lockdep_is_held(&wq->mutex) && \
380 !lockdep_is_held(&wq_pool_mutex), \
381 "RCU, wq->mutex or wq_pool_mutex should be held")
382
383 #define for_each_cpu_worker_pool(pool, cpu) \
384 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
385 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
386 (pool)++)
387
388 /**
389 * for_each_pool - iterate through all worker_pools in the system
390 * @pool: iteration cursor
391 * @pi: integer used for iteration
392 *
393 * This must be called either with wq_pool_mutex held or RCU read
394 * locked. If the pool needs to be used beyond the locking in effect, the
395 * caller is responsible for guaranteeing that the pool stays online.
396 *
397 * The if/else clause exists only for the lockdep assertion and can be
398 * ignored.
399 */
400 #define for_each_pool(pool, pi) \
401 idr_for_each_entry(&worker_pool_idr, pool, pi) \
402 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
403 else
404
405 /**
406 * for_each_pool_worker - iterate through all workers of a worker_pool
407 * @worker: iteration cursor
408 * @pool: worker_pool to iterate workers of
409 *
410 * This must be called with wq_pool_attach_mutex.
411 *
412 * The if/else clause exists only for the lockdep assertion and can be
413 * ignored.
414 */
415 #define for_each_pool_worker(worker, pool) \
416 list_for_each_entry((worker), &(pool)->workers, node) \
417 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
418 else
419
420 /**
421 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
422 * @pwq: iteration cursor
423 * @wq: the target workqueue
424 *
425 * This must be called either with wq->mutex held or RCU read locked.
426 * If the pwq needs to be used beyond the locking in effect, the caller is
427 * responsible for guaranteeing that the pwq stays online.
428 *
429 * The if/else clause exists only for the lockdep assertion and can be
430 * ignored.
431 */
432 #define for_each_pwq(pwq, wq) \
433 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
434 lockdep_is_held(&wq->mutex)) \
435 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
436 else
437
438 #ifdef CONFIG_DEBUG_OBJECTS_WORK
439
440 static struct debug_obj_descr work_debug_descr;
441
work_debug_hint(void * addr)442 static void *work_debug_hint(void *addr)
443 {
444 return ((struct work_struct *) addr)->func;
445 }
446
work_is_static_object(void * addr)447 static bool work_is_static_object(void *addr)
448 {
449 struct work_struct *work = addr;
450
451 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
452 }
453
454 /*
455 * fixup_init is called when:
456 * - an active object is initialized
457 */
work_fixup_init(void * addr,enum debug_obj_state state)458 static bool work_fixup_init(void *addr, enum debug_obj_state state)
459 {
460 struct work_struct *work = addr;
461
462 switch (state) {
463 case ODEBUG_STATE_ACTIVE:
464 cancel_work_sync(work);
465 debug_object_init(work, &work_debug_descr);
466 return true;
467 default:
468 return false;
469 }
470 }
471
472 /*
473 * fixup_free is called when:
474 * - an active object is freed
475 */
work_fixup_free(void * addr,enum debug_obj_state state)476 static bool work_fixup_free(void *addr, enum debug_obj_state state)
477 {
478 struct work_struct *work = addr;
479
480 switch (state) {
481 case ODEBUG_STATE_ACTIVE:
482 cancel_work_sync(work);
483 debug_object_free(work, &work_debug_descr);
484 return true;
485 default:
486 return false;
487 }
488 }
489
490 static struct debug_obj_descr work_debug_descr = {
491 .name = "work_struct",
492 .debug_hint = work_debug_hint,
493 .is_static_object = work_is_static_object,
494 .fixup_init = work_fixup_init,
495 .fixup_free = work_fixup_free,
496 };
497
debug_work_activate(struct work_struct * work)498 static inline void debug_work_activate(struct work_struct *work)
499 {
500 debug_object_activate(work, &work_debug_descr);
501 }
502
debug_work_deactivate(struct work_struct * work)503 static inline void debug_work_deactivate(struct work_struct *work)
504 {
505 debug_object_deactivate(work, &work_debug_descr);
506 }
507
__init_work(struct work_struct * work,int onstack)508 void __init_work(struct work_struct *work, int onstack)
509 {
510 if (onstack)
511 debug_object_init_on_stack(work, &work_debug_descr);
512 else
513 debug_object_init(work, &work_debug_descr);
514 }
515 EXPORT_SYMBOL_GPL(__init_work);
516
destroy_work_on_stack(struct work_struct * work)517 void destroy_work_on_stack(struct work_struct *work)
518 {
519 debug_object_free(work, &work_debug_descr);
520 }
521 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
522
destroy_delayed_work_on_stack(struct delayed_work * work)523 void destroy_delayed_work_on_stack(struct delayed_work *work)
524 {
525 destroy_timer_on_stack(&work->timer);
526 debug_object_free(&work->work, &work_debug_descr);
527 }
528 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
529
530 #else
debug_work_activate(struct work_struct * work)531 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)532 static inline void debug_work_deactivate(struct work_struct *work) { }
533 #endif
534
535 /**
536 * worker_pool_assign_id - allocate ID and assing it to @pool
537 * @pool: the pool pointer of interest
538 *
539 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
540 * successfully, -errno on failure.
541 */
worker_pool_assign_id(struct worker_pool * pool)542 static int worker_pool_assign_id(struct worker_pool *pool)
543 {
544 int ret;
545
546 lockdep_assert_held(&wq_pool_mutex);
547
548 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
549 GFP_KERNEL);
550 if (ret >= 0) {
551 pool->id = ret;
552 return 0;
553 }
554 return ret;
555 }
556
557 /**
558 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
559 * @wq: the target workqueue
560 * @node: the node ID
561 *
562 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
563 * read locked.
564 * If the pwq needs to be used beyond the locking in effect, the caller is
565 * responsible for guaranteeing that the pwq stays online.
566 *
567 * Return: The unbound pool_workqueue for @node.
568 */
unbound_pwq_by_node(struct workqueue_struct * wq,int node)569 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
570 int node)
571 {
572 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
573
574 /*
575 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
576 * delayed item is pending. The plan is to keep CPU -> NODE
577 * mapping valid and stable across CPU on/offlines. Once that
578 * happens, this workaround can be removed.
579 */
580 if (unlikely(node == NUMA_NO_NODE))
581 return wq->dfl_pwq;
582
583 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
584 }
585
work_color_to_flags(int color)586 static unsigned int work_color_to_flags(int color)
587 {
588 return color << WORK_STRUCT_COLOR_SHIFT;
589 }
590
get_work_color(struct work_struct * work)591 static int get_work_color(struct work_struct *work)
592 {
593 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
594 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
595 }
596
work_next_color(int color)597 static int work_next_color(int color)
598 {
599 return (color + 1) % WORK_NR_COLORS;
600 }
601
602 /*
603 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
604 * contain the pointer to the queued pwq. Once execution starts, the flag
605 * is cleared and the high bits contain OFFQ flags and pool ID.
606 *
607 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
608 * and clear_work_data() can be used to set the pwq, pool or clear
609 * work->data. These functions should only be called while the work is
610 * owned - ie. while the PENDING bit is set.
611 *
612 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
613 * corresponding to a work. Pool is available once the work has been
614 * queued anywhere after initialization until it is sync canceled. pwq is
615 * available only while the work item is queued.
616 *
617 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
618 * canceled. While being canceled, a work item may have its PENDING set
619 * but stay off timer and worklist for arbitrarily long and nobody should
620 * try to steal the PENDING bit.
621 */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)622 static inline void set_work_data(struct work_struct *work, unsigned long data,
623 unsigned long flags)
624 {
625 WARN_ON_ONCE(!work_pending(work));
626 atomic_long_set(&work->data, data | flags | work_static(work));
627 }
628
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)629 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
630 unsigned long extra_flags)
631 {
632 set_work_data(work, (unsigned long)pwq,
633 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
634 }
635
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)636 static void set_work_pool_and_keep_pending(struct work_struct *work,
637 int pool_id)
638 {
639 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
640 WORK_STRUCT_PENDING);
641 }
642
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)643 static void set_work_pool_and_clear_pending(struct work_struct *work,
644 int pool_id)
645 {
646 /*
647 * The following wmb is paired with the implied mb in
648 * test_and_set_bit(PENDING) and ensures all updates to @work made
649 * here are visible to and precede any updates by the next PENDING
650 * owner.
651 */
652 smp_wmb();
653 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
654 /*
655 * The following mb guarantees that previous clear of a PENDING bit
656 * will not be reordered with any speculative LOADS or STORES from
657 * work->current_func, which is executed afterwards. This possible
658 * reordering can lead to a missed execution on attempt to queue
659 * the same @work. E.g. consider this case:
660 *
661 * CPU#0 CPU#1
662 * ---------------------------- --------------------------------
663 *
664 * 1 STORE event_indicated
665 * 2 queue_work_on() {
666 * 3 test_and_set_bit(PENDING)
667 * 4 } set_..._and_clear_pending() {
668 * 5 set_work_data() # clear bit
669 * 6 smp_mb()
670 * 7 work->current_func() {
671 * 8 LOAD event_indicated
672 * }
673 *
674 * Without an explicit full barrier speculative LOAD on line 8 can
675 * be executed before CPU#0 does STORE on line 1. If that happens,
676 * CPU#0 observes the PENDING bit is still set and new execution of
677 * a @work is not queued in a hope, that CPU#1 will eventually
678 * finish the queued @work. Meanwhile CPU#1 does not see
679 * event_indicated is set, because speculative LOAD was executed
680 * before actual STORE.
681 */
682 smp_mb();
683 }
684
clear_work_data(struct work_struct * work)685 static void clear_work_data(struct work_struct *work)
686 {
687 smp_wmb(); /* see set_work_pool_and_clear_pending() */
688 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
689 }
690
work_struct_pwq(unsigned long data)691 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
692 {
693 return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
694 }
695
get_work_pwq(struct work_struct * work)696 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
697 {
698 unsigned long data = atomic_long_read(&work->data);
699
700 if (data & WORK_STRUCT_PWQ)
701 return work_struct_pwq(data);
702 else
703 return NULL;
704 }
705
706 /**
707 * get_work_pool - return the worker_pool a given work was associated with
708 * @work: the work item of interest
709 *
710 * Pools are created and destroyed under wq_pool_mutex, and allows read
711 * access under RCU read lock. As such, this function should be
712 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
713 *
714 * All fields of the returned pool are accessible as long as the above
715 * mentioned locking is in effect. If the returned pool needs to be used
716 * beyond the critical section, the caller is responsible for ensuring the
717 * returned pool is and stays online.
718 *
719 * Return: The worker_pool @work was last associated with. %NULL if none.
720 */
get_work_pool(struct work_struct * work)721 static struct worker_pool *get_work_pool(struct work_struct *work)
722 {
723 unsigned long data = atomic_long_read(&work->data);
724 int pool_id;
725
726 assert_rcu_or_pool_mutex();
727
728 if (data & WORK_STRUCT_PWQ)
729 return work_struct_pwq(data)->pool;
730
731 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
732 if (pool_id == WORK_OFFQ_POOL_NONE)
733 return NULL;
734
735 return idr_find(&worker_pool_idr, pool_id);
736 }
737
738 /**
739 * get_work_pool_id - return the worker pool ID a given work is associated with
740 * @work: the work item of interest
741 *
742 * Return: The worker_pool ID @work was last associated with.
743 * %WORK_OFFQ_POOL_NONE if none.
744 */
get_work_pool_id(struct work_struct * work)745 static int get_work_pool_id(struct work_struct *work)
746 {
747 unsigned long data = atomic_long_read(&work->data);
748
749 if (data & WORK_STRUCT_PWQ)
750 return work_struct_pwq(data)->pool->id;
751
752 return data >> WORK_OFFQ_POOL_SHIFT;
753 }
754
mark_work_canceling(struct work_struct * work)755 static void mark_work_canceling(struct work_struct *work)
756 {
757 unsigned long pool_id = get_work_pool_id(work);
758
759 pool_id <<= WORK_OFFQ_POOL_SHIFT;
760 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
761 }
762
work_is_canceling(struct work_struct * work)763 static bool work_is_canceling(struct work_struct *work)
764 {
765 unsigned long data = atomic_long_read(&work->data);
766
767 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
768 }
769
770 /*
771 * Policy functions. These define the policies on how the global worker
772 * pools are managed. Unless noted otherwise, these functions assume that
773 * they're being called with pool->lock held.
774 */
775
__need_more_worker(struct worker_pool * pool)776 static bool __need_more_worker(struct worker_pool *pool)
777 {
778 return !atomic_read(&pool->nr_running);
779 }
780
781 /*
782 * Need to wake up a worker? Called from anything but currently
783 * running workers.
784 *
785 * Note that, because unbound workers never contribute to nr_running, this
786 * function will always return %true for unbound pools as long as the
787 * worklist isn't empty.
788 */
need_more_worker(struct worker_pool * pool)789 static bool need_more_worker(struct worker_pool *pool)
790 {
791 return !list_empty(&pool->worklist) && __need_more_worker(pool);
792 }
793
794 /* Can I start working? Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)795 static bool may_start_working(struct worker_pool *pool)
796 {
797 return pool->nr_idle;
798 }
799
800 /* Do I need to keep working? Called from currently running workers. */
keep_working(struct worker_pool * pool)801 static bool keep_working(struct worker_pool *pool)
802 {
803 return !list_empty(&pool->worklist) &&
804 atomic_read(&pool->nr_running) <= 1;
805 }
806
807 /* Do we need a new worker? Called from manager. */
need_to_create_worker(struct worker_pool * pool)808 static bool need_to_create_worker(struct worker_pool *pool)
809 {
810 return need_more_worker(pool) && !may_start_working(pool);
811 }
812
813 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)814 static bool too_many_workers(struct worker_pool *pool)
815 {
816 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
817 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
818 int nr_busy = pool->nr_workers - nr_idle;
819
820 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
821 }
822
823 /*
824 * Wake up functions.
825 */
826
827 /* Return the first idle worker. Safe with preemption disabled */
first_idle_worker(struct worker_pool * pool)828 static struct worker *first_idle_worker(struct worker_pool *pool)
829 {
830 if (unlikely(list_empty(&pool->idle_list)))
831 return NULL;
832
833 return list_first_entry(&pool->idle_list, struct worker, entry);
834 }
835
836 /**
837 * wake_up_worker - wake up an idle worker
838 * @pool: worker pool to wake worker from
839 *
840 * Wake up the first idle worker of @pool.
841 *
842 * CONTEXT:
843 * spin_lock_irq(pool->lock).
844 */
wake_up_worker(struct worker_pool * pool)845 static void wake_up_worker(struct worker_pool *pool)
846 {
847 struct worker *worker = first_idle_worker(pool);
848
849 if (likely(worker))
850 wake_up_process(worker->task);
851 }
852
853 /**
854 * wq_worker_running - a worker is running again
855 * @task: task waking up
856 *
857 * This function is called when a worker returns from schedule()
858 */
wq_worker_running(struct task_struct * task)859 void wq_worker_running(struct task_struct *task)
860 {
861 struct worker *worker = kthread_data(task);
862
863 if (!worker->sleeping)
864 return;
865
866 /*
867 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
868 * and the nr_running increment below, we may ruin the nr_running reset
869 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
870 * pool. Protect against such race.
871 */
872 preempt_disable();
873 if (!(worker->flags & WORKER_NOT_RUNNING))
874 atomic_inc(&worker->pool->nr_running);
875 preempt_enable();
876 worker->sleeping = 0;
877 }
878
879 /**
880 * wq_worker_sleeping - a worker is going to sleep
881 * @task: task going to sleep
882 *
883 * This function is called from schedule() when a busy worker is
884 * going to sleep. Preemption needs to be disabled to protect ->sleeping
885 * assignment.
886 */
wq_worker_sleeping(struct task_struct * task)887 void wq_worker_sleeping(struct task_struct *task)
888 {
889 struct worker *next, *worker = kthread_data(task);
890 struct worker_pool *pool;
891
892 /*
893 * Rescuers, which may not have all the fields set up like normal
894 * workers, also reach here, let's not access anything before
895 * checking NOT_RUNNING.
896 */
897 if (worker->flags & WORKER_NOT_RUNNING)
898 return;
899
900 pool = worker->pool;
901
902 /* Return if preempted before wq_worker_running() was reached */
903 if (worker->sleeping)
904 return;
905
906 worker->sleeping = 1;
907 spin_lock_irq(&pool->lock);
908
909 /*
910 * The counterpart of the following dec_and_test, implied mb,
911 * worklist not empty test sequence is in insert_work().
912 * Please read comment there.
913 *
914 * NOT_RUNNING is clear. This means that we're bound to and
915 * running on the local cpu w/ rq lock held and preemption
916 * disabled, which in turn means that none else could be
917 * manipulating idle_list, so dereferencing idle_list without pool
918 * lock is safe.
919 */
920 if (atomic_dec_and_test(&pool->nr_running) &&
921 !list_empty(&pool->worklist)) {
922 next = first_idle_worker(pool);
923 if (next)
924 wake_up_process(next->task);
925 }
926 spin_unlock_irq(&pool->lock);
927 }
928
929 /**
930 * wq_worker_last_func - retrieve worker's last work function
931 * @task: Task to retrieve last work function of.
932 *
933 * Determine the last function a worker executed. This is called from
934 * the scheduler to get a worker's last known identity.
935 *
936 * CONTEXT:
937 * spin_lock_irq(rq->lock)
938 *
939 * This function is called during schedule() when a kworker is going
940 * to sleep. It's used by psi to identify aggregation workers during
941 * dequeuing, to allow periodic aggregation to shut-off when that
942 * worker is the last task in the system or cgroup to go to sleep.
943 *
944 * As this function doesn't involve any workqueue-related locking, it
945 * only returns stable values when called from inside the scheduler's
946 * queuing and dequeuing paths, when @task, which must be a kworker,
947 * is guaranteed to not be processing any works.
948 *
949 * Return:
950 * The last work function %current executed as a worker, NULL if it
951 * hasn't executed any work yet.
952 */
wq_worker_last_func(struct task_struct * task)953 work_func_t wq_worker_last_func(struct task_struct *task)
954 {
955 struct worker *worker = kthread_data(task);
956
957 return worker->last_func;
958 }
959
960 /**
961 * worker_set_flags - set worker flags and adjust nr_running accordingly
962 * @worker: self
963 * @flags: flags to set
964 *
965 * Set @flags in @worker->flags and adjust nr_running accordingly.
966 *
967 * CONTEXT:
968 * spin_lock_irq(pool->lock)
969 */
worker_set_flags(struct worker * worker,unsigned int flags)970 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
971 {
972 struct worker_pool *pool = worker->pool;
973
974 WARN_ON_ONCE(worker->task != current);
975
976 /* If transitioning into NOT_RUNNING, adjust nr_running. */
977 if ((flags & WORKER_NOT_RUNNING) &&
978 !(worker->flags & WORKER_NOT_RUNNING)) {
979 atomic_dec(&pool->nr_running);
980 }
981
982 worker->flags |= flags;
983 }
984
985 /**
986 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
987 * @worker: self
988 * @flags: flags to clear
989 *
990 * Clear @flags in @worker->flags and adjust nr_running accordingly.
991 *
992 * CONTEXT:
993 * spin_lock_irq(pool->lock)
994 */
worker_clr_flags(struct worker * worker,unsigned int flags)995 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
996 {
997 struct worker_pool *pool = worker->pool;
998 unsigned int oflags = worker->flags;
999
1000 WARN_ON_ONCE(worker->task != current);
1001
1002 worker->flags &= ~flags;
1003
1004 /*
1005 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1006 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1007 * of multiple flags, not a single flag.
1008 */
1009 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1010 if (!(worker->flags & WORKER_NOT_RUNNING))
1011 atomic_inc(&pool->nr_running);
1012 }
1013
1014 /**
1015 * find_worker_executing_work - find worker which is executing a work
1016 * @pool: pool of interest
1017 * @work: work to find worker for
1018 *
1019 * Find a worker which is executing @work on @pool by searching
1020 * @pool->busy_hash which is keyed by the address of @work. For a worker
1021 * to match, its current execution should match the address of @work and
1022 * its work function. This is to avoid unwanted dependency between
1023 * unrelated work executions through a work item being recycled while still
1024 * being executed.
1025 *
1026 * This is a bit tricky. A work item may be freed once its execution
1027 * starts and nothing prevents the freed area from being recycled for
1028 * another work item. If the same work item address ends up being reused
1029 * before the original execution finishes, workqueue will identify the
1030 * recycled work item as currently executing and make it wait until the
1031 * current execution finishes, introducing an unwanted dependency.
1032 *
1033 * This function checks the work item address and work function to avoid
1034 * false positives. Note that this isn't complete as one may construct a
1035 * work function which can introduce dependency onto itself through a
1036 * recycled work item. Well, if somebody wants to shoot oneself in the
1037 * foot that badly, there's only so much we can do, and if such deadlock
1038 * actually occurs, it should be easy to locate the culprit work function.
1039 *
1040 * CONTEXT:
1041 * spin_lock_irq(pool->lock).
1042 *
1043 * Return:
1044 * Pointer to worker which is executing @work if found, %NULL
1045 * otherwise.
1046 */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1047 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1048 struct work_struct *work)
1049 {
1050 struct worker *worker;
1051
1052 hash_for_each_possible(pool->busy_hash, worker, hentry,
1053 (unsigned long)work)
1054 if (worker->current_work == work &&
1055 worker->current_func == work->func)
1056 return worker;
1057
1058 return NULL;
1059 }
1060
1061 /**
1062 * move_linked_works - move linked works to a list
1063 * @work: start of series of works to be scheduled
1064 * @head: target list to append @work to
1065 * @nextp: out parameter for nested worklist walking
1066 *
1067 * Schedule linked works starting from @work to @head. Work series to
1068 * be scheduled starts at @work and includes any consecutive work with
1069 * WORK_STRUCT_LINKED set in its predecessor.
1070 *
1071 * If @nextp is not NULL, it's updated to point to the next work of
1072 * the last scheduled work. This allows move_linked_works() to be
1073 * nested inside outer list_for_each_entry_safe().
1074 *
1075 * CONTEXT:
1076 * spin_lock_irq(pool->lock).
1077 */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1078 static void move_linked_works(struct work_struct *work, struct list_head *head,
1079 struct work_struct **nextp)
1080 {
1081 struct work_struct *n;
1082
1083 /*
1084 * Linked worklist will always end before the end of the list,
1085 * use NULL for list head.
1086 */
1087 list_for_each_entry_safe_from(work, n, NULL, entry) {
1088 list_move_tail(&work->entry, head);
1089 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1090 break;
1091 }
1092
1093 /*
1094 * If we're already inside safe list traversal and have moved
1095 * multiple works to the scheduled queue, the next position
1096 * needs to be updated.
1097 */
1098 if (nextp)
1099 *nextp = n;
1100 }
1101
1102 /**
1103 * get_pwq - get an extra reference on the specified pool_workqueue
1104 * @pwq: pool_workqueue to get
1105 *
1106 * Obtain an extra reference on @pwq. The caller should guarantee that
1107 * @pwq has positive refcnt and be holding the matching pool->lock.
1108 */
get_pwq(struct pool_workqueue * pwq)1109 static void get_pwq(struct pool_workqueue *pwq)
1110 {
1111 lockdep_assert_held(&pwq->pool->lock);
1112 WARN_ON_ONCE(pwq->refcnt <= 0);
1113 pwq->refcnt++;
1114 }
1115
1116 /**
1117 * put_pwq - put a pool_workqueue reference
1118 * @pwq: pool_workqueue to put
1119 *
1120 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1121 * destruction. The caller should be holding the matching pool->lock.
1122 */
put_pwq(struct pool_workqueue * pwq)1123 static void put_pwq(struct pool_workqueue *pwq)
1124 {
1125 lockdep_assert_held(&pwq->pool->lock);
1126 if (likely(--pwq->refcnt))
1127 return;
1128 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1129 return;
1130 /*
1131 * @pwq can't be released under pool->lock, bounce to
1132 * pwq_unbound_release_workfn(). This never recurses on the same
1133 * pool->lock as this path is taken only for unbound workqueues and
1134 * the release work item is scheduled on a per-cpu workqueue. To
1135 * avoid lockdep warning, unbound pool->locks are given lockdep
1136 * subclass of 1 in get_unbound_pool().
1137 */
1138 schedule_work(&pwq->unbound_release_work);
1139 }
1140
1141 /**
1142 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1143 * @pwq: pool_workqueue to put (can be %NULL)
1144 *
1145 * put_pwq() with locking. This function also allows %NULL @pwq.
1146 */
put_pwq_unlocked(struct pool_workqueue * pwq)1147 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1148 {
1149 if (pwq) {
1150 /*
1151 * As both pwqs and pools are RCU protected, the
1152 * following lock operations are safe.
1153 */
1154 spin_lock_irq(&pwq->pool->lock);
1155 put_pwq(pwq);
1156 spin_unlock_irq(&pwq->pool->lock);
1157 }
1158 }
1159
pwq_activate_delayed_work(struct work_struct * work)1160 static void pwq_activate_delayed_work(struct work_struct *work)
1161 {
1162 struct pool_workqueue *pwq = get_work_pwq(work);
1163
1164 trace_workqueue_activate_work(work);
1165 if (list_empty(&pwq->pool->worklist))
1166 pwq->pool->watchdog_ts = jiffies;
1167 move_linked_works(work, &pwq->pool->worklist, NULL);
1168 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1169 pwq->nr_active++;
1170 }
1171
pwq_activate_first_delayed(struct pool_workqueue * pwq)1172 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1173 {
1174 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1175 struct work_struct, entry);
1176
1177 pwq_activate_delayed_work(work);
1178 }
1179
1180 /**
1181 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1182 * @pwq: pwq of interest
1183 * @color: color of work which left the queue
1184 *
1185 * A work either has completed or is removed from pending queue,
1186 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1187 *
1188 * CONTEXT:
1189 * spin_lock_irq(pool->lock).
1190 */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,int color)1191 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1192 {
1193 /* uncolored work items don't participate in flushing or nr_active */
1194 if (color == WORK_NO_COLOR)
1195 goto out_put;
1196
1197 pwq->nr_in_flight[color]--;
1198
1199 pwq->nr_active--;
1200 if (!list_empty(&pwq->delayed_works)) {
1201 /* one down, submit a delayed one */
1202 if (pwq->nr_active < pwq->max_active)
1203 pwq_activate_first_delayed(pwq);
1204 }
1205
1206 /* is flush in progress and are we at the flushing tip? */
1207 if (likely(pwq->flush_color != color))
1208 goto out_put;
1209
1210 /* are there still in-flight works? */
1211 if (pwq->nr_in_flight[color])
1212 goto out_put;
1213
1214 /* this pwq is done, clear flush_color */
1215 pwq->flush_color = -1;
1216
1217 /*
1218 * If this was the last pwq, wake up the first flusher. It
1219 * will handle the rest.
1220 */
1221 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1222 complete(&pwq->wq->first_flusher->done);
1223 out_put:
1224 put_pwq(pwq);
1225 }
1226
1227 /**
1228 * try_to_grab_pending - steal work item from worklist and disable irq
1229 * @work: work item to steal
1230 * @is_dwork: @work is a delayed_work
1231 * @flags: place to store irq state
1232 *
1233 * Try to grab PENDING bit of @work. This function can handle @work in any
1234 * stable state - idle, on timer or on worklist.
1235 *
1236 * Return:
1237 * 1 if @work was pending and we successfully stole PENDING
1238 * 0 if @work was idle and we claimed PENDING
1239 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1240 * -ENOENT if someone else is canceling @work, this state may persist
1241 * for arbitrarily long
1242 *
1243 * Note:
1244 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1245 * interrupted while holding PENDING and @work off queue, irq must be
1246 * disabled on entry. This, combined with delayed_work->timer being
1247 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1248 *
1249 * On successful return, >= 0, irq is disabled and the caller is
1250 * responsible for releasing it using local_irq_restore(*@flags).
1251 *
1252 * This function is safe to call from any context including IRQ handler.
1253 */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1254 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1255 unsigned long *flags)
1256 {
1257 struct worker_pool *pool;
1258 struct pool_workqueue *pwq;
1259
1260 local_irq_save(*flags);
1261
1262 /* try to steal the timer if it exists */
1263 if (is_dwork) {
1264 struct delayed_work *dwork = to_delayed_work(work);
1265
1266 /*
1267 * dwork->timer is irqsafe. If del_timer() fails, it's
1268 * guaranteed that the timer is not queued anywhere and not
1269 * running on the local CPU.
1270 */
1271 if (likely(del_timer(&dwork->timer)))
1272 return 1;
1273 }
1274
1275 /* try to claim PENDING the normal way */
1276 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1277 return 0;
1278
1279 rcu_read_lock();
1280 /*
1281 * The queueing is in progress, or it is already queued. Try to
1282 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1283 */
1284 pool = get_work_pool(work);
1285 if (!pool)
1286 goto fail;
1287
1288 spin_lock(&pool->lock);
1289 /*
1290 * work->data is guaranteed to point to pwq only while the work
1291 * item is queued on pwq->wq, and both updating work->data to point
1292 * to pwq on queueing and to pool on dequeueing are done under
1293 * pwq->pool->lock. This in turn guarantees that, if work->data
1294 * points to pwq which is associated with a locked pool, the work
1295 * item is currently queued on that pool.
1296 */
1297 pwq = get_work_pwq(work);
1298 if (pwq && pwq->pool == pool) {
1299 debug_work_deactivate(work);
1300
1301 /*
1302 * A delayed work item cannot be grabbed directly because
1303 * it might have linked NO_COLOR work items which, if left
1304 * on the delayed_list, will confuse pwq->nr_active
1305 * management later on and cause stall. Make sure the work
1306 * item is activated before grabbing.
1307 */
1308 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1309 pwq_activate_delayed_work(work);
1310
1311 list_del_init(&work->entry);
1312 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1313
1314 /* work->data points to pwq iff queued, point to pool */
1315 set_work_pool_and_keep_pending(work, pool->id);
1316
1317 spin_unlock(&pool->lock);
1318 rcu_read_unlock();
1319 return 1;
1320 }
1321 spin_unlock(&pool->lock);
1322 fail:
1323 rcu_read_unlock();
1324 local_irq_restore(*flags);
1325 if (work_is_canceling(work))
1326 return -ENOENT;
1327 cpu_relax();
1328 return -EAGAIN;
1329 }
1330
1331 /**
1332 * insert_work - insert a work into a pool
1333 * @pwq: pwq @work belongs to
1334 * @work: work to insert
1335 * @head: insertion point
1336 * @extra_flags: extra WORK_STRUCT_* flags to set
1337 *
1338 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1339 * work_struct flags.
1340 *
1341 * CONTEXT:
1342 * spin_lock_irq(pool->lock).
1343 */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)1344 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1345 struct list_head *head, unsigned int extra_flags)
1346 {
1347 struct worker_pool *pool = pwq->pool;
1348
1349 /* we own @work, set data and link */
1350 set_work_pwq(work, pwq, extra_flags);
1351 list_add_tail(&work->entry, head);
1352 get_pwq(pwq);
1353
1354 /*
1355 * Ensure either wq_worker_sleeping() sees the above
1356 * list_add_tail() or we see zero nr_running to avoid workers lying
1357 * around lazily while there are works to be processed.
1358 */
1359 smp_mb();
1360
1361 if (__need_more_worker(pool))
1362 wake_up_worker(pool);
1363 }
1364
1365 /*
1366 * Test whether @work is being queued from another work executing on the
1367 * same workqueue.
1368 */
is_chained_work(struct workqueue_struct * wq)1369 static bool is_chained_work(struct workqueue_struct *wq)
1370 {
1371 struct worker *worker;
1372
1373 worker = current_wq_worker();
1374 /*
1375 * Return %true iff I'm a worker executing a work item on @wq. If
1376 * I'm @worker, it's safe to dereference it without locking.
1377 */
1378 return worker && worker->current_pwq->wq == wq;
1379 }
1380
1381 /*
1382 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1383 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1384 * avoid perturbing sensitive tasks.
1385 */
wq_select_unbound_cpu(int cpu)1386 static int wq_select_unbound_cpu(int cpu)
1387 {
1388 static bool printed_dbg_warning;
1389 int new_cpu;
1390
1391 if (likely(!wq_debug_force_rr_cpu)) {
1392 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1393 return cpu;
1394 } else if (!printed_dbg_warning) {
1395 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1396 printed_dbg_warning = true;
1397 }
1398
1399 if (cpumask_empty(wq_unbound_cpumask))
1400 return cpu;
1401
1402 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1403 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1404 if (unlikely(new_cpu >= nr_cpu_ids)) {
1405 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1406 if (unlikely(new_cpu >= nr_cpu_ids))
1407 return cpu;
1408 }
1409 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1410
1411 return new_cpu;
1412 }
1413
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)1414 static void __queue_work(int cpu, struct workqueue_struct *wq,
1415 struct work_struct *work)
1416 {
1417 struct pool_workqueue *pwq;
1418 struct worker_pool *last_pool;
1419 struct list_head *worklist;
1420 unsigned int work_flags;
1421 unsigned int req_cpu = cpu;
1422
1423 /*
1424 * While a work item is PENDING && off queue, a task trying to
1425 * steal the PENDING will busy-loop waiting for it to either get
1426 * queued or lose PENDING. Grabbing PENDING and queueing should
1427 * happen with IRQ disabled.
1428 */
1429 lockdep_assert_irqs_disabled();
1430
1431
1432 /* if draining, only works from the same workqueue are allowed */
1433 if (unlikely(wq->flags & __WQ_DRAINING) &&
1434 WARN_ON_ONCE(!is_chained_work(wq)))
1435 return;
1436 rcu_read_lock();
1437 retry:
1438 /* pwq which will be used unless @work is executing elsewhere */
1439 if (wq->flags & WQ_UNBOUND) {
1440 if (req_cpu == WORK_CPU_UNBOUND)
1441 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1442 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1443 } else {
1444 if (req_cpu == WORK_CPU_UNBOUND)
1445 cpu = raw_smp_processor_id();
1446 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1447 }
1448
1449 /*
1450 * If @work was previously on a different pool, it might still be
1451 * running there, in which case the work needs to be queued on that
1452 * pool to guarantee non-reentrancy.
1453 */
1454 last_pool = get_work_pool(work);
1455 if (last_pool && last_pool != pwq->pool) {
1456 struct worker *worker;
1457
1458 spin_lock(&last_pool->lock);
1459
1460 worker = find_worker_executing_work(last_pool, work);
1461
1462 if (worker && worker->current_pwq->wq == wq) {
1463 pwq = worker->current_pwq;
1464 } else {
1465 /* meh... not running there, queue here */
1466 spin_unlock(&last_pool->lock);
1467 spin_lock(&pwq->pool->lock);
1468 }
1469 } else {
1470 spin_lock(&pwq->pool->lock);
1471 }
1472
1473 /*
1474 * pwq is determined and locked. For unbound pools, we could have
1475 * raced with pwq release and it could already be dead. If its
1476 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1477 * without another pwq replacing it in the numa_pwq_tbl or while
1478 * work items are executing on it, so the retrying is guaranteed to
1479 * make forward-progress.
1480 */
1481 if (unlikely(!pwq->refcnt)) {
1482 if (wq->flags & WQ_UNBOUND) {
1483 spin_unlock(&pwq->pool->lock);
1484 cpu_relax();
1485 goto retry;
1486 }
1487 /* oops */
1488 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1489 wq->name, cpu);
1490 }
1491
1492 /* pwq determined, queue */
1493 trace_workqueue_queue_work(req_cpu, pwq, work);
1494
1495 if (WARN_ON(!list_empty(&work->entry)))
1496 goto out;
1497
1498 pwq->nr_in_flight[pwq->work_color]++;
1499 work_flags = work_color_to_flags(pwq->work_color);
1500
1501 if (likely(pwq->nr_active < pwq->max_active)) {
1502 trace_workqueue_activate_work(work);
1503 pwq->nr_active++;
1504 worklist = &pwq->pool->worklist;
1505 if (list_empty(worklist))
1506 pwq->pool->watchdog_ts = jiffies;
1507 } else {
1508 work_flags |= WORK_STRUCT_DELAYED;
1509 worklist = &pwq->delayed_works;
1510 }
1511
1512 debug_work_activate(work);
1513 insert_work(pwq, work, worklist, work_flags);
1514
1515 out:
1516 spin_unlock(&pwq->pool->lock);
1517 rcu_read_unlock();
1518 }
1519
1520 /**
1521 * queue_work_on - queue work on specific cpu
1522 * @cpu: CPU number to execute work on
1523 * @wq: workqueue to use
1524 * @work: work to queue
1525 *
1526 * We queue the work to a specific CPU, the caller must ensure it
1527 * can't go away.
1528 *
1529 * Return: %false if @work was already on a queue, %true otherwise.
1530 */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1531 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1532 struct work_struct *work)
1533 {
1534 bool ret = false;
1535 unsigned long flags;
1536
1537 local_irq_save(flags);
1538
1539 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1540 __queue_work(cpu, wq, work);
1541 ret = true;
1542 }
1543
1544 local_irq_restore(flags);
1545 return ret;
1546 }
1547 EXPORT_SYMBOL(queue_work_on);
1548
1549 /**
1550 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1551 * @node: NUMA node ID that we want to select a CPU from
1552 *
1553 * This function will attempt to find a "random" cpu available on a given
1554 * node. If there are no CPUs available on the given node it will return
1555 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1556 * available CPU if we need to schedule this work.
1557 */
workqueue_select_cpu_near(int node)1558 static int workqueue_select_cpu_near(int node)
1559 {
1560 int cpu;
1561
1562 /* No point in doing this if NUMA isn't enabled for workqueues */
1563 if (!wq_numa_enabled)
1564 return WORK_CPU_UNBOUND;
1565
1566 /* Delay binding to CPU if node is not valid or online */
1567 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1568 return WORK_CPU_UNBOUND;
1569
1570 /* Use local node/cpu if we are already there */
1571 cpu = raw_smp_processor_id();
1572 if (node == cpu_to_node(cpu))
1573 return cpu;
1574
1575 /* Use "random" otherwise know as "first" online CPU of node */
1576 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1577
1578 /* If CPU is valid return that, otherwise just defer */
1579 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1580 }
1581
1582 /**
1583 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1584 * @node: NUMA node that we are targeting the work for
1585 * @wq: workqueue to use
1586 * @work: work to queue
1587 *
1588 * We queue the work to a "random" CPU within a given NUMA node. The basic
1589 * idea here is to provide a way to somehow associate work with a given
1590 * NUMA node.
1591 *
1592 * This function will only make a best effort attempt at getting this onto
1593 * the right NUMA node. If no node is requested or the requested node is
1594 * offline then we just fall back to standard queue_work behavior.
1595 *
1596 * Currently the "random" CPU ends up being the first available CPU in the
1597 * intersection of cpu_online_mask and the cpumask of the node, unless we
1598 * are running on the node. In that case we just use the current CPU.
1599 *
1600 * Return: %false if @work was already on a queue, %true otherwise.
1601 */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)1602 bool queue_work_node(int node, struct workqueue_struct *wq,
1603 struct work_struct *work)
1604 {
1605 unsigned long flags;
1606 bool ret = false;
1607
1608 /*
1609 * This current implementation is specific to unbound workqueues.
1610 * Specifically we only return the first available CPU for a given
1611 * node instead of cycling through individual CPUs within the node.
1612 *
1613 * If this is used with a per-cpu workqueue then the logic in
1614 * workqueue_select_cpu_near would need to be updated to allow for
1615 * some round robin type logic.
1616 */
1617 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1618
1619 local_irq_save(flags);
1620
1621 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1622 int cpu = workqueue_select_cpu_near(node);
1623
1624 __queue_work(cpu, wq, work);
1625 ret = true;
1626 }
1627
1628 local_irq_restore(flags);
1629 return ret;
1630 }
1631 EXPORT_SYMBOL_GPL(queue_work_node);
1632
delayed_work_timer_fn(struct timer_list * t)1633 void delayed_work_timer_fn(struct timer_list *t)
1634 {
1635 struct delayed_work *dwork = from_timer(dwork, t, timer);
1636
1637 /* should have been called from irqsafe timer with irq already off */
1638 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1639 }
1640 EXPORT_SYMBOL(delayed_work_timer_fn);
1641
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1642 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1643 struct delayed_work *dwork, unsigned long delay)
1644 {
1645 struct timer_list *timer = &dwork->timer;
1646 struct work_struct *work = &dwork->work;
1647
1648 WARN_ON_ONCE(!wq);
1649 #ifndef CONFIG_CFI_CLANG
1650 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1651 #endif
1652 WARN_ON_ONCE(timer_pending(timer));
1653 WARN_ON_ONCE(!list_empty(&work->entry));
1654
1655 /*
1656 * If @delay is 0, queue @dwork->work immediately. This is for
1657 * both optimization and correctness. The earliest @timer can
1658 * expire is on the closest next tick and delayed_work users depend
1659 * on that there's no such delay when @delay is 0.
1660 */
1661 if (!delay) {
1662 __queue_work(cpu, wq, &dwork->work);
1663 return;
1664 }
1665
1666 dwork->wq = wq;
1667 dwork->cpu = cpu;
1668 timer->expires = jiffies + delay;
1669
1670 if (unlikely(cpu != WORK_CPU_UNBOUND))
1671 add_timer_on(timer, cpu);
1672 else
1673 add_timer(timer);
1674 }
1675
1676 /**
1677 * queue_delayed_work_on - queue work on specific CPU after delay
1678 * @cpu: CPU number to execute work on
1679 * @wq: workqueue to use
1680 * @dwork: work to queue
1681 * @delay: number of jiffies to wait before queueing
1682 *
1683 * Return: %false if @work was already on a queue, %true otherwise. If
1684 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1685 * execution.
1686 */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1687 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1688 struct delayed_work *dwork, unsigned long delay)
1689 {
1690 struct work_struct *work = &dwork->work;
1691 bool ret = false;
1692 unsigned long flags;
1693
1694 /* read the comment in __queue_work() */
1695 local_irq_save(flags);
1696
1697 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1698 __queue_delayed_work(cpu, wq, dwork, delay);
1699 ret = true;
1700 }
1701
1702 local_irq_restore(flags);
1703 return ret;
1704 }
1705 EXPORT_SYMBOL(queue_delayed_work_on);
1706
1707 /**
1708 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1709 * @cpu: CPU number to execute work on
1710 * @wq: workqueue to use
1711 * @dwork: work to queue
1712 * @delay: number of jiffies to wait before queueing
1713 *
1714 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1715 * modify @dwork's timer so that it expires after @delay. If @delay is
1716 * zero, @work is guaranteed to be scheduled immediately regardless of its
1717 * current state.
1718 *
1719 * Return: %false if @dwork was idle and queued, %true if @dwork was
1720 * pending and its timer was modified.
1721 *
1722 * This function is safe to call from any context including IRQ handler.
1723 * See try_to_grab_pending() for details.
1724 */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1725 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1726 struct delayed_work *dwork, unsigned long delay)
1727 {
1728 unsigned long flags;
1729 int ret;
1730
1731 do {
1732 ret = try_to_grab_pending(&dwork->work, true, &flags);
1733 } while (unlikely(ret == -EAGAIN));
1734
1735 if (likely(ret >= 0)) {
1736 __queue_delayed_work(cpu, wq, dwork, delay);
1737 local_irq_restore(flags);
1738 }
1739
1740 /* -ENOENT from try_to_grab_pending() becomes %true */
1741 return ret;
1742 }
1743 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1744
rcu_work_rcufn(struct rcu_head * rcu)1745 static void rcu_work_rcufn(struct rcu_head *rcu)
1746 {
1747 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1748
1749 /* read the comment in __queue_work() */
1750 local_irq_disable();
1751 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1752 local_irq_enable();
1753 }
1754
1755 /**
1756 * queue_rcu_work - queue work after a RCU grace period
1757 * @wq: workqueue to use
1758 * @rwork: work to queue
1759 *
1760 * Return: %false if @rwork was already pending, %true otherwise. Note
1761 * that a full RCU grace period is guaranteed only after a %true return.
1762 * While @rwork is guaranteed to be executed after a %false return, the
1763 * execution may happen before a full RCU grace period has passed.
1764 */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)1765 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1766 {
1767 struct work_struct *work = &rwork->work;
1768
1769 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1770 rwork->wq = wq;
1771 call_rcu(&rwork->rcu, rcu_work_rcufn);
1772 return true;
1773 }
1774
1775 return false;
1776 }
1777 EXPORT_SYMBOL(queue_rcu_work);
1778
1779 /**
1780 * worker_enter_idle - enter idle state
1781 * @worker: worker which is entering idle state
1782 *
1783 * @worker is entering idle state. Update stats and idle timer if
1784 * necessary.
1785 *
1786 * LOCKING:
1787 * spin_lock_irq(pool->lock).
1788 */
worker_enter_idle(struct worker * worker)1789 static void worker_enter_idle(struct worker *worker)
1790 {
1791 struct worker_pool *pool = worker->pool;
1792
1793 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1794 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1795 (worker->hentry.next || worker->hentry.pprev)))
1796 return;
1797
1798 /* can't use worker_set_flags(), also called from create_worker() */
1799 worker->flags |= WORKER_IDLE;
1800 pool->nr_idle++;
1801 worker->last_active = jiffies;
1802
1803 /* idle_list is LIFO */
1804 list_add(&worker->entry, &pool->idle_list);
1805
1806 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1807 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1808
1809 /*
1810 * Sanity check nr_running. Because unbind_workers() releases
1811 * pool->lock between setting %WORKER_UNBOUND and zapping
1812 * nr_running, the warning may trigger spuriously. Check iff
1813 * unbind is not in progress.
1814 */
1815 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1816 pool->nr_workers == pool->nr_idle &&
1817 atomic_read(&pool->nr_running));
1818 }
1819
1820 /**
1821 * worker_leave_idle - leave idle state
1822 * @worker: worker which is leaving idle state
1823 *
1824 * @worker is leaving idle state. Update stats.
1825 *
1826 * LOCKING:
1827 * spin_lock_irq(pool->lock).
1828 */
worker_leave_idle(struct worker * worker)1829 static void worker_leave_idle(struct worker *worker)
1830 {
1831 struct worker_pool *pool = worker->pool;
1832
1833 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1834 return;
1835 worker_clr_flags(worker, WORKER_IDLE);
1836 pool->nr_idle--;
1837 list_del_init(&worker->entry);
1838 }
1839
alloc_worker(int node)1840 static struct worker *alloc_worker(int node)
1841 {
1842 struct worker *worker;
1843
1844 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1845 if (worker) {
1846 INIT_LIST_HEAD(&worker->entry);
1847 INIT_LIST_HEAD(&worker->scheduled);
1848 INIT_LIST_HEAD(&worker->node);
1849 /* on creation a worker is in !idle && prep state */
1850 worker->flags = WORKER_PREP;
1851 }
1852 return worker;
1853 }
1854
1855 /**
1856 * worker_attach_to_pool() - attach a worker to a pool
1857 * @worker: worker to be attached
1858 * @pool: the target pool
1859 *
1860 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1861 * cpu-binding of @worker are kept coordinated with the pool across
1862 * cpu-[un]hotplugs.
1863 */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)1864 static void worker_attach_to_pool(struct worker *worker,
1865 struct worker_pool *pool)
1866 {
1867 mutex_lock(&wq_pool_attach_mutex);
1868
1869 /*
1870 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1871 * stable across this function. See the comments above the flag
1872 * definition for details.
1873 */
1874 if (pool->flags & POOL_DISASSOCIATED)
1875 worker->flags |= WORKER_UNBOUND;
1876
1877 if (worker->rescue_wq)
1878 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1879
1880 list_add_tail(&worker->node, &pool->workers);
1881 worker->pool = pool;
1882
1883 mutex_unlock(&wq_pool_attach_mutex);
1884 }
1885
1886 /**
1887 * worker_detach_from_pool() - detach a worker from its pool
1888 * @worker: worker which is attached to its pool
1889 *
1890 * Undo the attaching which had been done in worker_attach_to_pool(). The
1891 * caller worker shouldn't access to the pool after detached except it has
1892 * other reference to the pool.
1893 */
worker_detach_from_pool(struct worker * worker)1894 static void worker_detach_from_pool(struct worker *worker)
1895 {
1896 struct worker_pool *pool = worker->pool;
1897 struct completion *detach_completion = NULL;
1898
1899 mutex_lock(&wq_pool_attach_mutex);
1900
1901 list_del(&worker->node);
1902 worker->pool = NULL;
1903
1904 if (list_empty(&pool->workers))
1905 detach_completion = pool->detach_completion;
1906 mutex_unlock(&wq_pool_attach_mutex);
1907
1908 /* clear leftover flags without pool->lock after it is detached */
1909 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1910
1911 if (detach_completion)
1912 complete(detach_completion);
1913 }
1914
1915 /**
1916 * create_worker - create a new workqueue worker
1917 * @pool: pool the new worker will belong to
1918 *
1919 * Create and start a new worker which is attached to @pool.
1920 *
1921 * CONTEXT:
1922 * Might sleep. Does GFP_KERNEL allocations.
1923 *
1924 * Return:
1925 * Pointer to the newly created worker.
1926 */
create_worker(struct worker_pool * pool)1927 static struct worker *create_worker(struct worker_pool *pool)
1928 {
1929 struct worker *worker = NULL;
1930 int id = -1;
1931 char id_buf[16];
1932
1933 /* ID is needed to determine kthread name */
1934 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1935 if (id < 0)
1936 goto fail;
1937
1938 worker = alloc_worker(pool->node);
1939 if (!worker)
1940 goto fail;
1941
1942 worker->id = id;
1943
1944 if (pool->cpu >= 0)
1945 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1946 pool->attrs->nice < 0 ? "H" : "");
1947 else
1948 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1949
1950 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1951 "kworker/%s", id_buf);
1952 if (IS_ERR(worker->task))
1953 goto fail;
1954
1955 set_user_nice(worker->task, pool->attrs->nice);
1956 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1957
1958 /* successful, attach the worker to the pool */
1959 worker_attach_to_pool(worker, pool);
1960
1961 /* start the newly created worker */
1962 spin_lock_irq(&pool->lock);
1963 worker->pool->nr_workers++;
1964 worker_enter_idle(worker);
1965 wake_up_process(worker->task);
1966 spin_unlock_irq(&pool->lock);
1967
1968 return worker;
1969
1970 fail:
1971 if (id >= 0)
1972 ida_simple_remove(&pool->worker_ida, id);
1973 kfree(worker);
1974 return NULL;
1975 }
1976
1977 /**
1978 * destroy_worker - destroy a workqueue worker
1979 * @worker: worker to be destroyed
1980 *
1981 * Destroy @worker and adjust @pool stats accordingly. The worker should
1982 * be idle.
1983 *
1984 * CONTEXT:
1985 * spin_lock_irq(pool->lock).
1986 */
destroy_worker(struct worker * worker)1987 static void destroy_worker(struct worker *worker)
1988 {
1989 struct worker_pool *pool = worker->pool;
1990
1991 lockdep_assert_held(&pool->lock);
1992
1993 /* sanity check frenzy */
1994 if (WARN_ON(worker->current_work) ||
1995 WARN_ON(!list_empty(&worker->scheduled)) ||
1996 WARN_ON(!(worker->flags & WORKER_IDLE)))
1997 return;
1998
1999 pool->nr_workers--;
2000 pool->nr_idle--;
2001
2002 list_del_init(&worker->entry);
2003 worker->flags |= WORKER_DIE;
2004 wake_up_process(worker->task);
2005 }
2006
idle_worker_timeout(struct timer_list * t)2007 static void idle_worker_timeout(struct timer_list *t)
2008 {
2009 struct worker_pool *pool = from_timer(pool, t, idle_timer);
2010
2011 spin_lock_irq(&pool->lock);
2012
2013 while (too_many_workers(pool)) {
2014 struct worker *worker;
2015 unsigned long expires;
2016
2017 /* idle_list is kept in LIFO order, check the last one */
2018 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2019 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2020
2021 if (time_before(jiffies, expires)) {
2022 mod_timer(&pool->idle_timer, expires);
2023 break;
2024 }
2025
2026 destroy_worker(worker);
2027 }
2028
2029 spin_unlock_irq(&pool->lock);
2030 }
2031
send_mayday(struct work_struct * work)2032 static void send_mayday(struct work_struct *work)
2033 {
2034 struct pool_workqueue *pwq = get_work_pwq(work);
2035 struct workqueue_struct *wq = pwq->wq;
2036
2037 lockdep_assert_held(&wq_mayday_lock);
2038
2039 if (!wq->rescuer)
2040 return;
2041
2042 /* mayday mayday mayday */
2043 if (list_empty(&pwq->mayday_node)) {
2044 /*
2045 * If @pwq is for an unbound wq, its base ref may be put at
2046 * any time due to an attribute change. Pin @pwq until the
2047 * rescuer is done with it.
2048 */
2049 get_pwq(pwq);
2050 list_add_tail(&pwq->mayday_node, &wq->maydays);
2051 wake_up_process(wq->rescuer->task);
2052 }
2053 }
2054
pool_mayday_timeout(struct timer_list * t)2055 static void pool_mayday_timeout(struct timer_list *t)
2056 {
2057 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2058 struct work_struct *work;
2059
2060 spin_lock_irq(&pool->lock);
2061 spin_lock(&wq_mayday_lock); /* for wq->maydays */
2062
2063 if (need_to_create_worker(pool)) {
2064 /*
2065 * We've been trying to create a new worker but
2066 * haven't been successful. We might be hitting an
2067 * allocation deadlock. Send distress signals to
2068 * rescuers.
2069 */
2070 list_for_each_entry(work, &pool->worklist, entry)
2071 send_mayday(work);
2072 }
2073
2074 spin_unlock(&wq_mayday_lock);
2075 spin_unlock_irq(&pool->lock);
2076
2077 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2078 }
2079
2080 /**
2081 * maybe_create_worker - create a new worker if necessary
2082 * @pool: pool to create a new worker for
2083 *
2084 * Create a new worker for @pool if necessary. @pool is guaranteed to
2085 * have at least one idle worker on return from this function. If
2086 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2087 * sent to all rescuers with works scheduled on @pool to resolve
2088 * possible allocation deadlock.
2089 *
2090 * On return, need_to_create_worker() is guaranteed to be %false and
2091 * may_start_working() %true.
2092 *
2093 * LOCKING:
2094 * spin_lock_irq(pool->lock) which may be released and regrabbed
2095 * multiple times. Does GFP_KERNEL allocations. Called only from
2096 * manager.
2097 */
maybe_create_worker(struct worker_pool * pool)2098 static void maybe_create_worker(struct worker_pool *pool)
2099 __releases(&pool->lock)
2100 __acquires(&pool->lock)
2101 {
2102 restart:
2103 spin_unlock_irq(&pool->lock);
2104
2105 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2106 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2107
2108 while (true) {
2109 if (create_worker(pool) || !need_to_create_worker(pool))
2110 break;
2111
2112 schedule_timeout_interruptible(CREATE_COOLDOWN);
2113
2114 if (!need_to_create_worker(pool))
2115 break;
2116 }
2117
2118 del_timer_sync(&pool->mayday_timer);
2119 spin_lock_irq(&pool->lock);
2120 /*
2121 * This is necessary even after a new worker was just successfully
2122 * created as @pool->lock was dropped and the new worker might have
2123 * already become busy.
2124 */
2125 if (need_to_create_worker(pool))
2126 goto restart;
2127 }
2128
2129 /**
2130 * manage_workers - manage worker pool
2131 * @worker: self
2132 *
2133 * Assume the manager role and manage the worker pool @worker belongs
2134 * to. At any given time, there can be only zero or one manager per
2135 * pool. The exclusion is handled automatically by this function.
2136 *
2137 * The caller can safely start processing works on false return. On
2138 * true return, it's guaranteed that need_to_create_worker() is false
2139 * and may_start_working() is true.
2140 *
2141 * CONTEXT:
2142 * spin_lock_irq(pool->lock) which may be released and regrabbed
2143 * multiple times. Does GFP_KERNEL allocations.
2144 *
2145 * Return:
2146 * %false if the pool doesn't need management and the caller can safely
2147 * start processing works, %true if management function was performed and
2148 * the conditions that the caller verified before calling the function may
2149 * no longer be true.
2150 */
manage_workers(struct worker * worker)2151 static bool manage_workers(struct worker *worker)
2152 {
2153 struct worker_pool *pool = worker->pool;
2154
2155 if (pool->flags & POOL_MANAGER_ACTIVE)
2156 return false;
2157
2158 pool->flags |= POOL_MANAGER_ACTIVE;
2159 pool->manager = worker;
2160
2161 maybe_create_worker(pool);
2162
2163 pool->manager = NULL;
2164 pool->flags &= ~POOL_MANAGER_ACTIVE;
2165 wake_up(&wq_manager_wait);
2166 return true;
2167 }
2168
2169 /**
2170 * process_one_work - process single work
2171 * @worker: self
2172 * @work: work to process
2173 *
2174 * Process @work. This function contains all the logics necessary to
2175 * process a single work including synchronization against and
2176 * interaction with other workers on the same cpu, queueing and
2177 * flushing. As long as context requirement is met, any worker can
2178 * call this function to process a work.
2179 *
2180 * CONTEXT:
2181 * spin_lock_irq(pool->lock) which is released and regrabbed.
2182 */
process_one_work(struct worker * worker,struct work_struct * work)2183 static void process_one_work(struct worker *worker, struct work_struct *work)
2184 __releases(&pool->lock)
2185 __acquires(&pool->lock)
2186 {
2187 struct pool_workqueue *pwq = get_work_pwq(work);
2188 struct worker_pool *pool = worker->pool;
2189 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2190 int work_color;
2191 struct worker *collision;
2192 #ifdef CONFIG_LOCKDEP
2193 /*
2194 * It is permissible to free the struct work_struct from
2195 * inside the function that is called from it, this we need to
2196 * take into account for lockdep too. To avoid bogus "held
2197 * lock freed" warnings as well as problems when looking into
2198 * work->lockdep_map, make a copy and use that here.
2199 */
2200 struct lockdep_map lockdep_map;
2201
2202 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2203 #endif
2204 /* ensure we're on the correct CPU */
2205 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2206 raw_smp_processor_id() != pool->cpu);
2207
2208 /*
2209 * A single work shouldn't be executed concurrently by
2210 * multiple workers on a single cpu. Check whether anyone is
2211 * already processing the work. If so, defer the work to the
2212 * currently executing one.
2213 */
2214 collision = find_worker_executing_work(pool, work);
2215 if (unlikely(collision)) {
2216 move_linked_works(work, &collision->scheduled, NULL);
2217 return;
2218 }
2219
2220 /* claim and dequeue */
2221 debug_work_deactivate(work);
2222 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2223 worker->current_work = work;
2224 worker->current_func = work->func;
2225 worker->current_pwq = pwq;
2226 work_color = get_work_color(work);
2227
2228 /*
2229 * Record wq name for cmdline and debug reporting, may get
2230 * overridden through set_worker_desc().
2231 */
2232 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2233
2234 list_del_init(&work->entry);
2235
2236 /*
2237 * CPU intensive works don't participate in concurrency management.
2238 * They're the scheduler's responsibility. This takes @worker out
2239 * of concurrency management and the next code block will chain
2240 * execution of the pending work items.
2241 */
2242 if (unlikely(cpu_intensive))
2243 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2244
2245 /*
2246 * Wake up another worker if necessary. The condition is always
2247 * false for normal per-cpu workers since nr_running would always
2248 * be >= 1 at this point. This is used to chain execution of the
2249 * pending work items for WORKER_NOT_RUNNING workers such as the
2250 * UNBOUND and CPU_INTENSIVE ones.
2251 */
2252 if (need_more_worker(pool))
2253 wake_up_worker(pool);
2254
2255 /*
2256 * Record the last pool and clear PENDING which should be the last
2257 * update to @work. Also, do this inside @pool->lock so that
2258 * PENDING and queued state changes happen together while IRQ is
2259 * disabled.
2260 */
2261 set_work_pool_and_clear_pending(work, pool->id);
2262
2263 spin_unlock_irq(&pool->lock);
2264
2265 lock_map_acquire(&pwq->wq->lockdep_map);
2266 lock_map_acquire(&lockdep_map);
2267 /*
2268 * Strictly speaking we should mark the invariant state without holding
2269 * any locks, that is, before these two lock_map_acquire()'s.
2270 *
2271 * However, that would result in:
2272 *
2273 * A(W1)
2274 * WFC(C)
2275 * A(W1)
2276 * C(C)
2277 *
2278 * Which would create W1->C->W1 dependencies, even though there is no
2279 * actual deadlock possible. There are two solutions, using a
2280 * read-recursive acquire on the work(queue) 'locks', but this will then
2281 * hit the lockdep limitation on recursive locks, or simply discard
2282 * these locks.
2283 *
2284 * AFAICT there is no possible deadlock scenario between the
2285 * flush_work() and complete() primitives (except for single-threaded
2286 * workqueues), so hiding them isn't a problem.
2287 */
2288 lockdep_invariant_state(true);
2289 trace_workqueue_execute_start(work);
2290 worker->current_func(work);
2291 /*
2292 * While we must be careful to not use "work" after this, the trace
2293 * point will only record its address.
2294 */
2295 trace_workqueue_execute_end(work);
2296 lock_map_release(&lockdep_map);
2297 lock_map_release(&pwq->wq->lockdep_map);
2298
2299 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2300 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2301 " last function: %ps\n",
2302 current->comm, preempt_count(), task_pid_nr(current),
2303 worker->current_func);
2304 debug_show_held_locks(current);
2305 dump_stack();
2306 }
2307
2308 /*
2309 * The following prevents a kworker from hogging CPU on !PREEMPT
2310 * kernels, where a requeueing work item waiting for something to
2311 * happen could deadlock with stop_machine as such work item could
2312 * indefinitely requeue itself while all other CPUs are trapped in
2313 * stop_machine. At the same time, report a quiescent RCU state so
2314 * the same condition doesn't freeze RCU.
2315 */
2316 cond_resched();
2317
2318 spin_lock_irq(&pool->lock);
2319
2320 /* clear cpu intensive status */
2321 if (unlikely(cpu_intensive))
2322 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2323
2324 /* tag the worker for identification in schedule() */
2325 worker->last_func = worker->current_func;
2326
2327 /* we're done with it, release */
2328 hash_del(&worker->hentry);
2329 worker->current_work = NULL;
2330 worker->current_func = NULL;
2331 worker->current_pwq = NULL;
2332 pwq_dec_nr_in_flight(pwq, work_color);
2333 }
2334
2335 /**
2336 * process_scheduled_works - process scheduled works
2337 * @worker: self
2338 *
2339 * Process all scheduled works. Please note that the scheduled list
2340 * may change while processing a work, so this function repeatedly
2341 * fetches a work from the top and executes it.
2342 *
2343 * CONTEXT:
2344 * spin_lock_irq(pool->lock) which may be released and regrabbed
2345 * multiple times.
2346 */
process_scheduled_works(struct worker * worker)2347 static void process_scheduled_works(struct worker *worker)
2348 {
2349 while (!list_empty(&worker->scheduled)) {
2350 struct work_struct *work = list_first_entry(&worker->scheduled,
2351 struct work_struct, entry);
2352 process_one_work(worker, work);
2353 }
2354 }
2355
set_pf_worker(bool val)2356 static void set_pf_worker(bool val)
2357 {
2358 mutex_lock(&wq_pool_attach_mutex);
2359 if (val)
2360 current->flags |= PF_WQ_WORKER;
2361 else
2362 current->flags &= ~PF_WQ_WORKER;
2363 mutex_unlock(&wq_pool_attach_mutex);
2364 }
2365
2366 /**
2367 * worker_thread - the worker thread function
2368 * @__worker: self
2369 *
2370 * The worker thread function. All workers belong to a worker_pool -
2371 * either a per-cpu one or dynamic unbound one. These workers process all
2372 * work items regardless of their specific target workqueue. The only
2373 * exception is work items which belong to workqueues with a rescuer which
2374 * will be explained in rescuer_thread().
2375 *
2376 * Return: 0
2377 */
worker_thread(void * __worker)2378 static int worker_thread(void *__worker)
2379 {
2380 struct worker *worker = __worker;
2381 struct worker_pool *pool = worker->pool;
2382
2383 /* tell the scheduler that this is a workqueue worker */
2384 set_pf_worker(true);
2385 woke_up:
2386 spin_lock_irq(&pool->lock);
2387
2388 /* am I supposed to die? */
2389 if (unlikely(worker->flags & WORKER_DIE)) {
2390 spin_unlock_irq(&pool->lock);
2391 WARN_ON_ONCE(!list_empty(&worker->entry));
2392 set_pf_worker(false);
2393
2394 set_task_comm(worker->task, "kworker/dying");
2395 ida_simple_remove(&pool->worker_ida, worker->id);
2396 worker_detach_from_pool(worker);
2397 kfree(worker);
2398 return 0;
2399 }
2400
2401 worker_leave_idle(worker);
2402 recheck:
2403 /* no more worker necessary? */
2404 if (!need_more_worker(pool))
2405 goto sleep;
2406
2407 /* do we need to manage? */
2408 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2409 goto recheck;
2410
2411 /*
2412 * ->scheduled list can only be filled while a worker is
2413 * preparing to process a work or actually processing it.
2414 * Make sure nobody diddled with it while I was sleeping.
2415 */
2416 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2417
2418 /*
2419 * Finish PREP stage. We're guaranteed to have at least one idle
2420 * worker or that someone else has already assumed the manager
2421 * role. This is where @worker starts participating in concurrency
2422 * management if applicable and concurrency management is restored
2423 * after being rebound. See rebind_workers() for details.
2424 */
2425 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2426
2427 do {
2428 struct work_struct *work =
2429 list_first_entry(&pool->worklist,
2430 struct work_struct, entry);
2431
2432 pool->watchdog_ts = jiffies;
2433
2434 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2435 /* optimization path, not strictly necessary */
2436 process_one_work(worker, work);
2437 if (unlikely(!list_empty(&worker->scheduled)))
2438 process_scheduled_works(worker);
2439 } else {
2440 move_linked_works(work, &worker->scheduled, NULL);
2441 process_scheduled_works(worker);
2442 }
2443 } while (keep_working(pool));
2444
2445 worker_set_flags(worker, WORKER_PREP);
2446 sleep:
2447 /*
2448 * pool->lock is held and there's no work to process and no need to
2449 * manage, sleep. Workers are woken up only while holding
2450 * pool->lock or from local cpu, so setting the current state
2451 * before releasing pool->lock is enough to prevent losing any
2452 * event.
2453 */
2454 worker_enter_idle(worker);
2455 __set_current_state(TASK_IDLE);
2456 spin_unlock_irq(&pool->lock);
2457 schedule();
2458 goto woke_up;
2459 }
2460
2461 /**
2462 * rescuer_thread - the rescuer thread function
2463 * @__rescuer: self
2464 *
2465 * Workqueue rescuer thread function. There's one rescuer for each
2466 * workqueue which has WQ_MEM_RECLAIM set.
2467 *
2468 * Regular work processing on a pool may block trying to create a new
2469 * worker which uses GFP_KERNEL allocation which has slight chance of
2470 * developing into deadlock if some works currently on the same queue
2471 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2472 * the problem rescuer solves.
2473 *
2474 * When such condition is possible, the pool summons rescuers of all
2475 * workqueues which have works queued on the pool and let them process
2476 * those works so that forward progress can be guaranteed.
2477 *
2478 * This should happen rarely.
2479 *
2480 * Return: 0
2481 */
rescuer_thread(void * __rescuer)2482 static int rescuer_thread(void *__rescuer)
2483 {
2484 struct worker *rescuer = __rescuer;
2485 struct workqueue_struct *wq = rescuer->rescue_wq;
2486 struct list_head *scheduled = &rescuer->scheduled;
2487 bool should_stop;
2488
2489 set_user_nice(current, RESCUER_NICE_LEVEL);
2490
2491 /*
2492 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2493 * doesn't participate in concurrency management.
2494 */
2495 set_pf_worker(true);
2496 repeat:
2497 set_current_state(TASK_IDLE);
2498
2499 /*
2500 * By the time the rescuer is requested to stop, the workqueue
2501 * shouldn't have any work pending, but @wq->maydays may still have
2502 * pwq(s) queued. This can happen by non-rescuer workers consuming
2503 * all the work items before the rescuer got to them. Go through
2504 * @wq->maydays processing before acting on should_stop so that the
2505 * list is always empty on exit.
2506 */
2507 should_stop = kthread_should_stop();
2508
2509 /* see whether any pwq is asking for help */
2510 spin_lock_irq(&wq_mayday_lock);
2511
2512 while (!list_empty(&wq->maydays)) {
2513 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2514 struct pool_workqueue, mayday_node);
2515 struct worker_pool *pool = pwq->pool;
2516 struct work_struct *work, *n;
2517 bool first = true;
2518
2519 __set_current_state(TASK_RUNNING);
2520 list_del_init(&pwq->mayday_node);
2521
2522 spin_unlock_irq(&wq_mayday_lock);
2523
2524 worker_attach_to_pool(rescuer, pool);
2525
2526 spin_lock_irq(&pool->lock);
2527
2528 /*
2529 * Slurp in all works issued via this workqueue and
2530 * process'em.
2531 */
2532 WARN_ON_ONCE(!list_empty(scheduled));
2533 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2534 if (get_work_pwq(work) == pwq) {
2535 if (first)
2536 pool->watchdog_ts = jiffies;
2537 move_linked_works(work, scheduled, &n);
2538 }
2539 first = false;
2540 }
2541
2542 if (!list_empty(scheduled)) {
2543 process_scheduled_works(rescuer);
2544
2545 /*
2546 * The above execution of rescued work items could
2547 * have created more to rescue through
2548 * pwq_activate_first_delayed() or chained
2549 * queueing. Let's put @pwq back on mayday list so
2550 * that such back-to-back work items, which may be
2551 * being used to relieve memory pressure, don't
2552 * incur MAYDAY_INTERVAL delay inbetween.
2553 */
2554 if (need_to_create_worker(pool)) {
2555 spin_lock(&wq_mayday_lock);
2556 /*
2557 * Queue iff we aren't racing destruction
2558 * and somebody else hasn't queued it already.
2559 */
2560 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2561 get_pwq(pwq);
2562 list_add_tail(&pwq->mayday_node, &wq->maydays);
2563 }
2564 spin_unlock(&wq_mayday_lock);
2565 }
2566 }
2567
2568 /*
2569 * Put the reference grabbed by send_mayday(). @pool won't
2570 * go away while we're still attached to it.
2571 */
2572 put_pwq(pwq);
2573
2574 /*
2575 * Leave this pool. If need_more_worker() is %true, notify a
2576 * regular worker; otherwise, we end up with 0 concurrency
2577 * and stalling the execution.
2578 */
2579 if (need_more_worker(pool))
2580 wake_up_worker(pool);
2581
2582 spin_unlock_irq(&pool->lock);
2583
2584 worker_detach_from_pool(rescuer);
2585
2586 spin_lock_irq(&wq_mayday_lock);
2587 }
2588
2589 spin_unlock_irq(&wq_mayday_lock);
2590
2591 if (should_stop) {
2592 __set_current_state(TASK_RUNNING);
2593 set_pf_worker(false);
2594 return 0;
2595 }
2596
2597 /* rescuers should never participate in concurrency management */
2598 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2599 schedule();
2600 goto repeat;
2601 }
2602
2603 /**
2604 * check_flush_dependency - check for flush dependency sanity
2605 * @target_wq: workqueue being flushed
2606 * @target_work: work item being flushed (NULL for workqueue flushes)
2607 *
2608 * %current is trying to flush the whole @target_wq or @target_work on it.
2609 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2610 * reclaiming memory or running on a workqueue which doesn't have
2611 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2612 * a deadlock.
2613 */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work)2614 static void check_flush_dependency(struct workqueue_struct *target_wq,
2615 struct work_struct *target_work)
2616 {
2617 work_func_t target_func = target_work ? target_work->func : NULL;
2618 struct worker *worker;
2619
2620 if (target_wq->flags & WQ_MEM_RECLAIM)
2621 return;
2622
2623 worker = current_wq_worker();
2624
2625 WARN_ONCE(current->flags & PF_MEMALLOC,
2626 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2627 current->pid, current->comm, target_wq->name, target_func);
2628 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2629 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2630 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2631 worker->current_pwq->wq->name, worker->current_func,
2632 target_wq->name, target_func);
2633 }
2634
2635 struct wq_barrier {
2636 struct work_struct work;
2637 struct completion done;
2638 struct task_struct *task; /* purely informational */
2639 };
2640
wq_barrier_func(struct work_struct * work)2641 static void wq_barrier_func(struct work_struct *work)
2642 {
2643 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2644 complete(&barr->done);
2645 }
2646
2647 /**
2648 * insert_wq_barrier - insert a barrier work
2649 * @pwq: pwq to insert barrier into
2650 * @barr: wq_barrier to insert
2651 * @target: target work to attach @barr to
2652 * @worker: worker currently executing @target, NULL if @target is not executing
2653 *
2654 * @barr is linked to @target such that @barr is completed only after
2655 * @target finishes execution. Please note that the ordering
2656 * guarantee is observed only with respect to @target and on the local
2657 * cpu.
2658 *
2659 * Currently, a queued barrier can't be canceled. This is because
2660 * try_to_grab_pending() can't determine whether the work to be
2661 * grabbed is at the head of the queue and thus can't clear LINKED
2662 * flag of the previous work while there must be a valid next work
2663 * after a work with LINKED flag set.
2664 *
2665 * Note that when @worker is non-NULL, @target may be modified
2666 * underneath us, so we can't reliably determine pwq from @target.
2667 *
2668 * CONTEXT:
2669 * spin_lock_irq(pool->lock).
2670 */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)2671 static void insert_wq_barrier(struct pool_workqueue *pwq,
2672 struct wq_barrier *barr,
2673 struct work_struct *target, struct worker *worker)
2674 {
2675 struct list_head *head;
2676 unsigned int linked = 0;
2677
2678 /*
2679 * debugobject calls are safe here even with pool->lock locked
2680 * as we know for sure that this will not trigger any of the
2681 * checks and call back into the fixup functions where we
2682 * might deadlock.
2683 */
2684 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2685 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2686
2687 init_completion_map(&barr->done, &target->lockdep_map);
2688
2689 barr->task = current;
2690
2691 /*
2692 * If @target is currently being executed, schedule the
2693 * barrier to the worker; otherwise, put it after @target.
2694 */
2695 if (worker)
2696 head = worker->scheduled.next;
2697 else {
2698 unsigned long *bits = work_data_bits(target);
2699
2700 head = target->entry.next;
2701 /* there can already be other linked works, inherit and set */
2702 linked = *bits & WORK_STRUCT_LINKED;
2703 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2704 }
2705
2706 debug_work_activate(&barr->work);
2707 insert_work(pwq, &barr->work, head,
2708 work_color_to_flags(WORK_NO_COLOR) | linked);
2709 }
2710
2711 /**
2712 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2713 * @wq: workqueue being flushed
2714 * @flush_color: new flush color, < 0 for no-op
2715 * @work_color: new work color, < 0 for no-op
2716 *
2717 * Prepare pwqs for workqueue flushing.
2718 *
2719 * If @flush_color is non-negative, flush_color on all pwqs should be
2720 * -1. If no pwq has in-flight commands at the specified color, all
2721 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2722 * has in flight commands, its pwq->flush_color is set to
2723 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2724 * wakeup logic is armed and %true is returned.
2725 *
2726 * The caller should have initialized @wq->first_flusher prior to
2727 * calling this function with non-negative @flush_color. If
2728 * @flush_color is negative, no flush color update is done and %false
2729 * is returned.
2730 *
2731 * If @work_color is non-negative, all pwqs should have the same
2732 * work_color which is previous to @work_color and all will be
2733 * advanced to @work_color.
2734 *
2735 * CONTEXT:
2736 * mutex_lock(wq->mutex).
2737 *
2738 * Return:
2739 * %true if @flush_color >= 0 and there's something to flush. %false
2740 * otherwise.
2741 */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)2742 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2743 int flush_color, int work_color)
2744 {
2745 bool wait = false;
2746 struct pool_workqueue *pwq;
2747
2748 if (flush_color >= 0) {
2749 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2750 atomic_set(&wq->nr_pwqs_to_flush, 1);
2751 }
2752
2753 for_each_pwq(pwq, wq) {
2754 struct worker_pool *pool = pwq->pool;
2755
2756 spin_lock_irq(&pool->lock);
2757
2758 if (flush_color >= 0) {
2759 WARN_ON_ONCE(pwq->flush_color != -1);
2760
2761 if (pwq->nr_in_flight[flush_color]) {
2762 pwq->flush_color = flush_color;
2763 atomic_inc(&wq->nr_pwqs_to_flush);
2764 wait = true;
2765 }
2766 }
2767
2768 if (work_color >= 0) {
2769 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2770 pwq->work_color = work_color;
2771 }
2772
2773 spin_unlock_irq(&pool->lock);
2774 }
2775
2776 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2777 complete(&wq->first_flusher->done);
2778
2779 return wait;
2780 }
2781
2782 /**
2783 * flush_workqueue - ensure that any scheduled work has run to completion.
2784 * @wq: workqueue to flush
2785 *
2786 * This function sleeps until all work items which were queued on entry
2787 * have finished execution, but it is not livelocked by new incoming ones.
2788 */
flush_workqueue(struct workqueue_struct * wq)2789 void flush_workqueue(struct workqueue_struct *wq)
2790 {
2791 struct wq_flusher this_flusher = {
2792 .list = LIST_HEAD_INIT(this_flusher.list),
2793 .flush_color = -1,
2794 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2795 };
2796 int next_color;
2797
2798 if (WARN_ON(!wq_online))
2799 return;
2800
2801 lock_map_acquire(&wq->lockdep_map);
2802 lock_map_release(&wq->lockdep_map);
2803
2804 mutex_lock(&wq->mutex);
2805
2806 /*
2807 * Start-to-wait phase
2808 */
2809 next_color = work_next_color(wq->work_color);
2810
2811 if (next_color != wq->flush_color) {
2812 /*
2813 * Color space is not full. The current work_color
2814 * becomes our flush_color and work_color is advanced
2815 * by one.
2816 */
2817 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2818 this_flusher.flush_color = wq->work_color;
2819 wq->work_color = next_color;
2820
2821 if (!wq->first_flusher) {
2822 /* no flush in progress, become the first flusher */
2823 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2824
2825 wq->first_flusher = &this_flusher;
2826
2827 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2828 wq->work_color)) {
2829 /* nothing to flush, done */
2830 wq->flush_color = next_color;
2831 wq->first_flusher = NULL;
2832 goto out_unlock;
2833 }
2834 } else {
2835 /* wait in queue */
2836 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2837 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2838 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2839 }
2840 } else {
2841 /*
2842 * Oops, color space is full, wait on overflow queue.
2843 * The next flush completion will assign us
2844 * flush_color and transfer to flusher_queue.
2845 */
2846 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2847 }
2848
2849 check_flush_dependency(wq, NULL);
2850
2851 mutex_unlock(&wq->mutex);
2852
2853 wait_for_completion(&this_flusher.done);
2854
2855 /*
2856 * Wake-up-and-cascade phase
2857 *
2858 * First flushers are responsible for cascading flushes and
2859 * handling overflow. Non-first flushers can simply return.
2860 */
2861 if (wq->first_flusher != &this_flusher)
2862 return;
2863
2864 mutex_lock(&wq->mutex);
2865
2866 /* we might have raced, check again with mutex held */
2867 if (wq->first_flusher != &this_flusher)
2868 goto out_unlock;
2869
2870 wq->first_flusher = NULL;
2871
2872 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2873 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2874
2875 while (true) {
2876 struct wq_flusher *next, *tmp;
2877
2878 /* complete all the flushers sharing the current flush color */
2879 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2880 if (next->flush_color != wq->flush_color)
2881 break;
2882 list_del_init(&next->list);
2883 complete(&next->done);
2884 }
2885
2886 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2887 wq->flush_color != work_next_color(wq->work_color));
2888
2889 /* this flush_color is finished, advance by one */
2890 wq->flush_color = work_next_color(wq->flush_color);
2891
2892 /* one color has been freed, handle overflow queue */
2893 if (!list_empty(&wq->flusher_overflow)) {
2894 /*
2895 * Assign the same color to all overflowed
2896 * flushers, advance work_color and append to
2897 * flusher_queue. This is the start-to-wait
2898 * phase for these overflowed flushers.
2899 */
2900 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2901 tmp->flush_color = wq->work_color;
2902
2903 wq->work_color = work_next_color(wq->work_color);
2904
2905 list_splice_tail_init(&wq->flusher_overflow,
2906 &wq->flusher_queue);
2907 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2908 }
2909
2910 if (list_empty(&wq->flusher_queue)) {
2911 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2912 break;
2913 }
2914
2915 /*
2916 * Need to flush more colors. Make the next flusher
2917 * the new first flusher and arm pwqs.
2918 */
2919 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2920 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2921
2922 list_del_init(&next->list);
2923 wq->first_flusher = next;
2924
2925 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2926 break;
2927
2928 /*
2929 * Meh... this color is already done, clear first
2930 * flusher and repeat cascading.
2931 */
2932 wq->first_flusher = NULL;
2933 }
2934
2935 out_unlock:
2936 mutex_unlock(&wq->mutex);
2937 }
2938 EXPORT_SYMBOL(flush_workqueue);
2939
2940 /**
2941 * drain_workqueue - drain a workqueue
2942 * @wq: workqueue to drain
2943 *
2944 * Wait until the workqueue becomes empty. While draining is in progress,
2945 * only chain queueing is allowed. IOW, only currently pending or running
2946 * work items on @wq can queue further work items on it. @wq is flushed
2947 * repeatedly until it becomes empty. The number of flushing is determined
2948 * by the depth of chaining and should be relatively short. Whine if it
2949 * takes too long.
2950 */
drain_workqueue(struct workqueue_struct * wq)2951 void drain_workqueue(struct workqueue_struct *wq)
2952 {
2953 unsigned int flush_cnt = 0;
2954 struct pool_workqueue *pwq;
2955
2956 /*
2957 * __queue_work() needs to test whether there are drainers, is much
2958 * hotter than drain_workqueue() and already looks at @wq->flags.
2959 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2960 */
2961 mutex_lock(&wq->mutex);
2962 if (!wq->nr_drainers++)
2963 wq->flags |= __WQ_DRAINING;
2964 mutex_unlock(&wq->mutex);
2965 reflush:
2966 flush_workqueue(wq);
2967
2968 mutex_lock(&wq->mutex);
2969
2970 for_each_pwq(pwq, wq) {
2971 bool drained;
2972
2973 spin_lock_irq(&pwq->pool->lock);
2974 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2975 spin_unlock_irq(&pwq->pool->lock);
2976
2977 if (drained)
2978 continue;
2979
2980 if (++flush_cnt == 10 ||
2981 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2982 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2983 wq->name, flush_cnt);
2984
2985 mutex_unlock(&wq->mutex);
2986 goto reflush;
2987 }
2988
2989 if (!--wq->nr_drainers)
2990 wq->flags &= ~__WQ_DRAINING;
2991 mutex_unlock(&wq->mutex);
2992 }
2993 EXPORT_SYMBOL_GPL(drain_workqueue);
2994
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)2995 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2996 bool from_cancel)
2997 {
2998 struct worker *worker = NULL;
2999 struct worker_pool *pool;
3000 struct pool_workqueue *pwq;
3001
3002 might_sleep();
3003
3004 rcu_read_lock();
3005 pool = get_work_pool(work);
3006 if (!pool) {
3007 rcu_read_unlock();
3008 return false;
3009 }
3010
3011 spin_lock_irq(&pool->lock);
3012 /* see the comment in try_to_grab_pending() with the same code */
3013 pwq = get_work_pwq(work);
3014 if (pwq) {
3015 if (unlikely(pwq->pool != pool))
3016 goto already_gone;
3017 } else {
3018 worker = find_worker_executing_work(pool, work);
3019 if (!worker)
3020 goto already_gone;
3021 pwq = worker->current_pwq;
3022 }
3023
3024 check_flush_dependency(pwq->wq, work);
3025
3026 insert_wq_barrier(pwq, barr, work, worker);
3027 spin_unlock_irq(&pool->lock);
3028
3029 /*
3030 * Force a lock recursion deadlock when using flush_work() inside a
3031 * single-threaded or rescuer equipped workqueue.
3032 *
3033 * For single threaded workqueues the deadlock happens when the work
3034 * is after the work issuing the flush_work(). For rescuer equipped
3035 * workqueues the deadlock happens when the rescuer stalls, blocking
3036 * forward progress.
3037 */
3038 if (!from_cancel &&
3039 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3040 lock_map_acquire(&pwq->wq->lockdep_map);
3041 lock_map_release(&pwq->wq->lockdep_map);
3042 }
3043 rcu_read_unlock();
3044 return true;
3045 already_gone:
3046 spin_unlock_irq(&pool->lock);
3047 rcu_read_unlock();
3048 return false;
3049 }
3050
__flush_work(struct work_struct * work,bool from_cancel)3051 static bool __flush_work(struct work_struct *work, bool from_cancel)
3052 {
3053 struct wq_barrier barr;
3054
3055 if (WARN_ON(!wq_online))
3056 return false;
3057
3058 if (WARN_ON(!work->func))
3059 return false;
3060
3061 lock_map_acquire(&work->lockdep_map);
3062 lock_map_release(&work->lockdep_map);
3063
3064 if (start_flush_work(work, &barr, from_cancel)) {
3065 wait_for_completion(&barr.done);
3066 destroy_work_on_stack(&barr.work);
3067 return true;
3068 } else {
3069 return false;
3070 }
3071 }
3072
3073 /**
3074 * flush_work - wait for a work to finish executing the last queueing instance
3075 * @work: the work to flush
3076 *
3077 * Wait until @work has finished execution. @work is guaranteed to be idle
3078 * on return if it hasn't been requeued since flush started.
3079 *
3080 * Return:
3081 * %true if flush_work() waited for the work to finish execution,
3082 * %false if it was already idle.
3083 */
flush_work(struct work_struct * work)3084 bool flush_work(struct work_struct *work)
3085 {
3086 return __flush_work(work, false);
3087 }
3088 EXPORT_SYMBOL_GPL(flush_work);
3089
3090 struct cwt_wait {
3091 wait_queue_entry_t wait;
3092 struct work_struct *work;
3093 };
3094
cwt_wakefn(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)3095 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3096 {
3097 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3098
3099 if (cwait->work != key)
3100 return 0;
3101 return autoremove_wake_function(wait, mode, sync, key);
3102 }
3103
__cancel_work_timer(struct work_struct * work,bool is_dwork)3104 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3105 {
3106 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3107 unsigned long flags;
3108 int ret;
3109
3110 do {
3111 ret = try_to_grab_pending(work, is_dwork, &flags);
3112 /*
3113 * If someone else is already canceling, wait for it to
3114 * finish. flush_work() doesn't work for PREEMPT_NONE
3115 * because we may get scheduled between @work's completion
3116 * and the other canceling task resuming and clearing
3117 * CANCELING - flush_work() will return false immediately
3118 * as @work is no longer busy, try_to_grab_pending() will
3119 * return -ENOENT as @work is still being canceled and the
3120 * other canceling task won't be able to clear CANCELING as
3121 * we're hogging the CPU.
3122 *
3123 * Let's wait for completion using a waitqueue. As this
3124 * may lead to the thundering herd problem, use a custom
3125 * wake function which matches @work along with exclusive
3126 * wait and wakeup.
3127 */
3128 if (unlikely(ret == -ENOENT)) {
3129 struct cwt_wait cwait;
3130
3131 init_wait(&cwait.wait);
3132 cwait.wait.func = cwt_wakefn;
3133 cwait.work = work;
3134
3135 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3136 TASK_UNINTERRUPTIBLE);
3137 if (work_is_canceling(work))
3138 schedule();
3139 finish_wait(&cancel_waitq, &cwait.wait);
3140 }
3141 } while (unlikely(ret < 0));
3142
3143 /* tell other tasks trying to grab @work to back off */
3144 mark_work_canceling(work);
3145 local_irq_restore(flags);
3146
3147 /*
3148 * This allows canceling during early boot. We know that @work
3149 * isn't executing.
3150 */
3151 if (wq_online)
3152 __flush_work(work, true);
3153
3154 clear_work_data(work);
3155
3156 /*
3157 * Paired with prepare_to_wait() above so that either
3158 * waitqueue_active() is visible here or !work_is_canceling() is
3159 * visible there.
3160 */
3161 smp_mb();
3162 if (waitqueue_active(&cancel_waitq))
3163 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3164
3165 return ret;
3166 }
3167
3168 /**
3169 * cancel_work_sync - cancel a work and wait for it to finish
3170 * @work: the work to cancel
3171 *
3172 * Cancel @work and wait for its execution to finish. This function
3173 * can be used even if the work re-queues itself or migrates to
3174 * another workqueue. On return from this function, @work is
3175 * guaranteed to be not pending or executing on any CPU.
3176 *
3177 * cancel_work_sync(&delayed_work->work) must not be used for
3178 * delayed_work's. Use cancel_delayed_work_sync() instead.
3179 *
3180 * The caller must ensure that the workqueue on which @work was last
3181 * queued can't be destroyed before this function returns.
3182 *
3183 * Return:
3184 * %true if @work was pending, %false otherwise.
3185 */
cancel_work_sync(struct work_struct * work)3186 bool cancel_work_sync(struct work_struct *work)
3187 {
3188 return __cancel_work_timer(work, false);
3189 }
3190 EXPORT_SYMBOL_GPL(cancel_work_sync);
3191
3192 /**
3193 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3194 * @dwork: the delayed work to flush
3195 *
3196 * Delayed timer is cancelled and the pending work is queued for
3197 * immediate execution. Like flush_work(), this function only
3198 * considers the last queueing instance of @dwork.
3199 *
3200 * Return:
3201 * %true if flush_work() waited for the work to finish execution,
3202 * %false if it was already idle.
3203 */
flush_delayed_work(struct delayed_work * dwork)3204 bool flush_delayed_work(struct delayed_work *dwork)
3205 {
3206 local_irq_disable();
3207 if (del_timer_sync(&dwork->timer))
3208 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3209 local_irq_enable();
3210 return flush_work(&dwork->work);
3211 }
3212 EXPORT_SYMBOL(flush_delayed_work);
3213
3214 /**
3215 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3216 * @rwork: the rcu work to flush
3217 *
3218 * Return:
3219 * %true if flush_rcu_work() waited for the work to finish execution,
3220 * %false if it was already idle.
3221 */
flush_rcu_work(struct rcu_work * rwork)3222 bool flush_rcu_work(struct rcu_work *rwork)
3223 {
3224 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3225 rcu_barrier();
3226 flush_work(&rwork->work);
3227 return true;
3228 } else {
3229 return flush_work(&rwork->work);
3230 }
3231 }
3232 EXPORT_SYMBOL(flush_rcu_work);
3233
__cancel_work(struct work_struct * work,bool is_dwork)3234 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3235 {
3236 unsigned long flags;
3237 int ret;
3238
3239 do {
3240 ret = try_to_grab_pending(work, is_dwork, &flags);
3241 } while (unlikely(ret == -EAGAIN));
3242
3243 if (unlikely(ret < 0))
3244 return false;
3245
3246 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3247 local_irq_restore(flags);
3248 return ret;
3249 }
3250
3251 /**
3252 * cancel_delayed_work - cancel a delayed work
3253 * @dwork: delayed_work to cancel
3254 *
3255 * Kill off a pending delayed_work.
3256 *
3257 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3258 * pending.
3259 *
3260 * Note:
3261 * The work callback function may still be running on return, unless
3262 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3263 * use cancel_delayed_work_sync() to wait on it.
3264 *
3265 * This function is safe to call from any context including IRQ handler.
3266 */
cancel_delayed_work(struct delayed_work * dwork)3267 bool cancel_delayed_work(struct delayed_work *dwork)
3268 {
3269 return __cancel_work(&dwork->work, true);
3270 }
3271 EXPORT_SYMBOL(cancel_delayed_work);
3272
3273 /**
3274 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3275 * @dwork: the delayed work cancel
3276 *
3277 * This is cancel_work_sync() for delayed works.
3278 *
3279 * Return:
3280 * %true if @dwork was pending, %false otherwise.
3281 */
cancel_delayed_work_sync(struct delayed_work * dwork)3282 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3283 {
3284 return __cancel_work_timer(&dwork->work, true);
3285 }
3286 EXPORT_SYMBOL(cancel_delayed_work_sync);
3287
3288 /**
3289 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3290 * @func: the function to call
3291 *
3292 * schedule_on_each_cpu() executes @func on each online CPU using the
3293 * system workqueue and blocks until all CPUs have completed.
3294 * schedule_on_each_cpu() is very slow.
3295 *
3296 * Return:
3297 * 0 on success, -errno on failure.
3298 */
schedule_on_each_cpu(work_func_t func)3299 int schedule_on_each_cpu(work_func_t func)
3300 {
3301 int cpu;
3302 struct work_struct __percpu *works;
3303
3304 works = alloc_percpu(struct work_struct);
3305 if (!works)
3306 return -ENOMEM;
3307
3308 get_online_cpus();
3309
3310 for_each_online_cpu(cpu) {
3311 struct work_struct *work = per_cpu_ptr(works, cpu);
3312
3313 INIT_WORK(work, func);
3314 schedule_work_on(cpu, work);
3315 }
3316
3317 for_each_online_cpu(cpu)
3318 flush_work(per_cpu_ptr(works, cpu));
3319
3320 put_online_cpus();
3321 free_percpu(works);
3322 return 0;
3323 }
3324
3325 /**
3326 * execute_in_process_context - reliably execute the routine with user context
3327 * @fn: the function to execute
3328 * @ew: guaranteed storage for the execute work structure (must
3329 * be available when the work executes)
3330 *
3331 * Executes the function immediately if process context is available,
3332 * otherwise schedules the function for delayed execution.
3333 *
3334 * Return: 0 - function was executed
3335 * 1 - function was scheduled for execution
3336 */
execute_in_process_context(work_func_t fn,struct execute_work * ew)3337 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3338 {
3339 if (!in_interrupt()) {
3340 fn(&ew->work);
3341 return 0;
3342 }
3343
3344 INIT_WORK(&ew->work, fn);
3345 schedule_work(&ew->work);
3346
3347 return 1;
3348 }
3349 EXPORT_SYMBOL_GPL(execute_in_process_context);
3350
3351 /**
3352 * free_workqueue_attrs - free a workqueue_attrs
3353 * @attrs: workqueue_attrs to free
3354 *
3355 * Undo alloc_workqueue_attrs().
3356 */
free_workqueue_attrs(struct workqueue_attrs * attrs)3357 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3358 {
3359 if (attrs) {
3360 free_cpumask_var(attrs->cpumask);
3361 kfree(attrs);
3362 }
3363 }
3364
3365 /**
3366 * alloc_workqueue_attrs - allocate a workqueue_attrs
3367 *
3368 * Allocate a new workqueue_attrs, initialize with default settings and
3369 * return it.
3370 *
3371 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3372 */
alloc_workqueue_attrs(void)3373 struct workqueue_attrs *alloc_workqueue_attrs(void)
3374 {
3375 struct workqueue_attrs *attrs;
3376
3377 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3378 if (!attrs)
3379 goto fail;
3380 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3381 goto fail;
3382
3383 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3384 return attrs;
3385 fail:
3386 free_workqueue_attrs(attrs);
3387 return NULL;
3388 }
3389
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)3390 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3391 const struct workqueue_attrs *from)
3392 {
3393 to->nice = from->nice;
3394 cpumask_copy(to->cpumask, from->cpumask);
3395 /*
3396 * Unlike hash and equality test, this function doesn't ignore
3397 * ->no_numa as it is used for both pool and wq attrs. Instead,
3398 * get_unbound_pool() explicitly clears ->no_numa after copying.
3399 */
3400 to->no_numa = from->no_numa;
3401 }
3402
3403 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)3404 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3405 {
3406 u32 hash = 0;
3407
3408 hash = jhash_1word(attrs->nice, hash);
3409 hash = jhash(cpumask_bits(attrs->cpumask),
3410 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3411 return hash;
3412 }
3413
3414 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)3415 static bool wqattrs_equal(const struct workqueue_attrs *a,
3416 const struct workqueue_attrs *b)
3417 {
3418 if (a->nice != b->nice)
3419 return false;
3420 if (!cpumask_equal(a->cpumask, b->cpumask))
3421 return false;
3422 return true;
3423 }
3424
3425 /**
3426 * init_worker_pool - initialize a newly zalloc'd worker_pool
3427 * @pool: worker_pool to initialize
3428 *
3429 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3430 *
3431 * Return: 0 on success, -errno on failure. Even on failure, all fields
3432 * inside @pool proper are initialized and put_unbound_pool() can be called
3433 * on @pool safely to release it.
3434 */
init_worker_pool(struct worker_pool * pool)3435 static int init_worker_pool(struct worker_pool *pool)
3436 {
3437 spin_lock_init(&pool->lock);
3438 pool->id = -1;
3439 pool->cpu = -1;
3440 pool->node = NUMA_NO_NODE;
3441 pool->flags |= POOL_DISASSOCIATED;
3442 pool->watchdog_ts = jiffies;
3443 INIT_LIST_HEAD(&pool->worklist);
3444 INIT_LIST_HEAD(&pool->idle_list);
3445 hash_init(pool->busy_hash);
3446
3447 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3448
3449 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3450
3451 INIT_LIST_HEAD(&pool->workers);
3452
3453 ida_init(&pool->worker_ida);
3454 INIT_HLIST_NODE(&pool->hash_node);
3455 pool->refcnt = 1;
3456
3457 /* shouldn't fail above this point */
3458 pool->attrs = alloc_workqueue_attrs();
3459 if (!pool->attrs)
3460 return -ENOMEM;
3461 return 0;
3462 }
3463
3464 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)3465 static void wq_init_lockdep(struct workqueue_struct *wq)
3466 {
3467 char *lock_name;
3468
3469 lockdep_register_key(&wq->key);
3470 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3471 if (!lock_name)
3472 lock_name = wq->name;
3473
3474 wq->lock_name = lock_name;
3475 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3476 }
3477
wq_unregister_lockdep(struct workqueue_struct * wq)3478 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3479 {
3480 lockdep_unregister_key(&wq->key);
3481 }
3482
wq_free_lockdep(struct workqueue_struct * wq)3483 static void wq_free_lockdep(struct workqueue_struct *wq)
3484 {
3485 if (wq->lock_name != wq->name)
3486 kfree(wq->lock_name);
3487 }
3488 #else
wq_init_lockdep(struct workqueue_struct * wq)3489 static void wq_init_lockdep(struct workqueue_struct *wq)
3490 {
3491 }
3492
wq_unregister_lockdep(struct workqueue_struct * wq)3493 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3494 {
3495 }
3496
wq_free_lockdep(struct workqueue_struct * wq)3497 static void wq_free_lockdep(struct workqueue_struct *wq)
3498 {
3499 }
3500 #endif
3501
rcu_free_wq(struct rcu_head * rcu)3502 static void rcu_free_wq(struct rcu_head *rcu)
3503 {
3504 struct workqueue_struct *wq =
3505 container_of(rcu, struct workqueue_struct, rcu);
3506
3507 wq_free_lockdep(wq);
3508
3509 if (!(wq->flags & WQ_UNBOUND))
3510 free_percpu(wq->cpu_pwqs);
3511 else
3512 free_workqueue_attrs(wq->unbound_attrs);
3513
3514 kfree(wq->rescuer);
3515 kfree(wq);
3516 }
3517
rcu_free_pool(struct rcu_head * rcu)3518 static void rcu_free_pool(struct rcu_head *rcu)
3519 {
3520 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3521
3522 ida_destroy(&pool->worker_ida);
3523 free_workqueue_attrs(pool->attrs);
3524 kfree(pool);
3525 }
3526
3527 /**
3528 * put_unbound_pool - put a worker_pool
3529 * @pool: worker_pool to put
3530 *
3531 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3532 * safe manner. get_unbound_pool() calls this function on its failure path
3533 * and this function should be able to release pools which went through,
3534 * successfully or not, init_worker_pool().
3535 *
3536 * Should be called with wq_pool_mutex held.
3537 */
put_unbound_pool(struct worker_pool * pool)3538 static void put_unbound_pool(struct worker_pool *pool)
3539 {
3540 DECLARE_COMPLETION_ONSTACK(detach_completion);
3541 struct worker *worker;
3542
3543 lockdep_assert_held(&wq_pool_mutex);
3544
3545 if (--pool->refcnt)
3546 return;
3547
3548 /* sanity checks */
3549 if (WARN_ON(!(pool->cpu < 0)) ||
3550 WARN_ON(!list_empty(&pool->worklist)))
3551 return;
3552
3553 /* release id and unhash */
3554 if (pool->id >= 0)
3555 idr_remove(&worker_pool_idr, pool->id);
3556 hash_del(&pool->hash_node);
3557
3558 /*
3559 * Become the manager and destroy all workers. This prevents
3560 * @pool's workers from blocking on attach_mutex. We're the last
3561 * manager and @pool gets freed with the flag set.
3562 */
3563 spin_lock_irq(&pool->lock);
3564 wait_event_lock_irq(wq_manager_wait,
3565 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3566 pool->flags |= POOL_MANAGER_ACTIVE;
3567
3568 while ((worker = first_idle_worker(pool)))
3569 destroy_worker(worker);
3570 WARN_ON(pool->nr_workers || pool->nr_idle);
3571 spin_unlock_irq(&pool->lock);
3572
3573 mutex_lock(&wq_pool_attach_mutex);
3574 if (!list_empty(&pool->workers))
3575 pool->detach_completion = &detach_completion;
3576 mutex_unlock(&wq_pool_attach_mutex);
3577
3578 if (pool->detach_completion)
3579 wait_for_completion(pool->detach_completion);
3580
3581 /* shut down the timers */
3582 del_timer_sync(&pool->idle_timer);
3583 del_timer_sync(&pool->mayday_timer);
3584
3585 /* RCU protected to allow dereferences from get_work_pool() */
3586 call_rcu(&pool->rcu, rcu_free_pool);
3587 }
3588
3589 /**
3590 * get_unbound_pool - get a worker_pool with the specified attributes
3591 * @attrs: the attributes of the worker_pool to get
3592 *
3593 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3594 * reference count and return it. If there already is a matching
3595 * worker_pool, it will be used; otherwise, this function attempts to
3596 * create a new one.
3597 *
3598 * Should be called with wq_pool_mutex held.
3599 *
3600 * Return: On success, a worker_pool with the same attributes as @attrs.
3601 * On failure, %NULL.
3602 */
get_unbound_pool(const struct workqueue_attrs * attrs)3603 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3604 {
3605 u32 hash = wqattrs_hash(attrs);
3606 struct worker_pool *pool;
3607 int node;
3608 int target_node = NUMA_NO_NODE;
3609
3610 lockdep_assert_held(&wq_pool_mutex);
3611
3612 /* do we already have a matching pool? */
3613 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3614 if (wqattrs_equal(pool->attrs, attrs)) {
3615 pool->refcnt++;
3616 return pool;
3617 }
3618 }
3619
3620 /* if cpumask is contained inside a NUMA node, we belong to that node */
3621 if (wq_numa_enabled) {
3622 for_each_node(node) {
3623 if (cpumask_subset(attrs->cpumask,
3624 wq_numa_possible_cpumask[node])) {
3625 target_node = node;
3626 break;
3627 }
3628 }
3629 }
3630
3631 /* nope, create a new one */
3632 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3633 if (!pool || init_worker_pool(pool) < 0)
3634 goto fail;
3635
3636 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3637 copy_workqueue_attrs(pool->attrs, attrs);
3638 pool->node = target_node;
3639
3640 /*
3641 * no_numa isn't a worker_pool attribute, always clear it. See
3642 * 'struct workqueue_attrs' comments for detail.
3643 */
3644 pool->attrs->no_numa = false;
3645
3646 if (worker_pool_assign_id(pool) < 0)
3647 goto fail;
3648
3649 /* create and start the initial worker */
3650 if (wq_online && !create_worker(pool))
3651 goto fail;
3652
3653 /* install */
3654 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3655
3656 return pool;
3657 fail:
3658 if (pool)
3659 put_unbound_pool(pool);
3660 return NULL;
3661 }
3662
rcu_free_pwq(struct rcu_head * rcu)3663 static void rcu_free_pwq(struct rcu_head *rcu)
3664 {
3665 kmem_cache_free(pwq_cache,
3666 container_of(rcu, struct pool_workqueue, rcu));
3667 }
3668
3669 /*
3670 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3671 * and needs to be destroyed.
3672 */
pwq_unbound_release_workfn(struct work_struct * work)3673 static void pwq_unbound_release_workfn(struct work_struct *work)
3674 {
3675 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3676 unbound_release_work);
3677 struct workqueue_struct *wq = pwq->wq;
3678 struct worker_pool *pool = pwq->pool;
3679 bool is_last = false;
3680
3681 /*
3682 * when @pwq is not linked, it doesn't hold any reference to the
3683 * @wq, and @wq is invalid to access.
3684 */
3685 if (!list_empty(&pwq->pwqs_node)) {
3686 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3687 return;
3688
3689 mutex_lock(&wq->mutex);
3690 list_del_rcu(&pwq->pwqs_node);
3691 is_last = list_empty(&wq->pwqs);
3692 mutex_unlock(&wq->mutex);
3693 }
3694
3695 mutex_lock(&wq_pool_mutex);
3696 put_unbound_pool(pool);
3697 mutex_unlock(&wq_pool_mutex);
3698
3699 call_rcu(&pwq->rcu, rcu_free_pwq);
3700
3701 /*
3702 * If we're the last pwq going away, @wq is already dead and no one
3703 * is gonna access it anymore. Schedule RCU free.
3704 */
3705 if (is_last) {
3706 wq_unregister_lockdep(wq);
3707 call_rcu(&wq->rcu, rcu_free_wq);
3708 }
3709 }
3710
3711 /**
3712 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3713 * @pwq: target pool_workqueue
3714 *
3715 * If @pwq isn't freezing, set @pwq->max_active to the associated
3716 * workqueue's saved_max_active and activate delayed work items
3717 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3718 */
pwq_adjust_max_active(struct pool_workqueue * pwq)3719 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3720 {
3721 struct workqueue_struct *wq = pwq->wq;
3722 bool freezable = wq->flags & WQ_FREEZABLE;
3723 unsigned long flags;
3724
3725 /* for @wq->saved_max_active */
3726 lockdep_assert_held(&wq->mutex);
3727
3728 /* fast exit for non-freezable wqs */
3729 if (!freezable && pwq->max_active == wq->saved_max_active)
3730 return;
3731
3732 /* this function can be called during early boot w/ irq disabled */
3733 spin_lock_irqsave(&pwq->pool->lock, flags);
3734
3735 /*
3736 * During [un]freezing, the caller is responsible for ensuring that
3737 * this function is called at least once after @workqueue_freezing
3738 * is updated and visible.
3739 */
3740 if (!freezable || !workqueue_freezing) {
3741 bool kick = false;
3742
3743 pwq->max_active = wq->saved_max_active;
3744
3745 while (!list_empty(&pwq->delayed_works) &&
3746 pwq->nr_active < pwq->max_active) {
3747 pwq_activate_first_delayed(pwq);
3748 kick = true;
3749 }
3750
3751 /*
3752 * Need to kick a worker after thawed or an unbound wq's
3753 * max_active is bumped. In realtime scenarios, always kicking a
3754 * worker will cause interference on the isolated cpu cores, so
3755 * let's kick iff work items were activated.
3756 */
3757 if (kick)
3758 wake_up_worker(pwq->pool);
3759 } else {
3760 pwq->max_active = 0;
3761 }
3762
3763 spin_unlock_irqrestore(&pwq->pool->lock, flags);
3764 }
3765
3766 /* initialize newly alloced @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)3767 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3768 struct worker_pool *pool)
3769 {
3770 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3771
3772 memset(pwq, 0, sizeof(*pwq));
3773
3774 pwq->pool = pool;
3775 pwq->wq = wq;
3776 pwq->flush_color = -1;
3777 pwq->refcnt = 1;
3778 INIT_LIST_HEAD(&pwq->delayed_works);
3779 INIT_LIST_HEAD(&pwq->pwqs_node);
3780 INIT_LIST_HEAD(&pwq->mayday_node);
3781 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3782 }
3783
3784 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)3785 static void link_pwq(struct pool_workqueue *pwq)
3786 {
3787 struct workqueue_struct *wq = pwq->wq;
3788
3789 lockdep_assert_held(&wq->mutex);
3790
3791 /* may be called multiple times, ignore if already linked */
3792 if (!list_empty(&pwq->pwqs_node))
3793 return;
3794
3795 /* set the matching work_color */
3796 pwq->work_color = wq->work_color;
3797
3798 /* sync max_active to the current setting */
3799 pwq_adjust_max_active(pwq);
3800
3801 /* link in @pwq */
3802 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3803 }
3804
3805 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3806 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3807 const struct workqueue_attrs *attrs)
3808 {
3809 struct worker_pool *pool;
3810 struct pool_workqueue *pwq;
3811
3812 lockdep_assert_held(&wq_pool_mutex);
3813
3814 pool = get_unbound_pool(attrs);
3815 if (!pool)
3816 return NULL;
3817
3818 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3819 if (!pwq) {
3820 put_unbound_pool(pool);
3821 return NULL;
3822 }
3823
3824 init_pwq(pwq, wq, pool);
3825 return pwq;
3826 }
3827
3828 /**
3829 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3830 * @attrs: the wq_attrs of the default pwq of the target workqueue
3831 * @node: the target NUMA node
3832 * @cpu_going_down: if >= 0, the CPU to consider as offline
3833 * @cpumask: outarg, the resulting cpumask
3834 *
3835 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3836 * @cpu_going_down is >= 0, that cpu is considered offline during
3837 * calculation. The result is stored in @cpumask.
3838 *
3839 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3840 * enabled and @node has online CPUs requested by @attrs, the returned
3841 * cpumask is the intersection of the possible CPUs of @node and
3842 * @attrs->cpumask.
3843 *
3844 * The caller is responsible for ensuring that the cpumask of @node stays
3845 * stable.
3846 *
3847 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3848 * %false if equal.
3849 */
wq_calc_node_cpumask(const struct workqueue_attrs * attrs,int node,int cpu_going_down,cpumask_t * cpumask)3850 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3851 int cpu_going_down, cpumask_t *cpumask)
3852 {
3853 if (!wq_numa_enabled || attrs->no_numa)
3854 goto use_dfl;
3855
3856 /* does @node have any online CPUs @attrs wants? */
3857 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3858 if (cpu_going_down >= 0)
3859 cpumask_clear_cpu(cpu_going_down, cpumask);
3860
3861 if (cpumask_empty(cpumask))
3862 goto use_dfl;
3863
3864 /* yeap, return possible CPUs in @node that @attrs wants */
3865 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3866
3867 if (cpumask_empty(cpumask)) {
3868 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3869 "possible intersect\n");
3870 return false;
3871 }
3872
3873 return !cpumask_equal(cpumask, attrs->cpumask);
3874
3875 use_dfl:
3876 cpumask_copy(cpumask, attrs->cpumask);
3877 return false;
3878 }
3879
3880 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
numa_pwq_tbl_install(struct workqueue_struct * wq,int node,struct pool_workqueue * pwq)3881 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3882 int node,
3883 struct pool_workqueue *pwq)
3884 {
3885 struct pool_workqueue *old_pwq;
3886
3887 lockdep_assert_held(&wq_pool_mutex);
3888 lockdep_assert_held(&wq->mutex);
3889
3890 /* link_pwq() can handle duplicate calls */
3891 link_pwq(pwq);
3892
3893 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3894 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3895 return old_pwq;
3896 }
3897
3898 /* context to store the prepared attrs & pwqs before applying */
3899 struct apply_wqattrs_ctx {
3900 struct workqueue_struct *wq; /* target workqueue */
3901 struct workqueue_attrs *attrs; /* attrs to apply */
3902 struct list_head list; /* queued for batching commit */
3903 struct pool_workqueue *dfl_pwq;
3904 struct pool_workqueue *pwq_tbl[];
3905 };
3906
3907 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)3908 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3909 {
3910 if (ctx) {
3911 int node;
3912
3913 for_each_node(node)
3914 put_pwq_unlocked(ctx->pwq_tbl[node]);
3915 put_pwq_unlocked(ctx->dfl_pwq);
3916
3917 free_workqueue_attrs(ctx->attrs);
3918
3919 kfree(ctx);
3920 }
3921 }
3922
3923 /* allocate the attrs and pwqs for later installation */
3924 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3925 apply_wqattrs_prepare(struct workqueue_struct *wq,
3926 const struct workqueue_attrs *attrs)
3927 {
3928 struct apply_wqattrs_ctx *ctx;
3929 struct workqueue_attrs *new_attrs, *tmp_attrs;
3930 int node;
3931
3932 lockdep_assert_held(&wq_pool_mutex);
3933
3934 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3935
3936 new_attrs = alloc_workqueue_attrs();
3937 tmp_attrs = alloc_workqueue_attrs();
3938 if (!ctx || !new_attrs || !tmp_attrs)
3939 goto out_free;
3940
3941 /*
3942 * Calculate the attrs of the default pwq.
3943 * If the user configured cpumask doesn't overlap with the
3944 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3945 */
3946 copy_workqueue_attrs(new_attrs, attrs);
3947 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3948 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3949 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3950
3951 /*
3952 * We may create multiple pwqs with differing cpumasks. Make a
3953 * copy of @new_attrs which will be modified and used to obtain
3954 * pools.
3955 */
3956 copy_workqueue_attrs(tmp_attrs, new_attrs);
3957
3958 /*
3959 * If something goes wrong during CPU up/down, we'll fall back to
3960 * the default pwq covering whole @attrs->cpumask. Always create
3961 * it even if we don't use it immediately.
3962 */
3963 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3964 if (!ctx->dfl_pwq)
3965 goto out_free;
3966
3967 for_each_node(node) {
3968 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3969 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3970 if (!ctx->pwq_tbl[node])
3971 goto out_free;
3972 } else {
3973 ctx->dfl_pwq->refcnt++;
3974 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3975 }
3976 }
3977
3978 /* save the user configured attrs and sanitize it. */
3979 copy_workqueue_attrs(new_attrs, attrs);
3980 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3981 ctx->attrs = new_attrs;
3982
3983 ctx->wq = wq;
3984 free_workqueue_attrs(tmp_attrs);
3985 return ctx;
3986
3987 out_free:
3988 free_workqueue_attrs(tmp_attrs);
3989 free_workqueue_attrs(new_attrs);
3990 apply_wqattrs_cleanup(ctx);
3991 return NULL;
3992 }
3993
3994 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)3995 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3996 {
3997 int node;
3998
3999 /* all pwqs have been created successfully, let's install'em */
4000 mutex_lock(&ctx->wq->mutex);
4001
4002 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4003
4004 /* save the previous pwq and install the new one */
4005 for_each_node(node)
4006 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4007 ctx->pwq_tbl[node]);
4008
4009 /* @dfl_pwq might not have been used, ensure it's linked */
4010 link_pwq(ctx->dfl_pwq);
4011 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4012
4013 mutex_unlock(&ctx->wq->mutex);
4014 }
4015
apply_wqattrs_lock(void)4016 static void apply_wqattrs_lock(void)
4017 {
4018 /* CPUs should stay stable across pwq creations and installations */
4019 get_online_cpus();
4020 mutex_lock(&wq_pool_mutex);
4021 }
4022
apply_wqattrs_unlock(void)4023 static void apply_wqattrs_unlock(void)
4024 {
4025 mutex_unlock(&wq_pool_mutex);
4026 put_online_cpus();
4027 }
4028
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4029 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4030 const struct workqueue_attrs *attrs)
4031 {
4032 struct apply_wqattrs_ctx *ctx;
4033
4034 /* only unbound workqueues can change attributes */
4035 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4036 return -EINVAL;
4037
4038 /* creating multiple pwqs breaks ordering guarantee */
4039 if (!list_empty(&wq->pwqs)) {
4040 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4041 return -EINVAL;
4042
4043 wq->flags &= ~__WQ_ORDERED;
4044 }
4045
4046 ctx = apply_wqattrs_prepare(wq, attrs);
4047 if (!ctx)
4048 return -ENOMEM;
4049
4050 /* the ctx has been prepared successfully, let's commit it */
4051 apply_wqattrs_commit(ctx);
4052 apply_wqattrs_cleanup(ctx);
4053
4054 return 0;
4055 }
4056
4057 /**
4058 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4059 * @wq: the target workqueue
4060 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4061 *
4062 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4063 * machines, this function maps a separate pwq to each NUMA node with
4064 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4065 * NUMA node it was issued on. Older pwqs are released as in-flight work
4066 * items finish. Note that a work item which repeatedly requeues itself
4067 * back-to-back will stay on its current pwq.
4068 *
4069 * Performs GFP_KERNEL allocations.
4070 *
4071 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4072 *
4073 * Return: 0 on success and -errno on failure.
4074 */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4075 int apply_workqueue_attrs(struct workqueue_struct *wq,
4076 const struct workqueue_attrs *attrs)
4077 {
4078 int ret;
4079
4080 lockdep_assert_cpus_held();
4081
4082 mutex_lock(&wq_pool_mutex);
4083 ret = apply_workqueue_attrs_locked(wq, attrs);
4084 mutex_unlock(&wq_pool_mutex);
4085
4086 return ret;
4087 }
4088
4089 /**
4090 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4091 * @wq: the target workqueue
4092 * @cpu: the CPU coming up or going down
4093 * @online: whether @cpu is coming up or going down
4094 *
4095 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4096 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4097 * @wq accordingly.
4098 *
4099 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4100 * falls back to @wq->dfl_pwq which may not be optimal but is always
4101 * correct.
4102 *
4103 * Note that when the last allowed CPU of a NUMA node goes offline for a
4104 * workqueue with a cpumask spanning multiple nodes, the workers which were
4105 * already executing the work items for the workqueue will lose their CPU
4106 * affinity and may execute on any CPU. This is similar to how per-cpu
4107 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4108 * affinity, it's the user's responsibility to flush the work item from
4109 * CPU_DOWN_PREPARE.
4110 */
wq_update_unbound_numa(struct workqueue_struct * wq,int cpu,bool online)4111 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4112 bool online)
4113 {
4114 int node = cpu_to_node(cpu);
4115 int cpu_off = online ? -1 : cpu;
4116 struct pool_workqueue *old_pwq = NULL, *pwq;
4117 struct workqueue_attrs *target_attrs;
4118 cpumask_t *cpumask;
4119
4120 lockdep_assert_held(&wq_pool_mutex);
4121
4122 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4123 wq->unbound_attrs->no_numa)
4124 return;
4125
4126 /*
4127 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4128 * Let's use a preallocated one. The following buf is protected by
4129 * CPU hotplug exclusion.
4130 */
4131 target_attrs = wq_update_unbound_numa_attrs_buf;
4132 cpumask = target_attrs->cpumask;
4133
4134 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4135 pwq = unbound_pwq_by_node(wq, node);
4136
4137 /*
4138 * Let's determine what needs to be done. If the target cpumask is
4139 * different from the default pwq's, we need to compare it to @pwq's
4140 * and create a new one if they don't match. If the target cpumask
4141 * equals the default pwq's, the default pwq should be used.
4142 */
4143 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4144 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4145 return;
4146 } else {
4147 goto use_dfl_pwq;
4148 }
4149
4150 /* create a new pwq */
4151 pwq = alloc_unbound_pwq(wq, target_attrs);
4152 if (!pwq) {
4153 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4154 wq->name);
4155 goto use_dfl_pwq;
4156 }
4157
4158 /* Install the new pwq. */
4159 mutex_lock(&wq->mutex);
4160 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4161 goto out_unlock;
4162
4163 use_dfl_pwq:
4164 mutex_lock(&wq->mutex);
4165 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4166 get_pwq(wq->dfl_pwq);
4167 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4168 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4169 out_unlock:
4170 mutex_unlock(&wq->mutex);
4171 put_pwq_unlocked(old_pwq);
4172 }
4173
alloc_and_link_pwqs(struct workqueue_struct * wq)4174 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4175 {
4176 bool highpri = wq->flags & WQ_HIGHPRI;
4177 int cpu, ret;
4178
4179 if (!(wq->flags & WQ_UNBOUND)) {
4180 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4181 if (!wq->cpu_pwqs)
4182 return -ENOMEM;
4183
4184 for_each_possible_cpu(cpu) {
4185 struct pool_workqueue *pwq =
4186 per_cpu_ptr(wq->cpu_pwqs, cpu);
4187 struct worker_pool *cpu_pools =
4188 per_cpu(cpu_worker_pools, cpu);
4189
4190 init_pwq(pwq, wq, &cpu_pools[highpri]);
4191
4192 mutex_lock(&wq->mutex);
4193 link_pwq(pwq);
4194 mutex_unlock(&wq->mutex);
4195 }
4196 return 0;
4197 }
4198
4199 get_online_cpus();
4200 if (wq->flags & __WQ_ORDERED) {
4201 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4202 /* there should only be single pwq for ordering guarantee */
4203 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4204 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4205 "ordering guarantee broken for workqueue %s\n", wq->name);
4206 } else {
4207 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4208 }
4209 put_online_cpus();
4210
4211 return ret;
4212 }
4213
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)4214 static int wq_clamp_max_active(int max_active, unsigned int flags,
4215 const char *name)
4216 {
4217 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4218
4219 if (max_active < 1 || max_active > lim)
4220 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4221 max_active, name, 1, lim);
4222
4223 return clamp_val(max_active, 1, lim);
4224 }
4225
4226 /*
4227 * Workqueues which may be used during memory reclaim should have a rescuer
4228 * to guarantee forward progress.
4229 */
init_rescuer(struct workqueue_struct * wq)4230 static int init_rescuer(struct workqueue_struct *wq)
4231 {
4232 struct worker *rescuer;
4233 int ret;
4234
4235 if (!(wq->flags & WQ_MEM_RECLAIM))
4236 return 0;
4237
4238 rescuer = alloc_worker(NUMA_NO_NODE);
4239 if (!rescuer)
4240 return -ENOMEM;
4241
4242 rescuer->rescue_wq = wq;
4243 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4244 ret = PTR_ERR_OR_ZERO(rescuer->task);
4245 if (ret) {
4246 kfree(rescuer);
4247 return ret;
4248 }
4249
4250 wq->rescuer = rescuer;
4251 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4252 wake_up_process(rescuer->task);
4253
4254 return 0;
4255 }
4256
4257 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)4258 struct workqueue_struct *alloc_workqueue(const char *fmt,
4259 unsigned int flags,
4260 int max_active, ...)
4261 {
4262 size_t tbl_size = 0;
4263 va_list args;
4264 struct workqueue_struct *wq;
4265 struct pool_workqueue *pwq;
4266
4267 /*
4268 * Unbound && max_active == 1 used to imply ordered, which is no
4269 * longer the case on NUMA machines due to per-node pools. While
4270 * alloc_ordered_workqueue() is the right way to create an ordered
4271 * workqueue, keep the previous behavior to avoid subtle breakages
4272 * on NUMA.
4273 */
4274 if ((flags & WQ_UNBOUND) && max_active == 1)
4275 flags |= __WQ_ORDERED;
4276
4277 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4278 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4279 flags |= WQ_UNBOUND;
4280
4281 /* allocate wq and format name */
4282 if (flags & WQ_UNBOUND)
4283 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4284
4285 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4286 if (!wq)
4287 return NULL;
4288
4289 if (flags & WQ_UNBOUND) {
4290 wq->unbound_attrs = alloc_workqueue_attrs();
4291 if (!wq->unbound_attrs)
4292 goto err_free_wq;
4293 }
4294
4295 va_start(args, max_active);
4296 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4297 va_end(args);
4298
4299 max_active = max_active ?: WQ_DFL_ACTIVE;
4300 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4301
4302 /* init wq */
4303 wq->flags = flags;
4304 wq->saved_max_active = max_active;
4305 mutex_init(&wq->mutex);
4306 atomic_set(&wq->nr_pwqs_to_flush, 0);
4307 INIT_LIST_HEAD(&wq->pwqs);
4308 INIT_LIST_HEAD(&wq->flusher_queue);
4309 INIT_LIST_HEAD(&wq->flusher_overflow);
4310 INIT_LIST_HEAD(&wq->maydays);
4311
4312 wq_init_lockdep(wq);
4313 INIT_LIST_HEAD(&wq->list);
4314
4315 if (alloc_and_link_pwqs(wq) < 0)
4316 goto err_unreg_lockdep;
4317
4318 if (wq_online && init_rescuer(wq) < 0)
4319 goto err_destroy;
4320
4321 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4322 goto err_destroy;
4323
4324 /*
4325 * wq_pool_mutex protects global freeze state and workqueues list.
4326 * Grab it, adjust max_active and add the new @wq to workqueues
4327 * list.
4328 */
4329 mutex_lock(&wq_pool_mutex);
4330
4331 mutex_lock(&wq->mutex);
4332 for_each_pwq(pwq, wq)
4333 pwq_adjust_max_active(pwq);
4334 mutex_unlock(&wq->mutex);
4335
4336 list_add_tail_rcu(&wq->list, &workqueues);
4337
4338 mutex_unlock(&wq_pool_mutex);
4339
4340 return wq;
4341
4342 err_unreg_lockdep:
4343 wq_unregister_lockdep(wq);
4344 wq_free_lockdep(wq);
4345 err_free_wq:
4346 free_workqueue_attrs(wq->unbound_attrs);
4347 kfree(wq);
4348 return NULL;
4349 err_destroy:
4350 destroy_workqueue(wq);
4351 return NULL;
4352 }
4353 EXPORT_SYMBOL_GPL(alloc_workqueue);
4354
4355 /**
4356 * destroy_workqueue - safely terminate a workqueue
4357 * @wq: target workqueue
4358 *
4359 * Safely destroy a workqueue. All work currently pending will be done first.
4360 */
destroy_workqueue(struct workqueue_struct * wq)4361 void destroy_workqueue(struct workqueue_struct *wq)
4362 {
4363 struct pool_workqueue *pwq;
4364 int node;
4365
4366 /*
4367 * Remove it from sysfs first so that sanity check failure doesn't
4368 * lead to sysfs name conflicts.
4369 */
4370 workqueue_sysfs_unregister(wq);
4371
4372 /* drain it before proceeding with destruction */
4373 drain_workqueue(wq);
4374
4375 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4376 if (wq->rescuer) {
4377 struct worker *rescuer = wq->rescuer;
4378
4379 /* this prevents new queueing */
4380 spin_lock_irq(&wq_mayday_lock);
4381 wq->rescuer = NULL;
4382 spin_unlock_irq(&wq_mayday_lock);
4383
4384 /* rescuer will empty maydays list before exiting */
4385 kthread_stop(rescuer->task);
4386 kfree(rescuer);
4387 }
4388
4389 /* sanity checks */
4390 mutex_lock(&wq->mutex);
4391 for_each_pwq(pwq, wq) {
4392 int i;
4393
4394 for (i = 0; i < WORK_NR_COLORS; i++) {
4395 if (WARN_ON(pwq->nr_in_flight[i])) {
4396 mutex_unlock(&wq->mutex);
4397 show_workqueue_state();
4398 return;
4399 }
4400 }
4401
4402 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4403 WARN_ON(pwq->nr_active) ||
4404 WARN_ON(!list_empty(&pwq->delayed_works))) {
4405 mutex_unlock(&wq->mutex);
4406 show_workqueue_state();
4407 return;
4408 }
4409 }
4410 mutex_unlock(&wq->mutex);
4411
4412 /*
4413 * wq list is used to freeze wq, remove from list after
4414 * flushing is complete in case freeze races us.
4415 */
4416 mutex_lock(&wq_pool_mutex);
4417 list_del_rcu(&wq->list);
4418 mutex_unlock(&wq_pool_mutex);
4419
4420 if (!(wq->flags & WQ_UNBOUND)) {
4421 wq_unregister_lockdep(wq);
4422 /*
4423 * The base ref is never dropped on per-cpu pwqs. Directly
4424 * schedule RCU free.
4425 */
4426 call_rcu(&wq->rcu, rcu_free_wq);
4427 } else {
4428 /*
4429 * We're the sole accessor of @wq at this point. Directly
4430 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4431 * @wq will be freed when the last pwq is released.
4432 */
4433 for_each_node(node) {
4434 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4435 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4436 put_pwq_unlocked(pwq);
4437 }
4438
4439 /*
4440 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4441 * put. Don't access it afterwards.
4442 */
4443 pwq = wq->dfl_pwq;
4444 wq->dfl_pwq = NULL;
4445 put_pwq_unlocked(pwq);
4446 }
4447 }
4448 EXPORT_SYMBOL_GPL(destroy_workqueue);
4449
4450 /**
4451 * workqueue_set_max_active - adjust max_active of a workqueue
4452 * @wq: target workqueue
4453 * @max_active: new max_active value.
4454 *
4455 * Set max_active of @wq to @max_active.
4456 *
4457 * CONTEXT:
4458 * Don't call from IRQ context.
4459 */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)4460 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4461 {
4462 struct pool_workqueue *pwq;
4463
4464 /* disallow meddling with max_active for ordered workqueues */
4465 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4466 return;
4467
4468 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4469
4470 mutex_lock(&wq->mutex);
4471
4472 wq->flags &= ~__WQ_ORDERED;
4473 wq->saved_max_active = max_active;
4474
4475 for_each_pwq(pwq, wq)
4476 pwq_adjust_max_active(pwq);
4477
4478 mutex_unlock(&wq->mutex);
4479 }
4480 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4481
4482 /**
4483 * current_work - retrieve %current task's work struct
4484 *
4485 * Determine if %current task is a workqueue worker and what it's working on.
4486 * Useful to find out the context that the %current task is running in.
4487 *
4488 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4489 */
current_work(void)4490 struct work_struct *current_work(void)
4491 {
4492 struct worker *worker = current_wq_worker();
4493
4494 return worker ? worker->current_work : NULL;
4495 }
4496 EXPORT_SYMBOL(current_work);
4497
4498 /**
4499 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4500 *
4501 * Determine whether %current is a workqueue rescuer. Can be used from
4502 * work functions to determine whether it's being run off the rescuer task.
4503 *
4504 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4505 */
current_is_workqueue_rescuer(void)4506 bool current_is_workqueue_rescuer(void)
4507 {
4508 struct worker *worker = current_wq_worker();
4509
4510 return worker && worker->rescue_wq;
4511 }
4512
4513 /**
4514 * workqueue_congested - test whether a workqueue is congested
4515 * @cpu: CPU in question
4516 * @wq: target workqueue
4517 *
4518 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4519 * no synchronization around this function and the test result is
4520 * unreliable and only useful as advisory hints or for debugging.
4521 *
4522 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4523 * Note that both per-cpu and unbound workqueues may be associated with
4524 * multiple pool_workqueues which have separate congested states. A
4525 * workqueue being congested on one CPU doesn't mean the workqueue is also
4526 * contested on other CPUs / NUMA nodes.
4527 *
4528 * Return:
4529 * %true if congested, %false otherwise.
4530 */
workqueue_congested(int cpu,struct workqueue_struct * wq)4531 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4532 {
4533 struct pool_workqueue *pwq;
4534 bool ret;
4535
4536 rcu_read_lock();
4537 preempt_disable();
4538
4539 if (cpu == WORK_CPU_UNBOUND)
4540 cpu = smp_processor_id();
4541
4542 if (!(wq->flags & WQ_UNBOUND))
4543 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4544 else
4545 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4546
4547 ret = !list_empty(&pwq->delayed_works);
4548 preempt_enable();
4549 rcu_read_unlock();
4550
4551 return ret;
4552 }
4553 EXPORT_SYMBOL_GPL(workqueue_congested);
4554
4555 /**
4556 * work_busy - test whether a work is currently pending or running
4557 * @work: the work to be tested
4558 *
4559 * Test whether @work is currently pending or running. There is no
4560 * synchronization around this function and the test result is
4561 * unreliable and only useful as advisory hints or for debugging.
4562 *
4563 * Return:
4564 * OR'd bitmask of WORK_BUSY_* bits.
4565 */
work_busy(struct work_struct * work)4566 unsigned int work_busy(struct work_struct *work)
4567 {
4568 struct worker_pool *pool;
4569 unsigned long flags;
4570 unsigned int ret = 0;
4571
4572 if (work_pending(work))
4573 ret |= WORK_BUSY_PENDING;
4574
4575 rcu_read_lock();
4576 pool = get_work_pool(work);
4577 if (pool) {
4578 spin_lock_irqsave(&pool->lock, flags);
4579 if (find_worker_executing_work(pool, work))
4580 ret |= WORK_BUSY_RUNNING;
4581 spin_unlock_irqrestore(&pool->lock, flags);
4582 }
4583 rcu_read_unlock();
4584
4585 return ret;
4586 }
4587 EXPORT_SYMBOL_GPL(work_busy);
4588
4589 /**
4590 * set_worker_desc - set description for the current work item
4591 * @fmt: printf-style format string
4592 * @...: arguments for the format string
4593 *
4594 * This function can be called by a running work function to describe what
4595 * the work item is about. If the worker task gets dumped, this
4596 * information will be printed out together to help debugging. The
4597 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4598 */
set_worker_desc(const char * fmt,...)4599 void set_worker_desc(const char *fmt, ...)
4600 {
4601 struct worker *worker = current_wq_worker();
4602 va_list args;
4603
4604 if (worker) {
4605 va_start(args, fmt);
4606 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4607 va_end(args);
4608 }
4609 }
4610 EXPORT_SYMBOL_GPL(set_worker_desc);
4611
4612 /**
4613 * print_worker_info - print out worker information and description
4614 * @log_lvl: the log level to use when printing
4615 * @task: target task
4616 *
4617 * If @task is a worker and currently executing a work item, print out the
4618 * name of the workqueue being serviced and worker description set with
4619 * set_worker_desc() by the currently executing work item.
4620 *
4621 * This function can be safely called on any task as long as the
4622 * task_struct itself is accessible. While safe, this function isn't
4623 * synchronized and may print out mixups or garbages of limited length.
4624 */
print_worker_info(const char * log_lvl,struct task_struct * task)4625 void print_worker_info(const char *log_lvl, struct task_struct *task)
4626 {
4627 work_func_t *fn = NULL;
4628 char name[WQ_NAME_LEN] = { };
4629 char desc[WORKER_DESC_LEN] = { };
4630 struct pool_workqueue *pwq = NULL;
4631 struct workqueue_struct *wq = NULL;
4632 struct worker *worker;
4633
4634 if (!(task->flags & PF_WQ_WORKER))
4635 return;
4636
4637 /*
4638 * This function is called without any synchronization and @task
4639 * could be in any state. Be careful with dereferences.
4640 */
4641 worker = kthread_probe_data(task);
4642
4643 /*
4644 * Carefully copy the associated workqueue's workfn, name and desc.
4645 * Keep the original last '\0' in case the original is garbage.
4646 */
4647 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4648 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4649 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4650 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4651 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4652
4653 if (fn || name[0] || desc[0]) {
4654 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4655 if (strcmp(name, desc))
4656 pr_cont(" (%s)", desc);
4657 pr_cont("\n");
4658 }
4659 }
4660
pr_cont_pool_info(struct worker_pool * pool)4661 static void pr_cont_pool_info(struct worker_pool *pool)
4662 {
4663 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4664 if (pool->node != NUMA_NO_NODE)
4665 pr_cont(" node=%d", pool->node);
4666 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4667 }
4668
pr_cont_work(bool comma,struct work_struct * work)4669 static void pr_cont_work(bool comma, struct work_struct *work)
4670 {
4671 if (work->func == wq_barrier_func) {
4672 struct wq_barrier *barr;
4673
4674 barr = container_of(work, struct wq_barrier, work);
4675
4676 pr_cont("%s BAR(%d)", comma ? "," : "",
4677 task_pid_nr(barr->task));
4678 } else {
4679 pr_cont("%s %ps", comma ? "," : "", work->func);
4680 }
4681 }
4682
show_pwq(struct pool_workqueue * pwq)4683 static void show_pwq(struct pool_workqueue *pwq)
4684 {
4685 struct worker_pool *pool = pwq->pool;
4686 struct work_struct *work;
4687 struct worker *worker;
4688 bool has_in_flight = false, has_pending = false;
4689 int bkt;
4690
4691 pr_info(" pwq %d:", pool->id);
4692 pr_cont_pool_info(pool);
4693
4694 pr_cont(" active=%d/%d refcnt=%d%s\n",
4695 pwq->nr_active, pwq->max_active, pwq->refcnt,
4696 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4697
4698 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4699 if (worker->current_pwq == pwq) {
4700 has_in_flight = true;
4701 break;
4702 }
4703 }
4704 if (has_in_flight) {
4705 bool comma = false;
4706
4707 pr_info(" in-flight:");
4708 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4709 if (worker->current_pwq != pwq)
4710 continue;
4711
4712 pr_cont("%s %d%s:%ps", comma ? "," : "",
4713 task_pid_nr(worker->task),
4714 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4715 worker->current_func);
4716 list_for_each_entry(work, &worker->scheduled, entry)
4717 pr_cont_work(false, work);
4718 comma = true;
4719 }
4720 pr_cont("\n");
4721 }
4722
4723 list_for_each_entry(work, &pool->worklist, entry) {
4724 if (get_work_pwq(work) == pwq) {
4725 has_pending = true;
4726 break;
4727 }
4728 }
4729 if (has_pending) {
4730 bool comma = false;
4731
4732 pr_info(" pending:");
4733 list_for_each_entry(work, &pool->worklist, entry) {
4734 if (get_work_pwq(work) != pwq)
4735 continue;
4736
4737 pr_cont_work(comma, work);
4738 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4739 }
4740 pr_cont("\n");
4741 }
4742
4743 if (!list_empty(&pwq->delayed_works)) {
4744 bool comma = false;
4745
4746 pr_info(" delayed:");
4747 list_for_each_entry(work, &pwq->delayed_works, entry) {
4748 pr_cont_work(comma, work);
4749 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4750 }
4751 pr_cont("\n");
4752 }
4753 }
4754
4755 /**
4756 * show_workqueue_state - dump workqueue state
4757 *
4758 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4759 * all busy workqueues and pools.
4760 */
show_workqueue_state(void)4761 void show_workqueue_state(void)
4762 {
4763 struct workqueue_struct *wq;
4764 struct worker_pool *pool;
4765 unsigned long flags;
4766 int pi;
4767
4768 rcu_read_lock();
4769
4770 pr_info("Showing busy workqueues and worker pools:\n");
4771
4772 list_for_each_entry_rcu(wq, &workqueues, list) {
4773 struct pool_workqueue *pwq;
4774 bool idle = true;
4775
4776 for_each_pwq(pwq, wq) {
4777 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4778 idle = false;
4779 break;
4780 }
4781 }
4782 if (idle)
4783 continue;
4784
4785 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4786
4787 for_each_pwq(pwq, wq) {
4788 spin_lock_irqsave(&pwq->pool->lock, flags);
4789 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4790 show_pwq(pwq);
4791 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4792 /*
4793 * We could be printing a lot from atomic context, e.g.
4794 * sysrq-t -> show_workqueue_state(). Avoid triggering
4795 * hard lockup.
4796 */
4797 touch_nmi_watchdog();
4798 }
4799 }
4800
4801 for_each_pool(pool, pi) {
4802 struct worker *worker;
4803 bool first = true;
4804
4805 spin_lock_irqsave(&pool->lock, flags);
4806 if (pool->nr_workers == pool->nr_idle)
4807 goto next_pool;
4808
4809 pr_info("pool %d:", pool->id);
4810 pr_cont_pool_info(pool);
4811 pr_cont(" hung=%us workers=%d",
4812 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4813 pool->nr_workers);
4814 if (pool->manager)
4815 pr_cont(" manager: %d",
4816 task_pid_nr(pool->manager->task));
4817 list_for_each_entry(worker, &pool->idle_list, entry) {
4818 pr_cont(" %s%d", first ? "idle: " : "",
4819 task_pid_nr(worker->task));
4820 first = false;
4821 }
4822 pr_cont("\n");
4823 next_pool:
4824 spin_unlock_irqrestore(&pool->lock, flags);
4825 /*
4826 * We could be printing a lot from atomic context, e.g.
4827 * sysrq-t -> show_workqueue_state(). Avoid triggering
4828 * hard lockup.
4829 */
4830 touch_nmi_watchdog();
4831 }
4832
4833 rcu_read_unlock();
4834 }
4835
4836 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)4837 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4838 {
4839 int off;
4840
4841 /* always show the actual comm */
4842 off = strscpy(buf, task->comm, size);
4843 if (off < 0)
4844 return;
4845
4846 /* stabilize PF_WQ_WORKER and worker pool association */
4847 mutex_lock(&wq_pool_attach_mutex);
4848
4849 if (task->flags & PF_WQ_WORKER) {
4850 struct worker *worker = kthread_data(task);
4851 struct worker_pool *pool = worker->pool;
4852
4853 if (pool) {
4854 spin_lock_irq(&pool->lock);
4855 /*
4856 * ->desc tracks information (wq name or
4857 * set_worker_desc()) for the latest execution. If
4858 * current, prepend '+', otherwise '-'.
4859 */
4860 if (worker->desc[0] != '\0') {
4861 if (worker->current_work)
4862 scnprintf(buf + off, size - off, "+%s",
4863 worker->desc);
4864 else
4865 scnprintf(buf + off, size - off, "-%s",
4866 worker->desc);
4867 }
4868 spin_unlock_irq(&pool->lock);
4869 }
4870 }
4871
4872 mutex_unlock(&wq_pool_attach_mutex);
4873 }
4874
4875 #ifdef CONFIG_SMP
4876
4877 /*
4878 * CPU hotplug.
4879 *
4880 * There are two challenges in supporting CPU hotplug. Firstly, there
4881 * are a lot of assumptions on strong associations among work, pwq and
4882 * pool which make migrating pending and scheduled works very
4883 * difficult to implement without impacting hot paths. Secondly,
4884 * worker pools serve mix of short, long and very long running works making
4885 * blocked draining impractical.
4886 *
4887 * This is solved by allowing the pools to be disassociated from the CPU
4888 * running as an unbound one and allowing it to be reattached later if the
4889 * cpu comes back online.
4890 */
4891
unbind_workers(int cpu)4892 static void unbind_workers(int cpu)
4893 {
4894 struct worker_pool *pool;
4895 struct worker *worker;
4896
4897 for_each_cpu_worker_pool(pool, cpu) {
4898 mutex_lock(&wq_pool_attach_mutex);
4899 spin_lock_irq(&pool->lock);
4900
4901 /*
4902 * We've blocked all attach/detach operations. Make all workers
4903 * unbound and set DISASSOCIATED. Before this, all workers
4904 * except for the ones which are still executing works from
4905 * before the last CPU down must be on the cpu. After
4906 * this, they may become diasporas.
4907 */
4908 for_each_pool_worker(worker, pool)
4909 worker->flags |= WORKER_UNBOUND;
4910
4911 pool->flags |= POOL_DISASSOCIATED;
4912
4913 spin_unlock_irq(&pool->lock);
4914 mutex_unlock(&wq_pool_attach_mutex);
4915
4916 /*
4917 * Call schedule() so that we cross rq->lock and thus can
4918 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4919 * This is necessary as scheduler callbacks may be invoked
4920 * from other cpus.
4921 */
4922 schedule();
4923
4924 /*
4925 * Sched callbacks are disabled now. Zap nr_running.
4926 * After this, nr_running stays zero and need_more_worker()
4927 * and keep_working() are always true as long as the
4928 * worklist is not empty. This pool now behaves as an
4929 * unbound (in terms of concurrency management) pool which
4930 * are served by workers tied to the pool.
4931 */
4932 atomic_set(&pool->nr_running, 0);
4933
4934 /*
4935 * With concurrency management just turned off, a busy
4936 * worker blocking could lead to lengthy stalls. Kick off
4937 * unbound chain execution of currently pending work items.
4938 */
4939 spin_lock_irq(&pool->lock);
4940 wake_up_worker(pool);
4941 spin_unlock_irq(&pool->lock);
4942 }
4943 }
4944
4945 /**
4946 * rebind_workers - rebind all workers of a pool to the associated CPU
4947 * @pool: pool of interest
4948 *
4949 * @pool->cpu is coming online. Rebind all workers to the CPU.
4950 */
rebind_workers(struct worker_pool * pool)4951 static void rebind_workers(struct worker_pool *pool)
4952 {
4953 struct worker *worker;
4954
4955 lockdep_assert_held(&wq_pool_attach_mutex);
4956
4957 /*
4958 * Restore CPU affinity of all workers. As all idle workers should
4959 * be on the run-queue of the associated CPU before any local
4960 * wake-ups for concurrency management happen, restore CPU affinity
4961 * of all workers first and then clear UNBOUND. As we're called
4962 * from CPU_ONLINE, the following shouldn't fail.
4963 */
4964 for_each_pool_worker(worker, pool)
4965 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4966 pool->attrs->cpumask) < 0);
4967
4968 spin_lock_irq(&pool->lock);
4969
4970 pool->flags &= ~POOL_DISASSOCIATED;
4971
4972 for_each_pool_worker(worker, pool) {
4973 unsigned int worker_flags = worker->flags;
4974
4975 /*
4976 * A bound idle worker should actually be on the runqueue
4977 * of the associated CPU for local wake-ups targeting it to
4978 * work. Kick all idle workers so that they migrate to the
4979 * associated CPU. Doing this in the same loop as
4980 * replacing UNBOUND with REBOUND is safe as no worker will
4981 * be bound before @pool->lock is released.
4982 */
4983 if (worker_flags & WORKER_IDLE)
4984 wake_up_process(worker->task);
4985
4986 /*
4987 * We want to clear UNBOUND but can't directly call
4988 * worker_clr_flags() or adjust nr_running. Atomically
4989 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4990 * @worker will clear REBOUND using worker_clr_flags() when
4991 * it initiates the next execution cycle thus restoring
4992 * concurrency management. Note that when or whether
4993 * @worker clears REBOUND doesn't affect correctness.
4994 *
4995 * WRITE_ONCE() is necessary because @worker->flags may be
4996 * tested without holding any lock in
4997 * wq_worker_running(). Without it, NOT_RUNNING test may
4998 * fail incorrectly leading to premature concurrency
4999 * management operations.
5000 */
5001 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5002 worker_flags |= WORKER_REBOUND;
5003 worker_flags &= ~WORKER_UNBOUND;
5004 WRITE_ONCE(worker->flags, worker_flags);
5005 }
5006
5007 spin_unlock_irq(&pool->lock);
5008 }
5009
5010 /**
5011 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5012 * @pool: unbound pool of interest
5013 * @cpu: the CPU which is coming up
5014 *
5015 * An unbound pool may end up with a cpumask which doesn't have any online
5016 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5017 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5018 * online CPU before, cpus_allowed of all its workers should be restored.
5019 */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)5020 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5021 {
5022 static cpumask_t cpumask;
5023 struct worker *worker;
5024
5025 lockdep_assert_held(&wq_pool_attach_mutex);
5026
5027 /* is @cpu allowed for @pool? */
5028 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5029 return;
5030
5031 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5032
5033 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5034 for_each_pool_worker(worker, pool)
5035 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5036 }
5037
workqueue_prepare_cpu(unsigned int cpu)5038 int workqueue_prepare_cpu(unsigned int cpu)
5039 {
5040 struct worker_pool *pool;
5041
5042 for_each_cpu_worker_pool(pool, cpu) {
5043 if (pool->nr_workers)
5044 continue;
5045 if (!create_worker(pool))
5046 return -ENOMEM;
5047 }
5048 return 0;
5049 }
5050
workqueue_online_cpu(unsigned int cpu)5051 int workqueue_online_cpu(unsigned int cpu)
5052 {
5053 struct worker_pool *pool;
5054 struct workqueue_struct *wq;
5055 int pi;
5056
5057 mutex_lock(&wq_pool_mutex);
5058
5059 for_each_pool(pool, pi) {
5060 mutex_lock(&wq_pool_attach_mutex);
5061
5062 if (pool->cpu == cpu)
5063 rebind_workers(pool);
5064 else if (pool->cpu < 0)
5065 restore_unbound_workers_cpumask(pool, cpu);
5066
5067 mutex_unlock(&wq_pool_attach_mutex);
5068 }
5069
5070 /* update NUMA affinity of unbound workqueues */
5071 list_for_each_entry(wq, &workqueues, list)
5072 wq_update_unbound_numa(wq, cpu, true);
5073
5074 mutex_unlock(&wq_pool_mutex);
5075 return 0;
5076 }
5077
workqueue_offline_cpu(unsigned int cpu)5078 int workqueue_offline_cpu(unsigned int cpu)
5079 {
5080 struct workqueue_struct *wq;
5081
5082 /* unbinding per-cpu workers should happen on the local CPU */
5083 if (WARN_ON(cpu != smp_processor_id()))
5084 return -1;
5085
5086 unbind_workers(cpu);
5087
5088 /* update NUMA affinity of unbound workqueues */
5089 mutex_lock(&wq_pool_mutex);
5090 list_for_each_entry(wq, &workqueues, list)
5091 wq_update_unbound_numa(wq, cpu, false);
5092 mutex_unlock(&wq_pool_mutex);
5093
5094 return 0;
5095 }
5096
5097 struct work_for_cpu {
5098 struct work_struct work;
5099 long (*fn)(void *);
5100 void *arg;
5101 long ret;
5102 };
5103
work_for_cpu_fn(struct work_struct * work)5104 static void work_for_cpu_fn(struct work_struct *work)
5105 {
5106 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5107
5108 wfc->ret = wfc->fn(wfc->arg);
5109 }
5110
5111 /**
5112 * work_on_cpu - run a function in thread context on a particular cpu
5113 * @cpu: the cpu to run on
5114 * @fn: the function to run
5115 * @arg: the function arg
5116 *
5117 * It is up to the caller to ensure that the cpu doesn't go offline.
5118 * The caller must not hold any locks which would prevent @fn from completing.
5119 *
5120 * Return: The value @fn returns.
5121 */
work_on_cpu(int cpu,long (* fn)(void *),void * arg)5122 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5123 {
5124 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5125
5126 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5127 schedule_work_on(cpu, &wfc.work);
5128 flush_work(&wfc.work);
5129 destroy_work_on_stack(&wfc.work);
5130 return wfc.ret;
5131 }
5132 EXPORT_SYMBOL_GPL(work_on_cpu);
5133
5134 /**
5135 * work_on_cpu_safe - run a function in thread context on a particular cpu
5136 * @cpu: the cpu to run on
5137 * @fn: the function to run
5138 * @arg: the function argument
5139 *
5140 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5141 * any locks which would prevent @fn from completing.
5142 *
5143 * Return: The value @fn returns.
5144 */
work_on_cpu_safe(int cpu,long (* fn)(void *),void * arg)5145 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5146 {
5147 long ret = -ENODEV;
5148
5149 get_online_cpus();
5150 if (cpu_online(cpu))
5151 ret = work_on_cpu(cpu, fn, arg);
5152 put_online_cpus();
5153 return ret;
5154 }
5155 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5156 #endif /* CONFIG_SMP */
5157
5158 #ifdef CONFIG_FREEZER
5159
5160 /**
5161 * freeze_workqueues_begin - begin freezing workqueues
5162 *
5163 * Start freezing workqueues. After this function returns, all freezable
5164 * workqueues will queue new works to their delayed_works list instead of
5165 * pool->worklist.
5166 *
5167 * CONTEXT:
5168 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5169 */
freeze_workqueues_begin(void)5170 void freeze_workqueues_begin(void)
5171 {
5172 struct workqueue_struct *wq;
5173 struct pool_workqueue *pwq;
5174
5175 mutex_lock(&wq_pool_mutex);
5176
5177 WARN_ON_ONCE(workqueue_freezing);
5178 workqueue_freezing = true;
5179
5180 list_for_each_entry(wq, &workqueues, list) {
5181 mutex_lock(&wq->mutex);
5182 for_each_pwq(pwq, wq)
5183 pwq_adjust_max_active(pwq);
5184 mutex_unlock(&wq->mutex);
5185 }
5186
5187 mutex_unlock(&wq_pool_mutex);
5188 }
5189
5190 /**
5191 * freeze_workqueues_busy - are freezable workqueues still busy?
5192 *
5193 * Check whether freezing is complete. This function must be called
5194 * between freeze_workqueues_begin() and thaw_workqueues().
5195 *
5196 * CONTEXT:
5197 * Grabs and releases wq_pool_mutex.
5198 *
5199 * Return:
5200 * %true if some freezable workqueues are still busy. %false if freezing
5201 * is complete.
5202 */
freeze_workqueues_busy(void)5203 bool freeze_workqueues_busy(void)
5204 {
5205 bool busy = false;
5206 struct workqueue_struct *wq;
5207 struct pool_workqueue *pwq;
5208
5209 mutex_lock(&wq_pool_mutex);
5210
5211 WARN_ON_ONCE(!workqueue_freezing);
5212
5213 list_for_each_entry(wq, &workqueues, list) {
5214 if (!(wq->flags & WQ_FREEZABLE))
5215 continue;
5216 /*
5217 * nr_active is monotonically decreasing. It's safe
5218 * to peek without lock.
5219 */
5220 rcu_read_lock();
5221 for_each_pwq(pwq, wq) {
5222 WARN_ON_ONCE(pwq->nr_active < 0);
5223 if (pwq->nr_active) {
5224 busy = true;
5225 rcu_read_unlock();
5226 goto out_unlock;
5227 }
5228 }
5229 rcu_read_unlock();
5230 }
5231 out_unlock:
5232 mutex_unlock(&wq_pool_mutex);
5233 return busy;
5234 }
5235
5236 /**
5237 * thaw_workqueues - thaw workqueues
5238 *
5239 * Thaw workqueues. Normal queueing is restored and all collected
5240 * frozen works are transferred to their respective pool worklists.
5241 *
5242 * CONTEXT:
5243 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5244 */
thaw_workqueues(void)5245 void thaw_workqueues(void)
5246 {
5247 struct workqueue_struct *wq;
5248 struct pool_workqueue *pwq;
5249
5250 mutex_lock(&wq_pool_mutex);
5251
5252 if (!workqueue_freezing)
5253 goto out_unlock;
5254
5255 workqueue_freezing = false;
5256
5257 /* restore max_active and repopulate worklist */
5258 list_for_each_entry(wq, &workqueues, list) {
5259 mutex_lock(&wq->mutex);
5260 for_each_pwq(pwq, wq)
5261 pwq_adjust_max_active(pwq);
5262 mutex_unlock(&wq->mutex);
5263 }
5264
5265 out_unlock:
5266 mutex_unlock(&wq_pool_mutex);
5267 }
5268 #endif /* CONFIG_FREEZER */
5269
workqueue_apply_unbound_cpumask(void)5270 static int workqueue_apply_unbound_cpumask(void)
5271 {
5272 LIST_HEAD(ctxs);
5273 int ret = 0;
5274 struct workqueue_struct *wq;
5275 struct apply_wqattrs_ctx *ctx, *n;
5276
5277 lockdep_assert_held(&wq_pool_mutex);
5278
5279 list_for_each_entry(wq, &workqueues, list) {
5280 if (!(wq->flags & WQ_UNBOUND))
5281 continue;
5282
5283 /* creating multiple pwqs breaks ordering guarantee */
5284 if (!list_empty(&wq->pwqs)) {
5285 if (wq->flags & __WQ_ORDERED_EXPLICIT)
5286 continue;
5287 wq->flags &= ~__WQ_ORDERED;
5288 }
5289
5290 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5291 if (!ctx) {
5292 ret = -ENOMEM;
5293 break;
5294 }
5295
5296 list_add_tail(&ctx->list, &ctxs);
5297 }
5298
5299 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5300 if (!ret)
5301 apply_wqattrs_commit(ctx);
5302 apply_wqattrs_cleanup(ctx);
5303 }
5304
5305 return ret;
5306 }
5307
5308 /**
5309 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5310 * @cpumask: the cpumask to set
5311 *
5312 * The low-level workqueues cpumask is a global cpumask that limits
5313 * the affinity of all unbound workqueues. This function check the @cpumask
5314 * and apply it to all unbound workqueues and updates all pwqs of them.
5315 *
5316 * Retun: 0 - Success
5317 * -EINVAL - Invalid @cpumask
5318 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5319 */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)5320 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5321 {
5322 int ret = -EINVAL;
5323 cpumask_var_t saved_cpumask;
5324
5325 /*
5326 * Not excluding isolated cpus on purpose.
5327 * If the user wishes to include them, we allow that.
5328 */
5329 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5330 if (!cpumask_empty(cpumask)) {
5331 apply_wqattrs_lock();
5332 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5333 ret = 0;
5334 goto out_unlock;
5335 }
5336
5337 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5338 ret = -ENOMEM;
5339 goto out_unlock;
5340 }
5341
5342 /* save the old wq_unbound_cpumask. */
5343 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5344
5345 /* update wq_unbound_cpumask at first and apply it to wqs. */
5346 cpumask_copy(wq_unbound_cpumask, cpumask);
5347 ret = workqueue_apply_unbound_cpumask();
5348
5349 /* restore the wq_unbound_cpumask when failed. */
5350 if (ret < 0)
5351 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5352
5353 free_cpumask_var(saved_cpumask);
5354 out_unlock:
5355 apply_wqattrs_unlock();
5356 }
5357
5358 return ret;
5359 }
5360
5361 #ifdef CONFIG_SYSFS
5362 /*
5363 * Workqueues with WQ_SYSFS flag set is visible to userland via
5364 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5365 * following attributes.
5366 *
5367 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5368 * max_active RW int : maximum number of in-flight work items
5369 *
5370 * Unbound workqueues have the following extra attributes.
5371 *
5372 * pool_ids RO int : the associated pool IDs for each node
5373 * nice RW int : nice value of the workers
5374 * cpumask RW mask : bitmask of allowed CPUs for the workers
5375 * numa RW bool : whether enable NUMA affinity
5376 */
5377 struct wq_device {
5378 struct workqueue_struct *wq;
5379 struct device dev;
5380 };
5381
dev_to_wq(struct device * dev)5382 static struct workqueue_struct *dev_to_wq(struct device *dev)
5383 {
5384 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5385
5386 return wq_dev->wq;
5387 }
5388
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)5389 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5390 char *buf)
5391 {
5392 struct workqueue_struct *wq = dev_to_wq(dev);
5393
5394 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5395 }
5396 static DEVICE_ATTR_RO(per_cpu);
5397
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)5398 static ssize_t max_active_show(struct device *dev,
5399 struct device_attribute *attr, char *buf)
5400 {
5401 struct workqueue_struct *wq = dev_to_wq(dev);
5402
5403 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5404 }
5405
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5406 static ssize_t max_active_store(struct device *dev,
5407 struct device_attribute *attr, const char *buf,
5408 size_t count)
5409 {
5410 struct workqueue_struct *wq = dev_to_wq(dev);
5411 int val;
5412
5413 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5414 return -EINVAL;
5415
5416 workqueue_set_max_active(wq, val);
5417 return count;
5418 }
5419 static DEVICE_ATTR_RW(max_active);
5420
5421 static struct attribute *wq_sysfs_attrs[] = {
5422 &dev_attr_per_cpu.attr,
5423 &dev_attr_max_active.attr,
5424 NULL,
5425 };
5426 ATTRIBUTE_GROUPS(wq_sysfs);
5427
wq_pool_ids_show(struct device * dev,struct device_attribute * attr,char * buf)5428 static ssize_t wq_pool_ids_show(struct device *dev,
5429 struct device_attribute *attr, char *buf)
5430 {
5431 struct workqueue_struct *wq = dev_to_wq(dev);
5432 const char *delim = "";
5433 int node, written = 0;
5434
5435 get_online_cpus();
5436 rcu_read_lock();
5437 for_each_node(node) {
5438 written += scnprintf(buf + written, PAGE_SIZE - written,
5439 "%s%d:%d", delim, node,
5440 unbound_pwq_by_node(wq, node)->pool->id);
5441 delim = " ";
5442 }
5443 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5444 rcu_read_unlock();
5445 put_online_cpus();
5446
5447 return written;
5448 }
5449
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)5450 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5451 char *buf)
5452 {
5453 struct workqueue_struct *wq = dev_to_wq(dev);
5454 int written;
5455
5456 mutex_lock(&wq->mutex);
5457 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5458 mutex_unlock(&wq->mutex);
5459
5460 return written;
5461 }
5462
5463 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)5464 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5465 {
5466 struct workqueue_attrs *attrs;
5467
5468 lockdep_assert_held(&wq_pool_mutex);
5469
5470 attrs = alloc_workqueue_attrs();
5471 if (!attrs)
5472 return NULL;
5473
5474 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5475 return attrs;
5476 }
5477
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5478 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5479 const char *buf, size_t count)
5480 {
5481 struct workqueue_struct *wq = dev_to_wq(dev);
5482 struct workqueue_attrs *attrs;
5483 int ret = -ENOMEM;
5484
5485 apply_wqattrs_lock();
5486
5487 attrs = wq_sysfs_prep_attrs(wq);
5488 if (!attrs)
5489 goto out_unlock;
5490
5491 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5492 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5493 ret = apply_workqueue_attrs_locked(wq, attrs);
5494 else
5495 ret = -EINVAL;
5496
5497 out_unlock:
5498 apply_wqattrs_unlock();
5499 free_workqueue_attrs(attrs);
5500 return ret ?: count;
5501 }
5502
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5503 static ssize_t wq_cpumask_show(struct device *dev,
5504 struct device_attribute *attr, char *buf)
5505 {
5506 struct workqueue_struct *wq = dev_to_wq(dev);
5507 int written;
5508
5509 mutex_lock(&wq->mutex);
5510 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5511 cpumask_pr_args(wq->unbound_attrs->cpumask));
5512 mutex_unlock(&wq->mutex);
5513 return written;
5514 }
5515
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5516 static ssize_t wq_cpumask_store(struct device *dev,
5517 struct device_attribute *attr,
5518 const char *buf, size_t count)
5519 {
5520 struct workqueue_struct *wq = dev_to_wq(dev);
5521 struct workqueue_attrs *attrs;
5522 int ret = -ENOMEM;
5523
5524 apply_wqattrs_lock();
5525
5526 attrs = wq_sysfs_prep_attrs(wq);
5527 if (!attrs)
5528 goto out_unlock;
5529
5530 ret = cpumask_parse(buf, attrs->cpumask);
5531 if (!ret)
5532 ret = apply_workqueue_attrs_locked(wq, attrs);
5533
5534 out_unlock:
5535 apply_wqattrs_unlock();
5536 free_workqueue_attrs(attrs);
5537 return ret ?: count;
5538 }
5539
wq_numa_show(struct device * dev,struct device_attribute * attr,char * buf)5540 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5541 char *buf)
5542 {
5543 struct workqueue_struct *wq = dev_to_wq(dev);
5544 int written;
5545
5546 mutex_lock(&wq->mutex);
5547 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5548 !wq->unbound_attrs->no_numa);
5549 mutex_unlock(&wq->mutex);
5550
5551 return written;
5552 }
5553
wq_numa_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5554 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5555 const char *buf, size_t count)
5556 {
5557 struct workqueue_struct *wq = dev_to_wq(dev);
5558 struct workqueue_attrs *attrs;
5559 int v, ret = -ENOMEM;
5560
5561 apply_wqattrs_lock();
5562
5563 attrs = wq_sysfs_prep_attrs(wq);
5564 if (!attrs)
5565 goto out_unlock;
5566
5567 ret = -EINVAL;
5568 if (sscanf(buf, "%d", &v) == 1) {
5569 attrs->no_numa = !v;
5570 ret = apply_workqueue_attrs_locked(wq, attrs);
5571 }
5572
5573 out_unlock:
5574 apply_wqattrs_unlock();
5575 free_workqueue_attrs(attrs);
5576 return ret ?: count;
5577 }
5578
5579 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5580 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5581 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5582 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5583 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5584 __ATTR_NULL,
5585 };
5586
5587 static struct bus_type wq_subsys = {
5588 .name = "workqueue",
5589 .dev_groups = wq_sysfs_groups,
5590 };
5591
wq_unbound_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5592 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5593 struct device_attribute *attr, char *buf)
5594 {
5595 int written;
5596
5597 mutex_lock(&wq_pool_mutex);
5598 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5599 cpumask_pr_args(wq_unbound_cpumask));
5600 mutex_unlock(&wq_pool_mutex);
5601
5602 return written;
5603 }
5604
wq_unbound_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5605 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5606 struct device_attribute *attr, const char *buf, size_t count)
5607 {
5608 cpumask_var_t cpumask;
5609 int ret;
5610
5611 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5612 return -ENOMEM;
5613
5614 ret = cpumask_parse(buf, cpumask);
5615 if (!ret)
5616 ret = workqueue_set_unbound_cpumask(cpumask);
5617
5618 free_cpumask_var(cpumask);
5619 return ret ? ret : count;
5620 }
5621
5622 static struct device_attribute wq_sysfs_cpumask_attr =
5623 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5624 wq_unbound_cpumask_store);
5625
wq_sysfs_init(void)5626 static int __init wq_sysfs_init(void)
5627 {
5628 int err;
5629
5630 err = subsys_virtual_register(&wq_subsys, NULL);
5631 if (err)
5632 return err;
5633
5634 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5635 }
5636 core_initcall(wq_sysfs_init);
5637
wq_device_release(struct device * dev)5638 static void wq_device_release(struct device *dev)
5639 {
5640 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5641
5642 kfree(wq_dev);
5643 }
5644
5645 /**
5646 * workqueue_sysfs_register - make a workqueue visible in sysfs
5647 * @wq: the workqueue to register
5648 *
5649 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5650 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5651 * which is the preferred method.
5652 *
5653 * Workqueue user should use this function directly iff it wants to apply
5654 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5655 * apply_workqueue_attrs() may race against userland updating the
5656 * attributes.
5657 *
5658 * Return: 0 on success, -errno on failure.
5659 */
workqueue_sysfs_register(struct workqueue_struct * wq)5660 int workqueue_sysfs_register(struct workqueue_struct *wq)
5661 {
5662 struct wq_device *wq_dev;
5663 int ret;
5664
5665 /*
5666 * Adjusting max_active or creating new pwqs by applying
5667 * attributes breaks ordering guarantee. Disallow exposing ordered
5668 * workqueues.
5669 */
5670 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5671 return -EINVAL;
5672
5673 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5674 if (!wq_dev)
5675 return -ENOMEM;
5676
5677 wq_dev->wq = wq;
5678 wq_dev->dev.bus = &wq_subsys;
5679 wq_dev->dev.release = wq_device_release;
5680 dev_set_name(&wq_dev->dev, "%s", wq->name);
5681
5682 /*
5683 * unbound_attrs are created separately. Suppress uevent until
5684 * everything is ready.
5685 */
5686 dev_set_uevent_suppress(&wq_dev->dev, true);
5687
5688 ret = device_register(&wq_dev->dev);
5689 if (ret) {
5690 put_device(&wq_dev->dev);
5691 wq->wq_dev = NULL;
5692 return ret;
5693 }
5694
5695 if (wq->flags & WQ_UNBOUND) {
5696 struct device_attribute *attr;
5697
5698 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5699 ret = device_create_file(&wq_dev->dev, attr);
5700 if (ret) {
5701 device_unregister(&wq_dev->dev);
5702 wq->wq_dev = NULL;
5703 return ret;
5704 }
5705 }
5706 }
5707
5708 dev_set_uevent_suppress(&wq_dev->dev, false);
5709 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5710 return 0;
5711 }
5712
5713 /**
5714 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5715 * @wq: the workqueue to unregister
5716 *
5717 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5718 */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5719 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5720 {
5721 struct wq_device *wq_dev = wq->wq_dev;
5722
5723 if (!wq->wq_dev)
5724 return;
5725
5726 wq->wq_dev = NULL;
5727 device_unregister(&wq_dev->dev);
5728 }
5729 #else /* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5730 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5731 #endif /* CONFIG_SYSFS */
5732
5733 /*
5734 * Workqueue watchdog.
5735 *
5736 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5737 * flush dependency, a concurrency managed work item which stays RUNNING
5738 * indefinitely. Workqueue stalls can be very difficult to debug as the
5739 * usual warning mechanisms don't trigger and internal workqueue state is
5740 * largely opaque.
5741 *
5742 * Workqueue watchdog monitors all worker pools periodically and dumps
5743 * state if some pools failed to make forward progress for a while where
5744 * forward progress is defined as the first item on ->worklist changing.
5745 *
5746 * This mechanism is controlled through the kernel parameter
5747 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5748 * corresponding sysfs parameter file.
5749 */
5750 #ifdef CONFIG_WQ_WATCHDOG
5751
5752 static unsigned long wq_watchdog_thresh = 30;
5753 static struct timer_list wq_watchdog_timer;
5754
5755 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5756 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5757
wq_watchdog_reset_touched(void)5758 static void wq_watchdog_reset_touched(void)
5759 {
5760 int cpu;
5761
5762 wq_watchdog_touched = jiffies;
5763 for_each_possible_cpu(cpu)
5764 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5765 }
5766
wq_watchdog_timer_fn(struct timer_list * unused)5767 static void wq_watchdog_timer_fn(struct timer_list *unused)
5768 {
5769 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5770 bool lockup_detected = false;
5771 unsigned long now = jiffies;
5772 struct worker_pool *pool;
5773 int pi;
5774
5775 if (!thresh)
5776 return;
5777
5778 rcu_read_lock();
5779
5780 for_each_pool(pool, pi) {
5781 unsigned long pool_ts, touched, ts;
5782
5783 if (list_empty(&pool->worklist))
5784 continue;
5785
5786 /*
5787 * If a virtual machine is stopped by the host it can look to
5788 * the watchdog like a stall.
5789 */
5790 kvm_check_and_clear_guest_paused();
5791
5792 /* get the latest of pool and touched timestamps */
5793 pool_ts = READ_ONCE(pool->watchdog_ts);
5794 touched = READ_ONCE(wq_watchdog_touched);
5795
5796 if (time_after(pool_ts, touched))
5797 ts = pool_ts;
5798 else
5799 ts = touched;
5800
5801 if (pool->cpu >= 0) {
5802 unsigned long cpu_touched =
5803 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5804 pool->cpu));
5805 if (time_after(cpu_touched, ts))
5806 ts = cpu_touched;
5807 }
5808
5809 /* did we stall? */
5810 if (time_after(now, ts + thresh)) {
5811 lockup_detected = true;
5812 pr_emerg("BUG: workqueue lockup - pool");
5813 pr_cont_pool_info(pool);
5814 pr_cont(" stuck for %us!\n",
5815 jiffies_to_msecs(now - pool_ts) / 1000);
5816 trace_android_vh_wq_lockup_pool(pool->cpu, pool_ts);
5817 }
5818 }
5819
5820 rcu_read_unlock();
5821
5822 if (lockup_detected)
5823 show_workqueue_state();
5824
5825 wq_watchdog_reset_touched();
5826 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5827 }
5828
wq_watchdog_touch(int cpu)5829 notrace void wq_watchdog_touch(int cpu)
5830 {
5831 if (cpu >= 0)
5832 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5833 else
5834 wq_watchdog_touched = jiffies;
5835 }
5836
wq_watchdog_set_thresh(unsigned long thresh)5837 static void wq_watchdog_set_thresh(unsigned long thresh)
5838 {
5839 wq_watchdog_thresh = 0;
5840 del_timer_sync(&wq_watchdog_timer);
5841
5842 if (thresh) {
5843 wq_watchdog_thresh = thresh;
5844 wq_watchdog_reset_touched();
5845 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5846 }
5847 }
5848
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)5849 static int wq_watchdog_param_set_thresh(const char *val,
5850 const struct kernel_param *kp)
5851 {
5852 unsigned long thresh;
5853 int ret;
5854
5855 ret = kstrtoul(val, 0, &thresh);
5856 if (ret)
5857 return ret;
5858
5859 if (system_wq)
5860 wq_watchdog_set_thresh(thresh);
5861 else
5862 wq_watchdog_thresh = thresh;
5863
5864 return 0;
5865 }
5866
5867 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5868 .set = wq_watchdog_param_set_thresh,
5869 .get = param_get_ulong,
5870 };
5871
5872 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5873 0644);
5874
wq_watchdog_init(void)5875 static void wq_watchdog_init(void)
5876 {
5877 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5878 wq_watchdog_set_thresh(wq_watchdog_thresh);
5879 }
5880
5881 #else /* CONFIG_WQ_WATCHDOG */
5882
wq_watchdog_init(void)5883 static inline void wq_watchdog_init(void) { }
5884
5885 #endif /* CONFIG_WQ_WATCHDOG */
5886
wq_numa_init(void)5887 static void __init wq_numa_init(void)
5888 {
5889 cpumask_var_t *tbl;
5890 int node, cpu;
5891
5892 if (num_possible_nodes() <= 1)
5893 return;
5894
5895 if (wq_disable_numa) {
5896 pr_info("workqueue: NUMA affinity support disabled\n");
5897 return;
5898 }
5899
5900 for_each_possible_cpu(cpu) {
5901 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5902 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5903 return;
5904 }
5905 }
5906
5907 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5908 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5909
5910 /*
5911 * We want masks of possible CPUs of each node which isn't readily
5912 * available. Build one from cpu_to_node() which should have been
5913 * fully initialized by now.
5914 */
5915 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5916 BUG_ON(!tbl);
5917
5918 for_each_node(node)
5919 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5920 node_online(node) ? node : NUMA_NO_NODE));
5921
5922 for_each_possible_cpu(cpu) {
5923 node = cpu_to_node(cpu);
5924 cpumask_set_cpu(cpu, tbl[node]);
5925 }
5926
5927 wq_numa_possible_cpumask = tbl;
5928 wq_numa_enabled = true;
5929 }
5930
5931 /**
5932 * workqueue_init_early - early init for workqueue subsystem
5933 *
5934 * This is the first half of two-staged workqueue subsystem initialization
5935 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5936 * idr are up. It sets up all the data structures and system workqueues
5937 * and allows early boot code to create workqueues and queue/cancel work
5938 * items. Actual work item execution starts only after kthreads can be
5939 * created and scheduled right before early initcalls.
5940 */
workqueue_init_early(void)5941 int __init workqueue_init_early(void)
5942 {
5943 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5944 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5945 int i, cpu;
5946
5947 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5948
5949 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5950 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5951
5952 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5953
5954 /* initialize CPU pools */
5955 for_each_possible_cpu(cpu) {
5956 struct worker_pool *pool;
5957
5958 i = 0;
5959 for_each_cpu_worker_pool(pool, cpu) {
5960 BUG_ON(init_worker_pool(pool));
5961 pool->cpu = cpu;
5962 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5963 pool->attrs->nice = std_nice[i++];
5964 pool->node = cpu_to_node(cpu);
5965
5966 /* alloc pool ID */
5967 mutex_lock(&wq_pool_mutex);
5968 BUG_ON(worker_pool_assign_id(pool));
5969 mutex_unlock(&wq_pool_mutex);
5970 }
5971 }
5972
5973 /* create default unbound and ordered wq attrs */
5974 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5975 struct workqueue_attrs *attrs;
5976
5977 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5978 attrs->nice = std_nice[i];
5979 unbound_std_wq_attrs[i] = attrs;
5980
5981 /*
5982 * An ordered wq should have only one pwq as ordering is
5983 * guaranteed by max_active which is enforced by pwqs.
5984 * Turn off NUMA so that dfl_pwq is used for all nodes.
5985 */
5986 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5987 attrs->nice = std_nice[i];
5988 attrs->no_numa = true;
5989 ordered_wq_attrs[i] = attrs;
5990 }
5991
5992 system_wq = alloc_workqueue("events", 0, 0);
5993 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5994 system_long_wq = alloc_workqueue("events_long", 0, 0);
5995 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5996 WQ_UNBOUND_MAX_ACTIVE);
5997 system_freezable_wq = alloc_workqueue("events_freezable",
5998 WQ_FREEZABLE, 0);
5999 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6000 WQ_POWER_EFFICIENT, 0);
6001 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6002 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6003 0);
6004 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6005 !system_unbound_wq || !system_freezable_wq ||
6006 !system_power_efficient_wq ||
6007 !system_freezable_power_efficient_wq);
6008
6009 return 0;
6010 }
6011
6012 /**
6013 * workqueue_init - bring workqueue subsystem fully online
6014 *
6015 * This is the latter half of two-staged workqueue subsystem initialization
6016 * and invoked as soon as kthreads can be created and scheduled.
6017 * Workqueues have been created and work items queued on them, but there
6018 * are no kworkers executing the work items yet. Populate the worker pools
6019 * with the initial workers and enable future kworker creations.
6020 */
workqueue_init(void)6021 int __init workqueue_init(void)
6022 {
6023 struct workqueue_struct *wq;
6024 struct worker_pool *pool;
6025 int cpu, bkt;
6026
6027 /*
6028 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6029 * CPU to node mapping may not be available that early on some
6030 * archs such as power and arm64. As per-cpu pools created
6031 * previously could be missing node hint and unbound pools NUMA
6032 * affinity, fix them up.
6033 *
6034 * Also, while iterating workqueues, create rescuers if requested.
6035 */
6036 wq_numa_init();
6037
6038 mutex_lock(&wq_pool_mutex);
6039
6040 for_each_possible_cpu(cpu) {
6041 for_each_cpu_worker_pool(pool, cpu) {
6042 pool->node = cpu_to_node(cpu);
6043 }
6044 }
6045
6046 list_for_each_entry(wq, &workqueues, list) {
6047 wq_update_unbound_numa(wq, smp_processor_id(), true);
6048 WARN(init_rescuer(wq),
6049 "workqueue: failed to create early rescuer for %s",
6050 wq->name);
6051 }
6052
6053 mutex_unlock(&wq_pool_mutex);
6054
6055 /* create the initial workers */
6056 for_each_online_cpu(cpu) {
6057 for_each_cpu_worker_pool(pool, cpu) {
6058 pool->flags &= ~POOL_DISASSOCIATED;
6059 BUG_ON(!create_worker(pool));
6060 }
6061 }
6062
6063 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6064 BUG_ON(!create_worker(pool));
6065
6066 wq_online = true;
6067 wq_watchdog_init();
6068
6069 return 0;
6070 }
6071