• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54 
55 #include "workqueue_internal.h"
56 
57 #include <trace/hooks/wqlockup.h>
58 /* events/workqueue.h uses default TRACE_INCLUDE_PATH */
59 #undef TRACE_INCLUDE_PATH
60 
61 enum {
62 	/*
63 	 * worker_pool flags
64 	 *
65 	 * A bound pool is either associated or disassociated with its CPU.
66 	 * While associated (!DISASSOCIATED), all workers are bound to the
67 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 	 * is in effect.
69 	 *
70 	 * While DISASSOCIATED, the cpu may be offline and all workers have
71 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 	 * be executing on any CPU.  The pool behaves as an unbound one.
73 	 *
74 	 * Note that DISASSOCIATED should be flipped only while holding
75 	 * wq_pool_attach_mutex to avoid changing binding state while
76 	 * worker_attach_to_pool() is in progress.
77 	 */
78 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
79 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
80 
81 	/* worker flags */
82 	WORKER_DIE		= 1 << 1,	/* die die die */
83 	WORKER_IDLE		= 1 << 2,	/* is idle */
84 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
85 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
86 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
87 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
88 
89 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
90 				  WORKER_UNBOUND | WORKER_REBOUND,
91 
92 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
93 
94 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
95 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
96 
97 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
98 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
99 
100 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
101 						/* call for help after 10ms
102 						   (min two ticks) */
103 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
104 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
105 
106 	/*
107 	 * Rescue workers are used only on emergencies and shared by
108 	 * all cpus.  Give MIN_NICE.
109 	 */
110 	RESCUER_NICE_LEVEL	= MIN_NICE,
111 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
112 
113 	WQ_NAME_LEN		= 24,
114 };
115 
116 /*
117  * Structure fields follow one of the following exclusion rules.
118  *
119  * I: Modifiable by initialization/destruction paths and read-only for
120  *    everyone else.
121  *
122  * P: Preemption protected.  Disabling preemption is enough and should
123  *    only be modified and accessed from the local cpu.
124  *
125  * L: pool->lock protected.  Access with pool->lock held.
126  *
127  * X: During normal operation, modification requires pool->lock and should
128  *    be done only from local cpu.  Either disabling preemption on local
129  *    cpu or grabbing pool->lock is enough for read access.  If
130  *    POOL_DISASSOCIATED is set, it's identical to L.
131  *
132  * A: wq_pool_attach_mutex protected.
133  *
134  * PL: wq_pool_mutex protected.
135  *
136  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
137  *
138  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
139  *
140  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
141  *      RCU for reads.
142  *
143  * WQ: wq->mutex protected.
144  *
145  * WR: wq->mutex protected for writes.  RCU protected for reads.
146  *
147  * MD: wq_mayday_lock protected.
148  */
149 
150 /* struct worker is defined in workqueue_internal.h */
151 
152 struct worker_pool {
153 	spinlock_t		lock;		/* the pool lock */
154 	int			cpu;		/* I: the associated cpu */
155 	int			node;		/* I: the associated node ID */
156 	int			id;		/* I: pool ID */
157 	unsigned int		flags;		/* X: flags */
158 
159 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
160 
161 	struct list_head	worklist;	/* L: list of pending works */
162 
163 	int			nr_workers;	/* L: total number of workers */
164 	int			nr_idle;	/* L: currently idle workers */
165 
166 	struct list_head	idle_list;	/* X: list of idle workers */
167 	struct timer_list	idle_timer;	/* L: worker idle timeout */
168 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
169 
170 	/* a workers is either on busy_hash or idle_list, or the manager */
171 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
172 						/* L: hash of busy workers */
173 
174 	struct worker		*manager;	/* L: purely informational */
175 	struct list_head	workers;	/* A: attached workers */
176 	struct completion	*detach_completion; /* all workers detached */
177 
178 	struct ida		worker_ida;	/* worker IDs for task name */
179 
180 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
181 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
182 	int			refcnt;		/* PL: refcnt for unbound pools */
183 
184 	/*
185 	 * The current concurrency level.  As it's likely to be accessed
186 	 * from other CPUs during try_to_wake_up(), put it in a separate
187 	 * cacheline.
188 	 */
189 	atomic_t		nr_running ____cacheline_aligned_in_smp;
190 
191 	/*
192 	 * Destruction of pool is RCU protected to allow dereferences
193 	 * from get_work_pool().
194 	 */
195 	struct rcu_head		rcu;
196 } ____cacheline_aligned_in_smp;
197 
198 /*
199  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
200  * of work_struct->data are used for flags and the remaining high bits
201  * point to the pwq; thus, pwqs need to be aligned at two's power of the
202  * number of flag bits.
203  */
204 struct pool_workqueue {
205 	struct worker_pool	*pool;		/* I: the associated pool */
206 	struct workqueue_struct *wq;		/* I: the owning workqueue */
207 	int			work_color;	/* L: current color */
208 	int			flush_color;	/* L: flushing color */
209 	int			refcnt;		/* L: reference count */
210 	int			nr_in_flight[WORK_NR_COLORS];
211 						/* L: nr of in_flight works */
212 	int			nr_active;	/* L: nr of active works */
213 	int			max_active;	/* L: max active works */
214 	struct list_head	delayed_works;	/* L: delayed works */
215 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
216 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
217 
218 	/*
219 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
220 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
221 	 * itself is also RCU protected so that the first pwq can be
222 	 * determined without grabbing wq->mutex.
223 	 */
224 	struct work_struct	unbound_release_work;
225 	struct rcu_head		rcu;
226 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
227 
228 /*
229  * Structure used to wait for workqueue flush.
230  */
231 struct wq_flusher {
232 	struct list_head	list;		/* WQ: list of flushers */
233 	int			flush_color;	/* WQ: flush color waiting for */
234 	struct completion	done;		/* flush completion */
235 };
236 
237 struct wq_device;
238 
239 /*
240  * The externally visible workqueue.  It relays the issued work items to
241  * the appropriate worker_pool through its pool_workqueues.
242  */
243 struct workqueue_struct {
244 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
245 	struct list_head	list;		/* PR: list of all workqueues */
246 
247 	struct mutex		mutex;		/* protects this wq */
248 	int			work_color;	/* WQ: current work color */
249 	int			flush_color;	/* WQ: current flush color */
250 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
251 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
252 	struct list_head	flusher_queue;	/* WQ: flush waiters */
253 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
254 
255 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
256 	struct worker		*rescuer;	/* I: rescue worker */
257 
258 	int			nr_drainers;	/* WQ: drain in progress */
259 	int			saved_max_active; /* WQ: saved pwq max_active */
260 
261 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
262 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
263 
264 #ifdef CONFIG_SYSFS
265 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
266 #endif
267 #ifdef CONFIG_LOCKDEP
268 	char			*lock_name;
269 	struct lock_class_key	key;
270 	struct lockdep_map	lockdep_map;
271 #endif
272 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
273 
274 	/*
275 	 * Destruction of workqueue_struct is RCU protected to allow walking
276 	 * the workqueues list without grabbing wq_pool_mutex.
277 	 * This is used to dump all workqueues from sysrq.
278 	 */
279 	struct rcu_head		rcu;
280 
281 	/* hot fields used during command issue, aligned to cacheline */
282 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
283 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
284 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
285 };
286 
287 static struct kmem_cache *pwq_cache;
288 
289 static cpumask_var_t *wq_numa_possible_cpumask;
290 					/* possible CPUs of each node */
291 
292 static bool wq_disable_numa;
293 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
294 
295 /* see the comment above the definition of WQ_POWER_EFFICIENT */
296 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
297 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
298 
299 static bool wq_online;			/* can kworkers be created yet? */
300 
301 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
302 
303 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
304 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
305 
306 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
307 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
308 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
309 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
310 
311 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
312 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
313 
314 /* PL: allowable cpus for unbound wqs and work items */
315 static cpumask_var_t wq_unbound_cpumask;
316 
317 /* CPU where unbound work was last round robin scheduled from this CPU */
318 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
319 
320 /*
321  * Local execution of unbound work items is no longer guaranteed.  The
322  * following always forces round-robin CPU selection on unbound work items
323  * to uncover usages which depend on it.
324  */
325 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
326 static bool wq_debug_force_rr_cpu = true;
327 #else
328 static bool wq_debug_force_rr_cpu = false;
329 #endif
330 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
331 
332 /* the per-cpu worker pools */
333 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
334 
335 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
336 
337 /* PL: hash of all unbound pools keyed by pool->attrs */
338 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
339 
340 /* I: attributes used when instantiating standard unbound pools on demand */
341 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
342 
343 /* I: attributes used when instantiating ordered pools on demand */
344 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
345 
346 struct workqueue_struct *system_wq __read_mostly;
347 EXPORT_SYMBOL(system_wq);
348 struct workqueue_struct *system_highpri_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_highpri_wq);
350 struct workqueue_struct *system_long_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_long_wq);
352 struct workqueue_struct *system_unbound_wq __read_mostly;
353 EXPORT_SYMBOL_GPL(system_unbound_wq);
354 struct workqueue_struct *system_freezable_wq __read_mostly;
355 EXPORT_SYMBOL_GPL(system_freezable_wq);
356 struct workqueue_struct *system_power_efficient_wq __read_mostly;
357 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
358 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
359 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
360 
361 static int worker_thread(void *__worker);
362 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
363 
364 #define CREATE_TRACE_POINTS
365 #include <trace/events/workqueue.h>
366 
367 #define assert_rcu_or_pool_mutex()					\
368 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
369 			 !lockdep_is_held(&wq_pool_mutex),		\
370 			 "RCU or wq_pool_mutex should be held")
371 
372 #define assert_rcu_or_wq_mutex(wq)					\
373 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
374 			 !lockdep_is_held(&wq->mutex),			\
375 			 "RCU or wq->mutex should be held")
376 
377 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
378 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
379 			 !lockdep_is_held(&wq->mutex) &&		\
380 			 !lockdep_is_held(&wq_pool_mutex),		\
381 			 "RCU, wq->mutex or wq_pool_mutex should be held")
382 
383 #define for_each_cpu_worker_pool(pool, cpu)				\
384 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
385 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
386 	     (pool)++)
387 
388 /**
389  * for_each_pool - iterate through all worker_pools in the system
390  * @pool: iteration cursor
391  * @pi: integer used for iteration
392  *
393  * This must be called either with wq_pool_mutex held or RCU read
394  * locked.  If the pool needs to be used beyond the locking in effect, the
395  * caller is responsible for guaranteeing that the pool stays online.
396  *
397  * The if/else clause exists only for the lockdep assertion and can be
398  * ignored.
399  */
400 #define for_each_pool(pool, pi)						\
401 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
402 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
403 		else
404 
405 /**
406  * for_each_pool_worker - iterate through all workers of a worker_pool
407  * @worker: iteration cursor
408  * @pool: worker_pool to iterate workers of
409  *
410  * This must be called with wq_pool_attach_mutex.
411  *
412  * The if/else clause exists only for the lockdep assertion and can be
413  * ignored.
414  */
415 #define for_each_pool_worker(worker, pool)				\
416 	list_for_each_entry((worker), &(pool)->workers, node)		\
417 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
418 		else
419 
420 /**
421  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
422  * @pwq: iteration cursor
423  * @wq: the target workqueue
424  *
425  * This must be called either with wq->mutex held or RCU read locked.
426  * If the pwq needs to be used beyond the locking in effect, the caller is
427  * responsible for guaranteeing that the pwq stays online.
428  *
429  * The if/else clause exists only for the lockdep assertion and can be
430  * ignored.
431  */
432 #define for_each_pwq(pwq, wq)						\
433 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
434 				lockdep_is_held(&wq->mutex))		\
435 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
436 		else
437 
438 #ifdef CONFIG_DEBUG_OBJECTS_WORK
439 
440 static struct debug_obj_descr work_debug_descr;
441 
work_debug_hint(void * addr)442 static void *work_debug_hint(void *addr)
443 {
444 	return ((struct work_struct *) addr)->func;
445 }
446 
work_is_static_object(void * addr)447 static bool work_is_static_object(void *addr)
448 {
449 	struct work_struct *work = addr;
450 
451 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
452 }
453 
454 /*
455  * fixup_init is called when:
456  * - an active object is initialized
457  */
work_fixup_init(void * addr,enum debug_obj_state state)458 static bool work_fixup_init(void *addr, enum debug_obj_state state)
459 {
460 	struct work_struct *work = addr;
461 
462 	switch (state) {
463 	case ODEBUG_STATE_ACTIVE:
464 		cancel_work_sync(work);
465 		debug_object_init(work, &work_debug_descr);
466 		return true;
467 	default:
468 		return false;
469 	}
470 }
471 
472 /*
473  * fixup_free is called when:
474  * - an active object is freed
475  */
work_fixup_free(void * addr,enum debug_obj_state state)476 static bool work_fixup_free(void *addr, enum debug_obj_state state)
477 {
478 	struct work_struct *work = addr;
479 
480 	switch (state) {
481 	case ODEBUG_STATE_ACTIVE:
482 		cancel_work_sync(work);
483 		debug_object_free(work, &work_debug_descr);
484 		return true;
485 	default:
486 		return false;
487 	}
488 }
489 
490 static struct debug_obj_descr work_debug_descr = {
491 	.name		= "work_struct",
492 	.debug_hint	= work_debug_hint,
493 	.is_static_object = work_is_static_object,
494 	.fixup_init	= work_fixup_init,
495 	.fixup_free	= work_fixup_free,
496 };
497 
debug_work_activate(struct work_struct * work)498 static inline void debug_work_activate(struct work_struct *work)
499 {
500 	debug_object_activate(work, &work_debug_descr);
501 }
502 
debug_work_deactivate(struct work_struct * work)503 static inline void debug_work_deactivate(struct work_struct *work)
504 {
505 	debug_object_deactivate(work, &work_debug_descr);
506 }
507 
__init_work(struct work_struct * work,int onstack)508 void __init_work(struct work_struct *work, int onstack)
509 {
510 	if (onstack)
511 		debug_object_init_on_stack(work, &work_debug_descr);
512 	else
513 		debug_object_init(work, &work_debug_descr);
514 }
515 EXPORT_SYMBOL_GPL(__init_work);
516 
destroy_work_on_stack(struct work_struct * work)517 void destroy_work_on_stack(struct work_struct *work)
518 {
519 	debug_object_free(work, &work_debug_descr);
520 }
521 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
522 
destroy_delayed_work_on_stack(struct delayed_work * work)523 void destroy_delayed_work_on_stack(struct delayed_work *work)
524 {
525 	destroy_timer_on_stack(&work->timer);
526 	debug_object_free(&work->work, &work_debug_descr);
527 }
528 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
529 
530 #else
debug_work_activate(struct work_struct * work)531 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)532 static inline void debug_work_deactivate(struct work_struct *work) { }
533 #endif
534 
535 /**
536  * worker_pool_assign_id - allocate ID and assing it to @pool
537  * @pool: the pool pointer of interest
538  *
539  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
540  * successfully, -errno on failure.
541  */
worker_pool_assign_id(struct worker_pool * pool)542 static int worker_pool_assign_id(struct worker_pool *pool)
543 {
544 	int ret;
545 
546 	lockdep_assert_held(&wq_pool_mutex);
547 
548 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
549 			GFP_KERNEL);
550 	if (ret >= 0) {
551 		pool->id = ret;
552 		return 0;
553 	}
554 	return ret;
555 }
556 
557 /**
558  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
559  * @wq: the target workqueue
560  * @node: the node ID
561  *
562  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
563  * read locked.
564  * If the pwq needs to be used beyond the locking in effect, the caller is
565  * responsible for guaranteeing that the pwq stays online.
566  *
567  * Return: The unbound pool_workqueue for @node.
568  */
unbound_pwq_by_node(struct workqueue_struct * wq,int node)569 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
570 						  int node)
571 {
572 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
573 
574 	/*
575 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
576 	 * delayed item is pending.  The plan is to keep CPU -> NODE
577 	 * mapping valid and stable across CPU on/offlines.  Once that
578 	 * happens, this workaround can be removed.
579 	 */
580 	if (unlikely(node == NUMA_NO_NODE))
581 		return wq->dfl_pwq;
582 
583 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
584 }
585 
work_color_to_flags(int color)586 static unsigned int work_color_to_flags(int color)
587 {
588 	return color << WORK_STRUCT_COLOR_SHIFT;
589 }
590 
get_work_color(struct work_struct * work)591 static int get_work_color(struct work_struct *work)
592 {
593 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
594 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
595 }
596 
work_next_color(int color)597 static int work_next_color(int color)
598 {
599 	return (color + 1) % WORK_NR_COLORS;
600 }
601 
602 /*
603  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
604  * contain the pointer to the queued pwq.  Once execution starts, the flag
605  * is cleared and the high bits contain OFFQ flags and pool ID.
606  *
607  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
608  * and clear_work_data() can be used to set the pwq, pool or clear
609  * work->data.  These functions should only be called while the work is
610  * owned - ie. while the PENDING bit is set.
611  *
612  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
613  * corresponding to a work.  Pool is available once the work has been
614  * queued anywhere after initialization until it is sync canceled.  pwq is
615  * available only while the work item is queued.
616  *
617  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
618  * canceled.  While being canceled, a work item may have its PENDING set
619  * but stay off timer and worklist for arbitrarily long and nobody should
620  * try to steal the PENDING bit.
621  */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)622 static inline void set_work_data(struct work_struct *work, unsigned long data,
623 				 unsigned long flags)
624 {
625 	WARN_ON_ONCE(!work_pending(work));
626 	atomic_long_set(&work->data, data | flags | work_static(work));
627 }
628 
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)629 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
630 			 unsigned long extra_flags)
631 {
632 	set_work_data(work, (unsigned long)pwq,
633 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
634 }
635 
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)636 static void set_work_pool_and_keep_pending(struct work_struct *work,
637 					   int pool_id)
638 {
639 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
640 		      WORK_STRUCT_PENDING);
641 }
642 
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)643 static void set_work_pool_and_clear_pending(struct work_struct *work,
644 					    int pool_id)
645 {
646 	/*
647 	 * The following wmb is paired with the implied mb in
648 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
649 	 * here are visible to and precede any updates by the next PENDING
650 	 * owner.
651 	 */
652 	smp_wmb();
653 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
654 	/*
655 	 * The following mb guarantees that previous clear of a PENDING bit
656 	 * will not be reordered with any speculative LOADS or STORES from
657 	 * work->current_func, which is executed afterwards.  This possible
658 	 * reordering can lead to a missed execution on attempt to queue
659 	 * the same @work.  E.g. consider this case:
660 	 *
661 	 *   CPU#0                         CPU#1
662 	 *   ----------------------------  --------------------------------
663 	 *
664 	 * 1  STORE event_indicated
665 	 * 2  queue_work_on() {
666 	 * 3    test_and_set_bit(PENDING)
667 	 * 4 }                             set_..._and_clear_pending() {
668 	 * 5                                 set_work_data() # clear bit
669 	 * 6                                 smp_mb()
670 	 * 7                               work->current_func() {
671 	 * 8				      LOAD event_indicated
672 	 *				   }
673 	 *
674 	 * Without an explicit full barrier speculative LOAD on line 8 can
675 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
676 	 * CPU#0 observes the PENDING bit is still set and new execution of
677 	 * a @work is not queued in a hope, that CPU#1 will eventually
678 	 * finish the queued @work.  Meanwhile CPU#1 does not see
679 	 * event_indicated is set, because speculative LOAD was executed
680 	 * before actual STORE.
681 	 */
682 	smp_mb();
683 }
684 
clear_work_data(struct work_struct * work)685 static void clear_work_data(struct work_struct *work)
686 {
687 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
688 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
689 }
690 
work_struct_pwq(unsigned long data)691 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
692 {
693 	return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
694 }
695 
get_work_pwq(struct work_struct * work)696 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
697 {
698 	unsigned long data = atomic_long_read(&work->data);
699 
700 	if (data & WORK_STRUCT_PWQ)
701 		return work_struct_pwq(data);
702 	else
703 		return NULL;
704 }
705 
706 /**
707  * get_work_pool - return the worker_pool a given work was associated with
708  * @work: the work item of interest
709  *
710  * Pools are created and destroyed under wq_pool_mutex, and allows read
711  * access under RCU read lock.  As such, this function should be
712  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
713  *
714  * All fields of the returned pool are accessible as long as the above
715  * mentioned locking is in effect.  If the returned pool needs to be used
716  * beyond the critical section, the caller is responsible for ensuring the
717  * returned pool is and stays online.
718  *
719  * Return: The worker_pool @work was last associated with.  %NULL if none.
720  */
get_work_pool(struct work_struct * work)721 static struct worker_pool *get_work_pool(struct work_struct *work)
722 {
723 	unsigned long data = atomic_long_read(&work->data);
724 	int pool_id;
725 
726 	assert_rcu_or_pool_mutex();
727 
728 	if (data & WORK_STRUCT_PWQ)
729 		return work_struct_pwq(data)->pool;
730 
731 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
732 	if (pool_id == WORK_OFFQ_POOL_NONE)
733 		return NULL;
734 
735 	return idr_find(&worker_pool_idr, pool_id);
736 }
737 
738 /**
739  * get_work_pool_id - return the worker pool ID a given work is associated with
740  * @work: the work item of interest
741  *
742  * Return: The worker_pool ID @work was last associated with.
743  * %WORK_OFFQ_POOL_NONE if none.
744  */
get_work_pool_id(struct work_struct * work)745 static int get_work_pool_id(struct work_struct *work)
746 {
747 	unsigned long data = atomic_long_read(&work->data);
748 
749 	if (data & WORK_STRUCT_PWQ)
750 		return work_struct_pwq(data)->pool->id;
751 
752 	return data >> WORK_OFFQ_POOL_SHIFT;
753 }
754 
mark_work_canceling(struct work_struct * work)755 static void mark_work_canceling(struct work_struct *work)
756 {
757 	unsigned long pool_id = get_work_pool_id(work);
758 
759 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
760 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
761 }
762 
work_is_canceling(struct work_struct * work)763 static bool work_is_canceling(struct work_struct *work)
764 {
765 	unsigned long data = atomic_long_read(&work->data);
766 
767 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
768 }
769 
770 /*
771  * Policy functions.  These define the policies on how the global worker
772  * pools are managed.  Unless noted otherwise, these functions assume that
773  * they're being called with pool->lock held.
774  */
775 
__need_more_worker(struct worker_pool * pool)776 static bool __need_more_worker(struct worker_pool *pool)
777 {
778 	return !atomic_read(&pool->nr_running);
779 }
780 
781 /*
782  * Need to wake up a worker?  Called from anything but currently
783  * running workers.
784  *
785  * Note that, because unbound workers never contribute to nr_running, this
786  * function will always return %true for unbound pools as long as the
787  * worklist isn't empty.
788  */
need_more_worker(struct worker_pool * pool)789 static bool need_more_worker(struct worker_pool *pool)
790 {
791 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
792 }
793 
794 /* Can I start working?  Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)795 static bool may_start_working(struct worker_pool *pool)
796 {
797 	return pool->nr_idle;
798 }
799 
800 /* Do I need to keep working?  Called from currently running workers. */
keep_working(struct worker_pool * pool)801 static bool keep_working(struct worker_pool *pool)
802 {
803 	return !list_empty(&pool->worklist) &&
804 		atomic_read(&pool->nr_running) <= 1;
805 }
806 
807 /* Do we need a new worker?  Called from manager. */
need_to_create_worker(struct worker_pool * pool)808 static bool need_to_create_worker(struct worker_pool *pool)
809 {
810 	return need_more_worker(pool) && !may_start_working(pool);
811 }
812 
813 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)814 static bool too_many_workers(struct worker_pool *pool)
815 {
816 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
817 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
818 	int nr_busy = pool->nr_workers - nr_idle;
819 
820 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
821 }
822 
823 /*
824  * Wake up functions.
825  */
826 
827 /* Return the first idle worker.  Safe with preemption disabled */
first_idle_worker(struct worker_pool * pool)828 static struct worker *first_idle_worker(struct worker_pool *pool)
829 {
830 	if (unlikely(list_empty(&pool->idle_list)))
831 		return NULL;
832 
833 	return list_first_entry(&pool->idle_list, struct worker, entry);
834 }
835 
836 /**
837  * wake_up_worker - wake up an idle worker
838  * @pool: worker pool to wake worker from
839  *
840  * Wake up the first idle worker of @pool.
841  *
842  * CONTEXT:
843  * spin_lock_irq(pool->lock).
844  */
wake_up_worker(struct worker_pool * pool)845 static void wake_up_worker(struct worker_pool *pool)
846 {
847 	struct worker *worker = first_idle_worker(pool);
848 
849 	if (likely(worker))
850 		wake_up_process(worker->task);
851 }
852 
853 /**
854  * wq_worker_running - a worker is running again
855  * @task: task waking up
856  *
857  * This function is called when a worker returns from schedule()
858  */
wq_worker_running(struct task_struct * task)859 void wq_worker_running(struct task_struct *task)
860 {
861 	struct worker *worker = kthread_data(task);
862 
863 	if (!worker->sleeping)
864 		return;
865 
866 	/*
867 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
868 	 * and the nr_running increment below, we may ruin the nr_running reset
869 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
870 	 * pool. Protect against such race.
871 	 */
872 	preempt_disable();
873 	if (!(worker->flags & WORKER_NOT_RUNNING))
874 		atomic_inc(&worker->pool->nr_running);
875 	preempt_enable();
876 	worker->sleeping = 0;
877 }
878 
879 /**
880  * wq_worker_sleeping - a worker is going to sleep
881  * @task: task going to sleep
882  *
883  * This function is called from schedule() when a busy worker is
884  * going to sleep. Preemption needs to be disabled to protect ->sleeping
885  * assignment.
886  */
wq_worker_sleeping(struct task_struct * task)887 void wq_worker_sleeping(struct task_struct *task)
888 {
889 	struct worker *next, *worker = kthread_data(task);
890 	struct worker_pool *pool;
891 
892 	/*
893 	 * Rescuers, which may not have all the fields set up like normal
894 	 * workers, also reach here, let's not access anything before
895 	 * checking NOT_RUNNING.
896 	 */
897 	if (worker->flags & WORKER_NOT_RUNNING)
898 		return;
899 
900 	pool = worker->pool;
901 
902 	/* Return if preempted before wq_worker_running() was reached */
903 	if (worker->sleeping)
904 		return;
905 
906 	worker->sleeping = 1;
907 	spin_lock_irq(&pool->lock);
908 
909 	/*
910 	 * The counterpart of the following dec_and_test, implied mb,
911 	 * worklist not empty test sequence is in insert_work().
912 	 * Please read comment there.
913 	 *
914 	 * NOT_RUNNING is clear.  This means that we're bound to and
915 	 * running on the local cpu w/ rq lock held and preemption
916 	 * disabled, which in turn means that none else could be
917 	 * manipulating idle_list, so dereferencing idle_list without pool
918 	 * lock is safe.
919 	 */
920 	if (atomic_dec_and_test(&pool->nr_running) &&
921 	    !list_empty(&pool->worklist)) {
922 		next = first_idle_worker(pool);
923 		if (next)
924 			wake_up_process(next->task);
925 	}
926 	spin_unlock_irq(&pool->lock);
927 }
928 
929 /**
930  * wq_worker_last_func - retrieve worker's last work function
931  * @task: Task to retrieve last work function of.
932  *
933  * Determine the last function a worker executed. This is called from
934  * the scheduler to get a worker's last known identity.
935  *
936  * CONTEXT:
937  * spin_lock_irq(rq->lock)
938  *
939  * This function is called during schedule() when a kworker is going
940  * to sleep. It's used by psi to identify aggregation workers during
941  * dequeuing, to allow periodic aggregation to shut-off when that
942  * worker is the last task in the system or cgroup to go to sleep.
943  *
944  * As this function doesn't involve any workqueue-related locking, it
945  * only returns stable values when called from inside the scheduler's
946  * queuing and dequeuing paths, when @task, which must be a kworker,
947  * is guaranteed to not be processing any works.
948  *
949  * Return:
950  * The last work function %current executed as a worker, NULL if it
951  * hasn't executed any work yet.
952  */
wq_worker_last_func(struct task_struct * task)953 work_func_t wq_worker_last_func(struct task_struct *task)
954 {
955 	struct worker *worker = kthread_data(task);
956 
957 	return worker->last_func;
958 }
959 
960 /**
961  * worker_set_flags - set worker flags and adjust nr_running accordingly
962  * @worker: self
963  * @flags: flags to set
964  *
965  * Set @flags in @worker->flags and adjust nr_running accordingly.
966  *
967  * CONTEXT:
968  * spin_lock_irq(pool->lock)
969  */
worker_set_flags(struct worker * worker,unsigned int flags)970 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
971 {
972 	struct worker_pool *pool = worker->pool;
973 
974 	WARN_ON_ONCE(worker->task != current);
975 
976 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
977 	if ((flags & WORKER_NOT_RUNNING) &&
978 	    !(worker->flags & WORKER_NOT_RUNNING)) {
979 		atomic_dec(&pool->nr_running);
980 	}
981 
982 	worker->flags |= flags;
983 }
984 
985 /**
986  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
987  * @worker: self
988  * @flags: flags to clear
989  *
990  * Clear @flags in @worker->flags and adjust nr_running accordingly.
991  *
992  * CONTEXT:
993  * spin_lock_irq(pool->lock)
994  */
worker_clr_flags(struct worker * worker,unsigned int flags)995 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
996 {
997 	struct worker_pool *pool = worker->pool;
998 	unsigned int oflags = worker->flags;
999 
1000 	WARN_ON_ONCE(worker->task != current);
1001 
1002 	worker->flags &= ~flags;
1003 
1004 	/*
1005 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1006 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1007 	 * of multiple flags, not a single flag.
1008 	 */
1009 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1010 		if (!(worker->flags & WORKER_NOT_RUNNING))
1011 			atomic_inc(&pool->nr_running);
1012 }
1013 
1014 /**
1015  * find_worker_executing_work - find worker which is executing a work
1016  * @pool: pool of interest
1017  * @work: work to find worker for
1018  *
1019  * Find a worker which is executing @work on @pool by searching
1020  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1021  * to match, its current execution should match the address of @work and
1022  * its work function.  This is to avoid unwanted dependency between
1023  * unrelated work executions through a work item being recycled while still
1024  * being executed.
1025  *
1026  * This is a bit tricky.  A work item may be freed once its execution
1027  * starts and nothing prevents the freed area from being recycled for
1028  * another work item.  If the same work item address ends up being reused
1029  * before the original execution finishes, workqueue will identify the
1030  * recycled work item as currently executing and make it wait until the
1031  * current execution finishes, introducing an unwanted dependency.
1032  *
1033  * This function checks the work item address and work function to avoid
1034  * false positives.  Note that this isn't complete as one may construct a
1035  * work function which can introduce dependency onto itself through a
1036  * recycled work item.  Well, if somebody wants to shoot oneself in the
1037  * foot that badly, there's only so much we can do, and if such deadlock
1038  * actually occurs, it should be easy to locate the culprit work function.
1039  *
1040  * CONTEXT:
1041  * spin_lock_irq(pool->lock).
1042  *
1043  * Return:
1044  * Pointer to worker which is executing @work if found, %NULL
1045  * otherwise.
1046  */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1047 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1048 						 struct work_struct *work)
1049 {
1050 	struct worker *worker;
1051 
1052 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1053 			       (unsigned long)work)
1054 		if (worker->current_work == work &&
1055 		    worker->current_func == work->func)
1056 			return worker;
1057 
1058 	return NULL;
1059 }
1060 
1061 /**
1062  * move_linked_works - move linked works to a list
1063  * @work: start of series of works to be scheduled
1064  * @head: target list to append @work to
1065  * @nextp: out parameter for nested worklist walking
1066  *
1067  * Schedule linked works starting from @work to @head.  Work series to
1068  * be scheduled starts at @work and includes any consecutive work with
1069  * WORK_STRUCT_LINKED set in its predecessor.
1070  *
1071  * If @nextp is not NULL, it's updated to point to the next work of
1072  * the last scheduled work.  This allows move_linked_works() to be
1073  * nested inside outer list_for_each_entry_safe().
1074  *
1075  * CONTEXT:
1076  * spin_lock_irq(pool->lock).
1077  */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1078 static void move_linked_works(struct work_struct *work, struct list_head *head,
1079 			      struct work_struct **nextp)
1080 {
1081 	struct work_struct *n;
1082 
1083 	/*
1084 	 * Linked worklist will always end before the end of the list,
1085 	 * use NULL for list head.
1086 	 */
1087 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1088 		list_move_tail(&work->entry, head);
1089 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1090 			break;
1091 	}
1092 
1093 	/*
1094 	 * If we're already inside safe list traversal and have moved
1095 	 * multiple works to the scheduled queue, the next position
1096 	 * needs to be updated.
1097 	 */
1098 	if (nextp)
1099 		*nextp = n;
1100 }
1101 
1102 /**
1103  * get_pwq - get an extra reference on the specified pool_workqueue
1104  * @pwq: pool_workqueue to get
1105  *
1106  * Obtain an extra reference on @pwq.  The caller should guarantee that
1107  * @pwq has positive refcnt and be holding the matching pool->lock.
1108  */
get_pwq(struct pool_workqueue * pwq)1109 static void get_pwq(struct pool_workqueue *pwq)
1110 {
1111 	lockdep_assert_held(&pwq->pool->lock);
1112 	WARN_ON_ONCE(pwq->refcnt <= 0);
1113 	pwq->refcnt++;
1114 }
1115 
1116 /**
1117  * put_pwq - put a pool_workqueue reference
1118  * @pwq: pool_workqueue to put
1119  *
1120  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1121  * destruction.  The caller should be holding the matching pool->lock.
1122  */
put_pwq(struct pool_workqueue * pwq)1123 static void put_pwq(struct pool_workqueue *pwq)
1124 {
1125 	lockdep_assert_held(&pwq->pool->lock);
1126 	if (likely(--pwq->refcnt))
1127 		return;
1128 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1129 		return;
1130 	/*
1131 	 * @pwq can't be released under pool->lock, bounce to
1132 	 * pwq_unbound_release_workfn().  This never recurses on the same
1133 	 * pool->lock as this path is taken only for unbound workqueues and
1134 	 * the release work item is scheduled on a per-cpu workqueue.  To
1135 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1136 	 * subclass of 1 in get_unbound_pool().
1137 	 */
1138 	schedule_work(&pwq->unbound_release_work);
1139 }
1140 
1141 /**
1142  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1143  * @pwq: pool_workqueue to put (can be %NULL)
1144  *
1145  * put_pwq() with locking.  This function also allows %NULL @pwq.
1146  */
put_pwq_unlocked(struct pool_workqueue * pwq)1147 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1148 {
1149 	if (pwq) {
1150 		/*
1151 		 * As both pwqs and pools are RCU protected, the
1152 		 * following lock operations are safe.
1153 		 */
1154 		spin_lock_irq(&pwq->pool->lock);
1155 		put_pwq(pwq);
1156 		spin_unlock_irq(&pwq->pool->lock);
1157 	}
1158 }
1159 
pwq_activate_delayed_work(struct work_struct * work)1160 static void pwq_activate_delayed_work(struct work_struct *work)
1161 {
1162 	struct pool_workqueue *pwq = get_work_pwq(work);
1163 
1164 	trace_workqueue_activate_work(work);
1165 	if (list_empty(&pwq->pool->worklist))
1166 		pwq->pool->watchdog_ts = jiffies;
1167 	move_linked_works(work, &pwq->pool->worklist, NULL);
1168 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1169 	pwq->nr_active++;
1170 }
1171 
pwq_activate_first_delayed(struct pool_workqueue * pwq)1172 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1173 {
1174 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1175 						    struct work_struct, entry);
1176 
1177 	pwq_activate_delayed_work(work);
1178 }
1179 
1180 /**
1181  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1182  * @pwq: pwq of interest
1183  * @color: color of work which left the queue
1184  *
1185  * A work either has completed or is removed from pending queue,
1186  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1187  *
1188  * CONTEXT:
1189  * spin_lock_irq(pool->lock).
1190  */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,int color)1191 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1192 {
1193 	/* uncolored work items don't participate in flushing or nr_active */
1194 	if (color == WORK_NO_COLOR)
1195 		goto out_put;
1196 
1197 	pwq->nr_in_flight[color]--;
1198 
1199 	pwq->nr_active--;
1200 	if (!list_empty(&pwq->delayed_works)) {
1201 		/* one down, submit a delayed one */
1202 		if (pwq->nr_active < pwq->max_active)
1203 			pwq_activate_first_delayed(pwq);
1204 	}
1205 
1206 	/* is flush in progress and are we at the flushing tip? */
1207 	if (likely(pwq->flush_color != color))
1208 		goto out_put;
1209 
1210 	/* are there still in-flight works? */
1211 	if (pwq->nr_in_flight[color])
1212 		goto out_put;
1213 
1214 	/* this pwq is done, clear flush_color */
1215 	pwq->flush_color = -1;
1216 
1217 	/*
1218 	 * If this was the last pwq, wake up the first flusher.  It
1219 	 * will handle the rest.
1220 	 */
1221 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1222 		complete(&pwq->wq->first_flusher->done);
1223 out_put:
1224 	put_pwq(pwq);
1225 }
1226 
1227 /**
1228  * try_to_grab_pending - steal work item from worklist and disable irq
1229  * @work: work item to steal
1230  * @is_dwork: @work is a delayed_work
1231  * @flags: place to store irq state
1232  *
1233  * Try to grab PENDING bit of @work.  This function can handle @work in any
1234  * stable state - idle, on timer or on worklist.
1235  *
1236  * Return:
1237  *  1		if @work was pending and we successfully stole PENDING
1238  *  0		if @work was idle and we claimed PENDING
1239  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1240  *  -ENOENT	if someone else is canceling @work, this state may persist
1241  *		for arbitrarily long
1242  *
1243  * Note:
1244  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1245  * interrupted while holding PENDING and @work off queue, irq must be
1246  * disabled on entry.  This, combined with delayed_work->timer being
1247  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1248  *
1249  * On successful return, >= 0, irq is disabled and the caller is
1250  * responsible for releasing it using local_irq_restore(*@flags).
1251  *
1252  * This function is safe to call from any context including IRQ handler.
1253  */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1254 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1255 			       unsigned long *flags)
1256 {
1257 	struct worker_pool *pool;
1258 	struct pool_workqueue *pwq;
1259 
1260 	local_irq_save(*flags);
1261 
1262 	/* try to steal the timer if it exists */
1263 	if (is_dwork) {
1264 		struct delayed_work *dwork = to_delayed_work(work);
1265 
1266 		/*
1267 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1268 		 * guaranteed that the timer is not queued anywhere and not
1269 		 * running on the local CPU.
1270 		 */
1271 		if (likely(del_timer(&dwork->timer)))
1272 			return 1;
1273 	}
1274 
1275 	/* try to claim PENDING the normal way */
1276 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1277 		return 0;
1278 
1279 	rcu_read_lock();
1280 	/*
1281 	 * The queueing is in progress, or it is already queued. Try to
1282 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1283 	 */
1284 	pool = get_work_pool(work);
1285 	if (!pool)
1286 		goto fail;
1287 
1288 	spin_lock(&pool->lock);
1289 	/*
1290 	 * work->data is guaranteed to point to pwq only while the work
1291 	 * item is queued on pwq->wq, and both updating work->data to point
1292 	 * to pwq on queueing and to pool on dequeueing are done under
1293 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1294 	 * points to pwq which is associated with a locked pool, the work
1295 	 * item is currently queued on that pool.
1296 	 */
1297 	pwq = get_work_pwq(work);
1298 	if (pwq && pwq->pool == pool) {
1299 		debug_work_deactivate(work);
1300 
1301 		/*
1302 		 * A delayed work item cannot be grabbed directly because
1303 		 * it might have linked NO_COLOR work items which, if left
1304 		 * on the delayed_list, will confuse pwq->nr_active
1305 		 * management later on and cause stall.  Make sure the work
1306 		 * item is activated before grabbing.
1307 		 */
1308 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1309 			pwq_activate_delayed_work(work);
1310 
1311 		list_del_init(&work->entry);
1312 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1313 
1314 		/* work->data points to pwq iff queued, point to pool */
1315 		set_work_pool_and_keep_pending(work, pool->id);
1316 
1317 		spin_unlock(&pool->lock);
1318 		rcu_read_unlock();
1319 		return 1;
1320 	}
1321 	spin_unlock(&pool->lock);
1322 fail:
1323 	rcu_read_unlock();
1324 	local_irq_restore(*flags);
1325 	if (work_is_canceling(work))
1326 		return -ENOENT;
1327 	cpu_relax();
1328 	return -EAGAIN;
1329 }
1330 
1331 /**
1332  * insert_work - insert a work into a pool
1333  * @pwq: pwq @work belongs to
1334  * @work: work to insert
1335  * @head: insertion point
1336  * @extra_flags: extra WORK_STRUCT_* flags to set
1337  *
1338  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1339  * work_struct flags.
1340  *
1341  * CONTEXT:
1342  * spin_lock_irq(pool->lock).
1343  */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)1344 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1345 			struct list_head *head, unsigned int extra_flags)
1346 {
1347 	struct worker_pool *pool = pwq->pool;
1348 
1349 	/* we own @work, set data and link */
1350 	set_work_pwq(work, pwq, extra_flags);
1351 	list_add_tail(&work->entry, head);
1352 	get_pwq(pwq);
1353 
1354 	/*
1355 	 * Ensure either wq_worker_sleeping() sees the above
1356 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1357 	 * around lazily while there are works to be processed.
1358 	 */
1359 	smp_mb();
1360 
1361 	if (__need_more_worker(pool))
1362 		wake_up_worker(pool);
1363 }
1364 
1365 /*
1366  * Test whether @work is being queued from another work executing on the
1367  * same workqueue.
1368  */
is_chained_work(struct workqueue_struct * wq)1369 static bool is_chained_work(struct workqueue_struct *wq)
1370 {
1371 	struct worker *worker;
1372 
1373 	worker = current_wq_worker();
1374 	/*
1375 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1376 	 * I'm @worker, it's safe to dereference it without locking.
1377 	 */
1378 	return worker && worker->current_pwq->wq == wq;
1379 }
1380 
1381 /*
1382  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1383  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1384  * avoid perturbing sensitive tasks.
1385  */
wq_select_unbound_cpu(int cpu)1386 static int wq_select_unbound_cpu(int cpu)
1387 {
1388 	static bool printed_dbg_warning;
1389 	int new_cpu;
1390 
1391 	if (likely(!wq_debug_force_rr_cpu)) {
1392 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1393 			return cpu;
1394 	} else if (!printed_dbg_warning) {
1395 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1396 		printed_dbg_warning = true;
1397 	}
1398 
1399 	if (cpumask_empty(wq_unbound_cpumask))
1400 		return cpu;
1401 
1402 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1403 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1404 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1405 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1406 		if (unlikely(new_cpu >= nr_cpu_ids))
1407 			return cpu;
1408 	}
1409 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1410 
1411 	return new_cpu;
1412 }
1413 
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)1414 static void __queue_work(int cpu, struct workqueue_struct *wq,
1415 			 struct work_struct *work)
1416 {
1417 	struct pool_workqueue *pwq;
1418 	struct worker_pool *last_pool;
1419 	struct list_head *worklist;
1420 	unsigned int work_flags;
1421 	unsigned int req_cpu = cpu;
1422 
1423 	/*
1424 	 * While a work item is PENDING && off queue, a task trying to
1425 	 * steal the PENDING will busy-loop waiting for it to either get
1426 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1427 	 * happen with IRQ disabled.
1428 	 */
1429 	lockdep_assert_irqs_disabled();
1430 
1431 
1432 	/* if draining, only works from the same workqueue are allowed */
1433 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1434 	    WARN_ON_ONCE(!is_chained_work(wq)))
1435 		return;
1436 	rcu_read_lock();
1437 retry:
1438 	/* pwq which will be used unless @work is executing elsewhere */
1439 	if (wq->flags & WQ_UNBOUND) {
1440 		if (req_cpu == WORK_CPU_UNBOUND)
1441 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1442 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1443 	} else {
1444 		if (req_cpu == WORK_CPU_UNBOUND)
1445 			cpu = raw_smp_processor_id();
1446 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1447 	}
1448 
1449 	/*
1450 	 * If @work was previously on a different pool, it might still be
1451 	 * running there, in which case the work needs to be queued on that
1452 	 * pool to guarantee non-reentrancy.
1453 	 */
1454 	last_pool = get_work_pool(work);
1455 	if (last_pool && last_pool != pwq->pool) {
1456 		struct worker *worker;
1457 
1458 		spin_lock(&last_pool->lock);
1459 
1460 		worker = find_worker_executing_work(last_pool, work);
1461 
1462 		if (worker && worker->current_pwq->wq == wq) {
1463 			pwq = worker->current_pwq;
1464 		} else {
1465 			/* meh... not running there, queue here */
1466 			spin_unlock(&last_pool->lock);
1467 			spin_lock(&pwq->pool->lock);
1468 		}
1469 	} else {
1470 		spin_lock(&pwq->pool->lock);
1471 	}
1472 
1473 	/*
1474 	 * pwq is determined and locked.  For unbound pools, we could have
1475 	 * raced with pwq release and it could already be dead.  If its
1476 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1477 	 * without another pwq replacing it in the numa_pwq_tbl or while
1478 	 * work items are executing on it, so the retrying is guaranteed to
1479 	 * make forward-progress.
1480 	 */
1481 	if (unlikely(!pwq->refcnt)) {
1482 		if (wq->flags & WQ_UNBOUND) {
1483 			spin_unlock(&pwq->pool->lock);
1484 			cpu_relax();
1485 			goto retry;
1486 		}
1487 		/* oops */
1488 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1489 			  wq->name, cpu);
1490 	}
1491 
1492 	/* pwq determined, queue */
1493 	trace_workqueue_queue_work(req_cpu, pwq, work);
1494 
1495 	if (WARN_ON(!list_empty(&work->entry)))
1496 		goto out;
1497 
1498 	pwq->nr_in_flight[pwq->work_color]++;
1499 	work_flags = work_color_to_flags(pwq->work_color);
1500 
1501 	if (likely(pwq->nr_active < pwq->max_active)) {
1502 		trace_workqueue_activate_work(work);
1503 		pwq->nr_active++;
1504 		worklist = &pwq->pool->worklist;
1505 		if (list_empty(worklist))
1506 			pwq->pool->watchdog_ts = jiffies;
1507 	} else {
1508 		work_flags |= WORK_STRUCT_DELAYED;
1509 		worklist = &pwq->delayed_works;
1510 	}
1511 
1512 	debug_work_activate(work);
1513 	insert_work(pwq, work, worklist, work_flags);
1514 
1515 out:
1516 	spin_unlock(&pwq->pool->lock);
1517 	rcu_read_unlock();
1518 }
1519 
1520 /**
1521  * queue_work_on - queue work on specific cpu
1522  * @cpu: CPU number to execute work on
1523  * @wq: workqueue to use
1524  * @work: work to queue
1525  *
1526  * We queue the work to a specific CPU, the caller must ensure it
1527  * can't go away.
1528  *
1529  * Return: %false if @work was already on a queue, %true otherwise.
1530  */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1531 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1532 		   struct work_struct *work)
1533 {
1534 	bool ret = false;
1535 	unsigned long flags;
1536 
1537 	local_irq_save(flags);
1538 
1539 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1540 		__queue_work(cpu, wq, work);
1541 		ret = true;
1542 	}
1543 
1544 	local_irq_restore(flags);
1545 	return ret;
1546 }
1547 EXPORT_SYMBOL(queue_work_on);
1548 
1549 /**
1550  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1551  * @node: NUMA node ID that we want to select a CPU from
1552  *
1553  * This function will attempt to find a "random" cpu available on a given
1554  * node. If there are no CPUs available on the given node it will return
1555  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1556  * available CPU if we need to schedule this work.
1557  */
workqueue_select_cpu_near(int node)1558 static int workqueue_select_cpu_near(int node)
1559 {
1560 	int cpu;
1561 
1562 	/* No point in doing this if NUMA isn't enabled for workqueues */
1563 	if (!wq_numa_enabled)
1564 		return WORK_CPU_UNBOUND;
1565 
1566 	/* Delay binding to CPU if node is not valid or online */
1567 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1568 		return WORK_CPU_UNBOUND;
1569 
1570 	/* Use local node/cpu if we are already there */
1571 	cpu = raw_smp_processor_id();
1572 	if (node == cpu_to_node(cpu))
1573 		return cpu;
1574 
1575 	/* Use "random" otherwise know as "first" online CPU of node */
1576 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1577 
1578 	/* If CPU is valid return that, otherwise just defer */
1579 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1580 }
1581 
1582 /**
1583  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1584  * @node: NUMA node that we are targeting the work for
1585  * @wq: workqueue to use
1586  * @work: work to queue
1587  *
1588  * We queue the work to a "random" CPU within a given NUMA node. The basic
1589  * idea here is to provide a way to somehow associate work with a given
1590  * NUMA node.
1591  *
1592  * This function will only make a best effort attempt at getting this onto
1593  * the right NUMA node. If no node is requested or the requested node is
1594  * offline then we just fall back to standard queue_work behavior.
1595  *
1596  * Currently the "random" CPU ends up being the first available CPU in the
1597  * intersection of cpu_online_mask and the cpumask of the node, unless we
1598  * are running on the node. In that case we just use the current CPU.
1599  *
1600  * Return: %false if @work was already on a queue, %true otherwise.
1601  */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)1602 bool queue_work_node(int node, struct workqueue_struct *wq,
1603 		     struct work_struct *work)
1604 {
1605 	unsigned long flags;
1606 	bool ret = false;
1607 
1608 	/*
1609 	 * This current implementation is specific to unbound workqueues.
1610 	 * Specifically we only return the first available CPU for a given
1611 	 * node instead of cycling through individual CPUs within the node.
1612 	 *
1613 	 * If this is used with a per-cpu workqueue then the logic in
1614 	 * workqueue_select_cpu_near would need to be updated to allow for
1615 	 * some round robin type logic.
1616 	 */
1617 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1618 
1619 	local_irq_save(flags);
1620 
1621 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1622 		int cpu = workqueue_select_cpu_near(node);
1623 
1624 		__queue_work(cpu, wq, work);
1625 		ret = true;
1626 	}
1627 
1628 	local_irq_restore(flags);
1629 	return ret;
1630 }
1631 EXPORT_SYMBOL_GPL(queue_work_node);
1632 
delayed_work_timer_fn(struct timer_list * t)1633 void delayed_work_timer_fn(struct timer_list *t)
1634 {
1635 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1636 
1637 	/* should have been called from irqsafe timer with irq already off */
1638 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1639 }
1640 EXPORT_SYMBOL(delayed_work_timer_fn);
1641 
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1642 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1643 				struct delayed_work *dwork, unsigned long delay)
1644 {
1645 	struct timer_list *timer = &dwork->timer;
1646 	struct work_struct *work = &dwork->work;
1647 
1648 	WARN_ON_ONCE(!wq);
1649 #ifndef CONFIG_CFI_CLANG
1650 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1651 #endif
1652 	WARN_ON_ONCE(timer_pending(timer));
1653 	WARN_ON_ONCE(!list_empty(&work->entry));
1654 
1655 	/*
1656 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1657 	 * both optimization and correctness.  The earliest @timer can
1658 	 * expire is on the closest next tick and delayed_work users depend
1659 	 * on that there's no such delay when @delay is 0.
1660 	 */
1661 	if (!delay) {
1662 		__queue_work(cpu, wq, &dwork->work);
1663 		return;
1664 	}
1665 
1666 	dwork->wq = wq;
1667 	dwork->cpu = cpu;
1668 	timer->expires = jiffies + delay;
1669 
1670 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1671 		add_timer_on(timer, cpu);
1672 	else
1673 		add_timer(timer);
1674 }
1675 
1676 /**
1677  * queue_delayed_work_on - queue work on specific CPU after delay
1678  * @cpu: CPU number to execute work on
1679  * @wq: workqueue to use
1680  * @dwork: work to queue
1681  * @delay: number of jiffies to wait before queueing
1682  *
1683  * Return: %false if @work was already on a queue, %true otherwise.  If
1684  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1685  * execution.
1686  */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1687 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1688 			   struct delayed_work *dwork, unsigned long delay)
1689 {
1690 	struct work_struct *work = &dwork->work;
1691 	bool ret = false;
1692 	unsigned long flags;
1693 
1694 	/* read the comment in __queue_work() */
1695 	local_irq_save(flags);
1696 
1697 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1698 		__queue_delayed_work(cpu, wq, dwork, delay);
1699 		ret = true;
1700 	}
1701 
1702 	local_irq_restore(flags);
1703 	return ret;
1704 }
1705 EXPORT_SYMBOL(queue_delayed_work_on);
1706 
1707 /**
1708  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1709  * @cpu: CPU number to execute work on
1710  * @wq: workqueue to use
1711  * @dwork: work to queue
1712  * @delay: number of jiffies to wait before queueing
1713  *
1714  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1715  * modify @dwork's timer so that it expires after @delay.  If @delay is
1716  * zero, @work is guaranteed to be scheduled immediately regardless of its
1717  * current state.
1718  *
1719  * Return: %false if @dwork was idle and queued, %true if @dwork was
1720  * pending and its timer was modified.
1721  *
1722  * This function is safe to call from any context including IRQ handler.
1723  * See try_to_grab_pending() for details.
1724  */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1725 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1726 			 struct delayed_work *dwork, unsigned long delay)
1727 {
1728 	unsigned long flags;
1729 	int ret;
1730 
1731 	do {
1732 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1733 	} while (unlikely(ret == -EAGAIN));
1734 
1735 	if (likely(ret >= 0)) {
1736 		__queue_delayed_work(cpu, wq, dwork, delay);
1737 		local_irq_restore(flags);
1738 	}
1739 
1740 	/* -ENOENT from try_to_grab_pending() becomes %true */
1741 	return ret;
1742 }
1743 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1744 
rcu_work_rcufn(struct rcu_head * rcu)1745 static void rcu_work_rcufn(struct rcu_head *rcu)
1746 {
1747 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1748 
1749 	/* read the comment in __queue_work() */
1750 	local_irq_disable();
1751 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1752 	local_irq_enable();
1753 }
1754 
1755 /**
1756  * queue_rcu_work - queue work after a RCU grace period
1757  * @wq: workqueue to use
1758  * @rwork: work to queue
1759  *
1760  * Return: %false if @rwork was already pending, %true otherwise.  Note
1761  * that a full RCU grace period is guaranteed only after a %true return.
1762  * While @rwork is guaranteed to be executed after a %false return, the
1763  * execution may happen before a full RCU grace period has passed.
1764  */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)1765 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1766 {
1767 	struct work_struct *work = &rwork->work;
1768 
1769 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1770 		rwork->wq = wq;
1771 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1772 		return true;
1773 	}
1774 
1775 	return false;
1776 }
1777 EXPORT_SYMBOL(queue_rcu_work);
1778 
1779 /**
1780  * worker_enter_idle - enter idle state
1781  * @worker: worker which is entering idle state
1782  *
1783  * @worker is entering idle state.  Update stats and idle timer if
1784  * necessary.
1785  *
1786  * LOCKING:
1787  * spin_lock_irq(pool->lock).
1788  */
worker_enter_idle(struct worker * worker)1789 static void worker_enter_idle(struct worker *worker)
1790 {
1791 	struct worker_pool *pool = worker->pool;
1792 
1793 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1794 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1795 			 (worker->hentry.next || worker->hentry.pprev)))
1796 		return;
1797 
1798 	/* can't use worker_set_flags(), also called from create_worker() */
1799 	worker->flags |= WORKER_IDLE;
1800 	pool->nr_idle++;
1801 	worker->last_active = jiffies;
1802 
1803 	/* idle_list is LIFO */
1804 	list_add(&worker->entry, &pool->idle_list);
1805 
1806 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1807 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1808 
1809 	/*
1810 	 * Sanity check nr_running.  Because unbind_workers() releases
1811 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1812 	 * nr_running, the warning may trigger spuriously.  Check iff
1813 	 * unbind is not in progress.
1814 	 */
1815 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1816 		     pool->nr_workers == pool->nr_idle &&
1817 		     atomic_read(&pool->nr_running));
1818 }
1819 
1820 /**
1821  * worker_leave_idle - leave idle state
1822  * @worker: worker which is leaving idle state
1823  *
1824  * @worker is leaving idle state.  Update stats.
1825  *
1826  * LOCKING:
1827  * spin_lock_irq(pool->lock).
1828  */
worker_leave_idle(struct worker * worker)1829 static void worker_leave_idle(struct worker *worker)
1830 {
1831 	struct worker_pool *pool = worker->pool;
1832 
1833 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1834 		return;
1835 	worker_clr_flags(worker, WORKER_IDLE);
1836 	pool->nr_idle--;
1837 	list_del_init(&worker->entry);
1838 }
1839 
alloc_worker(int node)1840 static struct worker *alloc_worker(int node)
1841 {
1842 	struct worker *worker;
1843 
1844 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1845 	if (worker) {
1846 		INIT_LIST_HEAD(&worker->entry);
1847 		INIT_LIST_HEAD(&worker->scheduled);
1848 		INIT_LIST_HEAD(&worker->node);
1849 		/* on creation a worker is in !idle && prep state */
1850 		worker->flags = WORKER_PREP;
1851 	}
1852 	return worker;
1853 }
1854 
1855 /**
1856  * worker_attach_to_pool() - attach a worker to a pool
1857  * @worker: worker to be attached
1858  * @pool: the target pool
1859  *
1860  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1861  * cpu-binding of @worker are kept coordinated with the pool across
1862  * cpu-[un]hotplugs.
1863  */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)1864 static void worker_attach_to_pool(struct worker *worker,
1865 				   struct worker_pool *pool)
1866 {
1867 	mutex_lock(&wq_pool_attach_mutex);
1868 
1869 	/*
1870 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1871 	 * stable across this function.  See the comments above the flag
1872 	 * definition for details.
1873 	 */
1874 	if (pool->flags & POOL_DISASSOCIATED)
1875 		worker->flags |= WORKER_UNBOUND;
1876 
1877 	if (worker->rescue_wq)
1878 		set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1879 
1880 	list_add_tail(&worker->node, &pool->workers);
1881 	worker->pool = pool;
1882 
1883 	mutex_unlock(&wq_pool_attach_mutex);
1884 }
1885 
1886 /**
1887  * worker_detach_from_pool() - detach a worker from its pool
1888  * @worker: worker which is attached to its pool
1889  *
1890  * Undo the attaching which had been done in worker_attach_to_pool().  The
1891  * caller worker shouldn't access to the pool after detached except it has
1892  * other reference to the pool.
1893  */
worker_detach_from_pool(struct worker * worker)1894 static void worker_detach_from_pool(struct worker *worker)
1895 {
1896 	struct worker_pool *pool = worker->pool;
1897 	struct completion *detach_completion = NULL;
1898 
1899 	mutex_lock(&wq_pool_attach_mutex);
1900 
1901 	list_del(&worker->node);
1902 	worker->pool = NULL;
1903 
1904 	if (list_empty(&pool->workers))
1905 		detach_completion = pool->detach_completion;
1906 	mutex_unlock(&wq_pool_attach_mutex);
1907 
1908 	/* clear leftover flags without pool->lock after it is detached */
1909 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1910 
1911 	if (detach_completion)
1912 		complete(detach_completion);
1913 }
1914 
1915 /**
1916  * create_worker - create a new workqueue worker
1917  * @pool: pool the new worker will belong to
1918  *
1919  * Create and start a new worker which is attached to @pool.
1920  *
1921  * CONTEXT:
1922  * Might sleep.  Does GFP_KERNEL allocations.
1923  *
1924  * Return:
1925  * Pointer to the newly created worker.
1926  */
create_worker(struct worker_pool * pool)1927 static struct worker *create_worker(struct worker_pool *pool)
1928 {
1929 	struct worker *worker = NULL;
1930 	int id = -1;
1931 	char id_buf[16];
1932 
1933 	/* ID is needed to determine kthread name */
1934 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1935 	if (id < 0)
1936 		goto fail;
1937 
1938 	worker = alloc_worker(pool->node);
1939 	if (!worker)
1940 		goto fail;
1941 
1942 	worker->id = id;
1943 
1944 	if (pool->cpu >= 0)
1945 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1946 			 pool->attrs->nice < 0  ? "H" : "");
1947 	else
1948 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1949 
1950 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1951 					      "kworker/%s", id_buf);
1952 	if (IS_ERR(worker->task))
1953 		goto fail;
1954 
1955 	set_user_nice(worker->task, pool->attrs->nice);
1956 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1957 
1958 	/* successful, attach the worker to the pool */
1959 	worker_attach_to_pool(worker, pool);
1960 
1961 	/* start the newly created worker */
1962 	spin_lock_irq(&pool->lock);
1963 	worker->pool->nr_workers++;
1964 	worker_enter_idle(worker);
1965 	wake_up_process(worker->task);
1966 	spin_unlock_irq(&pool->lock);
1967 
1968 	return worker;
1969 
1970 fail:
1971 	if (id >= 0)
1972 		ida_simple_remove(&pool->worker_ida, id);
1973 	kfree(worker);
1974 	return NULL;
1975 }
1976 
1977 /**
1978  * destroy_worker - destroy a workqueue worker
1979  * @worker: worker to be destroyed
1980  *
1981  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1982  * be idle.
1983  *
1984  * CONTEXT:
1985  * spin_lock_irq(pool->lock).
1986  */
destroy_worker(struct worker * worker)1987 static void destroy_worker(struct worker *worker)
1988 {
1989 	struct worker_pool *pool = worker->pool;
1990 
1991 	lockdep_assert_held(&pool->lock);
1992 
1993 	/* sanity check frenzy */
1994 	if (WARN_ON(worker->current_work) ||
1995 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1996 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1997 		return;
1998 
1999 	pool->nr_workers--;
2000 	pool->nr_idle--;
2001 
2002 	list_del_init(&worker->entry);
2003 	worker->flags |= WORKER_DIE;
2004 	wake_up_process(worker->task);
2005 }
2006 
idle_worker_timeout(struct timer_list * t)2007 static void idle_worker_timeout(struct timer_list *t)
2008 {
2009 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2010 
2011 	spin_lock_irq(&pool->lock);
2012 
2013 	while (too_many_workers(pool)) {
2014 		struct worker *worker;
2015 		unsigned long expires;
2016 
2017 		/* idle_list is kept in LIFO order, check the last one */
2018 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2019 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2020 
2021 		if (time_before(jiffies, expires)) {
2022 			mod_timer(&pool->idle_timer, expires);
2023 			break;
2024 		}
2025 
2026 		destroy_worker(worker);
2027 	}
2028 
2029 	spin_unlock_irq(&pool->lock);
2030 }
2031 
send_mayday(struct work_struct * work)2032 static void send_mayday(struct work_struct *work)
2033 {
2034 	struct pool_workqueue *pwq = get_work_pwq(work);
2035 	struct workqueue_struct *wq = pwq->wq;
2036 
2037 	lockdep_assert_held(&wq_mayday_lock);
2038 
2039 	if (!wq->rescuer)
2040 		return;
2041 
2042 	/* mayday mayday mayday */
2043 	if (list_empty(&pwq->mayday_node)) {
2044 		/*
2045 		 * If @pwq is for an unbound wq, its base ref may be put at
2046 		 * any time due to an attribute change.  Pin @pwq until the
2047 		 * rescuer is done with it.
2048 		 */
2049 		get_pwq(pwq);
2050 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2051 		wake_up_process(wq->rescuer->task);
2052 	}
2053 }
2054 
pool_mayday_timeout(struct timer_list * t)2055 static void pool_mayday_timeout(struct timer_list *t)
2056 {
2057 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2058 	struct work_struct *work;
2059 
2060 	spin_lock_irq(&pool->lock);
2061 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2062 
2063 	if (need_to_create_worker(pool)) {
2064 		/*
2065 		 * We've been trying to create a new worker but
2066 		 * haven't been successful.  We might be hitting an
2067 		 * allocation deadlock.  Send distress signals to
2068 		 * rescuers.
2069 		 */
2070 		list_for_each_entry(work, &pool->worklist, entry)
2071 			send_mayday(work);
2072 	}
2073 
2074 	spin_unlock(&wq_mayday_lock);
2075 	spin_unlock_irq(&pool->lock);
2076 
2077 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2078 }
2079 
2080 /**
2081  * maybe_create_worker - create a new worker if necessary
2082  * @pool: pool to create a new worker for
2083  *
2084  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2085  * have at least one idle worker on return from this function.  If
2086  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2087  * sent to all rescuers with works scheduled on @pool to resolve
2088  * possible allocation deadlock.
2089  *
2090  * On return, need_to_create_worker() is guaranteed to be %false and
2091  * may_start_working() %true.
2092  *
2093  * LOCKING:
2094  * spin_lock_irq(pool->lock) which may be released and regrabbed
2095  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2096  * manager.
2097  */
maybe_create_worker(struct worker_pool * pool)2098 static void maybe_create_worker(struct worker_pool *pool)
2099 __releases(&pool->lock)
2100 __acquires(&pool->lock)
2101 {
2102 restart:
2103 	spin_unlock_irq(&pool->lock);
2104 
2105 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2106 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2107 
2108 	while (true) {
2109 		if (create_worker(pool) || !need_to_create_worker(pool))
2110 			break;
2111 
2112 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2113 
2114 		if (!need_to_create_worker(pool))
2115 			break;
2116 	}
2117 
2118 	del_timer_sync(&pool->mayday_timer);
2119 	spin_lock_irq(&pool->lock);
2120 	/*
2121 	 * This is necessary even after a new worker was just successfully
2122 	 * created as @pool->lock was dropped and the new worker might have
2123 	 * already become busy.
2124 	 */
2125 	if (need_to_create_worker(pool))
2126 		goto restart;
2127 }
2128 
2129 /**
2130  * manage_workers - manage worker pool
2131  * @worker: self
2132  *
2133  * Assume the manager role and manage the worker pool @worker belongs
2134  * to.  At any given time, there can be only zero or one manager per
2135  * pool.  The exclusion is handled automatically by this function.
2136  *
2137  * The caller can safely start processing works on false return.  On
2138  * true return, it's guaranteed that need_to_create_worker() is false
2139  * and may_start_working() is true.
2140  *
2141  * CONTEXT:
2142  * spin_lock_irq(pool->lock) which may be released and regrabbed
2143  * multiple times.  Does GFP_KERNEL allocations.
2144  *
2145  * Return:
2146  * %false if the pool doesn't need management and the caller can safely
2147  * start processing works, %true if management function was performed and
2148  * the conditions that the caller verified before calling the function may
2149  * no longer be true.
2150  */
manage_workers(struct worker * worker)2151 static bool manage_workers(struct worker *worker)
2152 {
2153 	struct worker_pool *pool = worker->pool;
2154 
2155 	if (pool->flags & POOL_MANAGER_ACTIVE)
2156 		return false;
2157 
2158 	pool->flags |= POOL_MANAGER_ACTIVE;
2159 	pool->manager = worker;
2160 
2161 	maybe_create_worker(pool);
2162 
2163 	pool->manager = NULL;
2164 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2165 	wake_up(&wq_manager_wait);
2166 	return true;
2167 }
2168 
2169 /**
2170  * process_one_work - process single work
2171  * @worker: self
2172  * @work: work to process
2173  *
2174  * Process @work.  This function contains all the logics necessary to
2175  * process a single work including synchronization against and
2176  * interaction with other workers on the same cpu, queueing and
2177  * flushing.  As long as context requirement is met, any worker can
2178  * call this function to process a work.
2179  *
2180  * CONTEXT:
2181  * spin_lock_irq(pool->lock) which is released and regrabbed.
2182  */
process_one_work(struct worker * worker,struct work_struct * work)2183 static void process_one_work(struct worker *worker, struct work_struct *work)
2184 __releases(&pool->lock)
2185 __acquires(&pool->lock)
2186 {
2187 	struct pool_workqueue *pwq = get_work_pwq(work);
2188 	struct worker_pool *pool = worker->pool;
2189 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2190 	int work_color;
2191 	struct worker *collision;
2192 #ifdef CONFIG_LOCKDEP
2193 	/*
2194 	 * It is permissible to free the struct work_struct from
2195 	 * inside the function that is called from it, this we need to
2196 	 * take into account for lockdep too.  To avoid bogus "held
2197 	 * lock freed" warnings as well as problems when looking into
2198 	 * work->lockdep_map, make a copy and use that here.
2199 	 */
2200 	struct lockdep_map lockdep_map;
2201 
2202 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2203 #endif
2204 	/* ensure we're on the correct CPU */
2205 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2206 		     raw_smp_processor_id() != pool->cpu);
2207 
2208 	/*
2209 	 * A single work shouldn't be executed concurrently by
2210 	 * multiple workers on a single cpu.  Check whether anyone is
2211 	 * already processing the work.  If so, defer the work to the
2212 	 * currently executing one.
2213 	 */
2214 	collision = find_worker_executing_work(pool, work);
2215 	if (unlikely(collision)) {
2216 		move_linked_works(work, &collision->scheduled, NULL);
2217 		return;
2218 	}
2219 
2220 	/* claim and dequeue */
2221 	debug_work_deactivate(work);
2222 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2223 	worker->current_work = work;
2224 	worker->current_func = work->func;
2225 	worker->current_pwq = pwq;
2226 	work_color = get_work_color(work);
2227 
2228 	/*
2229 	 * Record wq name for cmdline and debug reporting, may get
2230 	 * overridden through set_worker_desc().
2231 	 */
2232 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2233 
2234 	list_del_init(&work->entry);
2235 
2236 	/*
2237 	 * CPU intensive works don't participate in concurrency management.
2238 	 * They're the scheduler's responsibility.  This takes @worker out
2239 	 * of concurrency management and the next code block will chain
2240 	 * execution of the pending work items.
2241 	 */
2242 	if (unlikely(cpu_intensive))
2243 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2244 
2245 	/*
2246 	 * Wake up another worker if necessary.  The condition is always
2247 	 * false for normal per-cpu workers since nr_running would always
2248 	 * be >= 1 at this point.  This is used to chain execution of the
2249 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2250 	 * UNBOUND and CPU_INTENSIVE ones.
2251 	 */
2252 	if (need_more_worker(pool))
2253 		wake_up_worker(pool);
2254 
2255 	/*
2256 	 * Record the last pool and clear PENDING which should be the last
2257 	 * update to @work.  Also, do this inside @pool->lock so that
2258 	 * PENDING and queued state changes happen together while IRQ is
2259 	 * disabled.
2260 	 */
2261 	set_work_pool_and_clear_pending(work, pool->id);
2262 
2263 	spin_unlock_irq(&pool->lock);
2264 
2265 	lock_map_acquire(&pwq->wq->lockdep_map);
2266 	lock_map_acquire(&lockdep_map);
2267 	/*
2268 	 * Strictly speaking we should mark the invariant state without holding
2269 	 * any locks, that is, before these two lock_map_acquire()'s.
2270 	 *
2271 	 * However, that would result in:
2272 	 *
2273 	 *   A(W1)
2274 	 *   WFC(C)
2275 	 *		A(W1)
2276 	 *		C(C)
2277 	 *
2278 	 * Which would create W1->C->W1 dependencies, even though there is no
2279 	 * actual deadlock possible. There are two solutions, using a
2280 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2281 	 * hit the lockdep limitation on recursive locks, or simply discard
2282 	 * these locks.
2283 	 *
2284 	 * AFAICT there is no possible deadlock scenario between the
2285 	 * flush_work() and complete() primitives (except for single-threaded
2286 	 * workqueues), so hiding them isn't a problem.
2287 	 */
2288 	lockdep_invariant_state(true);
2289 	trace_workqueue_execute_start(work);
2290 	worker->current_func(work);
2291 	/*
2292 	 * While we must be careful to not use "work" after this, the trace
2293 	 * point will only record its address.
2294 	 */
2295 	trace_workqueue_execute_end(work);
2296 	lock_map_release(&lockdep_map);
2297 	lock_map_release(&pwq->wq->lockdep_map);
2298 
2299 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2300 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2301 		       "     last function: %ps\n",
2302 		       current->comm, preempt_count(), task_pid_nr(current),
2303 		       worker->current_func);
2304 		debug_show_held_locks(current);
2305 		dump_stack();
2306 	}
2307 
2308 	/*
2309 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2310 	 * kernels, where a requeueing work item waiting for something to
2311 	 * happen could deadlock with stop_machine as such work item could
2312 	 * indefinitely requeue itself while all other CPUs are trapped in
2313 	 * stop_machine. At the same time, report a quiescent RCU state so
2314 	 * the same condition doesn't freeze RCU.
2315 	 */
2316 	cond_resched();
2317 
2318 	spin_lock_irq(&pool->lock);
2319 
2320 	/* clear cpu intensive status */
2321 	if (unlikely(cpu_intensive))
2322 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2323 
2324 	/* tag the worker for identification in schedule() */
2325 	worker->last_func = worker->current_func;
2326 
2327 	/* we're done with it, release */
2328 	hash_del(&worker->hentry);
2329 	worker->current_work = NULL;
2330 	worker->current_func = NULL;
2331 	worker->current_pwq = NULL;
2332 	pwq_dec_nr_in_flight(pwq, work_color);
2333 }
2334 
2335 /**
2336  * process_scheduled_works - process scheduled works
2337  * @worker: self
2338  *
2339  * Process all scheduled works.  Please note that the scheduled list
2340  * may change while processing a work, so this function repeatedly
2341  * fetches a work from the top and executes it.
2342  *
2343  * CONTEXT:
2344  * spin_lock_irq(pool->lock) which may be released and regrabbed
2345  * multiple times.
2346  */
process_scheduled_works(struct worker * worker)2347 static void process_scheduled_works(struct worker *worker)
2348 {
2349 	while (!list_empty(&worker->scheduled)) {
2350 		struct work_struct *work = list_first_entry(&worker->scheduled,
2351 						struct work_struct, entry);
2352 		process_one_work(worker, work);
2353 	}
2354 }
2355 
set_pf_worker(bool val)2356 static void set_pf_worker(bool val)
2357 {
2358 	mutex_lock(&wq_pool_attach_mutex);
2359 	if (val)
2360 		current->flags |= PF_WQ_WORKER;
2361 	else
2362 		current->flags &= ~PF_WQ_WORKER;
2363 	mutex_unlock(&wq_pool_attach_mutex);
2364 }
2365 
2366 /**
2367  * worker_thread - the worker thread function
2368  * @__worker: self
2369  *
2370  * The worker thread function.  All workers belong to a worker_pool -
2371  * either a per-cpu one or dynamic unbound one.  These workers process all
2372  * work items regardless of their specific target workqueue.  The only
2373  * exception is work items which belong to workqueues with a rescuer which
2374  * will be explained in rescuer_thread().
2375  *
2376  * Return: 0
2377  */
worker_thread(void * __worker)2378 static int worker_thread(void *__worker)
2379 {
2380 	struct worker *worker = __worker;
2381 	struct worker_pool *pool = worker->pool;
2382 
2383 	/* tell the scheduler that this is a workqueue worker */
2384 	set_pf_worker(true);
2385 woke_up:
2386 	spin_lock_irq(&pool->lock);
2387 
2388 	/* am I supposed to die? */
2389 	if (unlikely(worker->flags & WORKER_DIE)) {
2390 		spin_unlock_irq(&pool->lock);
2391 		WARN_ON_ONCE(!list_empty(&worker->entry));
2392 		set_pf_worker(false);
2393 
2394 		set_task_comm(worker->task, "kworker/dying");
2395 		ida_simple_remove(&pool->worker_ida, worker->id);
2396 		worker_detach_from_pool(worker);
2397 		kfree(worker);
2398 		return 0;
2399 	}
2400 
2401 	worker_leave_idle(worker);
2402 recheck:
2403 	/* no more worker necessary? */
2404 	if (!need_more_worker(pool))
2405 		goto sleep;
2406 
2407 	/* do we need to manage? */
2408 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2409 		goto recheck;
2410 
2411 	/*
2412 	 * ->scheduled list can only be filled while a worker is
2413 	 * preparing to process a work or actually processing it.
2414 	 * Make sure nobody diddled with it while I was sleeping.
2415 	 */
2416 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2417 
2418 	/*
2419 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2420 	 * worker or that someone else has already assumed the manager
2421 	 * role.  This is where @worker starts participating in concurrency
2422 	 * management if applicable and concurrency management is restored
2423 	 * after being rebound.  See rebind_workers() for details.
2424 	 */
2425 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2426 
2427 	do {
2428 		struct work_struct *work =
2429 			list_first_entry(&pool->worklist,
2430 					 struct work_struct, entry);
2431 
2432 		pool->watchdog_ts = jiffies;
2433 
2434 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2435 			/* optimization path, not strictly necessary */
2436 			process_one_work(worker, work);
2437 			if (unlikely(!list_empty(&worker->scheduled)))
2438 				process_scheduled_works(worker);
2439 		} else {
2440 			move_linked_works(work, &worker->scheduled, NULL);
2441 			process_scheduled_works(worker);
2442 		}
2443 	} while (keep_working(pool));
2444 
2445 	worker_set_flags(worker, WORKER_PREP);
2446 sleep:
2447 	/*
2448 	 * pool->lock is held and there's no work to process and no need to
2449 	 * manage, sleep.  Workers are woken up only while holding
2450 	 * pool->lock or from local cpu, so setting the current state
2451 	 * before releasing pool->lock is enough to prevent losing any
2452 	 * event.
2453 	 */
2454 	worker_enter_idle(worker);
2455 	__set_current_state(TASK_IDLE);
2456 	spin_unlock_irq(&pool->lock);
2457 	schedule();
2458 	goto woke_up;
2459 }
2460 
2461 /**
2462  * rescuer_thread - the rescuer thread function
2463  * @__rescuer: self
2464  *
2465  * Workqueue rescuer thread function.  There's one rescuer for each
2466  * workqueue which has WQ_MEM_RECLAIM set.
2467  *
2468  * Regular work processing on a pool may block trying to create a new
2469  * worker which uses GFP_KERNEL allocation which has slight chance of
2470  * developing into deadlock if some works currently on the same queue
2471  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2472  * the problem rescuer solves.
2473  *
2474  * When such condition is possible, the pool summons rescuers of all
2475  * workqueues which have works queued on the pool and let them process
2476  * those works so that forward progress can be guaranteed.
2477  *
2478  * This should happen rarely.
2479  *
2480  * Return: 0
2481  */
rescuer_thread(void * __rescuer)2482 static int rescuer_thread(void *__rescuer)
2483 {
2484 	struct worker *rescuer = __rescuer;
2485 	struct workqueue_struct *wq = rescuer->rescue_wq;
2486 	struct list_head *scheduled = &rescuer->scheduled;
2487 	bool should_stop;
2488 
2489 	set_user_nice(current, RESCUER_NICE_LEVEL);
2490 
2491 	/*
2492 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2493 	 * doesn't participate in concurrency management.
2494 	 */
2495 	set_pf_worker(true);
2496 repeat:
2497 	set_current_state(TASK_IDLE);
2498 
2499 	/*
2500 	 * By the time the rescuer is requested to stop, the workqueue
2501 	 * shouldn't have any work pending, but @wq->maydays may still have
2502 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2503 	 * all the work items before the rescuer got to them.  Go through
2504 	 * @wq->maydays processing before acting on should_stop so that the
2505 	 * list is always empty on exit.
2506 	 */
2507 	should_stop = kthread_should_stop();
2508 
2509 	/* see whether any pwq is asking for help */
2510 	spin_lock_irq(&wq_mayday_lock);
2511 
2512 	while (!list_empty(&wq->maydays)) {
2513 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2514 					struct pool_workqueue, mayday_node);
2515 		struct worker_pool *pool = pwq->pool;
2516 		struct work_struct *work, *n;
2517 		bool first = true;
2518 
2519 		__set_current_state(TASK_RUNNING);
2520 		list_del_init(&pwq->mayday_node);
2521 
2522 		spin_unlock_irq(&wq_mayday_lock);
2523 
2524 		worker_attach_to_pool(rescuer, pool);
2525 
2526 		spin_lock_irq(&pool->lock);
2527 
2528 		/*
2529 		 * Slurp in all works issued via this workqueue and
2530 		 * process'em.
2531 		 */
2532 		WARN_ON_ONCE(!list_empty(scheduled));
2533 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2534 			if (get_work_pwq(work) == pwq) {
2535 				if (first)
2536 					pool->watchdog_ts = jiffies;
2537 				move_linked_works(work, scheduled, &n);
2538 			}
2539 			first = false;
2540 		}
2541 
2542 		if (!list_empty(scheduled)) {
2543 			process_scheduled_works(rescuer);
2544 
2545 			/*
2546 			 * The above execution of rescued work items could
2547 			 * have created more to rescue through
2548 			 * pwq_activate_first_delayed() or chained
2549 			 * queueing.  Let's put @pwq back on mayday list so
2550 			 * that such back-to-back work items, which may be
2551 			 * being used to relieve memory pressure, don't
2552 			 * incur MAYDAY_INTERVAL delay inbetween.
2553 			 */
2554 			if (need_to_create_worker(pool)) {
2555 				spin_lock(&wq_mayday_lock);
2556 				/*
2557 				 * Queue iff we aren't racing destruction
2558 				 * and somebody else hasn't queued it already.
2559 				 */
2560 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2561 					get_pwq(pwq);
2562 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2563 				}
2564 				spin_unlock(&wq_mayday_lock);
2565 			}
2566 		}
2567 
2568 		/*
2569 		 * Put the reference grabbed by send_mayday().  @pool won't
2570 		 * go away while we're still attached to it.
2571 		 */
2572 		put_pwq(pwq);
2573 
2574 		/*
2575 		 * Leave this pool.  If need_more_worker() is %true, notify a
2576 		 * regular worker; otherwise, we end up with 0 concurrency
2577 		 * and stalling the execution.
2578 		 */
2579 		if (need_more_worker(pool))
2580 			wake_up_worker(pool);
2581 
2582 		spin_unlock_irq(&pool->lock);
2583 
2584 		worker_detach_from_pool(rescuer);
2585 
2586 		spin_lock_irq(&wq_mayday_lock);
2587 	}
2588 
2589 	spin_unlock_irq(&wq_mayday_lock);
2590 
2591 	if (should_stop) {
2592 		__set_current_state(TASK_RUNNING);
2593 		set_pf_worker(false);
2594 		return 0;
2595 	}
2596 
2597 	/* rescuers should never participate in concurrency management */
2598 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2599 	schedule();
2600 	goto repeat;
2601 }
2602 
2603 /**
2604  * check_flush_dependency - check for flush dependency sanity
2605  * @target_wq: workqueue being flushed
2606  * @target_work: work item being flushed (NULL for workqueue flushes)
2607  *
2608  * %current is trying to flush the whole @target_wq or @target_work on it.
2609  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2610  * reclaiming memory or running on a workqueue which doesn't have
2611  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2612  * a deadlock.
2613  */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work)2614 static void check_flush_dependency(struct workqueue_struct *target_wq,
2615 				   struct work_struct *target_work)
2616 {
2617 	work_func_t target_func = target_work ? target_work->func : NULL;
2618 	struct worker *worker;
2619 
2620 	if (target_wq->flags & WQ_MEM_RECLAIM)
2621 		return;
2622 
2623 	worker = current_wq_worker();
2624 
2625 	WARN_ONCE(current->flags & PF_MEMALLOC,
2626 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2627 		  current->pid, current->comm, target_wq->name, target_func);
2628 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2629 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2630 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2631 		  worker->current_pwq->wq->name, worker->current_func,
2632 		  target_wq->name, target_func);
2633 }
2634 
2635 struct wq_barrier {
2636 	struct work_struct	work;
2637 	struct completion	done;
2638 	struct task_struct	*task;	/* purely informational */
2639 };
2640 
wq_barrier_func(struct work_struct * work)2641 static void wq_barrier_func(struct work_struct *work)
2642 {
2643 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2644 	complete(&barr->done);
2645 }
2646 
2647 /**
2648  * insert_wq_barrier - insert a barrier work
2649  * @pwq: pwq to insert barrier into
2650  * @barr: wq_barrier to insert
2651  * @target: target work to attach @barr to
2652  * @worker: worker currently executing @target, NULL if @target is not executing
2653  *
2654  * @barr is linked to @target such that @barr is completed only after
2655  * @target finishes execution.  Please note that the ordering
2656  * guarantee is observed only with respect to @target and on the local
2657  * cpu.
2658  *
2659  * Currently, a queued barrier can't be canceled.  This is because
2660  * try_to_grab_pending() can't determine whether the work to be
2661  * grabbed is at the head of the queue and thus can't clear LINKED
2662  * flag of the previous work while there must be a valid next work
2663  * after a work with LINKED flag set.
2664  *
2665  * Note that when @worker is non-NULL, @target may be modified
2666  * underneath us, so we can't reliably determine pwq from @target.
2667  *
2668  * CONTEXT:
2669  * spin_lock_irq(pool->lock).
2670  */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)2671 static void insert_wq_barrier(struct pool_workqueue *pwq,
2672 			      struct wq_barrier *barr,
2673 			      struct work_struct *target, struct worker *worker)
2674 {
2675 	struct list_head *head;
2676 	unsigned int linked = 0;
2677 
2678 	/*
2679 	 * debugobject calls are safe here even with pool->lock locked
2680 	 * as we know for sure that this will not trigger any of the
2681 	 * checks and call back into the fixup functions where we
2682 	 * might deadlock.
2683 	 */
2684 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2685 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2686 
2687 	init_completion_map(&barr->done, &target->lockdep_map);
2688 
2689 	barr->task = current;
2690 
2691 	/*
2692 	 * If @target is currently being executed, schedule the
2693 	 * barrier to the worker; otherwise, put it after @target.
2694 	 */
2695 	if (worker)
2696 		head = worker->scheduled.next;
2697 	else {
2698 		unsigned long *bits = work_data_bits(target);
2699 
2700 		head = target->entry.next;
2701 		/* there can already be other linked works, inherit and set */
2702 		linked = *bits & WORK_STRUCT_LINKED;
2703 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2704 	}
2705 
2706 	debug_work_activate(&barr->work);
2707 	insert_work(pwq, &barr->work, head,
2708 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2709 }
2710 
2711 /**
2712  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2713  * @wq: workqueue being flushed
2714  * @flush_color: new flush color, < 0 for no-op
2715  * @work_color: new work color, < 0 for no-op
2716  *
2717  * Prepare pwqs for workqueue flushing.
2718  *
2719  * If @flush_color is non-negative, flush_color on all pwqs should be
2720  * -1.  If no pwq has in-flight commands at the specified color, all
2721  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2722  * has in flight commands, its pwq->flush_color is set to
2723  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2724  * wakeup logic is armed and %true is returned.
2725  *
2726  * The caller should have initialized @wq->first_flusher prior to
2727  * calling this function with non-negative @flush_color.  If
2728  * @flush_color is negative, no flush color update is done and %false
2729  * is returned.
2730  *
2731  * If @work_color is non-negative, all pwqs should have the same
2732  * work_color which is previous to @work_color and all will be
2733  * advanced to @work_color.
2734  *
2735  * CONTEXT:
2736  * mutex_lock(wq->mutex).
2737  *
2738  * Return:
2739  * %true if @flush_color >= 0 and there's something to flush.  %false
2740  * otherwise.
2741  */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)2742 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2743 				      int flush_color, int work_color)
2744 {
2745 	bool wait = false;
2746 	struct pool_workqueue *pwq;
2747 
2748 	if (flush_color >= 0) {
2749 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2750 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2751 	}
2752 
2753 	for_each_pwq(pwq, wq) {
2754 		struct worker_pool *pool = pwq->pool;
2755 
2756 		spin_lock_irq(&pool->lock);
2757 
2758 		if (flush_color >= 0) {
2759 			WARN_ON_ONCE(pwq->flush_color != -1);
2760 
2761 			if (pwq->nr_in_flight[flush_color]) {
2762 				pwq->flush_color = flush_color;
2763 				atomic_inc(&wq->nr_pwqs_to_flush);
2764 				wait = true;
2765 			}
2766 		}
2767 
2768 		if (work_color >= 0) {
2769 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2770 			pwq->work_color = work_color;
2771 		}
2772 
2773 		spin_unlock_irq(&pool->lock);
2774 	}
2775 
2776 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2777 		complete(&wq->first_flusher->done);
2778 
2779 	return wait;
2780 }
2781 
2782 /**
2783  * flush_workqueue - ensure that any scheduled work has run to completion.
2784  * @wq: workqueue to flush
2785  *
2786  * This function sleeps until all work items which were queued on entry
2787  * have finished execution, but it is not livelocked by new incoming ones.
2788  */
flush_workqueue(struct workqueue_struct * wq)2789 void flush_workqueue(struct workqueue_struct *wq)
2790 {
2791 	struct wq_flusher this_flusher = {
2792 		.list = LIST_HEAD_INIT(this_flusher.list),
2793 		.flush_color = -1,
2794 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2795 	};
2796 	int next_color;
2797 
2798 	if (WARN_ON(!wq_online))
2799 		return;
2800 
2801 	lock_map_acquire(&wq->lockdep_map);
2802 	lock_map_release(&wq->lockdep_map);
2803 
2804 	mutex_lock(&wq->mutex);
2805 
2806 	/*
2807 	 * Start-to-wait phase
2808 	 */
2809 	next_color = work_next_color(wq->work_color);
2810 
2811 	if (next_color != wq->flush_color) {
2812 		/*
2813 		 * Color space is not full.  The current work_color
2814 		 * becomes our flush_color and work_color is advanced
2815 		 * by one.
2816 		 */
2817 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2818 		this_flusher.flush_color = wq->work_color;
2819 		wq->work_color = next_color;
2820 
2821 		if (!wq->first_flusher) {
2822 			/* no flush in progress, become the first flusher */
2823 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2824 
2825 			wq->first_flusher = &this_flusher;
2826 
2827 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2828 						       wq->work_color)) {
2829 				/* nothing to flush, done */
2830 				wq->flush_color = next_color;
2831 				wq->first_flusher = NULL;
2832 				goto out_unlock;
2833 			}
2834 		} else {
2835 			/* wait in queue */
2836 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2837 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2838 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2839 		}
2840 	} else {
2841 		/*
2842 		 * Oops, color space is full, wait on overflow queue.
2843 		 * The next flush completion will assign us
2844 		 * flush_color and transfer to flusher_queue.
2845 		 */
2846 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2847 	}
2848 
2849 	check_flush_dependency(wq, NULL);
2850 
2851 	mutex_unlock(&wq->mutex);
2852 
2853 	wait_for_completion(&this_flusher.done);
2854 
2855 	/*
2856 	 * Wake-up-and-cascade phase
2857 	 *
2858 	 * First flushers are responsible for cascading flushes and
2859 	 * handling overflow.  Non-first flushers can simply return.
2860 	 */
2861 	if (wq->first_flusher != &this_flusher)
2862 		return;
2863 
2864 	mutex_lock(&wq->mutex);
2865 
2866 	/* we might have raced, check again with mutex held */
2867 	if (wq->first_flusher != &this_flusher)
2868 		goto out_unlock;
2869 
2870 	wq->first_flusher = NULL;
2871 
2872 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2873 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2874 
2875 	while (true) {
2876 		struct wq_flusher *next, *tmp;
2877 
2878 		/* complete all the flushers sharing the current flush color */
2879 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2880 			if (next->flush_color != wq->flush_color)
2881 				break;
2882 			list_del_init(&next->list);
2883 			complete(&next->done);
2884 		}
2885 
2886 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2887 			     wq->flush_color != work_next_color(wq->work_color));
2888 
2889 		/* this flush_color is finished, advance by one */
2890 		wq->flush_color = work_next_color(wq->flush_color);
2891 
2892 		/* one color has been freed, handle overflow queue */
2893 		if (!list_empty(&wq->flusher_overflow)) {
2894 			/*
2895 			 * Assign the same color to all overflowed
2896 			 * flushers, advance work_color and append to
2897 			 * flusher_queue.  This is the start-to-wait
2898 			 * phase for these overflowed flushers.
2899 			 */
2900 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2901 				tmp->flush_color = wq->work_color;
2902 
2903 			wq->work_color = work_next_color(wq->work_color);
2904 
2905 			list_splice_tail_init(&wq->flusher_overflow,
2906 					      &wq->flusher_queue);
2907 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2908 		}
2909 
2910 		if (list_empty(&wq->flusher_queue)) {
2911 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2912 			break;
2913 		}
2914 
2915 		/*
2916 		 * Need to flush more colors.  Make the next flusher
2917 		 * the new first flusher and arm pwqs.
2918 		 */
2919 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2920 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2921 
2922 		list_del_init(&next->list);
2923 		wq->first_flusher = next;
2924 
2925 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2926 			break;
2927 
2928 		/*
2929 		 * Meh... this color is already done, clear first
2930 		 * flusher and repeat cascading.
2931 		 */
2932 		wq->first_flusher = NULL;
2933 	}
2934 
2935 out_unlock:
2936 	mutex_unlock(&wq->mutex);
2937 }
2938 EXPORT_SYMBOL(flush_workqueue);
2939 
2940 /**
2941  * drain_workqueue - drain a workqueue
2942  * @wq: workqueue to drain
2943  *
2944  * Wait until the workqueue becomes empty.  While draining is in progress,
2945  * only chain queueing is allowed.  IOW, only currently pending or running
2946  * work items on @wq can queue further work items on it.  @wq is flushed
2947  * repeatedly until it becomes empty.  The number of flushing is determined
2948  * by the depth of chaining and should be relatively short.  Whine if it
2949  * takes too long.
2950  */
drain_workqueue(struct workqueue_struct * wq)2951 void drain_workqueue(struct workqueue_struct *wq)
2952 {
2953 	unsigned int flush_cnt = 0;
2954 	struct pool_workqueue *pwq;
2955 
2956 	/*
2957 	 * __queue_work() needs to test whether there are drainers, is much
2958 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2959 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2960 	 */
2961 	mutex_lock(&wq->mutex);
2962 	if (!wq->nr_drainers++)
2963 		wq->flags |= __WQ_DRAINING;
2964 	mutex_unlock(&wq->mutex);
2965 reflush:
2966 	flush_workqueue(wq);
2967 
2968 	mutex_lock(&wq->mutex);
2969 
2970 	for_each_pwq(pwq, wq) {
2971 		bool drained;
2972 
2973 		spin_lock_irq(&pwq->pool->lock);
2974 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2975 		spin_unlock_irq(&pwq->pool->lock);
2976 
2977 		if (drained)
2978 			continue;
2979 
2980 		if (++flush_cnt == 10 ||
2981 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2982 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2983 				wq->name, flush_cnt);
2984 
2985 		mutex_unlock(&wq->mutex);
2986 		goto reflush;
2987 	}
2988 
2989 	if (!--wq->nr_drainers)
2990 		wq->flags &= ~__WQ_DRAINING;
2991 	mutex_unlock(&wq->mutex);
2992 }
2993 EXPORT_SYMBOL_GPL(drain_workqueue);
2994 
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)2995 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2996 			     bool from_cancel)
2997 {
2998 	struct worker *worker = NULL;
2999 	struct worker_pool *pool;
3000 	struct pool_workqueue *pwq;
3001 
3002 	might_sleep();
3003 
3004 	rcu_read_lock();
3005 	pool = get_work_pool(work);
3006 	if (!pool) {
3007 		rcu_read_unlock();
3008 		return false;
3009 	}
3010 
3011 	spin_lock_irq(&pool->lock);
3012 	/* see the comment in try_to_grab_pending() with the same code */
3013 	pwq = get_work_pwq(work);
3014 	if (pwq) {
3015 		if (unlikely(pwq->pool != pool))
3016 			goto already_gone;
3017 	} else {
3018 		worker = find_worker_executing_work(pool, work);
3019 		if (!worker)
3020 			goto already_gone;
3021 		pwq = worker->current_pwq;
3022 	}
3023 
3024 	check_flush_dependency(pwq->wq, work);
3025 
3026 	insert_wq_barrier(pwq, barr, work, worker);
3027 	spin_unlock_irq(&pool->lock);
3028 
3029 	/*
3030 	 * Force a lock recursion deadlock when using flush_work() inside a
3031 	 * single-threaded or rescuer equipped workqueue.
3032 	 *
3033 	 * For single threaded workqueues the deadlock happens when the work
3034 	 * is after the work issuing the flush_work(). For rescuer equipped
3035 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3036 	 * forward progress.
3037 	 */
3038 	if (!from_cancel &&
3039 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3040 		lock_map_acquire(&pwq->wq->lockdep_map);
3041 		lock_map_release(&pwq->wq->lockdep_map);
3042 	}
3043 	rcu_read_unlock();
3044 	return true;
3045 already_gone:
3046 	spin_unlock_irq(&pool->lock);
3047 	rcu_read_unlock();
3048 	return false;
3049 }
3050 
__flush_work(struct work_struct * work,bool from_cancel)3051 static bool __flush_work(struct work_struct *work, bool from_cancel)
3052 {
3053 	struct wq_barrier barr;
3054 
3055 	if (WARN_ON(!wq_online))
3056 		return false;
3057 
3058 	if (WARN_ON(!work->func))
3059 		return false;
3060 
3061 	lock_map_acquire(&work->lockdep_map);
3062 	lock_map_release(&work->lockdep_map);
3063 
3064 	if (start_flush_work(work, &barr, from_cancel)) {
3065 		wait_for_completion(&barr.done);
3066 		destroy_work_on_stack(&barr.work);
3067 		return true;
3068 	} else {
3069 		return false;
3070 	}
3071 }
3072 
3073 /**
3074  * flush_work - wait for a work to finish executing the last queueing instance
3075  * @work: the work to flush
3076  *
3077  * Wait until @work has finished execution.  @work is guaranteed to be idle
3078  * on return if it hasn't been requeued since flush started.
3079  *
3080  * Return:
3081  * %true if flush_work() waited for the work to finish execution,
3082  * %false if it was already idle.
3083  */
flush_work(struct work_struct * work)3084 bool flush_work(struct work_struct *work)
3085 {
3086 	return __flush_work(work, false);
3087 }
3088 EXPORT_SYMBOL_GPL(flush_work);
3089 
3090 struct cwt_wait {
3091 	wait_queue_entry_t		wait;
3092 	struct work_struct	*work;
3093 };
3094 
cwt_wakefn(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)3095 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3096 {
3097 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3098 
3099 	if (cwait->work != key)
3100 		return 0;
3101 	return autoremove_wake_function(wait, mode, sync, key);
3102 }
3103 
__cancel_work_timer(struct work_struct * work,bool is_dwork)3104 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3105 {
3106 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3107 	unsigned long flags;
3108 	int ret;
3109 
3110 	do {
3111 		ret = try_to_grab_pending(work, is_dwork, &flags);
3112 		/*
3113 		 * If someone else is already canceling, wait for it to
3114 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3115 		 * because we may get scheduled between @work's completion
3116 		 * and the other canceling task resuming and clearing
3117 		 * CANCELING - flush_work() will return false immediately
3118 		 * as @work is no longer busy, try_to_grab_pending() will
3119 		 * return -ENOENT as @work is still being canceled and the
3120 		 * other canceling task won't be able to clear CANCELING as
3121 		 * we're hogging the CPU.
3122 		 *
3123 		 * Let's wait for completion using a waitqueue.  As this
3124 		 * may lead to the thundering herd problem, use a custom
3125 		 * wake function which matches @work along with exclusive
3126 		 * wait and wakeup.
3127 		 */
3128 		if (unlikely(ret == -ENOENT)) {
3129 			struct cwt_wait cwait;
3130 
3131 			init_wait(&cwait.wait);
3132 			cwait.wait.func = cwt_wakefn;
3133 			cwait.work = work;
3134 
3135 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3136 						  TASK_UNINTERRUPTIBLE);
3137 			if (work_is_canceling(work))
3138 				schedule();
3139 			finish_wait(&cancel_waitq, &cwait.wait);
3140 		}
3141 	} while (unlikely(ret < 0));
3142 
3143 	/* tell other tasks trying to grab @work to back off */
3144 	mark_work_canceling(work);
3145 	local_irq_restore(flags);
3146 
3147 	/*
3148 	 * This allows canceling during early boot.  We know that @work
3149 	 * isn't executing.
3150 	 */
3151 	if (wq_online)
3152 		__flush_work(work, true);
3153 
3154 	clear_work_data(work);
3155 
3156 	/*
3157 	 * Paired with prepare_to_wait() above so that either
3158 	 * waitqueue_active() is visible here or !work_is_canceling() is
3159 	 * visible there.
3160 	 */
3161 	smp_mb();
3162 	if (waitqueue_active(&cancel_waitq))
3163 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3164 
3165 	return ret;
3166 }
3167 
3168 /**
3169  * cancel_work_sync - cancel a work and wait for it to finish
3170  * @work: the work to cancel
3171  *
3172  * Cancel @work and wait for its execution to finish.  This function
3173  * can be used even if the work re-queues itself or migrates to
3174  * another workqueue.  On return from this function, @work is
3175  * guaranteed to be not pending or executing on any CPU.
3176  *
3177  * cancel_work_sync(&delayed_work->work) must not be used for
3178  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3179  *
3180  * The caller must ensure that the workqueue on which @work was last
3181  * queued can't be destroyed before this function returns.
3182  *
3183  * Return:
3184  * %true if @work was pending, %false otherwise.
3185  */
cancel_work_sync(struct work_struct * work)3186 bool cancel_work_sync(struct work_struct *work)
3187 {
3188 	return __cancel_work_timer(work, false);
3189 }
3190 EXPORT_SYMBOL_GPL(cancel_work_sync);
3191 
3192 /**
3193  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3194  * @dwork: the delayed work to flush
3195  *
3196  * Delayed timer is cancelled and the pending work is queued for
3197  * immediate execution.  Like flush_work(), this function only
3198  * considers the last queueing instance of @dwork.
3199  *
3200  * Return:
3201  * %true if flush_work() waited for the work to finish execution,
3202  * %false if it was already idle.
3203  */
flush_delayed_work(struct delayed_work * dwork)3204 bool flush_delayed_work(struct delayed_work *dwork)
3205 {
3206 	local_irq_disable();
3207 	if (del_timer_sync(&dwork->timer))
3208 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3209 	local_irq_enable();
3210 	return flush_work(&dwork->work);
3211 }
3212 EXPORT_SYMBOL(flush_delayed_work);
3213 
3214 /**
3215  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3216  * @rwork: the rcu work to flush
3217  *
3218  * Return:
3219  * %true if flush_rcu_work() waited for the work to finish execution,
3220  * %false if it was already idle.
3221  */
flush_rcu_work(struct rcu_work * rwork)3222 bool flush_rcu_work(struct rcu_work *rwork)
3223 {
3224 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3225 		rcu_barrier();
3226 		flush_work(&rwork->work);
3227 		return true;
3228 	} else {
3229 		return flush_work(&rwork->work);
3230 	}
3231 }
3232 EXPORT_SYMBOL(flush_rcu_work);
3233 
__cancel_work(struct work_struct * work,bool is_dwork)3234 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3235 {
3236 	unsigned long flags;
3237 	int ret;
3238 
3239 	do {
3240 		ret = try_to_grab_pending(work, is_dwork, &flags);
3241 	} while (unlikely(ret == -EAGAIN));
3242 
3243 	if (unlikely(ret < 0))
3244 		return false;
3245 
3246 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3247 	local_irq_restore(flags);
3248 	return ret;
3249 }
3250 
3251 /**
3252  * cancel_delayed_work - cancel a delayed work
3253  * @dwork: delayed_work to cancel
3254  *
3255  * Kill off a pending delayed_work.
3256  *
3257  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3258  * pending.
3259  *
3260  * Note:
3261  * The work callback function may still be running on return, unless
3262  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3263  * use cancel_delayed_work_sync() to wait on it.
3264  *
3265  * This function is safe to call from any context including IRQ handler.
3266  */
cancel_delayed_work(struct delayed_work * dwork)3267 bool cancel_delayed_work(struct delayed_work *dwork)
3268 {
3269 	return __cancel_work(&dwork->work, true);
3270 }
3271 EXPORT_SYMBOL(cancel_delayed_work);
3272 
3273 /**
3274  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3275  * @dwork: the delayed work cancel
3276  *
3277  * This is cancel_work_sync() for delayed works.
3278  *
3279  * Return:
3280  * %true if @dwork was pending, %false otherwise.
3281  */
cancel_delayed_work_sync(struct delayed_work * dwork)3282 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3283 {
3284 	return __cancel_work_timer(&dwork->work, true);
3285 }
3286 EXPORT_SYMBOL(cancel_delayed_work_sync);
3287 
3288 /**
3289  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3290  * @func: the function to call
3291  *
3292  * schedule_on_each_cpu() executes @func on each online CPU using the
3293  * system workqueue and blocks until all CPUs have completed.
3294  * schedule_on_each_cpu() is very slow.
3295  *
3296  * Return:
3297  * 0 on success, -errno on failure.
3298  */
schedule_on_each_cpu(work_func_t func)3299 int schedule_on_each_cpu(work_func_t func)
3300 {
3301 	int cpu;
3302 	struct work_struct __percpu *works;
3303 
3304 	works = alloc_percpu(struct work_struct);
3305 	if (!works)
3306 		return -ENOMEM;
3307 
3308 	get_online_cpus();
3309 
3310 	for_each_online_cpu(cpu) {
3311 		struct work_struct *work = per_cpu_ptr(works, cpu);
3312 
3313 		INIT_WORK(work, func);
3314 		schedule_work_on(cpu, work);
3315 	}
3316 
3317 	for_each_online_cpu(cpu)
3318 		flush_work(per_cpu_ptr(works, cpu));
3319 
3320 	put_online_cpus();
3321 	free_percpu(works);
3322 	return 0;
3323 }
3324 
3325 /**
3326  * execute_in_process_context - reliably execute the routine with user context
3327  * @fn:		the function to execute
3328  * @ew:		guaranteed storage for the execute work structure (must
3329  *		be available when the work executes)
3330  *
3331  * Executes the function immediately if process context is available,
3332  * otherwise schedules the function for delayed execution.
3333  *
3334  * Return:	0 - function was executed
3335  *		1 - function was scheduled for execution
3336  */
execute_in_process_context(work_func_t fn,struct execute_work * ew)3337 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3338 {
3339 	if (!in_interrupt()) {
3340 		fn(&ew->work);
3341 		return 0;
3342 	}
3343 
3344 	INIT_WORK(&ew->work, fn);
3345 	schedule_work(&ew->work);
3346 
3347 	return 1;
3348 }
3349 EXPORT_SYMBOL_GPL(execute_in_process_context);
3350 
3351 /**
3352  * free_workqueue_attrs - free a workqueue_attrs
3353  * @attrs: workqueue_attrs to free
3354  *
3355  * Undo alloc_workqueue_attrs().
3356  */
free_workqueue_attrs(struct workqueue_attrs * attrs)3357 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3358 {
3359 	if (attrs) {
3360 		free_cpumask_var(attrs->cpumask);
3361 		kfree(attrs);
3362 	}
3363 }
3364 
3365 /**
3366  * alloc_workqueue_attrs - allocate a workqueue_attrs
3367  *
3368  * Allocate a new workqueue_attrs, initialize with default settings and
3369  * return it.
3370  *
3371  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3372  */
alloc_workqueue_attrs(void)3373 struct workqueue_attrs *alloc_workqueue_attrs(void)
3374 {
3375 	struct workqueue_attrs *attrs;
3376 
3377 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3378 	if (!attrs)
3379 		goto fail;
3380 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3381 		goto fail;
3382 
3383 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3384 	return attrs;
3385 fail:
3386 	free_workqueue_attrs(attrs);
3387 	return NULL;
3388 }
3389 
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)3390 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3391 				 const struct workqueue_attrs *from)
3392 {
3393 	to->nice = from->nice;
3394 	cpumask_copy(to->cpumask, from->cpumask);
3395 	/*
3396 	 * Unlike hash and equality test, this function doesn't ignore
3397 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3398 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3399 	 */
3400 	to->no_numa = from->no_numa;
3401 }
3402 
3403 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)3404 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3405 {
3406 	u32 hash = 0;
3407 
3408 	hash = jhash_1word(attrs->nice, hash);
3409 	hash = jhash(cpumask_bits(attrs->cpumask),
3410 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3411 	return hash;
3412 }
3413 
3414 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)3415 static bool wqattrs_equal(const struct workqueue_attrs *a,
3416 			  const struct workqueue_attrs *b)
3417 {
3418 	if (a->nice != b->nice)
3419 		return false;
3420 	if (!cpumask_equal(a->cpumask, b->cpumask))
3421 		return false;
3422 	return true;
3423 }
3424 
3425 /**
3426  * init_worker_pool - initialize a newly zalloc'd worker_pool
3427  * @pool: worker_pool to initialize
3428  *
3429  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3430  *
3431  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3432  * inside @pool proper are initialized and put_unbound_pool() can be called
3433  * on @pool safely to release it.
3434  */
init_worker_pool(struct worker_pool * pool)3435 static int init_worker_pool(struct worker_pool *pool)
3436 {
3437 	spin_lock_init(&pool->lock);
3438 	pool->id = -1;
3439 	pool->cpu = -1;
3440 	pool->node = NUMA_NO_NODE;
3441 	pool->flags |= POOL_DISASSOCIATED;
3442 	pool->watchdog_ts = jiffies;
3443 	INIT_LIST_HEAD(&pool->worklist);
3444 	INIT_LIST_HEAD(&pool->idle_list);
3445 	hash_init(pool->busy_hash);
3446 
3447 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3448 
3449 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3450 
3451 	INIT_LIST_HEAD(&pool->workers);
3452 
3453 	ida_init(&pool->worker_ida);
3454 	INIT_HLIST_NODE(&pool->hash_node);
3455 	pool->refcnt = 1;
3456 
3457 	/* shouldn't fail above this point */
3458 	pool->attrs = alloc_workqueue_attrs();
3459 	if (!pool->attrs)
3460 		return -ENOMEM;
3461 	return 0;
3462 }
3463 
3464 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)3465 static void wq_init_lockdep(struct workqueue_struct *wq)
3466 {
3467 	char *lock_name;
3468 
3469 	lockdep_register_key(&wq->key);
3470 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3471 	if (!lock_name)
3472 		lock_name = wq->name;
3473 
3474 	wq->lock_name = lock_name;
3475 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3476 }
3477 
wq_unregister_lockdep(struct workqueue_struct * wq)3478 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3479 {
3480 	lockdep_unregister_key(&wq->key);
3481 }
3482 
wq_free_lockdep(struct workqueue_struct * wq)3483 static void wq_free_lockdep(struct workqueue_struct *wq)
3484 {
3485 	if (wq->lock_name != wq->name)
3486 		kfree(wq->lock_name);
3487 }
3488 #else
wq_init_lockdep(struct workqueue_struct * wq)3489 static void wq_init_lockdep(struct workqueue_struct *wq)
3490 {
3491 }
3492 
wq_unregister_lockdep(struct workqueue_struct * wq)3493 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3494 {
3495 }
3496 
wq_free_lockdep(struct workqueue_struct * wq)3497 static void wq_free_lockdep(struct workqueue_struct *wq)
3498 {
3499 }
3500 #endif
3501 
rcu_free_wq(struct rcu_head * rcu)3502 static void rcu_free_wq(struct rcu_head *rcu)
3503 {
3504 	struct workqueue_struct *wq =
3505 		container_of(rcu, struct workqueue_struct, rcu);
3506 
3507 	wq_free_lockdep(wq);
3508 
3509 	if (!(wq->flags & WQ_UNBOUND))
3510 		free_percpu(wq->cpu_pwqs);
3511 	else
3512 		free_workqueue_attrs(wq->unbound_attrs);
3513 
3514 	kfree(wq->rescuer);
3515 	kfree(wq);
3516 }
3517 
rcu_free_pool(struct rcu_head * rcu)3518 static void rcu_free_pool(struct rcu_head *rcu)
3519 {
3520 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3521 
3522 	ida_destroy(&pool->worker_ida);
3523 	free_workqueue_attrs(pool->attrs);
3524 	kfree(pool);
3525 }
3526 
3527 /**
3528  * put_unbound_pool - put a worker_pool
3529  * @pool: worker_pool to put
3530  *
3531  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3532  * safe manner.  get_unbound_pool() calls this function on its failure path
3533  * and this function should be able to release pools which went through,
3534  * successfully or not, init_worker_pool().
3535  *
3536  * Should be called with wq_pool_mutex held.
3537  */
put_unbound_pool(struct worker_pool * pool)3538 static void put_unbound_pool(struct worker_pool *pool)
3539 {
3540 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3541 	struct worker *worker;
3542 
3543 	lockdep_assert_held(&wq_pool_mutex);
3544 
3545 	if (--pool->refcnt)
3546 		return;
3547 
3548 	/* sanity checks */
3549 	if (WARN_ON(!(pool->cpu < 0)) ||
3550 	    WARN_ON(!list_empty(&pool->worklist)))
3551 		return;
3552 
3553 	/* release id and unhash */
3554 	if (pool->id >= 0)
3555 		idr_remove(&worker_pool_idr, pool->id);
3556 	hash_del(&pool->hash_node);
3557 
3558 	/*
3559 	 * Become the manager and destroy all workers.  This prevents
3560 	 * @pool's workers from blocking on attach_mutex.  We're the last
3561 	 * manager and @pool gets freed with the flag set.
3562 	 */
3563 	spin_lock_irq(&pool->lock);
3564 	wait_event_lock_irq(wq_manager_wait,
3565 			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3566 	pool->flags |= POOL_MANAGER_ACTIVE;
3567 
3568 	while ((worker = first_idle_worker(pool)))
3569 		destroy_worker(worker);
3570 	WARN_ON(pool->nr_workers || pool->nr_idle);
3571 	spin_unlock_irq(&pool->lock);
3572 
3573 	mutex_lock(&wq_pool_attach_mutex);
3574 	if (!list_empty(&pool->workers))
3575 		pool->detach_completion = &detach_completion;
3576 	mutex_unlock(&wq_pool_attach_mutex);
3577 
3578 	if (pool->detach_completion)
3579 		wait_for_completion(pool->detach_completion);
3580 
3581 	/* shut down the timers */
3582 	del_timer_sync(&pool->idle_timer);
3583 	del_timer_sync(&pool->mayday_timer);
3584 
3585 	/* RCU protected to allow dereferences from get_work_pool() */
3586 	call_rcu(&pool->rcu, rcu_free_pool);
3587 }
3588 
3589 /**
3590  * get_unbound_pool - get a worker_pool with the specified attributes
3591  * @attrs: the attributes of the worker_pool to get
3592  *
3593  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3594  * reference count and return it.  If there already is a matching
3595  * worker_pool, it will be used; otherwise, this function attempts to
3596  * create a new one.
3597  *
3598  * Should be called with wq_pool_mutex held.
3599  *
3600  * Return: On success, a worker_pool with the same attributes as @attrs.
3601  * On failure, %NULL.
3602  */
get_unbound_pool(const struct workqueue_attrs * attrs)3603 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3604 {
3605 	u32 hash = wqattrs_hash(attrs);
3606 	struct worker_pool *pool;
3607 	int node;
3608 	int target_node = NUMA_NO_NODE;
3609 
3610 	lockdep_assert_held(&wq_pool_mutex);
3611 
3612 	/* do we already have a matching pool? */
3613 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3614 		if (wqattrs_equal(pool->attrs, attrs)) {
3615 			pool->refcnt++;
3616 			return pool;
3617 		}
3618 	}
3619 
3620 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3621 	if (wq_numa_enabled) {
3622 		for_each_node(node) {
3623 			if (cpumask_subset(attrs->cpumask,
3624 					   wq_numa_possible_cpumask[node])) {
3625 				target_node = node;
3626 				break;
3627 			}
3628 		}
3629 	}
3630 
3631 	/* nope, create a new one */
3632 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3633 	if (!pool || init_worker_pool(pool) < 0)
3634 		goto fail;
3635 
3636 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3637 	copy_workqueue_attrs(pool->attrs, attrs);
3638 	pool->node = target_node;
3639 
3640 	/*
3641 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3642 	 * 'struct workqueue_attrs' comments for detail.
3643 	 */
3644 	pool->attrs->no_numa = false;
3645 
3646 	if (worker_pool_assign_id(pool) < 0)
3647 		goto fail;
3648 
3649 	/* create and start the initial worker */
3650 	if (wq_online && !create_worker(pool))
3651 		goto fail;
3652 
3653 	/* install */
3654 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3655 
3656 	return pool;
3657 fail:
3658 	if (pool)
3659 		put_unbound_pool(pool);
3660 	return NULL;
3661 }
3662 
rcu_free_pwq(struct rcu_head * rcu)3663 static void rcu_free_pwq(struct rcu_head *rcu)
3664 {
3665 	kmem_cache_free(pwq_cache,
3666 			container_of(rcu, struct pool_workqueue, rcu));
3667 }
3668 
3669 /*
3670  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3671  * and needs to be destroyed.
3672  */
pwq_unbound_release_workfn(struct work_struct * work)3673 static void pwq_unbound_release_workfn(struct work_struct *work)
3674 {
3675 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3676 						  unbound_release_work);
3677 	struct workqueue_struct *wq = pwq->wq;
3678 	struct worker_pool *pool = pwq->pool;
3679 	bool is_last = false;
3680 
3681 	/*
3682 	 * when @pwq is not linked, it doesn't hold any reference to the
3683 	 * @wq, and @wq is invalid to access.
3684 	 */
3685 	if (!list_empty(&pwq->pwqs_node)) {
3686 		if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3687 			return;
3688 
3689 		mutex_lock(&wq->mutex);
3690 		list_del_rcu(&pwq->pwqs_node);
3691 		is_last = list_empty(&wq->pwqs);
3692 		mutex_unlock(&wq->mutex);
3693 	}
3694 
3695 	mutex_lock(&wq_pool_mutex);
3696 	put_unbound_pool(pool);
3697 	mutex_unlock(&wq_pool_mutex);
3698 
3699 	call_rcu(&pwq->rcu, rcu_free_pwq);
3700 
3701 	/*
3702 	 * If we're the last pwq going away, @wq is already dead and no one
3703 	 * is gonna access it anymore.  Schedule RCU free.
3704 	 */
3705 	if (is_last) {
3706 		wq_unregister_lockdep(wq);
3707 		call_rcu(&wq->rcu, rcu_free_wq);
3708 	}
3709 }
3710 
3711 /**
3712  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3713  * @pwq: target pool_workqueue
3714  *
3715  * If @pwq isn't freezing, set @pwq->max_active to the associated
3716  * workqueue's saved_max_active and activate delayed work items
3717  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3718  */
pwq_adjust_max_active(struct pool_workqueue * pwq)3719 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3720 {
3721 	struct workqueue_struct *wq = pwq->wq;
3722 	bool freezable = wq->flags & WQ_FREEZABLE;
3723 	unsigned long flags;
3724 
3725 	/* for @wq->saved_max_active */
3726 	lockdep_assert_held(&wq->mutex);
3727 
3728 	/* fast exit for non-freezable wqs */
3729 	if (!freezable && pwq->max_active == wq->saved_max_active)
3730 		return;
3731 
3732 	/* this function can be called during early boot w/ irq disabled */
3733 	spin_lock_irqsave(&pwq->pool->lock, flags);
3734 
3735 	/*
3736 	 * During [un]freezing, the caller is responsible for ensuring that
3737 	 * this function is called at least once after @workqueue_freezing
3738 	 * is updated and visible.
3739 	 */
3740 	if (!freezable || !workqueue_freezing) {
3741 		bool kick = false;
3742 
3743 		pwq->max_active = wq->saved_max_active;
3744 
3745 		while (!list_empty(&pwq->delayed_works) &&
3746 		       pwq->nr_active < pwq->max_active) {
3747 			pwq_activate_first_delayed(pwq);
3748 			kick = true;
3749 		}
3750 
3751 		/*
3752 		 * Need to kick a worker after thawed or an unbound wq's
3753 		 * max_active is bumped. In realtime scenarios, always kicking a
3754 		 * worker will cause interference on the isolated cpu cores, so
3755 		 * let's kick iff work items were activated.
3756 		 */
3757 		if (kick)
3758 			wake_up_worker(pwq->pool);
3759 	} else {
3760 		pwq->max_active = 0;
3761 	}
3762 
3763 	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3764 }
3765 
3766 /* initialize newly alloced @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)3767 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3768 		     struct worker_pool *pool)
3769 {
3770 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3771 
3772 	memset(pwq, 0, sizeof(*pwq));
3773 
3774 	pwq->pool = pool;
3775 	pwq->wq = wq;
3776 	pwq->flush_color = -1;
3777 	pwq->refcnt = 1;
3778 	INIT_LIST_HEAD(&pwq->delayed_works);
3779 	INIT_LIST_HEAD(&pwq->pwqs_node);
3780 	INIT_LIST_HEAD(&pwq->mayday_node);
3781 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3782 }
3783 
3784 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)3785 static void link_pwq(struct pool_workqueue *pwq)
3786 {
3787 	struct workqueue_struct *wq = pwq->wq;
3788 
3789 	lockdep_assert_held(&wq->mutex);
3790 
3791 	/* may be called multiple times, ignore if already linked */
3792 	if (!list_empty(&pwq->pwqs_node))
3793 		return;
3794 
3795 	/* set the matching work_color */
3796 	pwq->work_color = wq->work_color;
3797 
3798 	/* sync max_active to the current setting */
3799 	pwq_adjust_max_active(pwq);
3800 
3801 	/* link in @pwq */
3802 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3803 }
3804 
3805 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3806 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3807 					const struct workqueue_attrs *attrs)
3808 {
3809 	struct worker_pool *pool;
3810 	struct pool_workqueue *pwq;
3811 
3812 	lockdep_assert_held(&wq_pool_mutex);
3813 
3814 	pool = get_unbound_pool(attrs);
3815 	if (!pool)
3816 		return NULL;
3817 
3818 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3819 	if (!pwq) {
3820 		put_unbound_pool(pool);
3821 		return NULL;
3822 	}
3823 
3824 	init_pwq(pwq, wq, pool);
3825 	return pwq;
3826 }
3827 
3828 /**
3829  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3830  * @attrs: the wq_attrs of the default pwq of the target workqueue
3831  * @node: the target NUMA node
3832  * @cpu_going_down: if >= 0, the CPU to consider as offline
3833  * @cpumask: outarg, the resulting cpumask
3834  *
3835  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3836  * @cpu_going_down is >= 0, that cpu is considered offline during
3837  * calculation.  The result is stored in @cpumask.
3838  *
3839  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3840  * enabled and @node has online CPUs requested by @attrs, the returned
3841  * cpumask is the intersection of the possible CPUs of @node and
3842  * @attrs->cpumask.
3843  *
3844  * The caller is responsible for ensuring that the cpumask of @node stays
3845  * stable.
3846  *
3847  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3848  * %false if equal.
3849  */
wq_calc_node_cpumask(const struct workqueue_attrs * attrs,int node,int cpu_going_down,cpumask_t * cpumask)3850 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3851 				 int cpu_going_down, cpumask_t *cpumask)
3852 {
3853 	if (!wq_numa_enabled || attrs->no_numa)
3854 		goto use_dfl;
3855 
3856 	/* does @node have any online CPUs @attrs wants? */
3857 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3858 	if (cpu_going_down >= 0)
3859 		cpumask_clear_cpu(cpu_going_down, cpumask);
3860 
3861 	if (cpumask_empty(cpumask))
3862 		goto use_dfl;
3863 
3864 	/* yeap, return possible CPUs in @node that @attrs wants */
3865 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3866 
3867 	if (cpumask_empty(cpumask)) {
3868 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3869 				"possible intersect\n");
3870 		return false;
3871 	}
3872 
3873 	return !cpumask_equal(cpumask, attrs->cpumask);
3874 
3875 use_dfl:
3876 	cpumask_copy(cpumask, attrs->cpumask);
3877 	return false;
3878 }
3879 
3880 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
numa_pwq_tbl_install(struct workqueue_struct * wq,int node,struct pool_workqueue * pwq)3881 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3882 						   int node,
3883 						   struct pool_workqueue *pwq)
3884 {
3885 	struct pool_workqueue *old_pwq;
3886 
3887 	lockdep_assert_held(&wq_pool_mutex);
3888 	lockdep_assert_held(&wq->mutex);
3889 
3890 	/* link_pwq() can handle duplicate calls */
3891 	link_pwq(pwq);
3892 
3893 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3894 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3895 	return old_pwq;
3896 }
3897 
3898 /* context to store the prepared attrs & pwqs before applying */
3899 struct apply_wqattrs_ctx {
3900 	struct workqueue_struct	*wq;		/* target workqueue */
3901 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3902 	struct list_head	list;		/* queued for batching commit */
3903 	struct pool_workqueue	*dfl_pwq;
3904 	struct pool_workqueue	*pwq_tbl[];
3905 };
3906 
3907 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)3908 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3909 {
3910 	if (ctx) {
3911 		int node;
3912 
3913 		for_each_node(node)
3914 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3915 		put_pwq_unlocked(ctx->dfl_pwq);
3916 
3917 		free_workqueue_attrs(ctx->attrs);
3918 
3919 		kfree(ctx);
3920 	}
3921 }
3922 
3923 /* allocate the attrs and pwqs for later installation */
3924 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3925 apply_wqattrs_prepare(struct workqueue_struct *wq,
3926 		      const struct workqueue_attrs *attrs)
3927 {
3928 	struct apply_wqattrs_ctx *ctx;
3929 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3930 	int node;
3931 
3932 	lockdep_assert_held(&wq_pool_mutex);
3933 
3934 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3935 
3936 	new_attrs = alloc_workqueue_attrs();
3937 	tmp_attrs = alloc_workqueue_attrs();
3938 	if (!ctx || !new_attrs || !tmp_attrs)
3939 		goto out_free;
3940 
3941 	/*
3942 	 * Calculate the attrs of the default pwq.
3943 	 * If the user configured cpumask doesn't overlap with the
3944 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3945 	 */
3946 	copy_workqueue_attrs(new_attrs, attrs);
3947 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3948 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3949 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3950 
3951 	/*
3952 	 * We may create multiple pwqs with differing cpumasks.  Make a
3953 	 * copy of @new_attrs which will be modified and used to obtain
3954 	 * pools.
3955 	 */
3956 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3957 
3958 	/*
3959 	 * If something goes wrong during CPU up/down, we'll fall back to
3960 	 * the default pwq covering whole @attrs->cpumask.  Always create
3961 	 * it even if we don't use it immediately.
3962 	 */
3963 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3964 	if (!ctx->dfl_pwq)
3965 		goto out_free;
3966 
3967 	for_each_node(node) {
3968 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3969 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3970 			if (!ctx->pwq_tbl[node])
3971 				goto out_free;
3972 		} else {
3973 			ctx->dfl_pwq->refcnt++;
3974 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3975 		}
3976 	}
3977 
3978 	/* save the user configured attrs and sanitize it. */
3979 	copy_workqueue_attrs(new_attrs, attrs);
3980 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3981 	ctx->attrs = new_attrs;
3982 
3983 	ctx->wq = wq;
3984 	free_workqueue_attrs(tmp_attrs);
3985 	return ctx;
3986 
3987 out_free:
3988 	free_workqueue_attrs(tmp_attrs);
3989 	free_workqueue_attrs(new_attrs);
3990 	apply_wqattrs_cleanup(ctx);
3991 	return NULL;
3992 }
3993 
3994 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)3995 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3996 {
3997 	int node;
3998 
3999 	/* all pwqs have been created successfully, let's install'em */
4000 	mutex_lock(&ctx->wq->mutex);
4001 
4002 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4003 
4004 	/* save the previous pwq and install the new one */
4005 	for_each_node(node)
4006 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4007 							  ctx->pwq_tbl[node]);
4008 
4009 	/* @dfl_pwq might not have been used, ensure it's linked */
4010 	link_pwq(ctx->dfl_pwq);
4011 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4012 
4013 	mutex_unlock(&ctx->wq->mutex);
4014 }
4015 
apply_wqattrs_lock(void)4016 static void apply_wqattrs_lock(void)
4017 {
4018 	/* CPUs should stay stable across pwq creations and installations */
4019 	get_online_cpus();
4020 	mutex_lock(&wq_pool_mutex);
4021 }
4022 
apply_wqattrs_unlock(void)4023 static void apply_wqattrs_unlock(void)
4024 {
4025 	mutex_unlock(&wq_pool_mutex);
4026 	put_online_cpus();
4027 }
4028 
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4029 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4030 					const struct workqueue_attrs *attrs)
4031 {
4032 	struct apply_wqattrs_ctx *ctx;
4033 
4034 	/* only unbound workqueues can change attributes */
4035 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4036 		return -EINVAL;
4037 
4038 	/* creating multiple pwqs breaks ordering guarantee */
4039 	if (!list_empty(&wq->pwqs)) {
4040 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4041 			return -EINVAL;
4042 
4043 		wq->flags &= ~__WQ_ORDERED;
4044 	}
4045 
4046 	ctx = apply_wqattrs_prepare(wq, attrs);
4047 	if (!ctx)
4048 		return -ENOMEM;
4049 
4050 	/* the ctx has been prepared successfully, let's commit it */
4051 	apply_wqattrs_commit(ctx);
4052 	apply_wqattrs_cleanup(ctx);
4053 
4054 	return 0;
4055 }
4056 
4057 /**
4058  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4059  * @wq: the target workqueue
4060  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4061  *
4062  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4063  * machines, this function maps a separate pwq to each NUMA node with
4064  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4065  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4066  * items finish.  Note that a work item which repeatedly requeues itself
4067  * back-to-back will stay on its current pwq.
4068  *
4069  * Performs GFP_KERNEL allocations.
4070  *
4071  * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4072  *
4073  * Return: 0 on success and -errno on failure.
4074  */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4075 int apply_workqueue_attrs(struct workqueue_struct *wq,
4076 			  const struct workqueue_attrs *attrs)
4077 {
4078 	int ret;
4079 
4080 	lockdep_assert_cpus_held();
4081 
4082 	mutex_lock(&wq_pool_mutex);
4083 	ret = apply_workqueue_attrs_locked(wq, attrs);
4084 	mutex_unlock(&wq_pool_mutex);
4085 
4086 	return ret;
4087 }
4088 
4089 /**
4090  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4091  * @wq: the target workqueue
4092  * @cpu: the CPU coming up or going down
4093  * @online: whether @cpu is coming up or going down
4094  *
4095  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4096  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4097  * @wq accordingly.
4098  *
4099  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4100  * falls back to @wq->dfl_pwq which may not be optimal but is always
4101  * correct.
4102  *
4103  * Note that when the last allowed CPU of a NUMA node goes offline for a
4104  * workqueue with a cpumask spanning multiple nodes, the workers which were
4105  * already executing the work items for the workqueue will lose their CPU
4106  * affinity and may execute on any CPU.  This is similar to how per-cpu
4107  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4108  * affinity, it's the user's responsibility to flush the work item from
4109  * CPU_DOWN_PREPARE.
4110  */
wq_update_unbound_numa(struct workqueue_struct * wq,int cpu,bool online)4111 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4112 				   bool online)
4113 {
4114 	int node = cpu_to_node(cpu);
4115 	int cpu_off = online ? -1 : cpu;
4116 	struct pool_workqueue *old_pwq = NULL, *pwq;
4117 	struct workqueue_attrs *target_attrs;
4118 	cpumask_t *cpumask;
4119 
4120 	lockdep_assert_held(&wq_pool_mutex);
4121 
4122 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4123 	    wq->unbound_attrs->no_numa)
4124 		return;
4125 
4126 	/*
4127 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4128 	 * Let's use a preallocated one.  The following buf is protected by
4129 	 * CPU hotplug exclusion.
4130 	 */
4131 	target_attrs = wq_update_unbound_numa_attrs_buf;
4132 	cpumask = target_attrs->cpumask;
4133 
4134 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4135 	pwq = unbound_pwq_by_node(wq, node);
4136 
4137 	/*
4138 	 * Let's determine what needs to be done.  If the target cpumask is
4139 	 * different from the default pwq's, we need to compare it to @pwq's
4140 	 * and create a new one if they don't match.  If the target cpumask
4141 	 * equals the default pwq's, the default pwq should be used.
4142 	 */
4143 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4144 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4145 			return;
4146 	} else {
4147 		goto use_dfl_pwq;
4148 	}
4149 
4150 	/* create a new pwq */
4151 	pwq = alloc_unbound_pwq(wq, target_attrs);
4152 	if (!pwq) {
4153 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4154 			wq->name);
4155 		goto use_dfl_pwq;
4156 	}
4157 
4158 	/* Install the new pwq. */
4159 	mutex_lock(&wq->mutex);
4160 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4161 	goto out_unlock;
4162 
4163 use_dfl_pwq:
4164 	mutex_lock(&wq->mutex);
4165 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4166 	get_pwq(wq->dfl_pwq);
4167 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4168 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4169 out_unlock:
4170 	mutex_unlock(&wq->mutex);
4171 	put_pwq_unlocked(old_pwq);
4172 }
4173 
alloc_and_link_pwqs(struct workqueue_struct * wq)4174 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4175 {
4176 	bool highpri = wq->flags & WQ_HIGHPRI;
4177 	int cpu, ret;
4178 
4179 	if (!(wq->flags & WQ_UNBOUND)) {
4180 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4181 		if (!wq->cpu_pwqs)
4182 			return -ENOMEM;
4183 
4184 		for_each_possible_cpu(cpu) {
4185 			struct pool_workqueue *pwq =
4186 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4187 			struct worker_pool *cpu_pools =
4188 				per_cpu(cpu_worker_pools, cpu);
4189 
4190 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4191 
4192 			mutex_lock(&wq->mutex);
4193 			link_pwq(pwq);
4194 			mutex_unlock(&wq->mutex);
4195 		}
4196 		return 0;
4197 	}
4198 
4199 	get_online_cpus();
4200 	if (wq->flags & __WQ_ORDERED) {
4201 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4202 		/* there should only be single pwq for ordering guarantee */
4203 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4204 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4205 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4206 	} else {
4207 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4208 	}
4209 	put_online_cpus();
4210 
4211 	return ret;
4212 }
4213 
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)4214 static int wq_clamp_max_active(int max_active, unsigned int flags,
4215 			       const char *name)
4216 {
4217 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4218 
4219 	if (max_active < 1 || max_active > lim)
4220 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4221 			max_active, name, 1, lim);
4222 
4223 	return clamp_val(max_active, 1, lim);
4224 }
4225 
4226 /*
4227  * Workqueues which may be used during memory reclaim should have a rescuer
4228  * to guarantee forward progress.
4229  */
init_rescuer(struct workqueue_struct * wq)4230 static int init_rescuer(struct workqueue_struct *wq)
4231 {
4232 	struct worker *rescuer;
4233 	int ret;
4234 
4235 	if (!(wq->flags & WQ_MEM_RECLAIM))
4236 		return 0;
4237 
4238 	rescuer = alloc_worker(NUMA_NO_NODE);
4239 	if (!rescuer)
4240 		return -ENOMEM;
4241 
4242 	rescuer->rescue_wq = wq;
4243 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4244 	ret = PTR_ERR_OR_ZERO(rescuer->task);
4245 	if (ret) {
4246 		kfree(rescuer);
4247 		return ret;
4248 	}
4249 
4250 	wq->rescuer = rescuer;
4251 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4252 	wake_up_process(rescuer->task);
4253 
4254 	return 0;
4255 }
4256 
4257 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)4258 struct workqueue_struct *alloc_workqueue(const char *fmt,
4259 					 unsigned int flags,
4260 					 int max_active, ...)
4261 {
4262 	size_t tbl_size = 0;
4263 	va_list args;
4264 	struct workqueue_struct *wq;
4265 	struct pool_workqueue *pwq;
4266 
4267 	/*
4268 	 * Unbound && max_active == 1 used to imply ordered, which is no
4269 	 * longer the case on NUMA machines due to per-node pools.  While
4270 	 * alloc_ordered_workqueue() is the right way to create an ordered
4271 	 * workqueue, keep the previous behavior to avoid subtle breakages
4272 	 * on NUMA.
4273 	 */
4274 	if ((flags & WQ_UNBOUND) && max_active == 1)
4275 		flags |= __WQ_ORDERED;
4276 
4277 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4278 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4279 		flags |= WQ_UNBOUND;
4280 
4281 	/* allocate wq and format name */
4282 	if (flags & WQ_UNBOUND)
4283 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4284 
4285 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4286 	if (!wq)
4287 		return NULL;
4288 
4289 	if (flags & WQ_UNBOUND) {
4290 		wq->unbound_attrs = alloc_workqueue_attrs();
4291 		if (!wq->unbound_attrs)
4292 			goto err_free_wq;
4293 	}
4294 
4295 	va_start(args, max_active);
4296 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4297 	va_end(args);
4298 
4299 	max_active = max_active ?: WQ_DFL_ACTIVE;
4300 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4301 
4302 	/* init wq */
4303 	wq->flags = flags;
4304 	wq->saved_max_active = max_active;
4305 	mutex_init(&wq->mutex);
4306 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4307 	INIT_LIST_HEAD(&wq->pwqs);
4308 	INIT_LIST_HEAD(&wq->flusher_queue);
4309 	INIT_LIST_HEAD(&wq->flusher_overflow);
4310 	INIT_LIST_HEAD(&wq->maydays);
4311 
4312 	wq_init_lockdep(wq);
4313 	INIT_LIST_HEAD(&wq->list);
4314 
4315 	if (alloc_and_link_pwqs(wq) < 0)
4316 		goto err_unreg_lockdep;
4317 
4318 	if (wq_online && init_rescuer(wq) < 0)
4319 		goto err_destroy;
4320 
4321 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4322 		goto err_destroy;
4323 
4324 	/*
4325 	 * wq_pool_mutex protects global freeze state and workqueues list.
4326 	 * Grab it, adjust max_active and add the new @wq to workqueues
4327 	 * list.
4328 	 */
4329 	mutex_lock(&wq_pool_mutex);
4330 
4331 	mutex_lock(&wq->mutex);
4332 	for_each_pwq(pwq, wq)
4333 		pwq_adjust_max_active(pwq);
4334 	mutex_unlock(&wq->mutex);
4335 
4336 	list_add_tail_rcu(&wq->list, &workqueues);
4337 
4338 	mutex_unlock(&wq_pool_mutex);
4339 
4340 	return wq;
4341 
4342 err_unreg_lockdep:
4343 	wq_unregister_lockdep(wq);
4344 	wq_free_lockdep(wq);
4345 err_free_wq:
4346 	free_workqueue_attrs(wq->unbound_attrs);
4347 	kfree(wq);
4348 	return NULL;
4349 err_destroy:
4350 	destroy_workqueue(wq);
4351 	return NULL;
4352 }
4353 EXPORT_SYMBOL_GPL(alloc_workqueue);
4354 
4355 /**
4356  * destroy_workqueue - safely terminate a workqueue
4357  * @wq: target workqueue
4358  *
4359  * Safely destroy a workqueue. All work currently pending will be done first.
4360  */
destroy_workqueue(struct workqueue_struct * wq)4361 void destroy_workqueue(struct workqueue_struct *wq)
4362 {
4363 	struct pool_workqueue *pwq;
4364 	int node;
4365 
4366 	/*
4367 	 * Remove it from sysfs first so that sanity check failure doesn't
4368 	 * lead to sysfs name conflicts.
4369 	 */
4370 	workqueue_sysfs_unregister(wq);
4371 
4372 	/* drain it before proceeding with destruction */
4373 	drain_workqueue(wq);
4374 
4375 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4376 	if (wq->rescuer) {
4377 		struct worker *rescuer = wq->rescuer;
4378 
4379 		/* this prevents new queueing */
4380 		spin_lock_irq(&wq_mayday_lock);
4381 		wq->rescuer = NULL;
4382 		spin_unlock_irq(&wq_mayday_lock);
4383 
4384 		/* rescuer will empty maydays list before exiting */
4385 		kthread_stop(rescuer->task);
4386 		kfree(rescuer);
4387 	}
4388 
4389 	/* sanity checks */
4390 	mutex_lock(&wq->mutex);
4391 	for_each_pwq(pwq, wq) {
4392 		int i;
4393 
4394 		for (i = 0; i < WORK_NR_COLORS; i++) {
4395 			if (WARN_ON(pwq->nr_in_flight[i])) {
4396 				mutex_unlock(&wq->mutex);
4397 				show_workqueue_state();
4398 				return;
4399 			}
4400 		}
4401 
4402 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4403 		    WARN_ON(pwq->nr_active) ||
4404 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4405 			mutex_unlock(&wq->mutex);
4406 			show_workqueue_state();
4407 			return;
4408 		}
4409 	}
4410 	mutex_unlock(&wq->mutex);
4411 
4412 	/*
4413 	 * wq list is used to freeze wq, remove from list after
4414 	 * flushing is complete in case freeze races us.
4415 	 */
4416 	mutex_lock(&wq_pool_mutex);
4417 	list_del_rcu(&wq->list);
4418 	mutex_unlock(&wq_pool_mutex);
4419 
4420 	if (!(wq->flags & WQ_UNBOUND)) {
4421 		wq_unregister_lockdep(wq);
4422 		/*
4423 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4424 		 * schedule RCU free.
4425 		 */
4426 		call_rcu(&wq->rcu, rcu_free_wq);
4427 	} else {
4428 		/*
4429 		 * We're the sole accessor of @wq at this point.  Directly
4430 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4431 		 * @wq will be freed when the last pwq is released.
4432 		 */
4433 		for_each_node(node) {
4434 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4435 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4436 			put_pwq_unlocked(pwq);
4437 		}
4438 
4439 		/*
4440 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4441 		 * put.  Don't access it afterwards.
4442 		 */
4443 		pwq = wq->dfl_pwq;
4444 		wq->dfl_pwq = NULL;
4445 		put_pwq_unlocked(pwq);
4446 	}
4447 }
4448 EXPORT_SYMBOL_GPL(destroy_workqueue);
4449 
4450 /**
4451  * workqueue_set_max_active - adjust max_active of a workqueue
4452  * @wq: target workqueue
4453  * @max_active: new max_active value.
4454  *
4455  * Set max_active of @wq to @max_active.
4456  *
4457  * CONTEXT:
4458  * Don't call from IRQ context.
4459  */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)4460 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4461 {
4462 	struct pool_workqueue *pwq;
4463 
4464 	/* disallow meddling with max_active for ordered workqueues */
4465 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4466 		return;
4467 
4468 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4469 
4470 	mutex_lock(&wq->mutex);
4471 
4472 	wq->flags &= ~__WQ_ORDERED;
4473 	wq->saved_max_active = max_active;
4474 
4475 	for_each_pwq(pwq, wq)
4476 		pwq_adjust_max_active(pwq);
4477 
4478 	mutex_unlock(&wq->mutex);
4479 }
4480 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4481 
4482 /**
4483  * current_work - retrieve %current task's work struct
4484  *
4485  * Determine if %current task is a workqueue worker and what it's working on.
4486  * Useful to find out the context that the %current task is running in.
4487  *
4488  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4489  */
current_work(void)4490 struct work_struct *current_work(void)
4491 {
4492 	struct worker *worker = current_wq_worker();
4493 
4494 	return worker ? worker->current_work : NULL;
4495 }
4496 EXPORT_SYMBOL(current_work);
4497 
4498 /**
4499  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4500  *
4501  * Determine whether %current is a workqueue rescuer.  Can be used from
4502  * work functions to determine whether it's being run off the rescuer task.
4503  *
4504  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4505  */
current_is_workqueue_rescuer(void)4506 bool current_is_workqueue_rescuer(void)
4507 {
4508 	struct worker *worker = current_wq_worker();
4509 
4510 	return worker && worker->rescue_wq;
4511 }
4512 
4513 /**
4514  * workqueue_congested - test whether a workqueue is congested
4515  * @cpu: CPU in question
4516  * @wq: target workqueue
4517  *
4518  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4519  * no synchronization around this function and the test result is
4520  * unreliable and only useful as advisory hints or for debugging.
4521  *
4522  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4523  * Note that both per-cpu and unbound workqueues may be associated with
4524  * multiple pool_workqueues which have separate congested states.  A
4525  * workqueue being congested on one CPU doesn't mean the workqueue is also
4526  * contested on other CPUs / NUMA nodes.
4527  *
4528  * Return:
4529  * %true if congested, %false otherwise.
4530  */
workqueue_congested(int cpu,struct workqueue_struct * wq)4531 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4532 {
4533 	struct pool_workqueue *pwq;
4534 	bool ret;
4535 
4536 	rcu_read_lock();
4537 	preempt_disable();
4538 
4539 	if (cpu == WORK_CPU_UNBOUND)
4540 		cpu = smp_processor_id();
4541 
4542 	if (!(wq->flags & WQ_UNBOUND))
4543 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4544 	else
4545 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4546 
4547 	ret = !list_empty(&pwq->delayed_works);
4548 	preempt_enable();
4549 	rcu_read_unlock();
4550 
4551 	return ret;
4552 }
4553 EXPORT_SYMBOL_GPL(workqueue_congested);
4554 
4555 /**
4556  * work_busy - test whether a work is currently pending or running
4557  * @work: the work to be tested
4558  *
4559  * Test whether @work is currently pending or running.  There is no
4560  * synchronization around this function and the test result is
4561  * unreliable and only useful as advisory hints or for debugging.
4562  *
4563  * Return:
4564  * OR'd bitmask of WORK_BUSY_* bits.
4565  */
work_busy(struct work_struct * work)4566 unsigned int work_busy(struct work_struct *work)
4567 {
4568 	struct worker_pool *pool;
4569 	unsigned long flags;
4570 	unsigned int ret = 0;
4571 
4572 	if (work_pending(work))
4573 		ret |= WORK_BUSY_PENDING;
4574 
4575 	rcu_read_lock();
4576 	pool = get_work_pool(work);
4577 	if (pool) {
4578 		spin_lock_irqsave(&pool->lock, flags);
4579 		if (find_worker_executing_work(pool, work))
4580 			ret |= WORK_BUSY_RUNNING;
4581 		spin_unlock_irqrestore(&pool->lock, flags);
4582 	}
4583 	rcu_read_unlock();
4584 
4585 	return ret;
4586 }
4587 EXPORT_SYMBOL_GPL(work_busy);
4588 
4589 /**
4590  * set_worker_desc - set description for the current work item
4591  * @fmt: printf-style format string
4592  * @...: arguments for the format string
4593  *
4594  * This function can be called by a running work function to describe what
4595  * the work item is about.  If the worker task gets dumped, this
4596  * information will be printed out together to help debugging.  The
4597  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4598  */
set_worker_desc(const char * fmt,...)4599 void set_worker_desc(const char *fmt, ...)
4600 {
4601 	struct worker *worker = current_wq_worker();
4602 	va_list args;
4603 
4604 	if (worker) {
4605 		va_start(args, fmt);
4606 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4607 		va_end(args);
4608 	}
4609 }
4610 EXPORT_SYMBOL_GPL(set_worker_desc);
4611 
4612 /**
4613  * print_worker_info - print out worker information and description
4614  * @log_lvl: the log level to use when printing
4615  * @task: target task
4616  *
4617  * If @task is a worker and currently executing a work item, print out the
4618  * name of the workqueue being serviced and worker description set with
4619  * set_worker_desc() by the currently executing work item.
4620  *
4621  * This function can be safely called on any task as long as the
4622  * task_struct itself is accessible.  While safe, this function isn't
4623  * synchronized and may print out mixups or garbages of limited length.
4624  */
print_worker_info(const char * log_lvl,struct task_struct * task)4625 void print_worker_info(const char *log_lvl, struct task_struct *task)
4626 {
4627 	work_func_t *fn = NULL;
4628 	char name[WQ_NAME_LEN] = { };
4629 	char desc[WORKER_DESC_LEN] = { };
4630 	struct pool_workqueue *pwq = NULL;
4631 	struct workqueue_struct *wq = NULL;
4632 	struct worker *worker;
4633 
4634 	if (!(task->flags & PF_WQ_WORKER))
4635 		return;
4636 
4637 	/*
4638 	 * This function is called without any synchronization and @task
4639 	 * could be in any state.  Be careful with dereferences.
4640 	 */
4641 	worker = kthread_probe_data(task);
4642 
4643 	/*
4644 	 * Carefully copy the associated workqueue's workfn, name and desc.
4645 	 * Keep the original last '\0' in case the original is garbage.
4646 	 */
4647 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4648 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4649 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4650 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4651 	probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4652 
4653 	if (fn || name[0] || desc[0]) {
4654 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4655 		if (strcmp(name, desc))
4656 			pr_cont(" (%s)", desc);
4657 		pr_cont("\n");
4658 	}
4659 }
4660 
pr_cont_pool_info(struct worker_pool * pool)4661 static void pr_cont_pool_info(struct worker_pool *pool)
4662 {
4663 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4664 	if (pool->node != NUMA_NO_NODE)
4665 		pr_cont(" node=%d", pool->node);
4666 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4667 }
4668 
pr_cont_work(bool comma,struct work_struct * work)4669 static void pr_cont_work(bool comma, struct work_struct *work)
4670 {
4671 	if (work->func == wq_barrier_func) {
4672 		struct wq_barrier *barr;
4673 
4674 		barr = container_of(work, struct wq_barrier, work);
4675 
4676 		pr_cont("%s BAR(%d)", comma ? "," : "",
4677 			task_pid_nr(barr->task));
4678 	} else {
4679 		pr_cont("%s %ps", comma ? "," : "", work->func);
4680 	}
4681 }
4682 
show_pwq(struct pool_workqueue * pwq)4683 static void show_pwq(struct pool_workqueue *pwq)
4684 {
4685 	struct worker_pool *pool = pwq->pool;
4686 	struct work_struct *work;
4687 	struct worker *worker;
4688 	bool has_in_flight = false, has_pending = false;
4689 	int bkt;
4690 
4691 	pr_info("  pwq %d:", pool->id);
4692 	pr_cont_pool_info(pool);
4693 
4694 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4695 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4696 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4697 
4698 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4699 		if (worker->current_pwq == pwq) {
4700 			has_in_flight = true;
4701 			break;
4702 		}
4703 	}
4704 	if (has_in_flight) {
4705 		bool comma = false;
4706 
4707 		pr_info("    in-flight:");
4708 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4709 			if (worker->current_pwq != pwq)
4710 				continue;
4711 
4712 			pr_cont("%s %d%s:%ps", comma ? "," : "",
4713 				task_pid_nr(worker->task),
4714 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4715 				worker->current_func);
4716 			list_for_each_entry(work, &worker->scheduled, entry)
4717 				pr_cont_work(false, work);
4718 			comma = true;
4719 		}
4720 		pr_cont("\n");
4721 	}
4722 
4723 	list_for_each_entry(work, &pool->worklist, entry) {
4724 		if (get_work_pwq(work) == pwq) {
4725 			has_pending = true;
4726 			break;
4727 		}
4728 	}
4729 	if (has_pending) {
4730 		bool comma = false;
4731 
4732 		pr_info("    pending:");
4733 		list_for_each_entry(work, &pool->worklist, entry) {
4734 			if (get_work_pwq(work) != pwq)
4735 				continue;
4736 
4737 			pr_cont_work(comma, work);
4738 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4739 		}
4740 		pr_cont("\n");
4741 	}
4742 
4743 	if (!list_empty(&pwq->delayed_works)) {
4744 		bool comma = false;
4745 
4746 		pr_info("    delayed:");
4747 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4748 			pr_cont_work(comma, work);
4749 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4750 		}
4751 		pr_cont("\n");
4752 	}
4753 }
4754 
4755 /**
4756  * show_workqueue_state - dump workqueue state
4757  *
4758  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4759  * all busy workqueues and pools.
4760  */
show_workqueue_state(void)4761 void show_workqueue_state(void)
4762 {
4763 	struct workqueue_struct *wq;
4764 	struct worker_pool *pool;
4765 	unsigned long flags;
4766 	int pi;
4767 
4768 	rcu_read_lock();
4769 
4770 	pr_info("Showing busy workqueues and worker pools:\n");
4771 
4772 	list_for_each_entry_rcu(wq, &workqueues, list) {
4773 		struct pool_workqueue *pwq;
4774 		bool idle = true;
4775 
4776 		for_each_pwq(pwq, wq) {
4777 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4778 				idle = false;
4779 				break;
4780 			}
4781 		}
4782 		if (idle)
4783 			continue;
4784 
4785 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4786 
4787 		for_each_pwq(pwq, wq) {
4788 			spin_lock_irqsave(&pwq->pool->lock, flags);
4789 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4790 				show_pwq(pwq);
4791 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4792 			/*
4793 			 * We could be printing a lot from atomic context, e.g.
4794 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4795 			 * hard lockup.
4796 			 */
4797 			touch_nmi_watchdog();
4798 		}
4799 	}
4800 
4801 	for_each_pool(pool, pi) {
4802 		struct worker *worker;
4803 		bool first = true;
4804 
4805 		spin_lock_irqsave(&pool->lock, flags);
4806 		if (pool->nr_workers == pool->nr_idle)
4807 			goto next_pool;
4808 
4809 		pr_info("pool %d:", pool->id);
4810 		pr_cont_pool_info(pool);
4811 		pr_cont(" hung=%us workers=%d",
4812 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4813 			pool->nr_workers);
4814 		if (pool->manager)
4815 			pr_cont(" manager: %d",
4816 				task_pid_nr(pool->manager->task));
4817 		list_for_each_entry(worker, &pool->idle_list, entry) {
4818 			pr_cont(" %s%d", first ? "idle: " : "",
4819 				task_pid_nr(worker->task));
4820 			first = false;
4821 		}
4822 		pr_cont("\n");
4823 	next_pool:
4824 		spin_unlock_irqrestore(&pool->lock, flags);
4825 		/*
4826 		 * We could be printing a lot from atomic context, e.g.
4827 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4828 		 * hard lockup.
4829 		 */
4830 		touch_nmi_watchdog();
4831 	}
4832 
4833 	rcu_read_unlock();
4834 }
4835 
4836 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)4837 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4838 {
4839 	int off;
4840 
4841 	/* always show the actual comm */
4842 	off = strscpy(buf, task->comm, size);
4843 	if (off < 0)
4844 		return;
4845 
4846 	/* stabilize PF_WQ_WORKER and worker pool association */
4847 	mutex_lock(&wq_pool_attach_mutex);
4848 
4849 	if (task->flags & PF_WQ_WORKER) {
4850 		struct worker *worker = kthread_data(task);
4851 		struct worker_pool *pool = worker->pool;
4852 
4853 		if (pool) {
4854 			spin_lock_irq(&pool->lock);
4855 			/*
4856 			 * ->desc tracks information (wq name or
4857 			 * set_worker_desc()) for the latest execution.  If
4858 			 * current, prepend '+', otherwise '-'.
4859 			 */
4860 			if (worker->desc[0] != '\0') {
4861 				if (worker->current_work)
4862 					scnprintf(buf + off, size - off, "+%s",
4863 						  worker->desc);
4864 				else
4865 					scnprintf(buf + off, size - off, "-%s",
4866 						  worker->desc);
4867 			}
4868 			spin_unlock_irq(&pool->lock);
4869 		}
4870 	}
4871 
4872 	mutex_unlock(&wq_pool_attach_mutex);
4873 }
4874 
4875 #ifdef CONFIG_SMP
4876 
4877 /*
4878  * CPU hotplug.
4879  *
4880  * There are two challenges in supporting CPU hotplug.  Firstly, there
4881  * are a lot of assumptions on strong associations among work, pwq and
4882  * pool which make migrating pending and scheduled works very
4883  * difficult to implement without impacting hot paths.  Secondly,
4884  * worker pools serve mix of short, long and very long running works making
4885  * blocked draining impractical.
4886  *
4887  * This is solved by allowing the pools to be disassociated from the CPU
4888  * running as an unbound one and allowing it to be reattached later if the
4889  * cpu comes back online.
4890  */
4891 
unbind_workers(int cpu)4892 static void unbind_workers(int cpu)
4893 {
4894 	struct worker_pool *pool;
4895 	struct worker *worker;
4896 
4897 	for_each_cpu_worker_pool(pool, cpu) {
4898 		mutex_lock(&wq_pool_attach_mutex);
4899 		spin_lock_irq(&pool->lock);
4900 
4901 		/*
4902 		 * We've blocked all attach/detach operations. Make all workers
4903 		 * unbound and set DISASSOCIATED.  Before this, all workers
4904 		 * except for the ones which are still executing works from
4905 		 * before the last CPU down must be on the cpu.  After
4906 		 * this, they may become diasporas.
4907 		 */
4908 		for_each_pool_worker(worker, pool)
4909 			worker->flags |= WORKER_UNBOUND;
4910 
4911 		pool->flags |= POOL_DISASSOCIATED;
4912 
4913 		spin_unlock_irq(&pool->lock);
4914 		mutex_unlock(&wq_pool_attach_mutex);
4915 
4916 		/*
4917 		 * Call schedule() so that we cross rq->lock and thus can
4918 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4919 		 * This is necessary as scheduler callbacks may be invoked
4920 		 * from other cpus.
4921 		 */
4922 		schedule();
4923 
4924 		/*
4925 		 * Sched callbacks are disabled now.  Zap nr_running.
4926 		 * After this, nr_running stays zero and need_more_worker()
4927 		 * and keep_working() are always true as long as the
4928 		 * worklist is not empty.  This pool now behaves as an
4929 		 * unbound (in terms of concurrency management) pool which
4930 		 * are served by workers tied to the pool.
4931 		 */
4932 		atomic_set(&pool->nr_running, 0);
4933 
4934 		/*
4935 		 * With concurrency management just turned off, a busy
4936 		 * worker blocking could lead to lengthy stalls.  Kick off
4937 		 * unbound chain execution of currently pending work items.
4938 		 */
4939 		spin_lock_irq(&pool->lock);
4940 		wake_up_worker(pool);
4941 		spin_unlock_irq(&pool->lock);
4942 	}
4943 }
4944 
4945 /**
4946  * rebind_workers - rebind all workers of a pool to the associated CPU
4947  * @pool: pool of interest
4948  *
4949  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4950  */
rebind_workers(struct worker_pool * pool)4951 static void rebind_workers(struct worker_pool *pool)
4952 {
4953 	struct worker *worker;
4954 
4955 	lockdep_assert_held(&wq_pool_attach_mutex);
4956 
4957 	/*
4958 	 * Restore CPU affinity of all workers.  As all idle workers should
4959 	 * be on the run-queue of the associated CPU before any local
4960 	 * wake-ups for concurrency management happen, restore CPU affinity
4961 	 * of all workers first and then clear UNBOUND.  As we're called
4962 	 * from CPU_ONLINE, the following shouldn't fail.
4963 	 */
4964 	for_each_pool_worker(worker, pool)
4965 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4966 						  pool->attrs->cpumask) < 0);
4967 
4968 	spin_lock_irq(&pool->lock);
4969 
4970 	pool->flags &= ~POOL_DISASSOCIATED;
4971 
4972 	for_each_pool_worker(worker, pool) {
4973 		unsigned int worker_flags = worker->flags;
4974 
4975 		/*
4976 		 * A bound idle worker should actually be on the runqueue
4977 		 * of the associated CPU for local wake-ups targeting it to
4978 		 * work.  Kick all idle workers so that they migrate to the
4979 		 * associated CPU.  Doing this in the same loop as
4980 		 * replacing UNBOUND with REBOUND is safe as no worker will
4981 		 * be bound before @pool->lock is released.
4982 		 */
4983 		if (worker_flags & WORKER_IDLE)
4984 			wake_up_process(worker->task);
4985 
4986 		/*
4987 		 * We want to clear UNBOUND but can't directly call
4988 		 * worker_clr_flags() or adjust nr_running.  Atomically
4989 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4990 		 * @worker will clear REBOUND using worker_clr_flags() when
4991 		 * it initiates the next execution cycle thus restoring
4992 		 * concurrency management.  Note that when or whether
4993 		 * @worker clears REBOUND doesn't affect correctness.
4994 		 *
4995 		 * WRITE_ONCE() is necessary because @worker->flags may be
4996 		 * tested without holding any lock in
4997 		 * wq_worker_running().  Without it, NOT_RUNNING test may
4998 		 * fail incorrectly leading to premature concurrency
4999 		 * management operations.
5000 		 */
5001 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5002 		worker_flags |= WORKER_REBOUND;
5003 		worker_flags &= ~WORKER_UNBOUND;
5004 		WRITE_ONCE(worker->flags, worker_flags);
5005 	}
5006 
5007 	spin_unlock_irq(&pool->lock);
5008 }
5009 
5010 /**
5011  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5012  * @pool: unbound pool of interest
5013  * @cpu: the CPU which is coming up
5014  *
5015  * An unbound pool may end up with a cpumask which doesn't have any online
5016  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5017  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5018  * online CPU before, cpus_allowed of all its workers should be restored.
5019  */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)5020 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5021 {
5022 	static cpumask_t cpumask;
5023 	struct worker *worker;
5024 
5025 	lockdep_assert_held(&wq_pool_attach_mutex);
5026 
5027 	/* is @cpu allowed for @pool? */
5028 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5029 		return;
5030 
5031 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5032 
5033 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5034 	for_each_pool_worker(worker, pool)
5035 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5036 }
5037 
workqueue_prepare_cpu(unsigned int cpu)5038 int workqueue_prepare_cpu(unsigned int cpu)
5039 {
5040 	struct worker_pool *pool;
5041 
5042 	for_each_cpu_worker_pool(pool, cpu) {
5043 		if (pool->nr_workers)
5044 			continue;
5045 		if (!create_worker(pool))
5046 			return -ENOMEM;
5047 	}
5048 	return 0;
5049 }
5050 
workqueue_online_cpu(unsigned int cpu)5051 int workqueue_online_cpu(unsigned int cpu)
5052 {
5053 	struct worker_pool *pool;
5054 	struct workqueue_struct *wq;
5055 	int pi;
5056 
5057 	mutex_lock(&wq_pool_mutex);
5058 
5059 	for_each_pool(pool, pi) {
5060 		mutex_lock(&wq_pool_attach_mutex);
5061 
5062 		if (pool->cpu == cpu)
5063 			rebind_workers(pool);
5064 		else if (pool->cpu < 0)
5065 			restore_unbound_workers_cpumask(pool, cpu);
5066 
5067 		mutex_unlock(&wq_pool_attach_mutex);
5068 	}
5069 
5070 	/* update NUMA affinity of unbound workqueues */
5071 	list_for_each_entry(wq, &workqueues, list)
5072 		wq_update_unbound_numa(wq, cpu, true);
5073 
5074 	mutex_unlock(&wq_pool_mutex);
5075 	return 0;
5076 }
5077 
workqueue_offline_cpu(unsigned int cpu)5078 int workqueue_offline_cpu(unsigned int cpu)
5079 {
5080 	struct workqueue_struct *wq;
5081 
5082 	/* unbinding per-cpu workers should happen on the local CPU */
5083 	if (WARN_ON(cpu != smp_processor_id()))
5084 		return -1;
5085 
5086 	unbind_workers(cpu);
5087 
5088 	/* update NUMA affinity of unbound workqueues */
5089 	mutex_lock(&wq_pool_mutex);
5090 	list_for_each_entry(wq, &workqueues, list)
5091 		wq_update_unbound_numa(wq, cpu, false);
5092 	mutex_unlock(&wq_pool_mutex);
5093 
5094 	return 0;
5095 }
5096 
5097 struct work_for_cpu {
5098 	struct work_struct work;
5099 	long (*fn)(void *);
5100 	void *arg;
5101 	long ret;
5102 };
5103 
work_for_cpu_fn(struct work_struct * work)5104 static void work_for_cpu_fn(struct work_struct *work)
5105 {
5106 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5107 
5108 	wfc->ret = wfc->fn(wfc->arg);
5109 }
5110 
5111 /**
5112  * work_on_cpu - run a function in thread context on a particular cpu
5113  * @cpu: the cpu to run on
5114  * @fn: the function to run
5115  * @arg: the function arg
5116  *
5117  * It is up to the caller to ensure that the cpu doesn't go offline.
5118  * The caller must not hold any locks which would prevent @fn from completing.
5119  *
5120  * Return: The value @fn returns.
5121  */
work_on_cpu(int cpu,long (* fn)(void *),void * arg)5122 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5123 {
5124 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5125 
5126 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5127 	schedule_work_on(cpu, &wfc.work);
5128 	flush_work(&wfc.work);
5129 	destroy_work_on_stack(&wfc.work);
5130 	return wfc.ret;
5131 }
5132 EXPORT_SYMBOL_GPL(work_on_cpu);
5133 
5134 /**
5135  * work_on_cpu_safe - run a function in thread context on a particular cpu
5136  * @cpu: the cpu to run on
5137  * @fn:  the function to run
5138  * @arg: the function argument
5139  *
5140  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5141  * any locks which would prevent @fn from completing.
5142  *
5143  * Return: The value @fn returns.
5144  */
work_on_cpu_safe(int cpu,long (* fn)(void *),void * arg)5145 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5146 {
5147 	long ret = -ENODEV;
5148 
5149 	get_online_cpus();
5150 	if (cpu_online(cpu))
5151 		ret = work_on_cpu(cpu, fn, arg);
5152 	put_online_cpus();
5153 	return ret;
5154 }
5155 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5156 #endif /* CONFIG_SMP */
5157 
5158 #ifdef CONFIG_FREEZER
5159 
5160 /**
5161  * freeze_workqueues_begin - begin freezing workqueues
5162  *
5163  * Start freezing workqueues.  After this function returns, all freezable
5164  * workqueues will queue new works to their delayed_works list instead of
5165  * pool->worklist.
5166  *
5167  * CONTEXT:
5168  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5169  */
freeze_workqueues_begin(void)5170 void freeze_workqueues_begin(void)
5171 {
5172 	struct workqueue_struct *wq;
5173 	struct pool_workqueue *pwq;
5174 
5175 	mutex_lock(&wq_pool_mutex);
5176 
5177 	WARN_ON_ONCE(workqueue_freezing);
5178 	workqueue_freezing = true;
5179 
5180 	list_for_each_entry(wq, &workqueues, list) {
5181 		mutex_lock(&wq->mutex);
5182 		for_each_pwq(pwq, wq)
5183 			pwq_adjust_max_active(pwq);
5184 		mutex_unlock(&wq->mutex);
5185 	}
5186 
5187 	mutex_unlock(&wq_pool_mutex);
5188 }
5189 
5190 /**
5191  * freeze_workqueues_busy - are freezable workqueues still busy?
5192  *
5193  * Check whether freezing is complete.  This function must be called
5194  * between freeze_workqueues_begin() and thaw_workqueues().
5195  *
5196  * CONTEXT:
5197  * Grabs and releases wq_pool_mutex.
5198  *
5199  * Return:
5200  * %true if some freezable workqueues are still busy.  %false if freezing
5201  * is complete.
5202  */
freeze_workqueues_busy(void)5203 bool freeze_workqueues_busy(void)
5204 {
5205 	bool busy = false;
5206 	struct workqueue_struct *wq;
5207 	struct pool_workqueue *pwq;
5208 
5209 	mutex_lock(&wq_pool_mutex);
5210 
5211 	WARN_ON_ONCE(!workqueue_freezing);
5212 
5213 	list_for_each_entry(wq, &workqueues, list) {
5214 		if (!(wq->flags & WQ_FREEZABLE))
5215 			continue;
5216 		/*
5217 		 * nr_active is monotonically decreasing.  It's safe
5218 		 * to peek without lock.
5219 		 */
5220 		rcu_read_lock();
5221 		for_each_pwq(pwq, wq) {
5222 			WARN_ON_ONCE(pwq->nr_active < 0);
5223 			if (pwq->nr_active) {
5224 				busy = true;
5225 				rcu_read_unlock();
5226 				goto out_unlock;
5227 			}
5228 		}
5229 		rcu_read_unlock();
5230 	}
5231 out_unlock:
5232 	mutex_unlock(&wq_pool_mutex);
5233 	return busy;
5234 }
5235 
5236 /**
5237  * thaw_workqueues - thaw workqueues
5238  *
5239  * Thaw workqueues.  Normal queueing is restored and all collected
5240  * frozen works are transferred to their respective pool worklists.
5241  *
5242  * CONTEXT:
5243  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5244  */
thaw_workqueues(void)5245 void thaw_workqueues(void)
5246 {
5247 	struct workqueue_struct *wq;
5248 	struct pool_workqueue *pwq;
5249 
5250 	mutex_lock(&wq_pool_mutex);
5251 
5252 	if (!workqueue_freezing)
5253 		goto out_unlock;
5254 
5255 	workqueue_freezing = false;
5256 
5257 	/* restore max_active and repopulate worklist */
5258 	list_for_each_entry(wq, &workqueues, list) {
5259 		mutex_lock(&wq->mutex);
5260 		for_each_pwq(pwq, wq)
5261 			pwq_adjust_max_active(pwq);
5262 		mutex_unlock(&wq->mutex);
5263 	}
5264 
5265 out_unlock:
5266 	mutex_unlock(&wq_pool_mutex);
5267 }
5268 #endif /* CONFIG_FREEZER */
5269 
workqueue_apply_unbound_cpumask(void)5270 static int workqueue_apply_unbound_cpumask(void)
5271 {
5272 	LIST_HEAD(ctxs);
5273 	int ret = 0;
5274 	struct workqueue_struct *wq;
5275 	struct apply_wqattrs_ctx *ctx, *n;
5276 
5277 	lockdep_assert_held(&wq_pool_mutex);
5278 
5279 	list_for_each_entry(wq, &workqueues, list) {
5280 		if (!(wq->flags & WQ_UNBOUND))
5281 			continue;
5282 
5283 		/* creating multiple pwqs breaks ordering guarantee */
5284 		if (!list_empty(&wq->pwqs)) {
5285 			if (wq->flags & __WQ_ORDERED_EXPLICIT)
5286 				continue;
5287 			wq->flags &= ~__WQ_ORDERED;
5288 		}
5289 
5290 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5291 		if (!ctx) {
5292 			ret = -ENOMEM;
5293 			break;
5294 		}
5295 
5296 		list_add_tail(&ctx->list, &ctxs);
5297 	}
5298 
5299 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5300 		if (!ret)
5301 			apply_wqattrs_commit(ctx);
5302 		apply_wqattrs_cleanup(ctx);
5303 	}
5304 
5305 	return ret;
5306 }
5307 
5308 /**
5309  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5310  *  @cpumask: the cpumask to set
5311  *
5312  *  The low-level workqueues cpumask is a global cpumask that limits
5313  *  the affinity of all unbound workqueues.  This function check the @cpumask
5314  *  and apply it to all unbound workqueues and updates all pwqs of them.
5315  *
5316  *  Retun:	0	- Success
5317  *  		-EINVAL	- Invalid @cpumask
5318  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5319  */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)5320 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5321 {
5322 	int ret = -EINVAL;
5323 	cpumask_var_t saved_cpumask;
5324 
5325 	/*
5326 	 * Not excluding isolated cpus on purpose.
5327 	 * If the user wishes to include them, we allow that.
5328 	 */
5329 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5330 	if (!cpumask_empty(cpumask)) {
5331 		apply_wqattrs_lock();
5332 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5333 			ret = 0;
5334 			goto out_unlock;
5335 		}
5336 
5337 		if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5338 			ret = -ENOMEM;
5339 			goto out_unlock;
5340 		}
5341 
5342 		/* save the old wq_unbound_cpumask. */
5343 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5344 
5345 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5346 		cpumask_copy(wq_unbound_cpumask, cpumask);
5347 		ret = workqueue_apply_unbound_cpumask();
5348 
5349 		/* restore the wq_unbound_cpumask when failed. */
5350 		if (ret < 0)
5351 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5352 
5353 		free_cpumask_var(saved_cpumask);
5354 out_unlock:
5355 		apply_wqattrs_unlock();
5356 	}
5357 
5358 	return ret;
5359 }
5360 
5361 #ifdef CONFIG_SYSFS
5362 /*
5363  * Workqueues with WQ_SYSFS flag set is visible to userland via
5364  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5365  * following attributes.
5366  *
5367  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5368  *  max_active	RW int	: maximum number of in-flight work items
5369  *
5370  * Unbound workqueues have the following extra attributes.
5371  *
5372  *  pool_ids	RO int	: the associated pool IDs for each node
5373  *  nice	RW int	: nice value of the workers
5374  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5375  *  numa	RW bool	: whether enable NUMA affinity
5376  */
5377 struct wq_device {
5378 	struct workqueue_struct		*wq;
5379 	struct device			dev;
5380 };
5381 
dev_to_wq(struct device * dev)5382 static struct workqueue_struct *dev_to_wq(struct device *dev)
5383 {
5384 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5385 
5386 	return wq_dev->wq;
5387 }
5388 
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)5389 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5390 			    char *buf)
5391 {
5392 	struct workqueue_struct *wq = dev_to_wq(dev);
5393 
5394 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5395 }
5396 static DEVICE_ATTR_RO(per_cpu);
5397 
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)5398 static ssize_t max_active_show(struct device *dev,
5399 			       struct device_attribute *attr, char *buf)
5400 {
5401 	struct workqueue_struct *wq = dev_to_wq(dev);
5402 
5403 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5404 }
5405 
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5406 static ssize_t max_active_store(struct device *dev,
5407 				struct device_attribute *attr, const char *buf,
5408 				size_t count)
5409 {
5410 	struct workqueue_struct *wq = dev_to_wq(dev);
5411 	int val;
5412 
5413 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5414 		return -EINVAL;
5415 
5416 	workqueue_set_max_active(wq, val);
5417 	return count;
5418 }
5419 static DEVICE_ATTR_RW(max_active);
5420 
5421 static struct attribute *wq_sysfs_attrs[] = {
5422 	&dev_attr_per_cpu.attr,
5423 	&dev_attr_max_active.attr,
5424 	NULL,
5425 };
5426 ATTRIBUTE_GROUPS(wq_sysfs);
5427 
wq_pool_ids_show(struct device * dev,struct device_attribute * attr,char * buf)5428 static ssize_t wq_pool_ids_show(struct device *dev,
5429 				struct device_attribute *attr, char *buf)
5430 {
5431 	struct workqueue_struct *wq = dev_to_wq(dev);
5432 	const char *delim = "";
5433 	int node, written = 0;
5434 
5435 	get_online_cpus();
5436 	rcu_read_lock();
5437 	for_each_node(node) {
5438 		written += scnprintf(buf + written, PAGE_SIZE - written,
5439 				     "%s%d:%d", delim, node,
5440 				     unbound_pwq_by_node(wq, node)->pool->id);
5441 		delim = " ";
5442 	}
5443 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5444 	rcu_read_unlock();
5445 	put_online_cpus();
5446 
5447 	return written;
5448 }
5449 
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)5450 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5451 			    char *buf)
5452 {
5453 	struct workqueue_struct *wq = dev_to_wq(dev);
5454 	int written;
5455 
5456 	mutex_lock(&wq->mutex);
5457 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5458 	mutex_unlock(&wq->mutex);
5459 
5460 	return written;
5461 }
5462 
5463 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)5464 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5465 {
5466 	struct workqueue_attrs *attrs;
5467 
5468 	lockdep_assert_held(&wq_pool_mutex);
5469 
5470 	attrs = alloc_workqueue_attrs();
5471 	if (!attrs)
5472 		return NULL;
5473 
5474 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5475 	return attrs;
5476 }
5477 
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5478 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5479 			     const char *buf, size_t count)
5480 {
5481 	struct workqueue_struct *wq = dev_to_wq(dev);
5482 	struct workqueue_attrs *attrs;
5483 	int ret = -ENOMEM;
5484 
5485 	apply_wqattrs_lock();
5486 
5487 	attrs = wq_sysfs_prep_attrs(wq);
5488 	if (!attrs)
5489 		goto out_unlock;
5490 
5491 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5492 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5493 		ret = apply_workqueue_attrs_locked(wq, attrs);
5494 	else
5495 		ret = -EINVAL;
5496 
5497 out_unlock:
5498 	apply_wqattrs_unlock();
5499 	free_workqueue_attrs(attrs);
5500 	return ret ?: count;
5501 }
5502 
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5503 static ssize_t wq_cpumask_show(struct device *dev,
5504 			       struct device_attribute *attr, char *buf)
5505 {
5506 	struct workqueue_struct *wq = dev_to_wq(dev);
5507 	int written;
5508 
5509 	mutex_lock(&wq->mutex);
5510 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5511 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5512 	mutex_unlock(&wq->mutex);
5513 	return written;
5514 }
5515 
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5516 static ssize_t wq_cpumask_store(struct device *dev,
5517 				struct device_attribute *attr,
5518 				const char *buf, size_t count)
5519 {
5520 	struct workqueue_struct *wq = dev_to_wq(dev);
5521 	struct workqueue_attrs *attrs;
5522 	int ret = -ENOMEM;
5523 
5524 	apply_wqattrs_lock();
5525 
5526 	attrs = wq_sysfs_prep_attrs(wq);
5527 	if (!attrs)
5528 		goto out_unlock;
5529 
5530 	ret = cpumask_parse(buf, attrs->cpumask);
5531 	if (!ret)
5532 		ret = apply_workqueue_attrs_locked(wq, attrs);
5533 
5534 out_unlock:
5535 	apply_wqattrs_unlock();
5536 	free_workqueue_attrs(attrs);
5537 	return ret ?: count;
5538 }
5539 
wq_numa_show(struct device * dev,struct device_attribute * attr,char * buf)5540 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5541 			    char *buf)
5542 {
5543 	struct workqueue_struct *wq = dev_to_wq(dev);
5544 	int written;
5545 
5546 	mutex_lock(&wq->mutex);
5547 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5548 			    !wq->unbound_attrs->no_numa);
5549 	mutex_unlock(&wq->mutex);
5550 
5551 	return written;
5552 }
5553 
wq_numa_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5554 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5555 			     const char *buf, size_t count)
5556 {
5557 	struct workqueue_struct *wq = dev_to_wq(dev);
5558 	struct workqueue_attrs *attrs;
5559 	int v, ret = -ENOMEM;
5560 
5561 	apply_wqattrs_lock();
5562 
5563 	attrs = wq_sysfs_prep_attrs(wq);
5564 	if (!attrs)
5565 		goto out_unlock;
5566 
5567 	ret = -EINVAL;
5568 	if (sscanf(buf, "%d", &v) == 1) {
5569 		attrs->no_numa = !v;
5570 		ret = apply_workqueue_attrs_locked(wq, attrs);
5571 	}
5572 
5573 out_unlock:
5574 	apply_wqattrs_unlock();
5575 	free_workqueue_attrs(attrs);
5576 	return ret ?: count;
5577 }
5578 
5579 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5580 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5581 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5582 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5583 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5584 	__ATTR_NULL,
5585 };
5586 
5587 static struct bus_type wq_subsys = {
5588 	.name				= "workqueue",
5589 	.dev_groups			= wq_sysfs_groups,
5590 };
5591 
wq_unbound_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5592 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5593 		struct device_attribute *attr, char *buf)
5594 {
5595 	int written;
5596 
5597 	mutex_lock(&wq_pool_mutex);
5598 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5599 			    cpumask_pr_args(wq_unbound_cpumask));
5600 	mutex_unlock(&wq_pool_mutex);
5601 
5602 	return written;
5603 }
5604 
wq_unbound_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5605 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5606 		struct device_attribute *attr, const char *buf, size_t count)
5607 {
5608 	cpumask_var_t cpumask;
5609 	int ret;
5610 
5611 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5612 		return -ENOMEM;
5613 
5614 	ret = cpumask_parse(buf, cpumask);
5615 	if (!ret)
5616 		ret = workqueue_set_unbound_cpumask(cpumask);
5617 
5618 	free_cpumask_var(cpumask);
5619 	return ret ? ret : count;
5620 }
5621 
5622 static struct device_attribute wq_sysfs_cpumask_attr =
5623 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5624 	       wq_unbound_cpumask_store);
5625 
wq_sysfs_init(void)5626 static int __init wq_sysfs_init(void)
5627 {
5628 	int err;
5629 
5630 	err = subsys_virtual_register(&wq_subsys, NULL);
5631 	if (err)
5632 		return err;
5633 
5634 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5635 }
5636 core_initcall(wq_sysfs_init);
5637 
wq_device_release(struct device * dev)5638 static void wq_device_release(struct device *dev)
5639 {
5640 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5641 
5642 	kfree(wq_dev);
5643 }
5644 
5645 /**
5646  * workqueue_sysfs_register - make a workqueue visible in sysfs
5647  * @wq: the workqueue to register
5648  *
5649  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5650  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5651  * which is the preferred method.
5652  *
5653  * Workqueue user should use this function directly iff it wants to apply
5654  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5655  * apply_workqueue_attrs() may race against userland updating the
5656  * attributes.
5657  *
5658  * Return: 0 on success, -errno on failure.
5659  */
workqueue_sysfs_register(struct workqueue_struct * wq)5660 int workqueue_sysfs_register(struct workqueue_struct *wq)
5661 {
5662 	struct wq_device *wq_dev;
5663 	int ret;
5664 
5665 	/*
5666 	 * Adjusting max_active or creating new pwqs by applying
5667 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5668 	 * workqueues.
5669 	 */
5670 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5671 		return -EINVAL;
5672 
5673 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5674 	if (!wq_dev)
5675 		return -ENOMEM;
5676 
5677 	wq_dev->wq = wq;
5678 	wq_dev->dev.bus = &wq_subsys;
5679 	wq_dev->dev.release = wq_device_release;
5680 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5681 
5682 	/*
5683 	 * unbound_attrs are created separately.  Suppress uevent until
5684 	 * everything is ready.
5685 	 */
5686 	dev_set_uevent_suppress(&wq_dev->dev, true);
5687 
5688 	ret = device_register(&wq_dev->dev);
5689 	if (ret) {
5690 		put_device(&wq_dev->dev);
5691 		wq->wq_dev = NULL;
5692 		return ret;
5693 	}
5694 
5695 	if (wq->flags & WQ_UNBOUND) {
5696 		struct device_attribute *attr;
5697 
5698 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5699 			ret = device_create_file(&wq_dev->dev, attr);
5700 			if (ret) {
5701 				device_unregister(&wq_dev->dev);
5702 				wq->wq_dev = NULL;
5703 				return ret;
5704 			}
5705 		}
5706 	}
5707 
5708 	dev_set_uevent_suppress(&wq_dev->dev, false);
5709 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5710 	return 0;
5711 }
5712 
5713 /**
5714  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5715  * @wq: the workqueue to unregister
5716  *
5717  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5718  */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5719 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5720 {
5721 	struct wq_device *wq_dev = wq->wq_dev;
5722 
5723 	if (!wq->wq_dev)
5724 		return;
5725 
5726 	wq->wq_dev = NULL;
5727 	device_unregister(&wq_dev->dev);
5728 }
5729 #else	/* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5730 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5731 #endif	/* CONFIG_SYSFS */
5732 
5733 /*
5734  * Workqueue watchdog.
5735  *
5736  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5737  * flush dependency, a concurrency managed work item which stays RUNNING
5738  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5739  * usual warning mechanisms don't trigger and internal workqueue state is
5740  * largely opaque.
5741  *
5742  * Workqueue watchdog monitors all worker pools periodically and dumps
5743  * state if some pools failed to make forward progress for a while where
5744  * forward progress is defined as the first item on ->worklist changing.
5745  *
5746  * This mechanism is controlled through the kernel parameter
5747  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5748  * corresponding sysfs parameter file.
5749  */
5750 #ifdef CONFIG_WQ_WATCHDOG
5751 
5752 static unsigned long wq_watchdog_thresh = 30;
5753 static struct timer_list wq_watchdog_timer;
5754 
5755 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5756 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5757 
wq_watchdog_reset_touched(void)5758 static void wq_watchdog_reset_touched(void)
5759 {
5760 	int cpu;
5761 
5762 	wq_watchdog_touched = jiffies;
5763 	for_each_possible_cpu(cpu)
5764 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5765 }
5766 
wq_watchdog_timer_fn(struct timer_list * unused)5767 static void wq_watchdog_timer_fn(struct timer_list *unused)
5768 {
5769 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5770 	bool lockup_detected = false;
5771 	unsigned long now = jiffies;
5772 	struct worker_pool *pool;
5773 	int pi;
5774 
5775 	if (!thresh)
5776 		return;
5777 
5778 	rcu_read_lock();
5779 
5780 	for_each_pool(pool, pi) {
5781 		unsigned long pool_ts, touched, ts;
5782 
5783 		if (list_empty(&pool->worklist))
5784 			continue;
5785 
5786 		/*
5787 		 * If a virtual machine is stopped by the host it can look to
5788 		 * the watchdog like a stall.
5789 		 */
5790 		kvm_check_and_clear_guest_paused();
5791 
5792 		/* get the latest of pool and touched timestamps */
5793 		pool_ts = READ_ONCE(pool->watchdog_ts);
5794 		touched = READ_ONCE(wq_watchdog_touched);
5795 
5796 		if (time_after(pool_ts, touched))
5797 			ts = pool_ts;
5798 		else
5799 			ts = touched;
5800 
5801 		if (pool->cpu >= 0) {
5802 			unsigned long cpu_touched =
5803 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5804 						  pool->cpu));
5805 			if (time_after(cpu_touched, ts))
5806 				ts = cpu_touched;
5807 		}
5808 
5809 		/* did we stall? */
5810 		if (time_after(now, ts + thresh)) {
5811 			lockup_detected = true;
5812 			pr_emerg("BUG: workqueue lockup - pool");
5813 			pr_cont_pool_info(pool);
5814 			pr_cont(" stuck for %us!\n",
5815 				jiffies_to_msecs(now - pool_ts) / 1000);
5816 			trace_android_vh_wq_lockup_pool(pool->cpu, pool_ts);
5817 		}
5818 	}
5819 
5820 	rcu_read_unlock();
5821 
5822 	if (lockup_detected)
5823 		show_workqueue_state();
5824 
5825 	wq_watchdog_reset_touched();
5826 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5827 }
5828 
wq_watchdog_touch(int cpu)5829 notrace void wq_watchdog_touch(int cpu)
5830 {
5831 	if (cpu >= 0)
5832 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5833 	else
5834 		wq_watchdog_touched = jiffies;
5835 }
5836 
wq_watchdog_set_thresh(unsigned long thresh)5837 static void wq_watchdog_set_thresh(unsigned long thresh)
5838 {
5839 	wq_watchdog_thresh = 0;
5840 	del_timer_sync(&wq_watchdog_timer);
5841 
5842 	if (thresh) {
5843 		wq_watchdog_thresh = thresh;
5844 		wq_watchdog_reset_touched();
5845 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5846 	}
5847 }
5848 
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)5849 static int wq_watchdog_param_set_thresh(const char *val,
5850 					const struct kernel_param *kp)
5851 {
5852 	unsigned long thresh;
5853 	int ret;
5854 
5855 	ret = kstrtoul(val, 0, &thresh);
5856 	if (ret)
5857 		return ret;
5858 
5859 	if (system_wq)
5860 		wq_watchdog_set_thresh(thresh);
5861 	else
5862 		wq_watchdog_thresh = thresh;
5863 
5864 	return 0;
5865 }
5866 
5867 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5868 	.set	= wq_watchdog_param_set_thresh,
5869 	.get	= param_get_ulong,
5870 };
5871 
5872 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5873 		0644);
5874 
wq_watchdog_init(void)5875 static void wq_watchdog_init(void)
5876 {
5877 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5878 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5879 }
5880 
5881 #else	/* CONFIG_WQ_WATCHDOG */
5882 
wq_watchdog_init(void)5883 static inline void wq_watchdog_init(void) { }
5884 
5885 #endif	/* CONFIG_WQ_WATCHDOG */
5886 
wq_numa_init(void)5887 static void __init wq_numa_init(void)
5888 {
5889 	cpumask_var_t *tbl;
5890 	int node, cpu;
5891 
5892 	if (num_possible_nodes() <= 1)
5893 		return;
5894 
5895 	if (wq_disable_numa) {
5896 		pr_info("workqueue: NUMA affinity support disabled\n");
5897 		return;
5898 	}
5899 
5900 	for_each_possible_cpu(cpu) {
5901 		if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5902 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5903 			return;
5904 		}
5905 	}
5906 
5907 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5908 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5909 
5910 	/*
5911 	 * We want masks of possible CPUs of each node which isn't readily
5912 	 * available.  Build one from cpu_to_node() which should have been
5913 	 * fully initialized by now.
5914 	 */
5915 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5916 	BUG_ON(!tbl);
5917 
5918 	for_each_node(node)
5919 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5920 				node_online(node) ? node : NUMA_NO_NODE));
5921 
5922 	for_each_possible_cpu(cpu) {
5923 		node = cpu_to_node(cpu);
5924 		cpumask_set_cpu(cpu, tbl[node]);
5925 	}
5926 
5927 	wq_numa_possible_cpumask = tbl;
5928 	wq_numa_enabled = true;
5929 }
5930 
5931 /**
5932  * workqueue_init_early - early init for workqueue subsystem
5933  *
5934  * This is the first half of two-staged workqueue subsystem initialization
5935  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5936  * idr are up.  It sets up all the data structures and system workqueues
5937  * and allows early boot code to create workqueues and queue/cancel work
5938  * items.  Actual work item execution starts only after kthreads can be
5939  * created and scheduled right before early initcalls.
5940  */
workqueue_init_early(void)5941 int __init workqueue_init_early(void)
5942 {
5943 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5944 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5945 	int i, cpu;
5946 
5947 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5948 
5949 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5950 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5951 
5952 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5953 
5954 	/* initialize CPU pools */
5955 	for_each_possible_cpu(cpu) {
5956 		struct worker_pool *pool;
5957 
5958 		i = 0;
5959 		for_each_cpu_worker_pool(pool, cpu) {
5960 			BUG_ON(init_worker_pool(pool));
5961 			pool->cpu = cpu;
5962 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5963 			pool->attrs->nice = std_nice[i++];
5964 			pool->node = cpu_to_node(cpu);
5965 
5966 			/* alloc pool ID */
5967 			mutex_lock(&wq_pool_mutex);
5968 			BUG_ON(worker_pool_assign_id(pool));
5969 			mutex_unlock(&wq_pool_mutex);
5970 		}
5971 	}
5972 
5973 	/* create default unbound and ordered wq attrs */
5974 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5975 		struct workqueue_attrs *attrs;
5976 
5977 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5978 		attrs->nice = std_nice[i];
5979 		unbound_std_wq_attrs[i] = attrs;
5980 
5981 		/*
5982 		 * An ordered wq should have only one pwq as ordering is
5983 		 * guaranteed by max_active which is enforced by pwqs.
5984 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5985 		 */
5986 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5987 		attrs->nice = std_nice[i];
5988 		attrs->no_numa = true;
5989 		ordered_wq_attrs[i] = attrs;
5990 	}
5991 
5992 	system_wq = alloc_workqueue("events", 0, 0);
5993 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5994 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5995 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5996 					    WQ_UNBOUND_MAX_ACTIVE);
5997 	system_freezable_wq = alloc_workqueue("events_freezable",
5998 					      WQ_FREEZABLE, 0);
5999 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6000 					      WQ_POWER_EFFICIENT, 0);
6001 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6002 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6003 					      0);
6004 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6005 	       !system_unbound_wq || !system_freezable_wq ||
6006 	       !system_power_efficient_wq ||
6007 	       !system_freezable_power_efficient_wq);
6008 
6009 	return 0;
6010 }
6011 
6012 /**
6013  * workqueue_init - bring workqueue subsystem fully online
6014  *
6015  * This is the latter half of two-staged workqueue subsystem initialization
6016  * and invoked as soon as kthreads can be created and scheduled.
6017  * Workqueues have been created and work items queued on them, but there
6018  * are no kworkers executing the work items yet.  Populate the worker pools
6019  * with the initial workers and enable future kworker creations.
6020  */
workqueue_init(void)6021 int __init workqueue_init(void)
6022 {
6023 	struct workqueue_struct *wq;
6024 	struct worker_pool *pool;
6025 	int cpu, bkt;
6026 
6027 	/*
6028 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6029 	 * CPU to node mapping may not be available that early on some
6030 	 * archs such as power and arm64.  As per-cpu pools created
6031 	 * previously could be missing node hint and unbound pools NUMA
6032 	 * affinity, fix them up.
6033 	 *
6034 	 * Also, while iterating workqueues, create rescuers if requested.
6035 	 */
6036 	wq_numa_init();
6037 
6038 	mutex_lock(&wq_pool_mutex);
6039 
6040 	for_each_possible_cpu(cpu) {
6041 		for_each_cpu_worker_pool(pool, cpu) {
6042 			pool->node = cpu_to_node(cpu);
6043 		}
6044 	}
6045 
6046 	list_for_each_entry(wq, &workqueues, list) {
6047 		wq_update_unbound_numa(wq, smp_processor_id(), true);
6048 		WARN(init_rescuer(wq),
6049 		     "workqueue: failed to create early rescuer for %s",
6050 		     wq->name);
6051 	}
6052 
6053 	mutex_unlock(&wq_pool_mutex);
6054 
6055 	/* create the initial workers */
6056 	for_each_online_cpu(cpu) {
6057 		for_each_cpu_worker_pool(pool, cpu) {
6058 			pool->flags &= ~POOL_DISASSOCIATED;
6059 			BUG_ON(!create_worker(pool));
6060 		}
6061 	}
6062 
6063 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6064 		BUG_ON(!create_worker(pool));
6065 
6066 	wq_online = true;
6067 	wq_watchdog_init();
6068 
6069 	return 0;
6070 }
6071