1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * PowerNV OPAL high level interfaces
4 *
5 * Copyright 2011 IBM Corp.
6 */
7
8 #define pr_fmt(fmt) "opal: " fmt
9
10 #include <linux/printk.h>
11 #include <linux/types.h>
12 #include <linux/of.h>
13 #include <linux/of_fdt.h>
14 #include <linux/of_platform.h>
15 #include <linux/of_address.h>
16 #include <linux/interrupt.h>
17 #include <linux/notifier.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/kobject.h>
21 #include <linux/delay.h>
22 #include <linux/memblock.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/kmsg_dump.h>
26 #include <linux/console.h>
27 #include <linux/sched/debug.h>
28
29 #include <asm/machdep.h>
30 #include <asm/opal.h>
31 #include <asm/firmware.h>
32 #include <asm/mce.h>
33 #include <asm/imc-pmu.h>
34 #include <asm/bug.h>
35
36 #include "powernv.h"
37
38 /* /sys/firmware/opal */
39 struct kobject *opal_kobj;
40
41 struct opal {
42 u64 base;
43 u64 entry;
44 u64 size;
45 } opal;
46
47 struct mcheck_recoverable_range {
48 u64 start_addr;
49 u64 end_addr;
50 u64 recover_addr;
51 };
52
53 static struct mcheck_recoverable_range *mc_recoverable_range;
54 static int mc_recoverable_range_len;
55
56 struct device_node *opal_node;
57 static DEFINE_SPINLOCK(opal_write_lock);
58 static struct atomic_notifier_head opal_msg_notifier_head[OPAL_MSG_TYPE_MAX];
59 static uint32_t opal_heartbeat;
60 static struct task_struct *kopald_tsk;
61 static struct opal_msg *opal_msg;
62 static u32 opal_msg_size __ro_after_init;
63
opal_configure_cores(void)64 void opal_configure_cores(void)
65 {
66 u64 reinit_flags = 0;
67
68 /* Do the actual re-init, This will clobber all FPRs, VRs, etc...
69 *
70 * It will preserve non volatile GPRs and HSPRG0/1. It will
71 * also restore HIDs and other SPRs to their original value
72 * but it might clobber a bunch.
73 */
74 #ifdef __BIG_ENDIAN__
75 reinit_flags |= OPAL_REINIT_CPUS_HILE_BE;
76 #else
77 reinit_flags |= OPAL_REINIT_CPUS_HILE_LE;
78 #endif
79
80 /*
81 * POWER9 always support running hash:
82 * ie. Host hash supports hash guests
83 * Host radix supports hash/radix guests
84 */
85 if (early_cpu_has_feature(CPU_FTR_ARCH_300)) {
86 reinit_flags |= OPAL_REINIT_CPUS_MMU_HASH;
87 if (early_radix_enabled())
88 reinit_flags |= OPAL_REINIT_CPUS_MMU_RADIX;
89 }
90
91 opal_reinit_cpus(reinit_flags);
92
93 /* Restore some bits */
94 if (cur_cpu_spec->cpu_restore)
95 cur_cpu_spec->cpu_restore();
96 }
97
early_init_dt_scan_opal(unsigned long node,const char * uname,int depth,void * data)98 int __init early_init_dt_scan_opal(unsigned long node,
99 const char *uname, int depth, void *data)
100 {
101 const void *basep, *entryp, *sizep;
102 int basesz, entrysz, runtimesz;
103
104 if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
105 return 0;
106
107 basep = of_get_flat_dt_prop(node, "opal-base-address", &basesz);
108 entryp = of_get_flat_dt_prop(node, "opal-entry-address", &entrysz);
109 sizep = of_get_flat_dt_prop(node, "opal-runtime-size", &runtimesz);
110
111 if (!basep || !entryp || !sizep)
112 return 1;
113
114 opal.base = of_read_number(basep, basesz/4);
115 opal.entry = of_read_number(entryp, entrysz/4);
116 opal.size = of_read_number(sizep, runtimesz/4);
117
118 pr_debug("OPAL Base = 0x%llx (basep=%p basesz=%d)\n",
119 opal.base, basep, basesz);
120 pr_debug("OPAL Entry = 0x%llx (entryp=%p basesz=%d)\n",
121 opal.entry, entryp, entrysz);
122 pr_debug("OPAL Entry = 0x%llx (sizep=%p runtimesz=%d)\n",
123 opal.size, sizep, runtimesz);
124
125 if (of_flat_dt_is_compatible(node, "ibm,opal-v3")) {
126 powerpc_firmware_features |= FW_FEATURE_OPAL;
127 pr_debug("OPAL detected !\n");
128 } else {
129 panic("OPAL != V3 detected, no longer supported.\n");
130 }
131
132 return 1;
133 }
134
early_init_dt_scan_recoverable_ranges(unsigned long node,const char * uname,int depth,void * data)135 int __init early_init_dt_scan_recoverable_ranges(unsigned long node,
136 const char *uname, int depth, void *data)
137 {
138 int i, psize, size;
139 const __be32 *prop;
140
141 if (depth != 1 || strcmp(uname, "ibm,opal") != 0)
142 return 0;
143
144 prop = of_get_flat_dt_prop(node, "mcheck-recoverable-ranges", &psize);
145
146 if (!prop)
147 return 1;
148
149 pr_debug("Found machine check recoverable ranges.\n");
150
151 /*
152 * Calculate number of available entries.
153 *
154 * Each recoverable address range entry is (start address, len,
155 * recovery address), 2 cells each for start and recovery address,
156 * 1 cell for len, totalling 5 cells per entry.
157 */
158 mc_recoverable_range_len = psize / (sizeof(*prop) * 5);
159
160 /* Sanity check */
161 if (!mc_recoverable_range_len)
162 return 1;
163
164 /* Size required to hold all the entries. */
165 size = mc_recoverable_range_len *
166 sizeof(struct mcheck_recoverable_range);
167
168 /*
169 * Allocate a buffer to hold the MC recoverable ranges.
170 */
171 mc_recoverable_range = memblock_alloc(size, __alignof__(u64));
172 if (!mc_recoverable_range)
173 panic("%s: Failed to allocate %u bytes align=0x%lx\n",
174 __func__, size, __alignof__(u64));
175
176 for (i = 0; i < mc_recoverable_range_len; i++) {
177 mc_recoverable_range[i].start_addr =
178 of_read_number(prop + (i * 5) + 0, 2);
179 mc_recoverable_range[i].end_addr =
180 mc_recoverable_range[i].start_addr +
181 of_read_number(prop + (i * 5) + 2, 1);
182 mc_recoverable_range[i].recover_addr =
183 of_read_number(prop + (i * 5) + 3, 2);
184
185 pr_debug("Machine check recoverable range: %llx..%llx: %llx\n",
186 mc_recoverable_range[i].start_addr,
187 mc_recoverable_range[i].end_addr,
188 mc_recoverable_range[i].recover_addr);
189 }
190 return 1;
191 }
192
opal_register_exception_handlers(void)193 static int __init opal_register_exception_handlers(void)
194 {
195 #ifdef __BIG_ENDIAN__
196 u64 glue;
197
198 if (!(powerpc_firmware_features & FW_FEATURE_OPAL))
199 return -ENODEV;
200
201 /* Hookup some exception handlers except machine check. We use the
202 * fwnmi area at 0x7000 to provide the glue space to OPAL
203 */
204 glue = 0x7000;
205
206 /*
207 * Only ancient OPAL firmware requires this.
208 * Specifically, firmware from FW810.00 (released June 2014)
209 * through FW810.20 (Released October 2014).
210 *
211 * Check if we are running on newer (post Oct 2014) firmware that
212 * exports the OPAL_HANDLE_HMI token. If yes, then don't ask OPAL to
213 * patch the HMI interrupt and we catch it directly in Linux.
214 *
215 * For older firmware (i.e < FW810.20), we fallback to old behavior and
216 * let OPAL patch the HMI vector and handle it inside OPAL firmware.
217 *
218 * For newer firmware we catch/handle the HMI directly in Linux.
219 */
220 if (!opal_check_token(OPAL_HANDLE_HMI)) {
221 pr_info("Old firmware detected, OPAL handles HMIs.\n");
222 opal_register_exception_handler(
223 OPAL_HYPERVISOR_MAINTENANCE_HANDLER,
224 0, glue);
225 glue += 128;
226 }
227
228 /*
229 * Only applicable to ancient firmware, all modern
230 * (post March 2015/skiboot 5.0) firmware will just return
231 * OPAL_UNSUPPORTED.
232 */
233 opal_register_exception_handler(OPAL_SOFTPATCH_HANDLER, 0, glue);
234 #endif
235
236 return 0;
237 }
238 machine_early_initcall(powernv, opal_register_exception_handlers);
239
240 /*
241 * Opal message notifier based on message type. Allow subscribers to get
242 * notified for specific messgae type.
243 */
opal_message_notifier_register(enum opal_msg_type msg_type,struct notifier_block * nb)244 int opal_message_notifier_register(enum opal_msg_type msg_type,
245 struct notifier_block *nb)
246 {
247 if (!nb || msg_type >= OPAL_MSG_TYPE_MAX) {
248 pr_warn("%s: Invalid arguments, msg_type:%d\n",
249 __func__, msg_type);
250 return -EINVAL;
251 }
252
253 return atomic_notifier_chain_register(
254 &opal_msg_notifier_head[msg_type], nb);
255 }
256 EXPORT_SYMBOL_GPL(opal_message_notifier_register);
257
opal_message_notifier_unregister(enum opal_msg_type msg_type,struct notifier_block * nb)258 int opal_message_notifier_unregister(enum opal_msg_type msg_type,
259 struct notifier_block *nb)
260 {
261 return atomic_notifier_chain_unregister(
262 &opal_msg_notifier_head[msg_type], nb);
263 }
264 EXPORT_SYMBOL_GPL(opal_message_notifier_unregister);
265
opal_message_do_notify(uint32_t msg_type,void * msg)266 static void opal_message_do_notify(uint32_t msg_type, void *msg)
267 {
268 /* notify subscribers */
269 atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type],
270 msg_type, msg);
271 }
272
opal_handle_message(void)273 static void opal_handle_message(void)
274 {
275 s64 ret;
276 u32 type;
277
278 ret = opal_get_msg(__pa(opal_msg), opal_msg_size);
279 /* No opal message pending. */
280 if (ret == OPAL_RESOURCE)
281 return;
282
283 /* check for errors. */
284 if (ret) {
285 pr_warn("%s: Failed to retrieve opal message, err=%lld\n",
286 __func__, ret);
287 return;
288 }
289
290 type = be32_to_cpu(opal_msg->msg_type);
291
292 /* Sanity check */
293 if (type >= OPAL_MSG_TYPE_MAX) {
294 pr_warn_once("%s: Unknown message type: %u\n", __func__, type);
295 return;
296 }
297 opal_message_do_notify(type, (void *)opal_msg);
298 }
299
opal_message_notify(int irq,void * data)300 static irqreturn_t opal_message_notify(int irq, void *data)
301 {
302 opal_handle_message();
303 return IRQ_HANDLED;
304 }
305
opal_message_init(struct device_node * opal_node)306 static int __init opal_message_init(struct device_node *opal_node)
307 {
308 int ret, i, irq;
309
310 ret = of_property_read_u32(opal_node, "opal-msg-size", &opal_msg_size);
311 if (ret) {
312 pr_notice("Failed to read opal-msg-size property\n");
313 opal_msg_size = sizeof(struct opal_msg);
314 }
315
316 opal_msg = kmalloc(opal_msg_size, GFP_KERNEL);
317 if (!opal_msg) {
318 opal_msg_size = sizeof(struct opal_msg);
319 /* Try to allocate fixed message size */
320 opal_msg = kmalloc(opal_msg_size, GFP_KERNEL);
321 BUG_ON(opal_msg == NULL);
322 }
323
324 for (i = 0; i < OPAL_MSG_TYPE_MAX; i++)
325 ATOMIC_INIT_NOTIFIER_HEAD(&opal_msg_notifier_head[i]);
326
327 irq = opal_event_request(ilog2(OPAL_EVENT_MSG_PENDING));
328 if (!irq) {
329 pr_err("%s: Can't register OPAL event irq (%d)\n",
330 __func__, irq);
331 return irq;
332 }
333
334 ret = request_irq(irq, opal_message_notify,
335 IRQ_TYPE_LEVEL_HIGH, "opal-msg", NULL);
336 if (ret) {
337 pr_err("%s: Can't request OPAL event irq (%d)\n",
338 __func__, ret);
339 return ret;
340 }
341
342 return 0;
343 }
344
opal_get_chars(uint32_t vtermno,char * buf,int count)345 int opal_get_chars(uint32_t vtermno, char *buf, int count)
346 {
347 s64 rc;
348 __be64 evt, len;
349
350 if (!opal.entry)
351 return -ENODEV;
352 opal_poll_events(&evt);
353 if ((be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_INPUT) == 0)
354 return 0;
355 len = cpu_to_be64(count);
356 rc = opal_console_read(vtermno, &len, buf);
357 if (rc == OPAL_SUCCESS)
358 return be64_to_cpu(len);
359 return 0;
360 }
361
__opal_put_chars(uint32_t vtermno,const char * data,int total_len,bool atomic)362 static int __opal_put_chars(uint32_t vtermno, const char *data, int total_len, bool atomic)
363 {
364 unsigned long flags = 0 /* shut up gcc */;
365 int written;
366 __be64 olen;
367 s64 rc;
368
369 if (!opal.entry)
370 return -ENODEV;
371
372 if (atomic)
373 spin_lock_irqsave(&opal_write_lock, flags);
374 rc = opal_console_write_buffer_space(vtermno, &olen);
375 if (rc || be64_to_cpu(olen) < total_len) {
376 /* Closed -> drop characters */
377 if (rc)
378 written = total_len;
379 else
380 written = -EAGAIN;
381 goto out;
382 }
383
384 /* Should not get a partial write here because space is available. */
385 olen = cpu_to_be64(total_len);
386 rc = opal_console_write(vtermno, &olen, data);
387 if (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
388 if (rc == OPAL_BUSY_EVENT)
389 opal_poll_events(NULL);
390 written = -EAGAIN;
391 goto out;
392 }
393
394 /* Closed or other error drop */
395 if (rc != OPAL_SUCCESS) {
396 written = opal_error_code(rc);
397 goto out;
398 }
399
400 written = be64_to_cpu(olen);
401 if (written < total_len) {
402 if (atomic) {
403 /* Should not happen */
404 pr_warn("atomic console write returned partial "
405 "len=%d written=%d\n", total_len, written);
406 }
407 if (!written)
408 written = -EAGAIN;
409 }
410
411 out:
412 if (atomic)
413 spin_unlock_irqrestore(&opal_write_lock, flags);
414
415 return written;
416 }
417
opal_put_chars(uint32_t vtermno,const char * data,int total_len)418 int opal_put_chars(uint32_t vtermno, const char *data, int total_len)
419 {
420 return __opal_put_chars(vtermno, data, total_len, false);
421 }
422
423 /*
424 * opal_put_chars_atomic will not perform partial-writes. Data will be
425 * atomically written to the terminal or not at all. This is not strictly
426 * true at the moment because console space can race with OPAL's console
427 * writes.
428 */
opal_put_chars_atomic(uint32_t vtermno,const char * data,int total_len)429 int opal_put_chars_atomic(uint32_t vtermno, const char *data, int total_len)
430 {
431 return __opal_put_chars(vtermno, data, total_len, true);
432 }
433
__opal_flush_console(uint32_t vtermno)434 static s64 __opal_flush_console(uint32_t vtermno)
435 {
436 s64 rc;
437
438 if (!opal_check_token(OPAL_CONSOLE_FLUSH)) {
439 __be64 evt;
440
441 /*
442 * If OPAL_CONSOLE_FLUSH is not implemented in the firmware,
443 * the console can still be flushed by calling the polling
444 * function while it has OPAL_EVENT_CONSOLE_OUTPUT events.
445 */
446 WARN_ONCE(1, "opal: OPAL_CONSOLE_FLUSH missing.\n");
447
448 opal_poll_events(&evt);
449 if (!(be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_OUTPUT))
450 return OPAL_SUCCESS;
451 return OPAL_BUSY;
452
453 } else {
454 rc = opal_console_flush(vtermno);
455 if (rc == OPAL_BUSY_EVENT) {
456 opal_poll_events(NULL);
457 rc = OPAL_BUSY;
458 }
459 return rc;
460 }
461
462 }
463
464 /*
465 * opal_flush_console spins until the console is flushed
466 */
opal_flush_console(uint32_t vtermno)467 int opal_flush_console(uint32_t vtermno)
468 {
469 for (;;) {
470 s64 rc = __opal_flush_console(vtermno);
471
472 if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) {
473 mdelay(1);
474 continue;
475 }
476
477 return opal_error_code(rc);
478 }
479 }
480
481 /*
482 * opal_flush_chars is an hvc interface that sleeps until the console is
483 * flushed if wait, otherwise it will return -EBUSY if the console has data,
484 * -EAGAIN if it has data and some of it was flushed.
485 */
opal_flush_chars(uint32_t vtermno,bool wait)486 int opal_flush_chars(uint32_t vtermno, bool wait)
487 {
488 for (;;) {
489 s64 rc = __opal_flush_console(vtermno);
490
491 if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) {
492 if (wait) {
493 msleep(OPAL_BUSY_DELAY_MS);
494 continue;
495 }
496 if (rc == OPAL_PARTIAL)
497 return -EAGAIN;
498 }
499
500 return opal_error_code(rc);
501 }
502 }
503
opal_recover_mce(struct pt_regs * regs,struct machine_check_event * evt)504 static int opal_recover_mce(struct pt_regs *regs,
505 struct machine_check_event *evt)
506 {
507 int recovered = 0;
508
509 if (!(regs->msr & MSR_RI)) {
510 /* If MSR_RI isn't set, we cannot recover */
511 pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n");
512 recovered = 0;
513 } else if (evt->disposition == MCE_DISPOSITION_RECOVERED) {
514 /* Platform corrected itself */
515 recovered = 1;
516 } else if (evt->severity == MCE_SEV_FATAL) {
517 /* Fatal machine check */
518 pr_err("Machine check interrupt is fatal\n");
519 recovered = 0;
520 }
521
522 if (!recovered && evt->sync_error) {
523 /*
524 * Try to kill processes if we get a synchronous machine check
525 * (e.g., one caused by execution of this instruction). This
526 * will devolve into a panic if we try to kill init or are in
527 * an interrupt etc.
528 *
529 * TODO: Queue up this address for hwpoisioning later.
530 * TODO: This is not quite right for d-side machine
531 * checks ->nip is not necessarily the important
532 * address.
533 */
534 if ((user_mode(regs))) {
535 _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
536 recovered = 1;
537 } else if (die_will_crash()) {
538 /*
539 * die() would kill the kernel, so better to go via
540 * the platform reboot code that will log the
541 * machine check.
542 */
543 recovered = 0;
544 } else {
545 die("Machine check", regs, SIGBUS);
546 recovered = 1;
547 }
548 }
549
550 return recovered;
551 }
552
pnv_platform_error_reboot(struct pt_regs * regs,const char * msg)553 void __noreturn pnv_platform_error_reboot(struct pt_regs *regs, const char *msg)
554 {
555 panic_flush_kmsg_start();
556
557 pr_emerg("Hardware platform error: %s\n", msg);
558 if (regs)
559 show_regs(regs);
560 smp_send_stop();
561
562 panic_flush_kmsg_end();
563
564 /*
565 * Don't bother to shut things down because this will
566 * xstop the system.
567 */
568 if (opal_cec_reboot2(OPAL_REBOOT_PLATFORM_ERROR, msg)
569 == OPAL_UNSUPPORTED) {
570 pr_emerg("Reboot type %d not supported for %s\n",
571 OPAL_REBOOT_PLATFORM_ERROR, msg);
572 }
573
574 /*
575 * We reached here. There can be three possibilities:
576 * 1. We are running on a firmware level that do not support
577 * opal_cec_reboot2()
578 * 2. We are running on a firmware level that do not support
579 * OPAL_REBOOT_PLATFORM_ERROR reboot type.
580 * 3. We are running on FSP based system that does not need
581 * opal to trigger checkstop explicitly for error analysis.
582 * The FSP PRD component would have already got notified
583 * about this error through other channels.
584 * 4. We are running on a newer skiboot that by default does
585 * not cause a checkstop, drops us back to the kernel to
586 * extract context and state at the time of the error.
587 */
588
589 panic(msg);
590 }
591
opal_machine_check(struct pt_regs * regs)592 int opal_machine_check(struct pt_regs *regs)
593 {
594 struct machine_check_event evt;
595
596 if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
597 return 0;
598
599 /* Print things out */
600 if (evt.version != MCE_V1) {
601 pr_err("Machine Check Exception, Unknown event version %d !\n",
602 evt.version);
603 return 0;
604 }
605 machine_check_print_event_info(&evt, user_mode(regs), false);
606
607 if (opal_recover_mce(regs, &evt))
608 return 1;
609
610 pnv_platform_error_reboot(regs, "Unrecoverable Machine Check exception");
611 }
612
613 /* Early hmi handler called in real mode. */
opal_hmi_exception_early(struct pt_regs * regs)614 int opal_hmi_exception_early(struct pt_regs *regs)
615 {
616 s64 rc;
617
618 /*
619 * call opal hmi handler. Pass paca address as token.
620 * The return value OPAL_SUCCESS is an indication that there is
621 * an HMI event generated waiting to pull by Linux.
622 */
623 rc = opal_handle_hmi();
624 if (rc == OPAL_SUCCESS) {
625 local_paca->hmi_event_available = 1;
626 return 1;
627 }
628 return 0;
629 }
630
opal_hmi_exception_early2(struct pt_regs * regs)631 int opal_hmi_exception_early2(struct pt_regs *regs)
632 {
633 s64 rc;
634 __be64 out_flags;
635
636 /*
637 * call opal hmi handler.
638 * Check 64-bit flag mask to find out if an event was generated,
639 * and whether TB is still valid or not etc.
640 */
641 rc = opal_handle_hmi2(&out_flags);
642 if (rc != OPAL_SUCCESS)
643 return 0;
644
645 if (be64_to_cpu(out_flags) & OPAL_HMI_FLAGS_NEW_EVENT)
646 local_paca->hmi_event_available = 1;
647 if (be64_to_cpu(out_flags) & OPAL_HMI_FLAGS_TOD_TB_FAIL)
648 tb_invalid = true;
649 return 1;
650 }
651
652 /* HMI exception handler called in virtual mode during check_irq_replay. */
opal_handle_hmi_exception(struct pt_regs * regs)653 int opal_handle_hmi_exception(struct pt_regs *regs)
654 {
655 /*
656 * Check if HMI event is available.
657 * if Yes, then wake kopald to process them.
658 */
659 if (!local_paca->hmi_event_available)
660 return 0;
661
662 local_paca->hmi_event_available = 0;
663 opal_wake_poller();
664
665 return 1;
666 }
667
find_recovery_address(uint64_t nip)668 static uint64_t find_recovery_address(uint64_t nip)
669 {
670 int i;
671
672 for (i = 0; i < mc_recoverable_range_len; i++)
673 if ((nip >= mc_recoverable_range[i].start_addr) &&
674 (nip < mc_recoverable_range[i].end_addr))
675 return mc_recoverable_range[i].recover_addr;
676 return 0;
677 }
678
opal_mce_check_early_recovery(struct pt_regs * regs)679 bool opal_mce_check_early_recovery(struct pt_regs *regs)
680 {
681 uint64_t recover_addr = 0;
682
683 if (!opal.base || !opal.size)
684 goto out;
685
686 if ((regs->nip >= opal.base) &&
687 (regs->nip < (opal.base + opal.size)))
688 recover_addr = find_recovery_address(regs->nip);
689
690 /*
691 * Setup regs->nip to rfi into fixup address.
692 */
693 if (recover_addr)
694 regs->nip = recover_addr;
695
696 out:
697 return !!recover_addr;
698 }
699
opal_sysfs_init(void)700 static int opal_sysfs_init(void)
701 {
702 opal_kobj = kobject_create_and_add("opal", firmware_kobj);
703 if (!opal_kobj) {
704 pr_warn("kobject_create_and_add opal failed\n");
705 return -ENOMEM;
706 }
707
708 return 0;
709 }
710
symbol_map_read(struct file * fp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)711 static ssize_t symbol_map_read(struct file *fp, struct kobject *kobj,
712 struct bin_attribute *bin_attr,
713 char *buf, loff_t off, size_t count)
714 {
715 return memory_read_from_buffer(buf, count, &off, bin_attr->private,
716 bin_attr->size);
717 }
718
719 static struct bin_attribute symbol_map_attr = {
720 .attr = {.name = "symbol_map", .mode = 0400},
721 .read = symbol_map_read
722 };
723
opal_export_symmap(void)724 static void opal_export_symmap(void)
725 {
726 const __be64 *syms;
727 unsigned int size;
728 struct device_node *fw;
729 int rc;
730
731 fw = of_find_node_by_path("/ibm,opal/firmware");
732 if (!fw)
733 return;
734 syms = of_get_property(fw, "symbol-map", &size);
735 if (!syms || size != 2 * sizeof(__be64))
736 return;
737
738 /* Setup attributes */
739 symbol_map_attr.private = __va(be64_to_cpu(syms[0]));
740 symbol_map_attr.size = be64_to_cpu(syms[1]);
741
742 rc = sysfs_create_bin_file(opal_kobj, &symbol_map_attr);
743 if (rc)
744 pr_warn("Error %d creating OPAL symbols file\n", rc);
745 }
746
export_attr_read(struct file * fp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)747 static ssize_t export_attr_read(struct file *fp, struct kobject *kobj,
748 struct bin_attribute *bin_attr, char *buf,
749 loff_t off, size_t count)
750 {
751 return memory_read_from_buffer(buf, count, &off, bin_attr->private,
752 bin_attr->size);
753 }
754
755 /*
756 * opal_export_attrs: creates a sysfs node for each property listed in
757 * the device-tree under /ibm,opal/firmware/exports/
758 * All new sysfs nodes are created under /opal/exports/.
759 * This allows for reserved memory regions (e.g. HDAT) to be read.
760 * The new sysfs nodes are only readable by root.
761 */
opal_export_attrs(void)762 static void opal_export_attrs(void)
763 {
764 struct bin_attribute *attr;
765 struct device_node *np;
766 struct property *prop;
767 struct kobject *kobj;
768 u64 vals[2];
769 int rc;
770
771 np = of_find_node_by_path("/ibm,opal/firmware/exports");
772 if (!np)
773 return;
774
775 /* Create new 'exports' directory - /sys/firmware/opal/exports */
776 kobj = kobject_create_and_add("exports", opal_kobj);
777 if (!kobj) {
778 pr_warn("kobject_create_and_add() of exports failed\n");
779 of_node_put(np);
780 return;
781 }
782
783 for_each_property_of_node(np, prop) {
784 if (!strcmp(prop->name, "name") || !strcmp(prop->name, "phandle"))
785 continue;
786
787 if (of_property_read_u64_array(np, prop->name, &vals[0], 2))
788 continue;
789
790 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
791
792 if (attr == NULL) {
793 pr_warn("Failed kmalloc for bin_attribute!");
794 continue;
795 }
796
797 sysfs_bin_attr_init(attr);
798 attr->attr.name = kstrdup(prop->name, GFP_KERNEL);
799 attr->attr.mode = 0400;
800 attr->read = export_attr_read;
801 attr->private = __va(vals[0]);
802 attr->size = vals[1];
803
804 if (attr->attr.name == NULL) {
805 pr_warn("Failed kstrdup for bin_attribute attr.name");
806 kfree(attr);
807 continue;
808 }
809
810 rc = sysfs_create_bin_file(kobj, attr);
811 if (rc) {
812 pr_warn("Error %d creating OPAL sysfs exports/%s file\n",
813 rc, prop->name);
814 kfree(attr->attr.name);
815 kfree(attr);
816 }
817 }
818
819 of_node_put(np);
820 }
821
opal_dump_region_init(void)822 static void __init opal_dump_region_init(void)
823 {
824 void *addr;
825 uint64_t size;
826 int rc;
827
828 if (!opal_check_token(OPAL_REGISTER_DUMP_REGION))
829 return;
830
831 /* Register kernel log buffer */
832 addr = log_buf_addr_get();
833 if (addr == NULL)
834 return;
835
836 size = log_buf_len_get();
837 if (size == 0)
838 return;
839
840 rc = opal_register_dump_region(OPAL_DUMP_REGION_LOG_BUF,
841 __pa(addr), size);
842 /* Don't warn if this is just an older OPAL that doesn't
843 * know about that call
844 */
845 if (rc && rc != OPAL_UNSUPPORTED)
846 pr_warn("DUMP: Failed to register kernel log buffer. "
847 "rc = %d\n", rc);
848 }
849
opal_pdev_init(const char * compatible)850 static void opal_pdev_init(const char *compatible)
851 {
852 struct device_node *np;
853
854 for_each_compatible_node(np, NULL, compatible)
855 of_platform_device_create(np, NULL, NULL);
856 }
857
opal_imc_init_dev(void)858 static void __init opal_imc_init_dev(void)
859 {
860 struct device_node *np;
861
862 np = of_find_compatible_node(NULL, NULL, IMC_DTB_COMPAT);
863 if (np)
864 of_platform_device_create(np, NULL, NULL);
865 }
866
kopald(void * unused)867 static int kopald(void *unused)
868 {
869 unsigned long timeout = msecs_to_jiffies(opal_heartbeat) + 1;
870
871 set_freezable();
872 do {
873 try_to_freeze();
874
875 opal_handle_events();
876
877 set_current_state(TASK_INTERRUPTIBLE);
878 if (opal_have_pending_events())
879 __set_current_state(TASK_RUNNING);
880 else
881 schedule_timeout(timeout);
882
883 } while (!kthread_should_stop());
884
885 return 0;
886 }
887
opal_wake_poller(void)888 void opal_wake_poller(void)
889 {
890 if (kopald_tsk)
891 wake_up_process(kopald_tsk);
892 }
893
opal_init_heartbeat(void)894 static void opal_init_heartbeat(void)
895 {
896 /* Old firwmware, we assume the HVC heartbeat is sufficient */
897 if (of_property_read_u32(opal_node, "ibm,heartbeat-ms",
898 &opal_heartbeat) != 0)
899 opal_heartbeat = 0;
900
901 if (opal_heartbeat)
902 kopald_tsk = kthread_run(kopald, NULL, "kopald");
903 }
904
opal_init(void)905 static int __init opal_init(void)
906 {
907 struct device_node *np, *consoles, *leds;
908 int rc;
909
910 opal_node = of_find_node_by_path("/ibm,opal");
911 if (!opal_node) {
912 pr_warn("Device node not found\n");
913 return -ENODEV;
914 }
915
916 /* Register OPAL consoles if any ports */
917 consoles = of_find_node_by_path("/ibm,opal/consoles");
918 if (consoles) {
919 for_each_child_of_node(consoles, np) {
920 if (!of_node_name_eq(np, "serial"))
921 continue;
922 of_platform_device_create(np, NULL, NULL);
923 }
924 of_node_put(consoles);
925 }
926
927 /* Initialise OPAL messaging system */
928 opal_message_init(opal_node);
929
930 /* Initialise OPAL asynchronous completion interface */
931 opal_async_comp_init();
932
933 /* Initialise OPAL sensor interface */
934 opal_sensor_init();
935
936 /* Initialise OPAL hypervisor maintainence interrupt handling */
937 opal_hmi_handler_init();
938
939 /* Create i2c platform devices */
940 opal_pdev_init("ibm,opal-i2c");
941
942 /* Handle non-volatile memory devices */
943 opal_pdev_init("pmem-region");
944
945 /* Setup a heatbeat thread if requested by OPAL */
946 opal_init_heartbeat();
947
948 /* Detect In-Memory Collection counters and create devices*/
949 opal_imc_init_dev();
950
951 /* Create leds platform devices */
952 leds = of_find_node_by_path("/ibm,opal/leds");
953 if (leds) {
954 of_platform_device_create(leds, "opal_leds", NULL);
955 of_node_put(leds);
956 }
957
958 /* Initialise OPAL message log interface */
959 opal_msglog_init();
960
961 /* Create "opal" kobject under /sys/firmware */
962 rc = opal_sysfs_init();
963 if (rc == 0) {
964 /* Export symbol map to userspace */
965 opal_export_symmap();
966 /* Setup dump region interface */
967 opal_dump_region_init();
968 /* Setup error log interface */
969 rc = opal_elog_init();
970 /* Setup code update interface */
971 opal_flash_update_init();
972 /* Setup platform dump extract interface */
973 opal_platform_dump_init();
974 /* Setup system parameters interface */
975 opal_sys_param_init();
976 /* Setup message log sysfs interface. */
977 opal_msglog_sysfs_init();
978 }
979
980 /* Export all properties */
981 opal_export_attrs();
982
983 /* Initialize platform devices: IPMI backend, PRD & flash interface */
984 opal_pdev_init("ibm,opal-ipmi");
985 opal_pdev_init("ibm,opal-flash");
986 opal_pdev_init("ibm,opal-prd");
987
988 /* Initialise platform device: oppanel interface */
989 opal_pdev_init("ibm,opal-oppanel");
990
991 /* Initialise OPAL kmsg dumper for flushing console on panic */
992 opal_kmsg_init();
993
994 /* Initialise OPAL powercap interface */
995 opal_powercap_init();
996
997 /* Initialise OPAL Power-Shifting-Ratio interface */
998 opal_psr_init();
999
1000 /* Initialise OPAL sensor groups */
1001 opal_sensor_groups_init();
1002
1003 /* Initialise OPAL Power control interface */
1004 opal_power_control_init();
1005
1006 return 0;
1007 }
1008 machine_subsys_initcall(powernv, opal_init);
1009
opal_shutdown(void)1010 void opal_shutdown(void)
1011 {
1012 long rc = OPAL_BUSY;
1013
1014 opal_event_shutdown();
1015
1016 /*
1017 * Then sync with OPAL which ensure anything that can
1018 * potentially write to our memory has completed such
1019 * as an ongoing dump retrieval
1020 */
1021 while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
1022 rc = opal_sync_host_reboot();
1023 if (rc == OPAL_BUSY)
1024 opal_poll_events(NULL);
1025 else
1026 mdelay(10);
1027 }
1028
1029 /* Unregister memory dump region */
1030 if (opal_check_token(OPAL_UNREGISTER_DUMP_REGION))
1031 opal_unregister_dump_region(OPAL_DUMP_REGION_LOG_BUF);
1032 }
1033
1034 /* Export this so that test modules can use it */
1035 EXPORT_SYMBOL_GPL(opal_invalid_call);
1036 EXPORT_SYMBOL_GPL(opal_xscom_read);
1037 EXPORT_SYMBOL_GPL(opal_xscom_write);
1038 EXPORT_SYMBOL_GPL(opal_ipmi_send);
1039 EXPORT_SYMBOL_GPL(opal_ipmi_recv);
1040 EXPORT_SYMBOL_GPL(opal_flash_read);
1041 EXPORT_SYMBOL_GPL(opal_flash_write);
1042 EXPORT_SYMBOL_GPL(opal_flash_erase);
1043 EXPORT_SYMBOL_GPL(opal_prd_msg);
1044 EXPORT_SYMBOL_GPL(opal_check_token);
1045
1046 /* Convert a region of vmalloc memory to an opal sg list */
opal_vmalloc_to_sg_list(void * vmalloc_addr,unsigned long vmalloc_size)1047 struct opal_sg_list *opal_vmalloc_to_sg_list(void *vmalloc_addr,
1048 unsigned long vmalloc_size)
1049 {
1050 struct opal_sg_list *sg, *first = NULL;
1051 unsigned long i = 0;
1052
1053 sg = kzalloc(PAGE_SIZE, GFP_KERNEL);
1054 if (!sg)
1055 goto nomem;
1056
1057 first = sg;
1058
1059 while (vmalloc_size > 0) {
1060 uint64_t data = vmalloc_to_pfn(vmalloc_addr) << PAGE_SHIFT;
1061 uint64_t length = min(vmalloc_size, PAGE_SIZE);
1062
1063 sg->entry[i].data = cpu_to_be64(data);
1064 sg->entry[i].length = cpu_to_be64(length);
1065 i++;
1066
1067 if (i >= SG_ENTRIES_PER_NODE) {
1068 struct opal_sg_list *next;
1069
1070 next = kzalloc(PAGE_SIZE, GFP_KERNEL);
1071 if (!next)
1072 goto nomem;
1073
1074 sg->length = cpu_to_be64(
1075 i * sizeof(struct opal_sg_entry) + 16);
1076 i = 0;
1077 sg->next = cpu_to_be64(__pa(next));
1078 sg = next;
1079 }
1080
1081 vmalloc_addr += length;
1082 vmalloc_size -= length;
1083 }
1084
1085 sg->length = cpu_to_be64(i * sizeof(struct opal_sg_entry) + 16);
1086
1087 return first;
1088
1089 nomem:
1090 pr_err("%s : Failed to allocate memory\n", __func__);
1091 opal_free_sg_list(first);
1092 return NULL;
1093 }
1094
opal_free_sg_list(struct opal_sg_list * sg)1095 void opal_free_sg_list(struct opal_sg_list *sg)
1096 {
1097 while (sg) {
1098 uint64_t next = be64_to_cpu(sg->next);
1099
1100 kfree(sg);
1101
1102 if (next)
1103 sg = __va(next);
1104 else
1105 sg = NULL;
1106 }
1107 }
1108
opal_error_code(int rc)1109 int opal_error_code(int rc)
1110 {
1111 switch (rc) {
1112 case OPAL_SUCCESS: return 0;
1113
1114 case OPAL_PARAMETER: return -EINVAL;
1115 case OPAL_ASYNC_COMPLETION: return -EINPROGRESS;
1116 case OPAL_BUSY:
1117 case OPAL_BUSY_EVENT: return -EBUSY;
1118 case OPAL_NO_MEM: return -ENOMEM;
1119 case OPAL_PERMISSION: return -EPERM;
1120
1121 case OPAL_UNSUPPORTED: return -EIO;
1122 case OPAL_HARDWARE: return -EIO;
1123 case OPAL_INTERNAL_ERROR: return -EIO;
1124 case OPAL_TIMEOUT: return -ETIMEDOUT;
1125 default:
1126 pr_err("%s: unexpected OPAL error %d\n", __func__, rc);
1127 return -EIO;
1128 }
1129 }
1130
powernv_set_nmmu_ptcr(unsigned long ptcr)1131 void powernv_set_nmmu_ptcr(unsigned long ptcr)
1132 {
1133 int rc;
1134
1135 if (firmware_has_feature(FW_FEATURE_OPAL)) {
1136 rc = opal_nmmu_set_ptcr(-1UL, ptcr);
1137 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
1138 pr_warn("%s: Unable to set nest mmu ptcr\n", __func__);
1139 }
1140 }
1141
1142 EXPORT_SYMBOL_GPL(opal_poll_events);
1143 EXPORT_SYMBOL_GPL(opal_rtc_read);
1144 EXPORT_SYMBOL_GPL(opal_rtc_write);
1145 EXPORT_SYMBOL_GPL(opal_tpo_read);
1146 EXPORT_SYMBOL_GPL(opal_tpo_write);
1147 EXPORT_SYMBOL_GPL(opal_i2c_request);
1148 /* Export these symbols for PowerNV LED class driver */
1149 EXPORT_SYMBOL_GPL(opal_leds_get_ind);
1150 EXPORT_SYMBOL_GPL(opal_leds_set_ind);
1151 /* Export this symbol for PowerNV Operator Panel class driver */
1152 EXPORT_SYMBOL_GPL(opal_write_oppanel_async);
1153 /* Export this for KVM */
1154 EXPORT_SYMBOL_GPL(opal_int_set_mfrr);
1155 EXPORT_SYMBOL_GPL(opal_int_eoi);
1156 EXPORT_SYMBOL_GPL(opal_error_code);
1157 /* Export the below symbol for NX compression */
1158 EXPORT_SYMBOL(opal_nx_coproc_init);
1159