• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2001
6  *
7  * Author: Dipankar Sarma <dipankar@in.ibm.com>
8  *
9  * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11  * Papers:
12  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14  *
15  * For detailed explanation of Read-Copy Update mechanism see -
16  *		http://lse.sourceforge.net/locking/rcupdate.html
17  *
18  */
19 
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22 
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <asm/processor.h>
31 #include <linux/cpumask.h>
32 
33 #define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
34 #define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
35 #define ulong2long(a)		(*(long *)(&(a)))
36 
37 /* Exported common interfaces */
38 void call_rcu(struct rcu_head *head, rcu_callback_t func);
39 void rcu_barrier_tasks(void);
40 void synchronize_rcu(void);
41 
42 #ifdef CONFIG_PREEMPT_RCU
43 
44 void __rcu_read_lock(void);
45 void __rcu_read_unlock(void);
46 
47 /*
48  * Defined as a macro as it is a very low level header included from
49  * areas that don't even know about current.  This gives the rcu_read_lock()
50  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
51  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
52  */
53 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
54 
55 #else /* #ifdef CONFIG_PREEMPT_RCU */
56 
__rcu_read_lock(void)57 static inline void __rcu_read_lock(void)
58 {
59 	preempt_disable();
60 }
61 
__rcu_read_unlock(void)62 static inline void __rcu_read_unlock(void)
63 {
64 	preempt_enable();
65 }
66 
rcu_preempt_depth(void)67 static inline int rcu_preempt_depth(void)
68 {
69 	return 0;
70 }
71 
72 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
73 
74 /* Internal to kernel */
75 void rcu_init(void);
76 extern int rcu_scheduler_active __read_mostly;
77 void rcu_sched_clock_irq(int user);
78 void rcu_report_dead(unsigned int cpu);
79 void rcutree_migrate_callbacks(int cpu);
80 
81 #ifdef CONFIG_RCU_STALL_COMMON
82 void rcu_sysrq_start(void);
83 void rcu_sysrq_end(void);
84 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)85 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)86 static inline void rcu_sysrq_end(void) { }
87 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
88 
89 #ifdef CONFIG_NO_HZ_FULL
90 void rcu_user_enter(void);
91 void rcu_user_exit(void);
92 #else
rcu_user_enter(void)93 static inline void rcu_user_enter(void) { }
rcu_user_exit(void)94 static inline void rcu_user_exit(void) { }
95 #endif /* CONFIG_NO_HZ_FULL */
96 
97 #ifdef CONFIG_RCU_NOCB_CPU
98 void rcu_init_nohz(void);
99 void rcu_nocb_flush_deferred_wakeup(void);
100 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)101 static inline void rcu_init_nohz(void) { }
rcu_nocb_flush_deferred_wakeup(void)102 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
103 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
104 
105 /**
106  * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
107  * @a: Code that RCU needs to pay attention to.
108  *
109  * RCU read-side critical sections are forbidden in the inner idle loop,
110  * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
111  * will happily ignore any such read-side critical sections.  However,
112  * things like powertop need tracepoints in the inner idle loop.
113  *
114  * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
115  * will tell RCU that it needs to pay attention, invoke its argument
116  * (in this example, calling the do_something_with_RCU() function),
117  * and then tell RCU to go back to ignoring this CPU.  It is permissible
118  * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
119  * on the order of a million or so, even on 32-bit systems).  It is
120  * not legal to block within RCU_NONIDLE(), nor is it permissible to
121  * transfer control either into or out of RCU_NONIDLE()'s statement.
122  */
123 #define RCU_NONIDLE(a) \
124 	do { \
125 		rcu_irq_enter_irqson(); \
126 		do { a; } while (0); \
127 		rcu_irq_exit_irqson(); \
128 	} while (0)
129 
130 /*
131  * Note a quasi-voluntary context switch for RCU-tasks's benefit.
132  * This is a macro rather than an inline function to avoid #include hell.
133  */
134 #ifdef CONFIG_TASKS_RCU
135 #define rcu_tasks_qs(t) \
136 	do { \
137 		if (READ_ONCE((t)->rcu_tasks_holdout)) \
138 			WRITE_ONCE((t)->rcu_tasks_holdout, false); \
139 	} while (0)
140 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t)
141 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
142 void synchronize_rcu_tasks(void);
143 void exit_tasks_rcu_start(void);
144 void exit_tasks_rcu_finish(void);
145 #else /* #ifdef CONFIG_TASKS_RCU */
146 #define rcu_tasks_qs(t)	do { } while (0)
147 #define rcu_note_voluntary_context_switch(t) do { } while (0)
148 #define call_rcu_tasks call_rcu
149 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)150 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_finish(void)151 static inline void exit_tasks_rcu_finish(void) { }
152 #endif /* #else #ifdef CONFIG_TASKS_RCU */
153 
154 /**
155  * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
156  *
157  * This macro resembles cond_resched(), except that it is defined to
158  * report potential quiescent states to RCU-tasks even if the cond_resched()
159  * machinery were to be shut off, as some advocate for PREEMPT kernels.
160  */
161 #define cond_resched_tasks_rcu_qs() \
162 do { \
163 	rcu_tasks_qs(current); \
164 	cond_resched(); \
165 } while (0)
166 
167 /**
168  * rcu_softirq_qs_periodic - Report RCU and RCU-Tasks quiescent states
169  * @old_ts: jiffies at start of processing.
170  *
171  * This helper is for long-running softirq handlers, such as NAPI threads in
172  * networking. The caller should initialize the variable passed in as @old_ts
173  * at the beginning of the softirq handler. When invoked frequently, this macro
174  * will invoke rcu_softirq_qs() every 100 milliseconds thereafter, which will
175  * provide both RCU and RCU-Tasks quiescent states. Note that this macro
176  * modifies its old_ts argument.
177  *
178  * Because regions of code that have disabled softirq act as RCU read-side
179  * critical sections, this macro should be invoked with softirq (and
180  * preemption) enabled.
181  *
182  * The macro is not needed when CONFIG_PREEMPT_RT is defined. RT kernels would
183  * have more chance to invoke schedule() calls and provide necessary quiescent
184  * states. As a contrast, calling cond_resched() only won't achieve the same
185  * effect because cond_resched() does not provide RCU-Tasks quiescent states.
186  */
187 #define rcu_softirq_qs_periodic(old_ts) \
188 do { \
189 	if (!IS_ENABLED(CONFIG_PREEMPT_RT) && \
190 	    time_after(jiffies, (old_ts) + HZ / 10)) { \
191 		preempt_disable(); \
192 		rcu_softirq_qs(); \
193 		preempt_enable(); \
194 		(old_ts) = jiffies; \
195 	} \
196 } while (0)
197 
198 /*
199  * Infrastructure to implement the synchronize_() primitives in
200  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
201  */
202 
203 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
204 #include <linux/rcutree.h>
205 #elif defined(CONFIG_TINY_RCU)
206 #include <linux/rcutiny.h>
207 #else
208 #error "Unknown RCU implementation specified to kernel configuration"
209 #endif
210 
211 /*
212  * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
213  * are needed for dynamic initialization and destruction of rcu_head
214  * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
215  * dynamic initialization and destruction of statically allocated rcu_head
216  * structures.  However, rcu_head structures allocated dynamically in the
217  * heap don't need any initialization.
218  */
219 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
220 void init_rcu_head(struct rcu_head *head);
221 void destroy_rcu_head(struct rcu_head *head);
222 void init_rcu_head_on_stack(struct rcu_head *head);
223 void destroy_rcu_head_on_stack(struct rcu_head *head);
224 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)225 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)226 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)227 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)228 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
229 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
230 
231 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
232 bool rcu_lockdep_current_cpu_online(void);
233 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)234 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
235 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
236 
237 #ifdef CONFIG_DEBUG_LOCK_ALLOC
238 
rcu_lock_acquire(struct lockdep_map * map)239 static inline void rcu_lock_acquire(struct lockdep_map *map)
240 {
241 	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
242 }
243 
rcu_lock_release(struct lockdep_map * map)244 static inline void rcu_lock_release(struct lockdep_map *map)
245 {
246 	lock_release(map, 1, _THIS_IP_);
247 }
248 
249 extern struct lockdep_map rcu_lock_map;
250 extern struct lockdep_map rcu_bh_lock_map;
251 extern struct lockdep_map rcu_sched_lock_map;
252 extern struct lockdep_map rcu_callback_map;
253 int debug_lockdep_rcu_enabled(void);
254 int rcu_read_lock_held(void);
255 int rcu_read_lock_bh_held(void);
256 int rcu_read_lock_sched_held(void);
257 int rcu_read_lock_any_held(void);
258 
259 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
260 
261 # define rcu_lock_acquire(a)		do { } while (0)
262 # define rcu_lock_release(a)		do { } while (0)
263 
rcu_read_lock_held(void)264 static inline int rcu_read_lock_held(void)
265 {
266 	return 1;
267 }
268 
rcu_read_lock_bh_held(void)269 static inline int rcu_read_lock_bh_held(void)
270 {
271 	return 1;
272 }
273 
rcu_read_lock_sched_held(void)274 static inline int rcu_read_lock_sched_held(void)
275 {
276 	return !preemptible();
277 }
278 
rcu_read_lock_any_held(void)279 static inline int rcu_read_lock_any_held(void)
280 {
281 	return !preemptible();
282 }
283 
284 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
285 
286 #ifdef CONFIG_PROVE_RCU
287 
288 /**
289  * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
290  * @c: condition to check
291  * @s: informative message
292  */
293 #define RCU_LOCKDEP_WARN(c, s)						\
294 	do {								\
295 		static bool __section(.data.unlikely) __warned;		\
296 		if (debug_lockdep_rcu_enabled() && !__warned && (c)) {	\
297 			__warned = true;				\
298 			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
299 		}							\
300 	} while (0)
301 
302 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)303 static inline void rcu_preempt_sleep_check(void)
304 {
305 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
306 			 "Illegal context switch in RCU read-side critical section");
307 }
308 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)309 static inline void rcu_preempt_sleep_check(void) { }
310 #endif /* #else #ifdef CONFIG_PROVE_RCU */
311 
312 #define rcu_sleep_check()						\
313 	do {								\
314 		rcu_preempt_sleep_check();				\
315 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
316 				 "Illegal context switch in RCU-bh read-side critical section"); \
317 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
318 				 "Illegal context switch in RCU-sched read-side critical section"); \
319 	} while (0)
320 
321 #else /* #ifdef CONFIG_PROVE_RCU */
322 
323 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
324 #define rcu_sleep_check() do { } while (0)
325 
326 #endif /* #else #ifdef CONFIG_PROVE_RCU */
327 
328 /*
329  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
330  * and rcu_assign_pointer().  Some of these could be folded into their
331  * callers, but they are left separate in order to ease introduction of
332  * multiple pointers markings to match different RCU implementations
333  * (e.g., __srcu), should this make sense in the future.
334  */
335 
336 #ifdef __CHECKER__
337 #define rcu_check_sparse(p, space) \
338 	((void)(((typeof(*p) space *)p) == p))
339 #else /* #ifdef __CHECKER__ */
340 #define rcu_check_sparse(p, space)
341 #endif /* #else #ifdef __CHECKER__ */
342 
343 #define __rcu_access_pointer(p, space) \
344 ({ \
345 	typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
346 	rcu_check_sparse(p, space); \
347 	((typeof(*p) __force __kernel *)(_________p1)); \
348 })
349 #define __rcu_dereference_check(p, c, space) \
350 ({ \
351 	/* Dependency order vs. p above. */ \
352 	typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
353 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
354 	rcu_check_sparse(p, space); \
355 	((typeof(*p) __force __kernel *)(________p1)); \
356 })
357 #define __rcu_dereference_protected(p, c, space) \
358 ({ \
359 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
360 	rcu_check_sparse(p, space); \
361 	((typeof(*p) __force __kernel *)(p)); \
362 })
363 #define rcu_dereference_raw(p) \
364 ({ \
365 	/* Dependency order vs. p above. */ \
366 	typeof(p) ________p1 = READ_ONCE(p); \
367 	((typeof(*p) __force __kernel *)(________p1)); \
368 })
369 
370 /**
371  * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
372  * @v: The value to statically initialize with.
373  */
374 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
375 
376 /**
377  * rcu_assign_pointer() - assign to RCU-protected pointer
378  * @p: pointer to assign to
379  * @v: value to assign (publish)
380  *
381  * Assigns the specified value to the specified RCU-protected
382  * pointer, ensuring that any concurrent RCU readers will see
383  * any prior initialization.
384  *
385  * Inserts memory barriers on architectures that require them
386  * (which is most of them), and also prevents the compiler from
387  * reordering the code that initializes the structure after the pointer
388  * assignment.  More importantly, this call documents which pointers
389  * will be dereferenced by RCU read-side code.
390  *
391  * In some special cases, you may use RCU_INIT_POINTER() instead
392  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
393  * to the fact that it does not constrain either the CPU or the compiler.
394  * That said, using RCU_INIT_POINTER() when you should have used
395  * rcu_assign_pointer() is a very bad thing that results in
396  * impossible-to-diagnose memory corruption.  So please be careful.
397  * See the RCU_INIT_POINTER() comment header for details.
398  *
399  * Note that rcu_assign_pointer() evaluates each of its arguments only
400  * once, appearances notwithstanding.  One of the "extra" evaluations
401  * is in typeof() and the other visible only to sparse (__CHECKER__),
402  * neither of which actually execute the argument.  As with most cpp
403  * macros, this execute-arguments-only-once property is important, so
404  * please be careful when making changes to rcu_assign_pointer() and the
405  * other macros that it invokes.
406  */
407 #define rcu_assign_pointer(p, v)					      \
408 do {									      \
409 	uintptr_t _r_a_p__v = (uintptr_t)(v);				      \
410 	rcu_check_sparse(p, __rcu);					      \
411 									      \
412 	if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)	      \
413 		WRITE_ONCE((p), (typeof(p))(_r_a_p__v));		      \
414 	else								      \
415 		smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
416 } while (0)
417 
418 /**
419  * rcu_replace_pointer() - replace an RCU pointer, returning its old value
420  * @rcu_ptr: RCU pointer, whose old value is returned
421  * @ptr: regular pointer
422  * @c: the lockdep conditions under which the dereference will take place
423  *
424  * Perform a replacement, where @rcu_ptr is an RCU-annotated
425  * pointer and @c is the lockdep argument that is passed to the
426  * rcu_dereference_protected() call used to read that pointer.  The old
427  * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
428  */
429 #define rcu_replace_pointer(rcu_ptr, ptr, c)				\
430 ({									\
431 	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
432 	rcu_assign_pointer((rcu_ptr), (ptr));				\
433 	__tmp;								\
434 })
435 
436 /**
437  * rcu_swap_protected() - swap an RCU and a regular pointer
438  * @rcu_ptr: RCU pointer
439  * @ptr: regular pointer
440  * @c: the conditions under which the dereference will take place
441  *
442  * Perform swap(@rcu_ptr, @ptr) where @rcu_ptr is an RCU-annotated pointer and
443  * @c is the argument that is passed to the rcu_dereference_protected() call
444  * used to read that pointer.
445  */
446 #define rcu_swap_protected(rcu_ptr, ptr, c) do {			\
447 	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
448 	rcu_assign_pointer((rcu_ptr), (ptr));				\
449 	(ptr) = __tmp;							\
450 } while (0)
451 
452 /**
453  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
454  * @p: The pointer to read
455  *
456  * Return the value of the specified RCU-protected pointer, but omit the
457  * lockdep checks for being in an RCU read-side critical section.  This is
458  * useful when the value of this pointer is accessed, but the pointer is
459  * not dereferenced, for example, when testing an RCU-protected pointer
460  * against NULL.  Although rcu_access_pointer() may also be used in cases
461  * where update-side locks prevent the value of the pointer from changing,
462  * you should instead use rcu_dereference_protected() for this use case.
463  *
464  * It is also permissible to use rcu_access_pointer() when read-side
465  * access to the pointer was removed at least one grace period ago, as
466  * is the case in the context of the RCU callback that is freeing up
467  * the data, or after a synchronize_rcu() returns.  This can be useful
468  * when tearing down multi-linked structures after a grace period
469  * has elapsed.
470  */
471 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
472 
473 /**
474  * rcu_dereference_check() - rcu_dereference with debug checking
475  * @p: The pointer to read, prior to dereferencing
476  * @c: The conditions under which the dereference will take place
477  *
478  * Do an rcu_dereference(), but check that the conditions under which the
479  * dereference will take place are correct.  Typically the conditions
480  * indicate the various locking conditions that should be held at that
481  * point.  The check should return true if the conditions are satisfied.
482  * An implicit check for being in an RCU read-side critical section
483  * (rcu_read_lock()) is included.
484  *
485  * For example:
486  *
487  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
488  *
489  * could be used to indicate to lockdep that foo->bar may only be dereferenced
490  * if either rcu_read_lock() is held, or that the lock required to replace
491  * the bar struct at foo->bar is held.
492  *
493  * Note that the list of conditions may also include indications of when a lock
494  * need not be held, for example during initialisation or destruction of the
495  * target struct:
496  *
497  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
498  *					      atomic_read(&foo->usage) == 0);
499  *
500  * Inserts memory barriers on architectures that require them
501  * (currently only the Alpha), prevents the compiler from refetching
502  * (and from merging fetches), and, more importantly, documents exactly
503  * which pointers are protected by RCU and checks that the pointer is
504  * annotated as __rcu.
505  */
506 #define rcu_dereference_check(p, c) \
507 	__rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
508 
509 /**
510  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
511  * @p: The pointer to read, prior to dereferencing
512  * @c: The conditions under which the dereference will take place
513  *
514  * This is the RCU-bh counterpart to rcu_dereference_check().
515  */
516 #define rcu_dereference_bh_check(p, c) \
517 	__rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
518 
519 /**
520  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
521  * @p: The pointer to read, prior to dereferencing
522  * @c: The conditions under which the dereference will take place
523  *
524  * This is the RCU-sched counterpart to rcu_dereference_check().
525  */
526 #define rcu_dereference_sched_check(p, c) \
527 	__rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
528 				__rcu)
529 
530 /*
531  * The tracing infrastructure traces RCU (we want that), but unfortunately
532  * some of the RCU checks causes tracing to lock up the system.
533  *
534  * The no-tracing version of rcu_dereference_raw() must not call
535  * rcu_read_lock_held().
536  */
537 #define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu)
538 
539 /**
540  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
541  * @p: The pointer to read, prior to dereferencing
542  * @c: The conditions under which the dereference will take place
543  *
544  * Return the value of the specified RCU-protected pointer, but omit
545  * the READ_ONCE().  This is useful in cases where update-side locks
546  * prevent the value of the pointer from changing.  Please note that this
547  * primitive does *not* prevent the compiler from repeating this reference
548  * or combining it with other references, so it should not be used without
549  * protection of appropriate locks.
550  *
551  * This function is only for update-side use.  Using this function
552  * when protected only by rcu_read_lock() will result in infrequent
553  * but very ugly failures.
554  */
555 #define rcu_dereference_protected(p, c) \
556 	__rcu_dereference_protected((p), (c), __rcu)
557 
558 
559 /**
560  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
561  * @p: The pointer to read, prior to dereferencing
562  *
563  * This is a simple wrapper around rcu_dereference_check().
564  */
565 #define rcu_dereference(p) rcu_dereference_check(p, 0)
566 
567 /**
568  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
569  * @p: The pointer to read, prior to dereferencing
570  *
571  * Makes rcu_dereference_check() do the dirty work.
572  */
573 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
574 
575 /**
576  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
577  * @p: The pointer to read, prior to dereferencing
578  *
579  * Makes rcu_dereference_check() do the dirty work.
580  */
581 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
582 
583 /**
584  * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
585  * @p: The pointer to hand off
586  *
587  * This is simply an identity function, but it documents where a pointer
588  * is handed off from RCU to some other synchronization mechanism, for
589  * example, reference counting or locking.  In C11, it would map to
590  * kill_dependency().  It could be used as follows::
591  *
592  *	rcu_read_lock();
593  *	p = rcu_dereference(gp);
594  *	long_lived = is_long_lived(p);
595  *	if (long_lived) {
596  *		if (!atomic_inc_not_zero(p->refcnt))
597  *			long_lived = false;
598  *		else
599  *			p = rcu_pointer_handoff(p);
600  *	}
601  *	rcu_read_unlock();
602  */
603 #define rcu_pointer_handoff(p) (p)
604 
605 /**
606  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
607  *
608  * When synchronize_rcu() is invoked on one CPU while other CPUs
609  * are within RCU read-side critical sections, then the
610  * synchronize_rcu() is guaranteed to block until after all the other
611  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
612  * on one CPU while other CPUs are within RCU read-side critical
613  * sections, invocation of the corresponding RCU callback is deferred
614  * until after the all the other CPUs exit their critical sections.
615  *
616  * Note, however, that RCU callbacks are permitted to run concurrently
617  * with new RCU read-side critical sections.  One way that this can happen
618  * is via the following sequence of events: (1) CPU 0 enters an RCU
619  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
620  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
621  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
622  * callback is invoked.  This is legal, because the RCU read-side critical
623  * section that was running concurrently with the call_rcu() (and which
624  * therefore might be referencing something that the corresponding RCU
625  * callback would free up) has completed before the corresponding
626  * RCU callback is invoked.
627  *
628  * RCU read-side critical sections may be nested.  Any deferred actions
629  * will be deferred until the outermost RCU read-side critical section
630  * completes.
631  *
632  * You can avoid reading and understanding the next paragraph by
633  * following this rule: don't put anything in an rcu_read_lock() RCU
634  * read-side critical section that would block in a !PREEMPT kernel.
635  * But if you want the full story, read on!
636  *
637  * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
638  * it is illegal to block while in an RCU read-side critical section.
639  * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
640  * kernel builds, RCU read-side critical sections may be preempted,
641  * but explicit blocking is illegal.  Finally, in preemptible RCU
642  * implementations in real-time (with -rt patchset) kernel builds, RCU
643  * read-side critical sections may be preempted and they may also block, but
644  * only when acquiring spinlocks that are subject to priority inheritance.
645  */
rcu_read_lock(void)646 static __always_inline void rcu_read_lock(void)
647 {
648 	__rcu_read_lock();
649 	__acquire(RCU);
650 	rcu_lock_acquire(&rcu_lock_map);
651 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
652 			 "rcu_read_lock() used illegally while idle");
653 }
654 
655 /*
656  * So where is rcu_write_lock()?  It does not exist, as there is no
657  * way for writers to lock out RCU readers.  This is a feature, not
658  * a bug -- this property is what provides RCU's performance benefits.
659  * Of course, writers must coordinate with each other.  The normal
660  * spinlock primitives work well for this, but any other technique may be
661  * used as well.  RCU does not care how the writers keep out of each
662  * others' way, as long as they do so.
663  */
664 
665 /**
666  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
667  *
668  * In most situations, rcu_read_unlock() is immune from deadlock.
669  * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
670  * is responsible for deboosting, which it does via rt_mutex_unlock().
671  * Unfortunately, this function acquires the scheduler's runqueue and
672  * priority-inheritance spinlocks.  This means that deadlock could result
673  * if the caller of rcu_read_unlock() already holds one of these locks or
674  * any lock that is ever acquired while holding them.
675  *
676  * That said, RCU readers are never priority boosted unless they were
677  * preempted.  Therefore, one way to avoid deadlock is to make sure
678  * that preemption never happens within any RCU read-side critical
679  * section whose outermost rcu_read_unlock() is called with one of
680  * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
681  * a number of ways, for example, by invoking preempt_disable() before
682  * critical section's outermost rcu_read_lock().
683  *
684  * Given that the set of locks acquired by rt_mutex_unlock() might change
685  * at any time, a somewhat more future-proofed approach is to make sure
686  * that that preemption never happens within any RCU read-side critical
687  * section whose outermost rcu_read_unlock() is called with irqs disabled.
688  * This approach relies on the fact that rt_mutex_unlock() currently only
689  * acquires irq-disabled locks.
690  *
691  * The second of these two approaches is best in most situations,
692  * however, the first approach can also be useful, at least to those
693  * developers willing to keep abreast of the set of locks acquired by
694  * rt_mutex_unlock().
695  *
696  * See rcu_read_lock() for more information.
697  */
rcu_read_unlock(void)698 static inline void rcu_read_unlock(void)
699 {
700 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
701 			 "rcu_read_unlock() used illegally while idle");
702 	__release(RCU);
703 	__rcu_read_unlock();
704 	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
705 }
706 
707 /**
708  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
709  *
710  * This is equivalent of rcu_read_lock(), but also disables softirqs.
711  * Note that anything else that disables softirqs can also serve as
712  * an RCU read-side critical section.
713  *
714  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
715  * must occur in the same context, for example, it is illegal to invoke
716  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
717  * was invoked from some other task.
718  */
rcu_read_lock_bh(void)719 static inline void rcu_read_lock_bh(void)
720 {
721 	local_bh_disable();
722 	__acquire(RCU_BH);
723 	rcu_lock_acquire(&rcu_bh_lock_map);
724 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
725 			 "rcu_read_lock_bh() used illegally while idle");
726 }
727 
728 /*
729  * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
730  *
731  * See rcu_read_lock_bh() for more information.
732  */
rcu_read_unlock_bh(void)733 static inline void rcu_read_unlock_bh(void)
734 {
735 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
736 			 "rcu_read_unlock_bh() used illegally while idle");
737 	rcu_lock_release(&rcu_bh_lock_map);
738 	__release(RCU_BH);
739 	local_bh_enable();
740 }
741 
742 /**
743  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
744  *
745  * This is equivalent of rcu_read_lock(), but disables preemption.
746  * Read-side critical sections can also be introduced by anything else
747  * that disables preemption, including local_irq_disable() and friends.
748  *
749  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
750  * must occur in the same context, for example, it is illegal to invoke
751  * rcu_read_unlock_sched() from process context if the matching
752  * rcu_read_lock_sched() was invoked from an NMI handler.
753  */
rcu_read_lock_sched(void)754 static inline void rcu_read_lock_sched(void)
755 {
756 	preempt_disable();
757 	__acquire(RCU_SCHED);
758 	rcu_lock_acquire(&rcu_sched_lock_map);
759 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
760 			 "rcu_read_lock_sched() used illegally while idle");
761 }
762 
763 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)764 static inline notrace void rcu_read_lock_sched_notrace(void)
765 {
766 	preempt_disable_notrace();
767 	__acquire(RCU_SCHED);
768 }
769 
770 /*
771  * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
772  *
773  * See rcu_read_lock_sched for more information.
774  */
rcu_read_unlock_sched(void)775 static inline void rcu_read_unlock_sched(void)
776 {
777 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
778 			 "rcu_read_unlock_sched() used illegally while idle");
779 	rcu_lock_release(&rcu_sched_lock_map);
780 	__release(RCU_SCHED);
781 	preempt_enable();
782 }
783 
784 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)785 static inline notrace void rcu_read_unlock_sched_notrace(void)
786 {
787 	__release(RCU_SCHED);
788 	preempt_enable_notrace();
789 }
790 
791 /**
792  * RCU_INIT_POINTER() - initialize an RCU protected pointer
793  * @p: The pointer to be initialized.
794  * @v: The value to initialized the pointer to.
795  *
796  * Initialize an RCU-protected pointer in special cases where readers
797  * do not need ordering constraints on the CPU or the compiler.  These
798  * special cases are:
799  *
800  * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
801  * 2.	The caller has taken whatever steps are required to prevent
802  *	RCU readers from concurrently accessing this pointer *or*
803  * 3.	The referenced data structure has already been exposed to
804  *	readers either at compile time or via rcu_assign_pointer() *and*
805  *
806  *	a.	You have not made *any* reader-visible changes to
807  *		this structure since then *or*
808  *	b.	It is OK for readers accessing this structure from its
809  *		new location to see the old state of the structure.  (For
810  *		example, the changes were to statistical counters or to
811  *		other state where exact synchronization is not required.)
812  *
813  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
814  * result in impossible-to-diagnose memory corruption.  As in the structures
815  * will look OK in crash dumps, but any concurrent RCU readers might
816  * see pre-initialized values of the referenced data structure.  So
817  * please be very careful how you use RCU_INIT_POINTER()!!!
818  *
819  * If you are creating an RCU-protected linked structure that is accessed
820  * by a single external-to-structure RCU-protected pointer, then you may
821  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
822  * pointers, but you must use rcu_assign_pointer() to initialize the
823  * external-to-structure pointer *after* you have completely initialized
824  * the reader-accessible portions of the linked structure.
825  *
826  * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
827  * ordering guarantees for either the CPU or the compiler.
828  */
829 #define RCU_INIT_POINTER(p, v) \
830 	do { \
831 		rcu_check_sparse(p, __rcu); \
832 		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
833 	} while (0)
834 
835 /**
836  * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
837  * @p: The pointer to be initialized.
838  * @v: The value to initialized the pointer to.
839  *
840  * GCC-style initialization for an RCU-protected pointer in a structure field.
841  */
842 #define RCU_POINTER_INITIALIZER(p, v) \
843 		.p = RCU_INITIALIZER(v)
844 
845 /*
846  * Does the specified offset indicate that the corresponding rcu_head
847  * structure can be handled by kfree_rcu()?
848  */
849 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
850 
851 /*
852  * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
853  */
854 #define __kfree_rcu(head, offset) \
855 	do { \
856 		BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
857 		kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
858 	} while (0)
859 
860 /**
861  * kfree_rcu() - kfree an object after a grace period.
862  * @ptr:	pointer to kfree
863  * @rhf:	the name of the struct rcu_head within the type of @ptr.
864  *
865  * Many rcu callbacks functions just call kfree() on the base structure.
866  * These functions are trivial, but their size adds up, and furthermore
867  * when they are used in a kernel module, that module must invoke the
868  * high-latency rcu_barrier() function at module-unload time.
869  *
870  * The kfree_rcu() function handles this issue.  Rather than encoding a
871  * function address in the embedded rcu_head structure, kfree_rcu() instead
872  * encodes the offset of the rcu_head structure within the base structure.
873  * Because the functions are not allowed in the low-order 4096 bytes of
874  * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
875  * If the offset is larger than 4095 bytes, a compile-time error will
876  * be generated in __kfree_rcu().  If this error is triggered, you can
877  * either fall back to use of call_rcu() or rearrange the structure to
878  * position the rcu_head structure into the first 4096 bytes.
879  *
880  * Note that the allowable offset might decrease in the future, for example,
881  * to allow something like kmem_cache_free_rcu().
882  *
883  * The BUILD_BUG_ON check must not involve any function calls, hence the
884  * checks are done in macros here.
885  */
886 #define kfree_rcu(ptr, rhf)						\
887 do {									\
888 	typeof (ptr) ___p = (ptr);					\
889 									\
890 	if (___p)							\
891 		__kfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \
892 } while (0)
893 
894 /*
895  * Place this after a lock-acquisition primitive to guarantee that
896  * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
897  * if the UNLOCK and LOCK are executed by the same CPU or if the
898  * UNLOCK and LOCK operate on the same lock variable.
899  */
900 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
901 #define smp_mb__after_unlock_lock()	smp_mb()  /* Full ordering for lock. */
902 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
903 #define smp_mb__after_unlock_lock()	do { } while (0)
904 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
905 
906 
907 /* Has the specified rcu_head structure been handed to call_rcu()? */
908 
909 /**
910  * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
911  * @rhp: The rcu_head structure to initialize.
912  *
913  * If you intend to invoke rcu_head_after_call_rcu() to test whether a
914  * given rcu_head structure has already been passed to call_rcu(), then
915  * you must also invoke this rcu_head_init() function on it just after
916  * allocating that structure.  Calls to this function must not race with
917  * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
918  */
rcu_head_init(struct rcu_head * rhp)919 static inline void rcu_head_init(struct rcu_head *rhp)
920 {
921 	rhp->func = (rcu_callback_t)~0L;
922 }
923 
924 /**
925  * rcu_head_after_call_rcu - Has this rcu_head been passed to call_rcu()?
926  * @rhp: The rcu_head structure to test.
927  * @f: The function passed to call_rcu() along with @rhp.
928  *
929  * Returns @true if the @rhp has been passed to call_rcu() with @func,
930  * and @false otherwise.  Emits a warning in any other case, including
931  * the case where @rhp has already been invoked after a grace period.
932  * Calls to this function must not race with callback invocation.  One way
933  * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
934  * in an RCU read-side critical section that includes a read-side fetch
935  * of the pointer to the structure containing @rhp.
936  */
937 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)938 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
939 {
940 	rcu_callback_t func = READ_ONCE(rhp->func);
941 
942 	if (func == f)
943 		return true;
944 	WARN_ON_ONCE(func != (rcu_callback_t)~0L);
945 	return false;
946 }
947 
948 #endif /* __LINUX_RCUPDATE_H */
949