1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
5 * Copyright IBM Corporation, 2001
6 *
7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
8 *
9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11 * Papers:
12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14 *
15 * For detailed explanation of Read-Copy Update mechanism see -
16 * http://lse.sourceforge.net/locking/rcupdate.html
17 *
18 */
19
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <asm/processor.h>
31 #include <linux/cpumask.h>
32
33 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
34 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
35 #define ulong2long(a) (*(long *)(&(a)))
36
37 /* Exported common interfaces */
38 void call_rcu(struct rcu_head *head, rcu_callback_t func);
39 void rcu_barrier_tasks(void);
40 void synchronize_rcu(void);
41
42 #ifdef CONFIG_PREEMPT_RCU
43
44 void __rcu_read_lock(void);
45 void __rcu_read_unlock(void);
46
47 /*
48 * Defined as a macro as it is a very low level header included from
49 * areas that don't even know about current. This gives the rcu_read_lock()
50 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
51 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
52 */
53 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
54
55 #else /* #ifdef CONFIG_PREEMPT_RCU */
56
__rcu_read_lock(void)57 static inline void __rcu_read_lock(void)
58 {
59 preempt_disable();
60 }
61
__rcu_read_unlock(void)62 static inline void __rcu_read_unlock(void)
63 {
64 preempt_enable();
65 }
66
rcu_preempt_depth(void)67 static inline int rcu_preempt_depth(void)
68 {
69 return 0;
70 }
71
72 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
73
74 /* Internal to kernel */
75 void rcu_init(void);
76 extern int rcu_scheduler_active __read_mostly;
77 void rcu_sched_clock_irq(int user);
78 void rcu_report_dead(unsigned int cpu);
79 void rcutree_migrate_callbacks(int cpu);
80
81 #ifdef CONFIG_RCU_STALL_COMMON
82 void rcu_sysrq_start(void);
83 void rcu_sysrq_end(void);
84 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)85 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)86 static inline void rcu_sysrq_end(void) { }
87 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
88
89 #ifdef CONFIG_NO_HZ_FULL
90 void rcu_user_enter(void);
91 void rcu_user_exit(void);
92 #else
rcu_user_enter(void)93 static inline void rcu_user_enter(void) { }
rcu_user_exit(void)94 static inline void rcu_user_exit(void) { }
95 #endif /* CONFIG_NO_HZ_FULL */
96
97 #ifdef CONFIG_RCU_NOCB_CPU
98 void rcu_init_nohz(void);
99 void rcu_nocb_flush_deferred_wakeup(void);
100 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)101 static inline void rcu_init_nohz(void) { }
rcu_nocb_flush_deferred_wakeup(void)102 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
103 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
104
105 /**
106 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
107 * @a: Code that RCU needs to pay attention to.
108 *
109 * RCU read-side critical sections are forbidden in the inner idle loop,
110 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
111 * will happily ignore any such read-side critical sections. However,
112 * things like powertop need tracepoints in the inner idle loop.
113 *
114 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
115 * will tell RCU that it needs to pay attention, invoke its argument
116 * (in this example, calling the do_something_with_RCU() function),
117 * and then tell RCU to go back to ignoring this CPU. It is permissible
118 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
119 * on the order of a million or so, even on 32-bit systems). It is
120 * not legal to block within RCU_NONIDLE(), nor is it permissible to
121 * transfer control either into or out of RCU_NONIDLE()'s statement.
122 */
123 #define RCU_NONIDLE(a) \
124 do { \
125 rcu_irq_enter_irqson(); \
126 do { a; } while (0); \
127 rcu_irq_exit_irqson(); \
128 } while (0)
129
130 /*
131 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
132 * This is a macro rather than an inline function to avoid #include hell.
133 */
134 #ifdef CONFIG_TASKS_RCU
135 #define rcu_tasks_qs(t) \
136 do { \
137 if (READ_ONCE((t)->rcu_tasks_holdout)) \
138 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
139 } while (0)
140 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t)
141 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
142 void synchronize_rcu_tasks(void);
143 void exit_tasks_rcu_start(void);
144 void exit_tasks_rcu_finish(void);
145 #else /* #ifdef CONFIG_TASKS_RCU */
146 #define rcu_tasks_qs(t) do { } while (0)
147 #define rcu_note_voluntary_context_switch(t) do { } while (0)
148 #define call_rcu_tasks call_rcu
149 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)150 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_finish(void)151 static inline void exit_tasks_rcu_finish(void) { }
152 #endif /* #else #ifdef CONFIG_TASKS_RCU */
153
154 /**
155 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
156 *
157 * This macro resembles cond_resched(), except that it is defined to
158 * report potential quiescent states to RCU-tasks even if the cond_resched()
159 * machinery were to be shut off, as some advocate for PREEMPT kernels.
160 */
161 #define cond_resched_tasks_rcu_qs() \
162 do { \
163 rcu_tasks_qs(current); \
164 cond_resched(); \
165 } while (0)
166
167 /**
168 * rcu_softirq_qs_periodic - Report RCU and RCU-Tasks quiescent states
169 * @old_ts: jiffies at start of processing.
170 *
171 * This helper is for long-running softirq handlers, such as NAPI threads in
172 * networking. The caller should initialize the variable passed in as @old_ts
173 * at the beginning of the softirq handler. When invoked frequently, this macro
174 * will invoke rcu_softirq_qs() every 100 milliseconds thereafter, which will
175 * provide both RCU and RCU-Tasks quiescent states. Note that this macro
176 * modifies its old_ts argument.
177 *
178 * Because regions of code that have disabled softirq act as RCU read-side
179 * critical sections, this macro should be invoked with softirq (and
180 * preemption) enabled.
181 *
182 * The macro is not needed when CONFIG_PREEMPT_RT is defined. RT kernels would
183 * have more chance to invoke schedule() calls and provide necessary quiescent
184 * states. As a contrast, calling cond_resched() only won't achieve the same
185 * effect because cond_resched() does not provide RCU-Tasks quiescent states.
186 */
187 #define rcu_softirq_qs_periodic(old_ts) \
188 do { \
189 if (!IS_ENABLED(CONFIG_PREEMPT_RT) && \
190 time_after(jiffies, (old_ts) + HZ / 10)) { \
191 preempt_disable(); \
192 rcu_softirq_qs(); \
193 preempt_enable(); \
194 (old_ts) = jiffies; \
195 } \
196 } while (0)
197
198 /*
199 * Infrastructure to implement the synchronize_() primitives in
200 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
201 */
202
203 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
204 #include <linux/rcutree.h>
205 #elif defined(CONFIG_TINY_RCU)
206 #include <linux/rcutiny.h>
207 #else
208 #error "Unknown RCU implementation specified to kernel configuration"
209 #endif
210
211 /*
212 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
213 * are needed for dynamic initialization and destruction of rcu_head
214 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
215 * dynamic initialization and destruction of statically allocated rcu_head
216 * structures. However, rcu_head structures allocated dynamically in the
217 * heap don't need any initialization.
218 */
219 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
220 void init_rcu_head(struct rcu_head *head);
221 void destroy_rcu_head(struct rcu_head *head);
222 void init_rcu_head_on_stack(struct rcu_head *head);
223 void destroy_rcu_head_on_stack(struct rcu_head *head);
224 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)225 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)226 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)227 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)228 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
229 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
230
231 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
232 bool rcu_lockdep_current_cpu_online(void);
233 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)234 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
235 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
236
237 #ifdef CONFIG_DEBUG_LOCK_ALLOC
238
rcu_lock_acquire(struct lockdep_map * map)239 static inline void rcu_lock_acquire(struct lockdep_map *map)
240 {
241 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
242 }
243
rcu_lock_release(struct lockdep_map * map)244 static inline void rcu_lock_release(struct lockdep_map *map)
245 {
246 lock_release(map, 1, _THIS_IP_);
247 }
248
249 extern struct lockdep_map rcu_lock_map;
250 extern struct lockdep_map rcu_bh_lock_map;
251 extern struct lockdep_map rcu_sched_lock_map;
252 extern struct lockdep_map rcu_callback_map;
253 int debug_lockdep_rcu_enabled(void);
254 int rcu_read_lock_held(void);
255 int rcu_read_lock_bh_held(void);
256 int rcu_read_lock_sched_held(void);
257 int rcu_read_lock_any_held(void);
258
259 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
260
261 # define rcu_lock_acquire(a) do { } while (0)
262 # define rcu_lock_release(a) do { } while (0)
263
rcu_read_lock_held(void)264 static inline int rcu_read_lock_held(void)
265 {
266 return 1;
267 }
268
rcu_read_lock_bh_held(void)269 static inline int rcu_read_lock_bh_held(void)
270 {
271 return 1;
272 }
273
rcu_read_lock_sched_held(void)274 static inline int rcu_read_lock_sched_held(void)
275 {
276 return !preemptible();
277 }
278
rcu_read_lock_any_held(void)279 static inline int rcu_read_lock_any_held(void)
280 {
281 return !preemptible();
282 }
283
284 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
285
286 #ifdef CONFIG_PROVE_RCU
287
288 /**
289 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
290 * @c: condition to check
291 * @s: informative message
292 */
293 #define RCU_LOCKDEP_WARN(c, s) \
294 do { \
295 static bool __section(.data.unlikely) __warned; \
296 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \
297 __warned = true; \
298 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
299 } \
300 } while (0)
301
302 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)303 static inline void rcu_preempt_sleep_check(void)
304 {
305 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
306 "Illegal context switch in RCU read-side critical section");
307 }
308 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)309 static inline void rcu_preempt_sleep_check(void) { }
310 #endif /* #else #ifdef CONFIG_PROVE_RCU */
311
312 #define rcu_sleep_check() \
313 do { \
314 rcu_preempt_sleep_check(); \
315 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
316 "Illegal context switch in RCU-bh read-side critical section"); \
317 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
318 "Illegal context switch in RCU-sched read-side critical section"); \
319 } while (0)
320
321 #else /* #ifdef CONFIG_PROVE_RCU */
322
323 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
324 #define rcu_sleep_check() do { } while (0)
325
326 #endif /* #else #ifdef CONFIG_PROVE_RCU */
327
328 /*
329 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
330 * and rcu_assign_pointer(). Some of these could be folded into their
331 * callers, but they are left separate in order to ease introduction of
332 * multiple pointers markings to match different RCU implementations
333 * (e.g., __srcu), should this make sense in the future.
334 */
335
336 #ifdef __CHECKER__
337 #define rcu_check_sparse(p, space) \
338 ((void)(((typeof(*p) space *)p) == p))
339 #else /* #ifdef __CHECKER__ */
340 #define rcu_check_sparse(p, space)
341 #endif /* #else #ifdef __CHECKER__ */
342
343 #define __rcu_access_pointer(p, space) \
344 ({ \
345 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
346 rcu_check_sparse(p, space); \
347 ((typeof(*p) __force __kernel *)(_________p1)); \
348 })
349 #define __rcu_dereference_check(p, c, space) \
350 ({ \
351 /* Dependency order vs. p above. */ \
352 typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
353 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
354 rcu_check_sparse(p, space); \
355 ((typeof(*p) __force __kernel *)(________p1)); \
356 })
357 #define __rcu_dereference_protected(p, c, space) \
358 ({ \
359 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
360 rcu_check_sparse(p, space); \
361 ((typeof(*p) __force __kernel *)(p)); \
362 })
363 #define rcu_dereference_raw(p) \
364 ({ \
365 /* Dependency order vs. p above. */ \
366 typeof(p) ________p1 = READ_ONCE(p); \
367 ((typeof(*p) __force __kernel *)(________p1)); \
368 })
369
370 /**
371 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
372 * @v: The value to statically initialize with.
373 */
374 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
375
376 /**
377 * rcu_assign_pointer() - assign to RCU-protected pointer
378 * @p: pointer to assign to
379 * @v: value to assign (publish)
380 *
381 * Assigns the specified value to the specified RCU-protected
382 * pointer, ensuring that any concurrent RCU readers will see
383 * any prior initialization.
384 *
385 * Inserts memory barriers on architectures that require them
386 * (which is most of them), and also prevents the compiler from
387 * reordering the code that initializes the structure after the pointer
388 * assignment. More importantly, this call documents which pointers
389 * will be dereferenced by RCU read-side code.
390 *
391 * In some special cases, you may use RCU_INIT_POINTER() instead
392 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
393 * to the fact that it does not constrain either the CPU or the compiler.
394 * That said, using RCU_INIT_POINTER() when you should have used
395 * rcu_assign_pointer() is a very bad thing that results in
396 * impossible-to-diagnose memory corruption. So please be careful.
397 * See the RCU_INIT_POINTER() comment header for details.
398 *
399 * Note that rcu_assign_pointer() evaluates each of its arguments only
400 * once, appearances notwithstanding. One of the "extra" evaluations
401 * is in typeof() and the other visible only to sparse (__CHECKER__),
402 * neither of which actually execute the argument. As with most cpp
403 * macros, this execute-arguments-only-once property is important, so
404 * please be careful when making changes to rcu_assign_pointer() and the
405 * other macros that it invokes.
406 */
407 #define rcu_assign_pointer(p, v) \
408 do { \
409 uintptr_t _r_a_p__v = (uintptr_t)(v); \
410 rcu_check_sparse(p, __rcu); \
411 \
412 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
413 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
414 else \
415 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
416 } while (0)
417
418 /**
419 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
420 * @rcu_ptr: RCU pointer, whose old value is returned
421 * @ptr: regular pointer
422 * @c: the lockdep conditions under which the dereference will take place
423 *
424 * Perform a replacement, where @rcu_ptr is an RCU-annotated
425 * pointer and @c is the lockdep argument that is passed to the
426 * rcu_dereference_protected() call used to read that pointer. The old
427 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
428 */
429 #define rcu_replace_pointer(rcu_ptr, ptr, c) \
430 ({ \
431 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
432 rcu_assign_pointer((rcu_ptr), (ptr)); \
433 __tmp; \
434 })
435
436 /**
437 * rcu_swap_protected() - swap an RCU and a regular pointer
438 * @rcu_ptr: RCU pointer
439 * @ptr: regular pointer
440 * @c: the conditions under which the dereference will take place
441 *
442 * Perform swap(@rcu_ptr, @ptr) where @rcu_ptr is an RCU-annotated pointer and
443 * @c is the argument that is passed to the rcu_dereference_protected() call
444 * used to read that pointer.
445 */
446 #define rcu_swap_protected(rcu_ptr, ptr, c) do { \
447 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
448 rcu_assign_pointer((rcu_ptr), (ptr)); \
449 (ptr) = __tmp; \
450 } while (0)
451
452 /**
453 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
454 * @p: The pointer to read
455 *
456 * Return the value of the specified RCU-protected pointer, but omit the
457 * lockdep checks for being in an RCU read-side critical section. This is
458 * useful when the value of this pointer is accessed, but the pointer is
459 * not dereferenced, for example, when testing an RCU-protected pointer
460 * against NULL. Although rcu_access_pointer() may also be used in cases
461 * where update-side locks prevent the value of the pointer from changing,
462 * you should instead use rcu_dereference_protected() for this use case.
463 *
464 * It is also permissible to use rcu_access_pointer() when read-side
465 * access to the pointer was removed at least one grace period ago, as
466 * is the case in the context of the RCU callback that is freeing up
467 * the data, or after a synchronize_rcu() returns. This can be useful
468 * when tearing down multi-linked structures after a grace period
469 * has elapsed.
470 */
471 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
472
473 /**
474 * rcu_dereference_check() - rcu_dereference with debug checking
475 * @p: The pointer to read, prior to dereferencing
476 * @c: The conditions under which the dereference will take place
477 *
478 * Do an rcu_dereference(), but check that the conditions under which the
479 * dereference will take place are correct. Typically the conditions
480 * indicate the various locking conditions that should be held at that
481 * point. The check should return true if the conditions are satisfied.
482 * An implicit check for being in an RCU read-side critical section
483 * (rcu_read_lock()) is included.
484 *
485 * For example:
486 *
487 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
488 *
489 * could be used to indicate to lockdep that foo->bar may only be dereferenced
490 * if either rcu_read_lock() is held, or that the lock required to replace
491 * the bar struct at foo->bar is held.
492 *
493 * Note that the list of conditions may also include indications of when a lock
494 * need not be held, for example during initialisation or destruction of the
495 * target struct:
496 *
497 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
498 * atomic_read(&foo->usage) == 0);
499 *
500 * Inserts memory barriers on architectures that require them
501 * (currently only the Alpha), prevents the compiler from refetching
502 * (and from merging fetches), and, more importantly, documents exactly
503 * which pointers are protected by RCU and checks that the pointer is
504 * annotated as __rcu.
505 */
506 #define rcu_dereference_check(p, c) \
507 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
508
509 /**
510 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
511 * @p: The pointer to read, prior to dereferencing
512 * @c: The conditions under which the dereference will take place
513 *
514 * This is the RCU-bh counterpart to rcu_dereference_check().
515 */
516 #define rcu_dereference_bh_check(p, c) \
517 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
518
519 /**
520 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
521 * @p: The pointer to read, prior to dereferencing
522 * @c: The conditions under which the dereference will take place
523 *
524 * This is the RCU-sched counterpart to rcu_dereference_check().
525 */
526 #define rcu_dereference_sched_check(p, c) \
527 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
528 __rcu)
529
530 /*
531 * The tracing infrastructure traces RCU (we want that), but unfortunately
532 * some of the RCU checks causes tracing to lock up the system.
533 *
534 * The no-tracing version of rcu_dereference_raw() must not call
535 * rcu_read_lock_held().
536 */
537 #define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu)
538
539 /**
540 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
541 * @p: The pointer to read, prior to dereferencing
542 * @c: The conditions under which the dereference will take place
543 *
544 * Return the value of the specified RCU-protected pointer, but omit
545 * the READ_ONCE(). This is useful in cases where update-side locks
546 * prevent the value of the pointer from changing. Please note that this
547 * primitive does *not* prevent the compiler from repeating this reference
548 * or combining it with other references, so it should not be used without
549 * protection of appropriate locks.
550 *
551 * This function is only for update-side use. Using this function
552 * when protected only by rcu_read_lock() will result in infrequent
553 * but very ugly failures.
554 */
555 #define rcu_dereference_protected(p, c) \
556 __rcu_dereference_protected((p), (c), __rcu)
557
558
559 /**
560 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
561 * @p: The pointer to read, prior to dereferencing
562 *
563 * This is a simple wrapper around rcu_dereference_check().
564 */
565 #define rcu_dereference(p) rcu_dereference_check(p, 0)
566
567 /**
568 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
569 * @p: The pointer to read, prior to dereferencing
570 *
571 * Makes rcu_dereference_check() do the dirty work.
572 */
573 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
574
575 /**
576 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
577 * @p: The pointer to read, prior to dereferencing
578 *
579 * Makes rcu_dereference_check() do the dirty work.
580 */
581 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
582
583 /**
584 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
585 * @p: The pointer to hand off
586 *
587 * This is simply an identity function, but it documents where a pointer
588 * is handed off from RCU to some other synchronization mechanism, for
589 * example, reference counting or locking. In C11, it would map to
590 * kill_dependency(). It could be used as follows::
591 *
592 * rcu_read_lock();
593 * p = rcu_dereference(gp);
594 * long_lived = is_long_lived(p);
595 * if (long_lived) {
596 * if (!atomic_inc_not_zero(p->refcnt))
597 * long_lived = false;
598 * else
599 * p = rcu_pointer_handoff(p);
600 * }
601 * rcu_read_unlock();
602 */
603 #define rcu_pointer_handoff(p) (p)
604
605 /**
606 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
607 *
608 * When synchronize_rcu() is invoked on one CPU while other CPUs
609 * are within RCU read-side critical sections, then the
610 * synchronize_rcu() is guaranteed to block until after all the other
611 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
612 * on one CPU while other CPUs are within RCU read-side critical
613 * sections, invocation of the corresponding RCU callback is deferred
614 * until after the all the other CPUs exit their critical sections.
615 *
616 * Note, however, that RCU callbacks are permitted to run concurrently
617 * with new RCU read-side critical sections. One way that this can happen
618 * is via the following sequence of events: (1) CPU 0 enters an RCU
619 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
620 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
621 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
622 * callback is invoked. This is legal, because the RCU read-side critical
623 * section that was running concurrently with the call_rcu() (and which
624 * therefore might be referencing something that the corresponding RCU
625 * callback would free up) has completed before the corresponding
626 * RCU callback is invoked.
627 *
628 * RCU read-side critical sections may be nested. Any deferred actions
629 * will be deferred until the outermost RCU read-side critical section
630 * completes.
631 *
632 * You can avoid reading and understanding the next paragraph by
633 * following this rule: don't put anything in an rcu_read_lock() RCU
634 * read-side critical section that would block in a !PREEMPT kernel.
635 * But if you want the full story, read on!
636 *
637 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
638 * it is illegal to block while in an RCU read-side critical section.
639 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
640 * kernel builds, RCU read-side critical sections may be preempted,
641 * but explicit blocking is illegal. Finally, in preemptible RCU
642 * implementations in real-time (with -rt patchset) kernel builds, RCU
643 * read-side critical sections may be preempted and they may also block, but
644 * only when acquiring spinlocks that are subject to priority inheritance.
645 */
rcu_read_lock(void)646 static __always_inline void rcu_read_lock(void)
647 {
648 __rcu_read_lock();
649 __acquire(RCU);
650 rcu_lock_acquire(&rcu_lock_map);
651 RCU_LOCKDEP_WARN(!rcu_is_watching(),
652 "rcu_read_lock() used illegally while idle");
653 }
654
655 /*
656 * So where is rcu_write_lock()? It does not exist, as there is no
657 * way for writers to lock out RCU readers. This is a feature, not
658 * a bug -- this property is what provides RCU's performance benefits.
659 * Of course, writers must coordinate with each other. The normal
660 * spinlock primitives work well for this, but any other technique may be
661 * used as well. RCU does not care how the writers keep out of each
662 * others' way, as long as they do so.
663 */
664
665 /**
666 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
667 *
668 * In most situations, rcu_read_unlock() is immune from deadlock.
669 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
670 * is responsible for deboosting, which it does via rt_mutex_unlock().
671 * Unfortunately, this function acquires the scheduler's runqueue and
672 * priority-inheritance spinlocks. This means that deadlock could result
673 * if the caller of rcu_read_unlock() already holds one of these locks or
674 * any lock that is ever acquired while holding them.
675 *
676 * That said, RCU readers are never priority boosted unless they were
677 * preempted. Therefore, one way to avoid deadlock is to make sure
678 * that preemption never happens within any RCU read-side critical
679 * section whose outermost rcu_read_unlock() is called with one of
680 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
681 * a number of ways, for example, by invoking preempt_disable() before
682 * critical section's outermost rcu_read_lock().
683 *
684 * Given that the set of locks acquired by rt_mutex_unlock() might change
685 * at any time, a somewhat more future-proofed approach is to make sure
686 * that that preemption never happens within any RCU read-side critical
687 * section whose outermost rcu_read_unlock() is called with irqs disabled.
688 * This approach relies on the fact that rt_mutex_unlock() currently only
689 * acquires irq-disabled locks.
690 *
691 * The second of these two approaches is best in most situations,
692 * however, the first approach can also be useful, at least to those
693 * developers willing to keep abreast of the set of locks acquired by
694 * rt_mutex_unlock().
695 *
696 * See rcu_read_lock() for more information.
697 */
rcu_read_unlock(void)698 static inline void rcu_read_unlock(void)
699 {
700 RCU_LOCKDEP_WARN(!rcu_is_watching(),
701 "rcu_read_unlock() used illegally while idle");
702 __release(RCU);
703 __rcu_read_unlock();
704 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
705 }
706
707 /**
708 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
709 *
710 * This is equivalent of rcu_read_lock(), but also disables softirqs.
711 * Note that anything else that disables softirqs can also serve as
712 * an RCU read-side critical section.
713 *
714 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
715 * must occur in the same context, for example, it is illegal to invoke
716 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
717 * was invoked from some other task.
718 */
rcu_read_lock_bh(void)719 static inline void rcu_read_lock_bh(void)
720 {
721 local_bh_disable();
722 __acquire(RCU_BH);
723 rcu_lock_acquire(&rcu_bh_lock_map);
724 RCU_LOCKDEP_WARN(!rcu_is_watching(),
725 "rcu_read_lock_bh() used illegally while idle");
726 }
727
728 /*
729 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
730 *
731 * See rcu_read_lock_bh() for more information.
732 */
rcu_read_unlock_bh(void)733 static inline void rcu_read_unlock_bh(void)
734 {
735 RCU_LOCKDEP_WARN(!rcu_is_watching(),
736 "rcu_read_unlock_bh() used illegally while idle");
737 rcu_lock_release(&rcu_bh_lock_map);
738 __release(RCU_BH);
739 local_bh_enable();
740 }
741
742 /**
743 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
744 *
745 * This is equivalent of rcu_read_lock(), but disables preemption.
746 * Read-side critical sections can also be introduced by anything else
747 * that disables preemption, including local_irq_disable() and friends.
748 *
749 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
750 * must occur in the same context, for example, it is illegal to invoke
751 * rcu_read_unlock_sched() from process context if the matching
752 * rcu_read_lock_sched() was invoked from an NMI handler.
753 */
rcu_read_lock_sched(void)754 static inline void rcu_read_lock_sched(void)
755 {
756 preempt_disable();
757 __acquire(RCU_SCHED);
758 rcu_lock_acquire(&rcu_sched_lock_map);
759 RCU_LOCKDEP_WARN(!rcu_is_watching(),
760 "rcu_read_lock_sched() used illegally while idle");
761 }
762
763 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)764 static inline notrace void rcu_read_lock_sched_notrace(void)
765 {
766 preempt_disable_notrace();
767 __acquire(RCU_SCHED);
768 }
769
770 /*
771 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
772 *
773 * See rcu_read_lock_sched for more information.
774 */
rcu_read_unlock_sched(void)775 static inline void rcu_read_unlock_sched(void)
776 {
777 RCU_LOCKDEP_WARN(!rcu_is_watching(),
778 "rcu_read_unlock_sched() used illegally while idle");
779 rcu_lock_release(&rcu_sched_lock_map);
780 __release(RCU_SCHED);
781 preempt_enable();
782 }
783
784 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)785 static inline notrace void rcu_read_unlock_sched_notrace(void)
786 {
787 __release(RCU_SCHED);
788 preempt_enable_notrace();
789 }
790
791 /**
792 * RCU_INIT_POINTER() - initialize an RCU protected pointer
793 * @p: The pointer to be initialized.
794 * @v: The value to initialized the pointer to.
795 *
796 * Initialize an RCU-protected pointer in special cases where readers
797 * do not need ordering constraints on the CPU or the compiler. These
798 * special cases are:
799 *
800 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
801 * 2. The caller has taken whatever steps are required to prevent
802 * RCU readers from concurrently accessing this pointer *or*
803 * 3. The referenced data structure has already been exposed to
804 * readers either at compile time or via rcu_assign_pointer() *and*
805 *
806 * a. You have not made *any* reader-visible changes to
807 * this structure since then *or*
808 * b. It is OK for readers accessing this structure from its
809 * new location to see the old state of the structure. (For
810 * example, the changes were to statistical counters or to
811 * other state where exact synchronization is not required.)
812 *
813 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
814 * result in impossible-to-diagnose memory corruption. As in the structures
815 * will look OK in crash dumps, but any concurrent RCU readers might
816 * see pre-initialized values of the referenced data structure. So
817 * please be very careful how you use RCU_INIT_POINTER()!!!
818 *
819 * If you are creating an RCU-protected linked structure that is accessed
820 * by a single external-to-structure RCU-protected pointer, then you may
821 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
822 * pointers, but you must use rcu_assign_pointer() to initialize the
823 * external-to-structure pointer *after* you have completely initialized
824 * the reader-accessible portions of the linked structure.
825 *
826 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
827 * ordering guarantees for either the CPU or the compiler.
828 */
829 #define RCU_INIT_POINTER(p, v) \
830 do { \
831 rcu_check_sparse(p, __rcu); \
832 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
833 } while (0)
834
835 /**
836 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
837 * @p: The pointer to be initialized.
838 * @v: The value to initialized the pointer to.
839 *
840 * GCC-style initialization for an RCU-protected pointer in a structure field.
841 */
842 #define RCU_POINTER_INITIALIZER(p, v) \
843 .p = RCU_INITIALIZER(v)
844
845 /*
846 * Does the specified offset indicate that the corresponding rcu_head
847 * structure can be handled by kfree_rcu()?
848 */
849 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
850
851 /*
852 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
853 */
854 #define __kfree_rcu(head, offset) \
855 do { \
856 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
857 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
858 } while (0)
859
860 /**
861 * kfree_rcu() - kfree an object after a grace period.
862 * @ptr: pointer to kfree
863 * @rhf: the name of the struct rcu_head within the type of @ptr.
864 *
865 * Many rcu callbacks functions just call kfree() on the base structure.
866 * These functions are trivial, but their size adds up, and furthermore
867 * when they are used in a kernel module, that module must invoke the
868 * high-latency rcu_barrier() function at module-unload time.
869 *
870 * The kfree_rcu() function handles this issue. Rather than encoding a
871 * function address in the embedded rcu_head structure, kfree_rcu() instead
872 * encodes the offset of the rcu_head structure within the base structure.
873 * Because the functions are not allowed in the low-order 4096 bytes of
874 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
875 * If the offset is larger than 4095 bytes, a compile-time error will
876 * be generated in __kfree_rcu(). If this error is triggered, you can
877 * either fall back to use of call_rcu() or rearrange the structure to
878 * position the rcu_head structure into the first 4096 bytes.
879 *
880 * Note that the allowable offset might decrease in the future, for example,
881 * to allow something like kmem_cache_free_rcu().
882 *
883 * The BUILD_BUG_ON check must not involve any function calls, hence the
884 * checks are done in macros here.
885 */
886 #define kfree_rcu(ptr, rhf) \
887 do { \
888 typeof (ptr) ___p = (ptr); \
889 \
890 if (___p) \
891 __kfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \
892 } while (0)
893
894 /*
895 * Place this after a lock-acquisition primitive to guarantee that
896 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
897 * if the UNLOCK and LOCK are executed by the same CPU or if the
898 * UNLOCK and LOCK operate on the same lock variable.
899 */
900 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
901 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
902 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
903 #define smp_mb__after_unlock_lock() do { } while (0)
904 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
905
906
907 /* Has the specified rcu_head structure been handed to call_rcu()? */
908
909 /**
910 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
911 * @rhp: The rcu_head structure to initialize.
912 *
913 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
914 * given rcu_head structure has already been passed to call_rcu(), then
915 * you must also invoke this rcu_head_init() function on it just after
916 * allocating that structure. Calls to this function must not race with
917 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
918 */
rcu_head_init(struct rcu_head * rhp)919 static inline void rcu_head_init(struct rcu_head *rhp)
920 {
921 rhp->func = (rcu_callback_t)~0L;
922 }
923
924 /**
925 * rcu_head_after_call_rcu - Has this rcu_head been passed to call_rcu()?
926 * @rhp: The rcu_head structure to test.
927 * @f: The function passed to call_rcu() along with @rhp.
928 *
929 * Returns @true if the @rhp has been passed to call_rcu() with @func,
930 * and @false otherwise. Emits a warning in any other case, including
931 * the case where @rhp has already been invoked after a grace period.
932 * Calls to this function must not race with callback invocation. One way
933 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
934 * in an RCU read-side critical section that includes a read-side fetch
935 * of the pointer to the structure containing @rhp.
936 */
937 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)938 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
939 {
940 rcu_callback_t func = READ_ONCE(rhp->func);
941
942 if (func == f)
943 return true;
944 WARN_ON_ONCE(func != (rcu_callback_t)~0L);
945 return false;
946 }
947
948 #endif /* __LINUX_RCUPDATE_H */
949