• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /* SPDX-License-Identifier: GPL-2.0+ */
2  /*
3   * Read-Copy Update mechanism for mutual exclusion
4   *
5   * Copyright IBM Corporation, 2001
6   *
7   * Author: Dipankar Sarma <dipankar@in.ibm.com>
8   *
9   * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10   * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11   * Papers:
12   * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13   * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14   *
15   * For detailed explanation of Read-Copy Update mechanism see -
16   *		http://lse.sourceforge.net/locking/rcupdate.html
17   *
18   */
19  
20  #ifndef __LINUX_RCUPDATE_H
21  #define __LINUX_RCUPDATE_H
22  
23  #include <linux/types.h>
24  #include <linux/compiler.h>
25  #include <linux/atomic.h>
26  #include <linux/irqflags.h>
27  #include <linux/preempt.h>
28  #include <linux/bottom_half.h>
29  #include <linux/lockdep.h>
30  #include <asm/processor.h>
31  #include <linux/cpumask.h>
32  
33  #define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
34  #define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
35  #define ulong2long(a)		(*(long *)(&(a)))
36  
37  /* Exported common interfaces */
38  void call_rcu(struct rcu_head *head, rcu_callback_t func);
39  void rcu_barrier_tasks(void);
40  void synchronize_rcu(void);
41  
42  #ifdef CONFIG_PREEMPT_RCU
43  
44  void __rcu_read_lock(void);
45  void __rcu_read_unlock(void);
46  
47  /*
48   * Defined as a macro as it is a very low level header included from
49   * areas that don't even know about current.  This gives the rcu_read_lock()
50   * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
51   * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
52   */
53  #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
54  
55  #else /* #ifdef CONFIG_PREEMPT_RCU */
56  
__rcu_read_lock(void)57  static inline void __rcu_read_lock(void)
58  {
59  	preempt_disable();
60  }
61  
__rcu_read_unlock(void)62  static inline void __rcu_read_unlock(void)
63  {
64  	preempt_enable();
65  }
66  
rcu_preempt_depth(void)67  static inline int rcu_preempt_depth(void)
68  {
69  	return 0;
70  }
71  
72  #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
73  
74  /* Internal to kernel */
75  void rcu_init(void);
76  extern int rcu_scheduler_active __read_mostly;
77  void rcu_sched_clock_irq(int user);
78  void rcu_report_dead(unsigned int cpu);
79  void rcutree_migrate_callbacks(int cpu);
80  
81  #ifdef CONFIG_RCU_STALL_COMMON
82  void rcu_sysrq_start(void);
83  void rcu_sysrq_end(void);
84  #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)85  static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)86  static inline void rcu_sysrq_end(void) { }
87  #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
88  
89  #ifdef CONFIG_NO_HZ_FULL
90  void rcu_user_enter(void);
91  void rcu_user_exit(void);
92  #else
rcu_user_enter(void)93  static inline void rcu_user_enter(void) { }
rcu_user_exit(void)94  static inline void rcu_user_exit(void) { }
95  #endif /* CONFIG_NO_HZ_FULL */
96  
97  #ifdef CONFIG_RCU_NOCB_CPU
98  void rcu_init_nohz(void);
99  void rcu_nocb_flush_deferred_wakeup(void);
100  #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)101  static inline void rcu_init_nohz(void) { }
rcu_nocb_flush_deferred_wakeup(void)102  static inline void rcu_nocb_flush_deferred_wakeup(void) { }
103  #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
104  
105  /**
106   * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
107   * @a: Code that RCU needs to pay attention to.
108   *
109   * RCU read-side critical sections are forbidden in the inner idle loop,
110   * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
111   * will happily ignore any such read-side critical sections.  However,
112   * things like powertop need tracepoints in the inner idle loop.
113   *
114   * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
115   * will tell RCU that it needs to pay attention, invoke its argument
116   * (in this example, calling the do_something_with_RCU() function),
117   * and then tell RCU to go back to ignoring this CPU.  It is permissible
118   * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
119   * on the order of a million or so, even on 32-bit systems).  It is
120   * not legal to block within RCU_NONIDLE(), nor is it permissible to
121   * transfer control either into or out of RCU_NONIDLE()'s statement.
122   */
123  #define RCU_NONIDLE(a) \
124  	do { \
125  		rcu_irq_enter_irqson(); \
126  		do { a; } while (0); \
127  		rcu_irq_exit_irqson(); \
128  	} while (0)
129  
130  /*
131   * Note a quasi-voluntary context switch for RCU-tasks's benefit.
132   * This is a macro rather than an inline function to avoid #include hell.
133   */
134  #ifdef CONFIG_TASKS_RCU
135  #define rcu_tasks_qs(t) \
136  	do { \
137  		if (READ_ONCE((t)->rcu_tasks_holdout)) \
138  			WRITE_ONCE((t)->rcu_tasks_holdout, false); \
139  	} while (0)
140  #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t)
141  void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
142  void synchronize_rcu_tasks(void);
143  void exit_tasks_rcu_start(void);
144  void exit_tasks_rcu_finish(void);
145  #else /* #ifdef CONFIG_TASKS_RCU */
146  #define rcu_tasks_qs(t)	do { } while (0)
147  #define rcu_note_voluntary_context_switch(t) do { } while (0)
148  #define call_rcu_tasks call_rcu
149  #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)150  static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_finish(void)151  static inline void exit_tasks_rcu_finish(void) { }
152  #endif /* #else #ifdef CONFIG_TASKS_RCU */
153  
154  /**
155   * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
156   *
157   * This macro resembles cond_resched(), except that it is defined to
158   * report potential quiescent states to RCU-tasks even if the cond_resched()
159   * machinery were to be shut off, as some advocate for PREEMPT kernels.
160   */
161  #define cond_resched_tasks_rcu_qs() \
162  do { \
163  	rcu_tasks_qs(current); \
164  	cond_resched(); \
165  } while (0)
166  
167  /**
168   * rcu_softirq_qs_periodic - Report RCU and RCU-Tasks quiescent states
169   * @old_ts: jiffies at start of processing.
170   *
171   * This helper is for long-running softirq handlers, such as NAPI threads in
172   * networking. The caller should initialize the variable passed in as @old_ts
173   * at the beginning of the softirq handler. When invoked frequently, this macro
174   * will invoke rcu_softirq_qs() every 100 milliseconds thereafter, which will
175   * provide both RCU and RCU-Tasks quiescent states. Note that this macro
176   * modifies its old_ts argument.
177   *
178   * Because regions of code that have disabled softirq act as RCU read-side
179   * critical sections, this macro should be invoked with softirq (and
180   * preemption) enabled.
181   *
182   * The macro is not needed when CONFIG_PREEMPT_RT is defined. RT kernels would
183   * have more chance to invoke schedule() calls and provide necessary quiescent
184   * states. As a contrast, calling cond_resched() only won't achieve the same
185   * effect because cond_resched() does not provide RCU-Tasks quiescent states.
186   */
187  #define rcu_softirq_qs_periodic(old_ts) \
188  do { \
189  	if (!IS_ENABLED(CONFIG_PREEMPT_RT) && \
190  	    time_after(jiffies, (old_ts) + HZ / 10)) { \
191  		preempt_disable(); \
192  		rcu_softirq_qs(); \
193  		preempt_enable(); \
194  		(old_ts) = jiffies; \
195  	} \
196  } while (0)
197  
198  /*
199   * Infrastructure to implement the synchronize_() primitives in
200   * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
201   */
202  
203  #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
204  #include <linux/rcutree.h>
205  #elif defined(CONFIG_TINY_RCU)
206  #include <linux/rcutiny.h>
207  #else
208  #error "Unknown RCU implementation specified to kernel configuration"
209  #endif
210  
211  /*
212   * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
213   * are needed for dynamic initialization and destruction of rcu_head
214   * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
215   * dynamic initialization and destruction of statically allocated rcu_head
216   * structures.  However, rcu_head structures allocated dynamically in the
217   * heap don't need any initialization.
218   */
219  #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
220  void init_rcu_head(struct rcu_head *head);
221  void destroy_rcu_head(struct rcu_head *head);
222  void init_rcu_head_on_stack(struct rcu_head *head);
223  void destroy_rcu_head_on_stack(struct rcu_head *head);
224  #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)225  static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)226  static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)227  static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)228  static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
229  #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
230  
231  #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
232  bool rcu_lockdep_current_cpu_online(void);
233  #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)234  static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
235  #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
236  
237  #ifdef CONFIG_DEBUG_LOCK_ALLOC
238  
rcu_lock_acquire(struct lockdep_map * map)239  static inline void rcu_lock_acquire(struct lockdep_map *map)
240  {
241  	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
242  }
243  
rcu_lock_release(struct lockdep_map * map)244  static inline void rcu_lock_release(struct lockdep_map *map)
245  {
246  	lock_release(map, 1, _THIS_IP_);
247  }
248  
249  extern struct lockdep_map rcu_lock_map;
250  extern struct lockdep_map rcu_bh_lock_map;
251  extern struct lockdep_map rcu_sched_lock_map;
252  extern struct lockdep_map rcu_callback_map;
253  int debug_lockdep_rcu_enabled(void);
254  int rcu_read_lock_held(void);
255  int rcu_read_lock_bh_held(void);
256  int rcu_read_lock_sched_held(void);
257  int rcu_read_lock_any_held(void);
258  
259  #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
260  
261  # define rcu_lock_acquire(a)		do { } while (0)
262  # define rcu_lock_release(a)		do { } while (0)
263  
rcu_read_lock_held(void)264  static inline int rcu_read_lock_held(void)
265  {
266  	return 1;
267  }
268  
rcu_read_lock_bh_held(void)269  static inline int rcu_read_lock_bh_held(void)
270  {
271  	return 1;
272  }
273  
rcu_read_lock_sched_held(void)274  static inline int rcu_read_lock_sched_held(void)
275  {
276  	return !preemptible();
277  }
278  
rcu_read_lock_any_held(void)279  static inline int rcu_read_lock_any_held(void)
280  {
281  	return !preemptible();
282  }
283  
284  #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
285  
286  #ifdef CONFIG_PROVE_RCU
287  
288  /**
289   * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
290   * @c: condition to check
291   * @s: informative message
292   */
293  #define RCU_LOCKDEP_WARN(c, s)						\
294  	do {								\
295  		static bool __section(.data.unlikely) __warned;		\
296  		if (debug_lockdep_rcu_enabled() && !__warned && (c)) {	\
297  			__warned = true;				\
298  			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
299  		}							\
300  	} while (0)
301  
302  #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)303  static inline void rcu_preempt_sleep_check(void)
304  {
305  	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
306  			 "Illegal context switch in RCU read-side critical section");
307  }
308  #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)309  static inline void rcu_preempt_sleep_check(void) { }
310  #endif /* #else #ifdef CONFIG_PROVE_RCU */
311  
312  #define rcu_sleep_check()						\
313  	do {								\
314  		rcu_preempt_sleep_check();				\
315  		RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
316  				 "Illegal context switch in RCU-bh read-side critical section"); \
317  		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
318  				 "Illegal context switch in RCU-sched read-side critical section"); \
319  	} while (0)
320  
321  #else /* #ifdef CONFIG_PROVE_RCU */
322  
323  #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
324  #define rcu_sleep_check() do { } while (0)
325  
326  #endif /* #else #ifdef CONFIG_PROVE_RCU */
327  
328  /*
329   * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
330   * and rcu_assign_pointer().  Some of these could be folded into their
331   * callers, but they are left separate in order to ease introduction of
332   * multiple pointers markings to match different RCU implementations
333   * (e.g., __srcu), should this make sense in the future.
334   */
335  
336  #ifdef __CHECKER__
337  #define rcu_check_sparse(p, space) \
338  	((void)(((typeof(*p) space *)p) == p))
339  #else /* #ifdef __CHECKER__ */
340  #define rcu_check_sparse(p, space)
341  #endif /* #else #ifdef __CHECKER__ */
342  
343  #define __rcu_access_pointer(p, space) \
344  ({ \
345  	typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
346  	rcu_check_sparse(p, space); \
347  	((typeof(*p) __force __kernel *)(_________p1)); \
348  })
349  #define __rcu_dereference_check(p, c, space) \
350  ({ \
351  	/* Dependency order vs. p above. */ \
352  	typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
353  	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
354  	rcu_check_sparse(p, space); \
355  	((typeof(*p) __force __kernel *)(________p1)); \
356  })
357  #define __rcu_dereference_protected(p, c, space) \
358  ({ \
359  	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
360  	rcu_check_sparse(p, space); \
361  	((typeof(*p) __force __kernel *)(p)); \
362  })
363  #define rcu_dereference_raw(p) \
364  ({ \
365  	/* Dependency order vs. p above. */ \
366  	typeof(p) ________p1 = READ_ONCE(p); \
367  	((typeof(*p) __force __kernel *)(________p1)); \
368  })
369  
370  /**
371   * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
372   * @v: The value to statically initialize with.
373   */
374  #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
375  
376  /**
377   * rcu_assign_pointer() - assign to RCU-protected pointer
378   * @p: pointer to assign to
379   * @v: value to assign (publish)
380   *
381   * Assigns the specified value to the specified RCU-protected
382   * pointer, ensuring that any concurrent RCU readers will see
383   * any prior initialization.
384   *
385   * Inserts memory barriers on architectures that require them
386   * (which is most of them), and also prevents the compiler from
387   * reordering the code that initializes the structure after the pointer
388   * assignment.  More importantly, this call documents which pointers
389   * will be dereferenced by RCU read-side code.
390   *
391   * In some special cases, you may use RCU_INIT_POINTER() instead
392   * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
393   * to the fact that it does not constrain either the CPU or the compiler.
394   * That said, using RCU_INIT_POINTER() when you should have used
395   * rcu_assign_pointer() is a very bad thing that results in
396   * impossible-to-diagnose memory corruption.  So please be careful.
397   * See the RCU_INIT_POINTER() comment header for details.
398   *
399   * Note that rcu_assign_pointer() evaluates each of its arguments only
400   * once, appearances notwithstanding.  One of the "extra" evaluations
401   * is in typeof() and the other visible only to sparse (__CHECKER__),
402   * neither of which actually execute the argument.  As with most cpp
403   * macros, this execute-arguments-only-once property is important, so
404   * please be careful when making changes to rcu_assign_pointer() and the
405   * other macros that it invokes.
406   */
407  #define rcu_assign_pointer(p, v)					      \
408  do {									      \
409  	uintptr_t _r_a_p__v = (uintptr_t)(v);				      \
410  	rcu_check_sparse(p, __rcu);					      \
411  									      \
412  	if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)	      \
413  		WRITE_ONCE((p), (typeof(p))(_r_a_p__v));		      \
414  	else								      \
415  		smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
416  } while (0)
417  
418  /**
419   * rcu_replace_pointer() - replace an RCU pointer, returning its old value
420   * @rcu_ptr: RCU pointer, whose old value is returned
421   * @ptr: regular pointer
422   * @c: the lockdep conditions under which the dereference will take place
423   *
424   * Perform a replacement, where @rcu_ptr is an RCU-annotated
425   * pointer and @c is the lockdep argument that is passed to the
426   * rcu_dereference_protected() call used to read that pointer.  The old
427   * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
428   */
429  #define rcu_replace_pointer(rcu_ptr, ptr, c)				\
430  ({									\
431  	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
432  	rcu_assign_pointer((rcu_ptr), (ptr));				\
433  	__tmp;								\
434  })
435  
436  /**
437   * rcu_swap_protected() - swap an RCU and a regular pointer
438   * @rcu_ptr: RCU pointer
439   * @ptr: regular pointer
440   * @c: the conditions under which the dereference will take place
441   *
442   * Perform swap(@rcu_ptr, @ptr) where @rcu_ptr is an RCU-annotated pointer and
443   * @c is the argument that is passed to the rcu_dereference_protected() call
444   * used to read that pointer.
445   */
446  #define rcu_swap_protected(rcu_ptr, ptr, c) do {			\
447  	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
448  	rcu_assign_pointer((rcu_ptr), (ptr));				\
449  	(ptr) = __tmp;							\
450  } while (0)
451  
452  /**
453   * rcu_access_pointer() - fetch RCU pointer with no dereferencing
454   * @p: The pointer to read
455   *
456   * Return the value of the specified RCU-protected pointer, but omit the
457   * lockdep checks for being in an RCU read-side critical section.  This is
458   * useful when the value of this pointer is accessed, but the pointer is
459   * not dereferenced, for example, when testing an RCU-protected pointer
460   * against NULL.  Although rcu_access_pointer() may also be used in cases
461   * where update-side locks prevent the value of the pointer from changing,
462   * you should instead use rcu_dereference_protected() for this use case.
463   *
464   * It is also permissible to use rcu_access_pointer() when read-side
465   * access to the pointer was removed at least one grace period ago, as
466   * is the case in the context of the RCU callback that is freeing up
467   * the data, or after a synchronize_rcu() returns.  This can be useful
468   * when tearing down multi-linked structures after a grace period
469   * has elapsed.
470   */
471  #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
472  
473  /**
474   * rcu_dereference_check() - rcu_dereference with debug checking
475   * @p: The pointer to read, prior to dereferencing
476   * @c: The conditions under which the dereference will take place
477   *
478   * Do an rcu_dereference(), but check that the conditions under which the
479   * dereference will take place are correct.  Typically the conditions
480   * indicate the various locking conditions that should be held at that
481   * point.  The check should return true if the conditions are satisfied.
482   * An implicit check for being in an RCU read-side critical section
483   * (rcu_read_lock()) is included.
484   *
485   * For example:
486   *
487   *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
488   *
489   * could be used to indicate to lockdep that foo->bar may only be dereferenced
490   * if either rcu_read_lock() is held, or that the lock required to replace
491   * the bar struct at foo->bar is held.
492   *
493   * Note that the list of conditions may also include indications of when a lock
494   * need not be held, for example during initialisation or destruction of the
495   * target struct:
496   *
497   *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
498   *					      atomic_read(&foo->usage) == 0);
499   *
500   * Inserts memory barriers on architectures that require them
501   * (currently only the Alpha), prevents the compiler from refetching
502   * (and from merging fetches), and, more importantly, documents exactly
503   * which pointers are protected by RCU and checks that the pointer is
504   * annotated as __rcu.
505   */
506  #define rcu_dereference_check(p, c) \
507  	__rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
508  
509  /**
510   * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
511   * @p: The pointer to read, prior to dereferencing
512   * @c: The conditions under which the dereference will take place
513   *
514   * This is the RCU-bh counterpart to rcu_dereference_check().
515   */
516  #define rcu_dereference_bh_check(p, c) \
517  	__rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
518  
519  /**
520   * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
521   * @p: The pointer to read, prior to dereferencing
522   * @c: The conditions under which the dereference will take place
523   *
524   * This is the RCU-sched counterpart to rcu_dereference_check().
525   */
526  #define rcu_dereference_sched_check(p, c) \
527  	__rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
528  				__rcu)
529  
530  /*
531   * The tracing infrastructure traces RCU (we want that), but unfortunately
532   * some of the RCU checks causes tracing to lock up the system.
533   *
534   * The no-tracing version of rcu_dereference_raw() must not call
535   * rcu_read_lock_held().
536   */
537  #define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu)
538  
539  /**
540   * rcu_dereference_protected() - fetch RCU pointer when updates prevented
541   * @p: The pointer to read, prior to dereferencing
542   * @c: The conditions under which the dereference will take place
543   *
544   * Return the value of the specified RCU-protected pointer, but omit
545   * the READ_ONCE().  This is useful in cases where update-side locks
546   * prevent the value of the pointer from changing.  Please note that this
547   * primitive does *not* prevent the compiler from repeating this reference
548   * or combining it with other references, so it should not be used without
549   * protection of appropriate locks.
550   *
551   * This function is only for update-side use.  Using this function
552   * when protected only by rcu_read_lock() will result in infrequent
553   * but very ugly failures.
554   */
555  #define rcu_dereference_protected(p, c) \
556  	__rcu_dereference_protected((p), (c), __rcu)
557  
558  
559  /**
560   * rcu_dereference() - fetch RCU-protected pointer for dereferencing
561   * @p: The pointer to read, prior to dereferencing
562   *
563   * This is a simple wrapper around rcu_dereference_check().
564   */
565  #define rcu_dereference(p) rcu_dereference_check(p, 0)
566  
567  /**
568   * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
569   * @p: The pointer to read, prior to dereferencing
570   *
571   * Makes rcu_dereference_check() do the dirty work.
572   */
573  #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
574  
575  /**
576   * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
577   * @p: The pointer to read, prior to dereferencing
578   *
579   * Makes rcu_dereference_check() do the dirty work.
580   */
581  #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
582  
583  /**
584   * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
585   * @p: The pointer to hand off
586   *
587   * This is simply an identity function, but it documents where a pointer
588   * is handed off from RCU to some other synchronization mechanism, for
589   * example, reference counting or locking.  In C11, it would map to
590   * kill_dependency().  It could be used as follows::
591   *
592   *	rcu_read_lock();
593   *	p = rcu_dereference(gp);
594   *	long_lived = is_long_lived(p);
595   *	if (long_lived) {
596   *		if (!atomic_inc_not_zero(p->refcnt))
597   *			long_lived = false;
598   *		else
599   *			p = rcu_pointer_handoff(p);
600   *	}
601   *	rcu_read_unlock();
602   */
603  #define rcu_pointer_handoff(p) (p)
604  
605  /**
606   * rcu_read_lock() - mark the beginning of an RCU read-side critical section
607   *
608   * When synchronize_rcu() is invoked on one CPU while other CPUs
609   * are within RCU read-side critical sections, then the
610   * synchronize_rcu() is guaranteed to block until after all the other
611   * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
612   * on one CPU while other CPUs are within RCU read-side critical
613   * sections, invocation of the corresponding RCU callback is deferred
614   * until after the all the other CPUs exit their critical sections.
615   *
616   * Note, however, that RCU callbacks are permitted to run concurrently
617   * with new RCU read-side critical sections.  One way that this can happen
618   * is via the following sequence of events: (1) CPU 0 enters an RCU
619   * read-side critical section, (2) CPU 1 invokes call_rcu() to register
620   * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
621   * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
622   * callback is invoked.  This is legal, because the RCU read-side critical
623   * section that was running concurrently with the call_rcu() (and which
624   * therefore might be referencing something that the corresponding RCU
625   * callback would free up) has completed before the corresponding
626   * RCU callback is invoked.
627   *
628   * RCU read-side critical sections may be nested.  Any deferred actions
629   * will be deferred until the outermost RCU read-side critical section
630   * completes.
631   *
632   * You can avoid reading and understanding the next paragraph by
633   * following this rule: don't put anything in an rcu_read_lock() RCU
634   * read-side critical section that would block in a !PREEMPT kernel.
635   * But if you want the full story, read on!
636   *
637   * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
638   * it is illegal to block while in an RCU read-side critical section.
639   * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
640   * kernel builds, RCU read-side critical sections may be preempted,
641   * but explicit blocking is illegal.  Finally, in preemptible RCU
642   * implementations in real-time (with -rt patchset) kernel builds, RCU
643   * read-side critical sections may be preempted and they may also block, but
644   * only when acquiring spinlocks that are subject to priority inheritance.
645   */
rcu_read_lock(void)646  static __always_inline void rcu_read_lock(void)
647  {
648  	__rcu_read_lock();
649  	__acquire(RCU);
650  	rcu_lock_acquire(&rcu_lock_map);
651  	RCU_LOCKDEP_WARN(!rcu_is_watching(),
652  			 "rcu_read_lock() used illegally while idle");
653  }
654  
655  /*
656   * So where is rcu_write_lock()?  It does not exist, as there is no
657   * way for writers to lock out RCU readers.  This is a feature, not
658   * a bug -- this property is what provides RCU's performance benefits.
659   * Of course, writers must coordinate with each other.  The normal
660   * spinlock primitives work well for this, but any other technique may be
661   * used as well.  RCU does not care how the writers keep out of each
662   * others' way, as long as they do so.
663   */
664  
665  /**
666   * rcu_read_unlock() - marks the end of an RCU read-side critical section.
667   *
668   * In most situations, rcu_read_unlock() is immune from deadlock.
669   * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
670   * is responsible for deboosting, which it does via rt_mutex_unlock().
671   * Unfortunately, this function acquires the scheduler's runqueue and
672   * priority-inheritance spinlocks.  This means that deadlock could result
673   * if the caller of rcu_read_unlock() already holds one of these locks or
674   * any lock that is ever acquired while holding them.
675   *
676   * That said, RCU readers are never priority boosted unless they were
677   * preempted.  Therefore, one way to avoid deadlock is to make sure
678   * that preemption never happens within any RCU read-side critical
679   * section whose outermost rcu_read_unlock() is called with one of
680   * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
681   * a number of ways, for example, by invoking preempt_disable() before
682   * critical section's outermost rcu_read_lock().
683   *
684   * Given that the set of locks acquired by rt_mutex_unlock() might change
685   * at any time, a somewhat more future-proofed approach is to make sure
686   * that that preemption never happens within any RCU read-side critical
687   * section whose outermost rcu_read_unlock() is called with irqs disabled.
688   * This approach relies on the fact that rt_mutex_unlock() currently only
689   * acquires irq-disabled locks.
690   *
691   * The second of these two approaches is best in most situations,
692   * however, the first approach can also be useful, at least to those
693   * developers willing to keep abreast of the set of locks acquired by
694   * rt_mutex_unlock().
695   *
696   * See rcu_read_lock() for more information.
697   */
rcu_read_unlock(void)698  static inline void rcu_read_unlock(void)
699  {
700  	RCU_LOCKDEP_WARN(!rcu_is_watching(),
701  			 "rcu_read_unlock() used illegally while idle");
702  	__release(RCU);
703  	__rcu_read_unlock();
704  	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
705  }
706  
707  /**
708   * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
709   *
710   * This is equivalent of rcu_read_lock(), but also disables softirqs.
711   * Note that anything else that disables softirqs can also serve as
712   * an RCU read-side critical section.
713   *
714   * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
715   * must occur in the same context, for example, it is illegal to invoke
716   * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
717   * was invoked from some other task.
718   */
rcu_read_lock_bh(void)719  static inline void rcu_read_lock_bh(void)
720  {
721  	local_bh_disable();
722  	__acquire(RCU_BH);
723  	rcu_lock_acquire(&rcu_bh_lock_map);
724  	RCU_LOCKDEP_WARN(!rcu_is_watching(),
725  			 "rcu_read_lock_bh() used illegally while idle");
726  }
727  
728  /*
729   * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
730   *
731   * See rcu_read_lock_bh() for more information.
732   */
rcu_read_unlock_bh(void)733  static inline void rcu_read_unlock_bh(void)
734  {
735  	RCU_LOCKDEP_WARN(!rcu_is_watching(),
736  			 "rcu_read_unlock_bh() used illegally while idle");
737  	rcu_lock_release(&rcu_bh_lock_map);
738  	__release(RCU_BH);
739  	local_bh_enable();
740  }
741  
742  /**
743   * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
744   *
745   * This is equivalent of rcu_read_lock(), but disables preemption.
746   * Read-side critical sections can also be introduced by anything else
747   * that disables preemption, including local_irq_disable() and friends.
748   *
749   * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
750   * must occur in the same context, for example, it is illegal to invoke
751   * rcu_read_unlock_sched() from process context if the matching
752   * rcu_read_lock_sched() was invoked from an NMI handler.
753   */
rcu_read_lock_sched(void)754  static inline void rcu_read_lock_sched(void)
755  {
756  	preempt_disable();
757  	__acquire(RCU_SCHED);
758  	rcu_lock_acquire(&rcu_sched_lock_map);
759  	RCU_LOCKDEP_WARN(!rcu_is_watching(),
760  			 "rcu_read_lock_sched() used illegally while idle");
761  }
762  
763  /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)764  static inline notrace void rcu_read_lock_sched_notrace(void)
765  {
766  	preempt_disable_notrace();
767  	__acquire(RCU_SCHED);
768  }
769  
770  /*
771   * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
772   *
773   * See rcu_read_lock_sched for more information.
774   */
rcu_read_unlock_sched(void)775  static inline void rcu_read_unlock_sched(void)
776  {
777  	RCU_LOCKDEP_WARN(!rcu_is_watching(),
778  			 "rcu_read_unlock_sched() used illegally while idle");
779  	rcu_lock_release(&rcu_sched_lock_map);
780  	__release(RCU_SCHED);
781  	preempt_enable();
782  }
783  
784  /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)785  static inline notrace void rcu_read_unlock_sched_notrace(void)
786  {
787  	__release(RCU_SCHED);
788  	preempt_enable_notrace();
789  }
790  
791  /**
792   * RCU_INIT_POINTER() - initialize an RCU protected pointer
793   * @p: The pointer to be initialized.
794   * @v: The value to initialized the pointer to.
795   *
796   * Initialize an RCU-protected pointer in special cases where readers
797   * do not need ordering constraints on the CPU or the compiler.  These
798   * special cases are:
799   *
800   * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
801   * 2.	The caller has taken whatever steps are required to prevent
802   *	RCU readers from concurrently accessing this pointer *or*
803   * 3.	The referenced data structure has already been exposed to
804   *	readers either at compile time or via rcu_assign_pointer() *and*
805   *
806   *	a.	You have not made *any* reader-visible changes to
807   *		this structure since then *or*
808   *	b.	It is OK for readers accessing this structure from its
809   *		new location to see the old state of the structure.  (For
810   *		example, the changes were to statistical counters or to
811   *		other state where exact synchronization is not required.)
812   *
813   * Failure to follow these rules governing use of RCU_INIT_POINTER() will
814   * result in impossible-to-diagnose memory corruption.  As in the structures
815   * will look OK in crash dumps, but any concurrent RCU readers might
816   * see pre-initialized values of the referenced data structure.  So
817   * please be very careful how you use RCU_INIT_POINTER()!!!
818   *
819   * If you are creating an RCU-protected linked structure that is accessed
820   * by a single external-to-structure RCU-protected pointer, then you may
821   * use RCU_INIT_POINTER() to initialize the internal RCU-protected
822   * pointers, but you must use rcu_assign_pointer() to initialize the
823   * external-to-structure pointer *after* you have completely initialized
824   * the reader-accessible portions of the linked structure.
825   *
826   * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
827   * ordering guarantees for either the CPU or the compiler.
828   */
829  #define RCU_INIT_POINTER(p, v) \
830  	do { \
831  		rcu_check_sparse(p, __rcu); \
832  		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
833  	} while (0)
834  
835  /**
836   * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
837   * @p: The pointer to be initialized.
838   * @v: The value to initialized the pointer to.
839   *
840   * GCC-style initialization for an RCU-protected pointer in a structure field.
841   */
842  #define RCU_POINTER_INITIALIZER(p, v) \
843  		.p = RCU_INITIALIZER(v)
844  
845  /*
846   * Does the specified offset indicate that the corresponding rcu_head
847   * structure can be handled by kfree_rcu()?
848   */
849  #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
850  
851  /*
852   * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
853   */
854  #define __kfree_rcu(head, offset) \
855  	do { \
856  		BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
857  		kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
858  	} while (0)
859  
860  /**
861   * kfree_rcu() - kfree an object after a grace period.
862   * @ptr:	pointer to kfree
863   * @rhf:	the name of the struct rcu_head within the type of @ptr.
864   *
865   * Many rcu callbacks functions just call kfree() on the base structure.
866   * These functions are trivial, but their size adds up, and furthermore
867   * when they are used in a kernel module, that module must invoke the
868   * high-latency rcu_barrier() function at module-unload time.
869   *
870   * The kfree_rcu() function handles this issue.  Rather than encoding a
871   * function address in the embedded rcu_head structure, kfree_rcu() instead
872   * encodes the offset of the rcu_head structure within the base structure.
873   * Because the functions are not allowed in the low-order 4096 bytes of
874   * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
875   * If the offset is larger than 4095 bytes, a compile-time error will
876   * be generated in __kfree_rcu().  If this error is triggered, you can
877   * either fall back to use of call_rcu() or rearrange the structure to
878   * position the rcu_head structure into the first 4096 bytes.
879   *
880   * Note that the allowable offset might decrease in the future, for example,
881   * to allow something like kmem_cache_free_rcu().
882   *
883   * The BUILD_BUG_ON check must not involve any function calls, hence the
884   * checks are done in macros here.
885   */
886  #define kfree_rcu(ptr, rhf)						\
887  do {									\
888  	typeof (ptr) ___p = (ptr);					\
889  									\
890  	if (___p)							\
891  		__kfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \
892  } while (0)
893  
894  /*
895   * Place this after a lock-acquisition primitive to guarantee that
896   * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
897   * if the UNLOCK and LOCK are executed by the same CPU or if the
898   * UNLOCK and LOCK operate on the same lock variable.
899   */
900  #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
901  #define smp_mb__after_unlock_lock()	smp_mb()  /* Full ordering for lock. */
902  #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
903  #define smp_mb__after_unlock_lock()	do { } while (0)
904  #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
905  
906  
907  /* Has the specified rcu_head structure been handed to call_rcu()? */
908  
909  /**
910   * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
911   * @rhp: The rcu_head structure to initialize.
912   *
913   * If you intend to invoke rcu_head_after_call_rcu() to test whether a
914   * given rcu_head structure has already been passed to call_rcu(), then
915   * you must also invoke this rcu_head_init() function on it just after
916   * allocating that structure.  Calls to this function must not race with
917   * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
918   */
rcu_head_init(struct rcu_head * rhp)919  static inline void rcu_head_init(struct rcu_head *rhp)
920  {
921  	rhp->func = (rcu_callback_t)~0L;
922  }
923  
924  /**
925   * rcu_head_after_call_rcu - Has this rcu_head been passed to call_rcu()?
926   * @rhp: The rcu_head structure to test.
927   * @f: The function passed to call_rcu() along with @rhp.
928   *
929   * Returns @true if the @rhp has been passed to call_rcu() with @func,
930   * and @false otherwise.  Emits a warning in any other case, including
931   * the case where @rhp has already been invoked after a grace period.
932   * Calls to this function must not race with callback invocation.  One way
933   * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
934   * in an RCU read-side critical section that includes a read-side fetch
935   * of the pointer to the structure containing @rhp.
936   */
937  static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)938  rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
939  {
940  	rcu_callback_t func = READ_ONCE(rhp->func);
941  
942  	if (func == f)
943  		return true;
944  	WARN_ON_ONCE(func != (rcu_callback_t)~0L);
945  	return false;
946  }
947  
948  #endif /* __LINUX_RCUPDATE_H */
949