1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion 4 * 5 * Copyright IBM Corporation, 2001 6 * 7 * Author: Dipankar Sarma <dipankar@in.ibm.com> 8 * 9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com> 10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 11 * Papers: 12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 14 * 15 * For detailed explanation of Read-Copy Update mechanism see - 16 * http://lse.sourceforge.net/locking/rcupdate.html 17 * 18 */ 19 20 #ifndef __LINUX_RCUPDATE_H 21 #define __LINUX_RCUPDATE_H 22 23 #include <linux/types.h> 24 #include <linux/compiler.h> 25 #include <linux/atomic.h> 26 #include <linux/irqflags.h> 27 #include <linux/preempt.h> 28 #include <linux/bottom_half.h> 29 #include <linux/lockdep.h> 30 #include <asm/processor.h> 31 #include <linux/cpumask.h> 32 33 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 34 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 35 #define ulong2long(a) (*(long *)(&(a))) 36 37 /* Exported common interfaces */ 38 void call_rcu(struct rcu_head *head, rcu_callback_t func); 39 void rcu_barrier_tasks(void); 40 void synchronize_rcu(void); 41 42 #ifdef CONFIG_PREEMPT_RCU 43 44 void __rcu_read_lock(void); 45 void __rcu_read_unlock(void); 46 47 /* 48 * Defined as a macro as it is a very low level header included from 49 * areas that don't even know about current. This gives the rcu_read_lock() 50 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 51 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 52 */ 53 #define rcu_preempt_depth() (current->rcu_read_lock_nesting) 54 55 #else /* #ifdef CONFIG_PREEMPT_RCU */ 56 __rcu_read_lock(void)57 static inline void __rcu_read_lock(void) 58 { 59 preempt_disable(); 60 } 61 __rcu_read_unlock(void)62 static inline void __rcu_read_unlock(void) 63 { 64 preempt_enable(); 65 } 66 rcu_preempt_depth(void)67 static inline int rcu_preempt_depth(void) 68 { 69 return 0; 70 } 71 72 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 73 74 /* Internal to kernel */ 75 void rcu_init(void); 76 extern int rcu_scheduler_active __read_mostly; 77 void rcu_sched_clock_irq(int user); 78 void rcu_report_dead(unsigned int cpu); 79 void rcutree_migrate_callbacks(int cpu); 80 81 #ifdef CONFIG_RCU_STALL_COMMON 82 void rcu_sysrq_start(void); 83 void rcu_sysrq_end(void); 84 #else /* #ifdef CONFIG_RCU_STALL_COMMON */ rcu_sysrq_start(void)85 static inline void rcu_sysrq_start(void) { } rcu_sysrq_end(void)86 static inline void rcu_sysrq_end(void) { } 87 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 88 89 #ifdef CONFIG_NO_HZ_FULL 90 void rcu_user_enter(void); 91 void rcu_user_exit(void); 92 #else rcu_user_enter(void)93 static inline void rcu_user_enter(void) { } rcu_user_exit(void)94 static inline void rcu_user_exit(void) { } 95 #endif /* CONFIG_NO_HZ_FULL */ 96 97 #ifdef CONFIG_RCU_NOCB_CPU 98 void rcu_init_nohz(void); 99 void rcu_nocb_flush_deferred_wakeup(void); 100 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ rcu_init_nohz(void)101 static inline void rcu_init_nohz(void) { } rcu_nocb_flush_deferred_wakeup(void)102 static inline void rcu_nocb_flush_deferred_wakeup(void) { } 103 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 104 105 /** 106 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 107 * @a: Code that RCU needs to pay attention to. 108 * 109 * RCU read-side critical sections are forbidden in the inner idle loop, 110 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU 111 * will happily ignore any such read-side critical sections. However, 112 * things like powertop need tracepoints in the inner idle loop. 113 * 114 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 115 * will tell RCU that it needs to pay attention, invoke its argument 116 * (in this example, calling the do_something_with_RCU() function), 117 * and then tell RCU to go back to ignoring this CPU. It is permissible 118 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is 119 * on the order of a million or so, even on 32-bit systems). It is 120 * not legal to block within RCU_NONIDLE(), nor is it permissible to 121 * transfer control either into or out of RCU_NONIDLE()'s statement. 122 */ 123 #define RCU_NONIDLE(a) \ 124 do { \ 125 rcu_irq_enter_irqson(); \ 126 do { a; } while (0); \ 127 rcu_irq_exit_irqson(); \ 128 } while (0) 129 130 /* 131 * Note a quasi-voluntary context switch for RCU-tasks's benefit. 132 * This is a macro rather than an inline function to avoid #include hell. 133 */ 134 #ifdef CONFIG_TASKS_RCU 135 #define rcu_tasks_qs(t) \ 136 do { \ 137 if (READ_ONCE((t)->rcu_tasks_holdout)) \ 138 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 139 } while (0) 140 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t) 141 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 142 void synchronize_rcu_tasks(void); 143 void exit_tasks_rcu_start(void); 144 void exit_tasks_rcu_finish(void); 145 #else /* #ifdef CONFIG_TASKS_RCU */ 146 #define rcu_tasks_qs(t) do { } while (0) 147 #define rcu_note_voluntary_context_switch(t) do { } while (0) 148 #define call_rcu_tasks call_rcu 149 #define synchronize_rcu_tasks synchronize_rcu exit_tasks_rcu_start(void)150 static inline void exit_tasks_rcu_start(void) { } exit_tasks_rcu_finish(void)151 static inline void exit_tasks_rcu_finish(void) { } 152 #endif /* #else #ifdef CONFIG_TASKS_RCU */ 153 154 /** 155 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU 156 * 157 * This macro resembles cond_resched(), except that it is defined to 158 * report potential quiescent states to RCU-tasks even if the cond_resched() 159 * machinery were to be shut off, as some advocate for PREEMPT kernels. 160 */ 161 #define cond_resched_tasks_rcu_qs() \ 162 do { \ 163 rcu_tasks_qs(current); \ 164 cond_resched(); \ 165 } while (0) 166 167 /** 168 * rcu_softirq_qs_periodic - Report RCU and RCU-Tasks quiescent states 169 * @old_ts: jiffies at start of processing. 170 * 171 * This helper is for long-running softirq handlers, such as NAPI threads in 172 * networking. The caller should initialize the variable passed in as @old_ts 173 * at the beginning of the softirq handler. When invoked frequently, this macro 174 * will invoke rcu_softirq_qs() every 100 milliseconds thereafter, which will 175 * provide both RCU and RCU-Tasks quiescent states. Note that this macro 176 * modifies its old_ts argument. 177 * 178 * Because regions of code that have disabled softirq act as RCU read-side 179 * critical sections, this macro should be invoked with softirq (and 180 * preemption) enabled. 181 * 182 * The macro is not needed when CONFIG_PREEMPT_RT is defined. RT kernels would 183 * have more chance to invoke schedule() calls and provide necessary quiescent 184 * states. As a contrast, calling cond_resched() only won't achieve the same 185 * effect because cond_resched() does not provide RCU-Tasks quiescent states. 186 */ 187 #define rcu_softirq_qs_periodic(old_ts) \ 188 do { \ 189 if (!IS_ENABLED(CONFIG_PREEMPT_RT) && \ 190 time_after(jiffies, (old_ts) + HZ / 10)) { \ 191 preempt_disable(); \ 192 rcu_softirq_qs(); \ 193 preempt_enable(); \ 194 (old_ts) = jiffies; \ 195 } \ 196 } while (0) 197 198 /* 199 * Infrastructure to implement the synchronize_() primitives in 200 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 201 */ 202 203 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) 204 #include <linux/rcutree.h> 205 #elif defined(CONFIG_TINY_RCU) 206 #include <linux/rcutiny.h> 207 #else 208 #error "Unknown RCU implementation specified to kernel configuration" 209 #endif 210 211 /* 212 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls 213 * are needed for dynamic initialization and destruction of rcu_head 214 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for 215 * dynamic initialization and destruction of statically allocated rcu_head 216 * structures. However, rcu_head structures allocated dynamically in the 217 * heap don't need any initialization. 218 */ 219 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 220 void init_rcu_head(struct rcu_head *head); 221 void destroy_rcu_head(struct rcu_head *head); 222 void init_rcu_head_on_stack(struct rcu_head *head); 223 void destroy_rcu_head_on_stack(struct rcu_head *head); 224 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ init_rcu_head(struct rcu_head * head)225 static inline void init_rcu_head(struct rcu_head *head) { } destroy_rcu_head(struct rcu_head * head)226 static inline void destroy_rcu_head(struct rcu_head *head) { } init_rcu_head_on_stack(struct rcu_head * head)227 static inline void init_rcu_head_on_stack(struct rcu_head *head) { } destroy_rcu_head_on_stack(struct rcu_head * head)228 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } 229 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 230 231 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 232 bool rcu_lockdep_current_cpu_online(void); 233 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ rcu_lockdep_current_cpu_online(void)234 static inline bool rcu_lockdep_current_cpu_online(void) { return true; } 235 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 236 237 #ifdef CONFIG_DEBUG_LOCK_ALLOC 238 rcu_lock_acquire(struct lockdep_map * map)239 static inline void rcu_lock_acquire(struct lockdep_map *map) 240 { 241 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 242 } 243 rcu_lock_release(struct lockdep_map * map)244 static inline void rcu_lock_release(struct lockdep_map *map) 245 { 246 lock_release(map, 1, _THIS_IP_); 247 } 248 249 extern struct lockdep_map rcu_lock_map; 250 extern struct lockdep_map rcu_bh_lock_map; 251 extern struct lockdep_map rcu_sched_lock_map; 252 extern struct lockdep_map rcu_callback_map; 253 int debug_lockdep_rcu_enabled(void); 254 int rcu_read_lock_held(void); 255 int rcu_read_lock_bh_held(void); 256 int rcu_read_lock_sched_held(void); 257 int rcu_read_lock_any_held(void); 258 259 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 260 261 # define rcu_lock_acquire(a) do { } while (0) 262 # define rcu_lock_release(a) do { } while (0) 263 rcu_read_lock_held(void)264 static inline int rcu_read_lock_held(void) 265 { 266 return 1; 267 } 268 rcu_read_lock_bh_held(void)269 static inline int rcu_read_lock_bh_held(void) 270 { 271 return 1; 272 } 273 rcu_read_lock_sched_held(void)274 static inline int rcu_read_lock_sched_held(void) 275 { 276 return !preemptible(); 277 } 278 rcu_read_lock_any_held(void)279 static inline int rcu_read_lock_any_held(void) 280 { 281 return !preemptible(); 282 } 283 284 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 285 286 #ifdef CONFIG_PROVE_RCU 287 288 /** 289 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 290 * @c: condition to check 291 * @s: informative message 292 */ 293 #define RCU_LOCKDEP_WARN(c, s) \ 294 do { \ 295 static bool __section(.data.unlikely) __warned; \ 296 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \ 297 __warned = true; \ 298 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 299 } \ 300 } while (0) 301 302 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) rcu_preempt_sleep_check(void)303 static inline void rcu_preempt_sleep_check(void) 304 { 305 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 306 "Illegal context switch in RCU read-side critical section"); 307 } 308 #else /* #ifdef CONFIG_PROVE_RCU */ rcu_preempt_sleep_check(void)309 static inline void rcu_preempt_sleep_check(void) { } 310 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 311 312 #define rcu_sleep_check() \ 313 do { \ 314 rcu_preempt_sleep_check(); \ 315 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 316 "Illegal context switch in RCU-bh read-side critical section"); \ 317 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 318 "Illegal context switch in RCU-sched read-side critical section"); \ 319 } while (0) 320 321 #else /* #ifdef CONFIG_PROVE_RCU */ 322 323 #define RCU_LOCKDEP_WARN(c, s) do { } while (0) 324 #define rcu_sleep_check() do { } while (0) 325 326 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 327 328 /* 329 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 330 * and rcu_assign_pointer(). Some of these could be folded into their 331 * callers, but they are left separate in order to ease introduction of 332 * multiple pointers markings to match different RCU implementations 333 * (e.g., __srcu), should this make sense in the future. 334 */ 335 336 #ifdef __CHECKER__ 337 #define rcu_check_sparse(p, space) \ 338 ((void)(((typeof(*p) space *)p) == p)) 339 #else /* #ifdef __CHECKER__ */ 340 #define rcu_check_sparse(p, space) 341 #endif /* #else #ifdef __CHECKER__ */ 342 343 #define __rcu_access_pointer(p, space) \ 344 ({ \ 345 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \ 346 rcu_check_sparse(p, space); \ 347 ((typeof(*p) __force __kernel *)(_________p1)); \ 348 }) 349 #define __rcu_dereference_check(p, c, space) \ 350 ({ \ 351 /* Dependency order vs. p above. */ \ 352 typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \ 353 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 354 rcu_check_sparse(p, space); \ 355 ((typeof(*p) __force __kernel *)(________p1)); \ 356 }) 357 #define __rcu_dereference_protected(p, c, space) \ 358 ({ \ 359 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 360 rcu_check_sparse(p, space); \ 361 ((typeof(*p) __force __kernel *)(p)); \ 362 }) 363 #define rcu_dereference_raw(p) \ 364 ({ \ 365 /* Dependency order vs. p above. */ \ 366 typeof(p) ________p1 = READ_ONCE(p); \ 367 ((typeof(*p) __force __kernel *)(________p1)); \ 368 }) 369 370 /** 371 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 372 * @v: The value to statically initialize with. 373 */ 374 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 375 376 /** 377 * rcu_assign_pointer() - assign to RCU-protected pointer 378 * @p: pointer to assign to 379 * @v: value to assign (publish) 380 * 381 * Assigns the specified value to the specified RCU-protected 382 * pointer, ensuring that any concurrent RCU readers will see 383 * any prior initialization. 384 * 385 * Inserts memory barriers on architectures that require them 386 * (which is most of them), and also prevents the compiler from 387 * reordering the code that initializes the structure after the pointer 388 * assignment. More importantly, this call documents which pointers 389 * will be dereferenced by RCU read-side code. 390 * 391 * In some special cases, you may use RCU_INIT_POINTER() instead 392 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 393 * to the fact that it does not constrain either the CPU or the compiler. 394 * That said, using RCU_INIT_POINTER() when you should have used 395 * rcu_assign_pointer() is a very bad thing that results in 396 * impossible-to-diagnose memory corruption. So please be careful. 397 * See the RCU_INIT_POINTER() comment header for details. 398 * 399 * Note that rcu_assign_pointer() evaluates each of its arguments only 400 * once, appearances notwithstanding. One of the "extra" evaluations 401 * is in typeof() and the other visible only to sparse (__CHECKER__), 402 * neither of which actually execute the argument. As with most cpp 403 * macros, this execute-arguments-only-once property is important, so 404 * please be careful when making changes to rcu_assign_pointer() and the 405 * other macros that it invokes. 406 */ 407 #define rcu_assign_pointer(p, v) \ 408 do { \ 409 uintptr_t _r_a_p__v = (uintptr_t)(v); \ 410 rcu_check_sparse(p, __rcu); \ 411 \ 412 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ 413 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ 414 else \ 415 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ 416 } while (0) 417 418 /** 419 * rcu_replace_pointer() - replace an RCU pointer, returning its old value 420 * @rcu_ptr: RCU pointer, whose old value is returned 421 * @ptr: regular pointer 422 * @c: the lockdep conditions under which the dereference will take place 423 * 424 * Perform a replacement, where @rcu_ptr is an RCU-annotated 425 * pointer and @c is the lockdep argument that is passed to the 426 * rcu_dereference_protected() call used to read that pointer. The old 427 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr. 428 */ 429 #define rcu_replace_pointer(rcu_ptr, ptr, c) \ 430 ({ \ 431 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ 432 rcu_assign_pointer((rcu_ptr), (ptr)); \ 433 __tmp; \ 434 }) 435 436 /** 437 * rcu_swap_protected() - swap an RCU and a regular pointer 438 * @rcu_ptr: RCU pointer 439 * @ptr: regular pointer 440 * @c: the conditions under which the dereference will take place 441 * 442 * Perform swap(@rcu_ptr, @ptr) where @rcu_ptr is an RCU-annotated pointer and 443 * @c is the argument that is passed to the rcu_dereference_protected() call 444 * used to read that pointer. 445 */ 446 #define rcu_swap_protected(rcu_ptr, ptr, c) do { \ 447 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ 448 rcu_assign_pointer((rcu_ptr), (ptr)); \ 449 (ptr) = __tmp; \ 450 } while (0) 451 452 /** 453 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 454 * @p: The pointer to read 455 * 456 * Return the value of the specified RCU-protected pointer, but omit the 457 * lockdep checks for being in an RCU read-side critical section. This is 458 * useful when the value of this pointer is accessed, but the pointer is 459 * not dereferenced, for example, when testing an RCU-protected pointer 460 * against NULL. Although rcu_access_pointer() may also be used in cases 461 * where update-side locks prevent the value of the pointer from changing, 462 * you should instead use rcu_dereference_protected() for this use case. 463 * 464 * It is also permissible to use rcu_access_pointer() when read-side 465 * access to the pointer was removed at least one grace period ago, as 466 * is the case in the context of the RCU callback that is freeing up 467 * the data, or after a synchronize_rcu() returns. This can be useful 468 * when tearing down multi-linked structures after a grace period 469 * has elapsed. 470 */ 471 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 472 473 /** 474 * rcu_dereference_check() - rcu_dereference with debug checking 475 * @p: The pointer to read, prior to dereferencing 476 * @c: The conditions under which the dereference will take place 477 * 478 * Do an rcu_dereference(), but check that the conditions under which the 479 * dereference will take place are correct. Typically the conditions 480 * indicate the various locking conditions that should be held at that 481 * point. The check should return true if the conditions are satisfied. 482 * An implicit check for being in an RCU read-side critical section 483 * (rcu_read_lock()) is included. 484 * 485 * For example: 486 * 487 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 488 * 489 * could be used to indicate to lockdep that foo->bar may only be dereferenced 490 * if either rcu_read_lock() is held, or that the lock required to replace 491 * the bar struct at foo->bar is held. 492 * 493 * Note that the list of conditions may also include indications of when a lock 494 * need not be held, for example during initialisation or destruction of the 495 * target struct: 496 * 497 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 498 * atomic_read(&foo->usage) == 0); 499 * 500 * Inserts memory barriers on architectures that require them 501 * (currently only the Alpha), prevents the compiler from refetching 502 * (and from merging fetches), and, more importantly, documents exactly 503 * which pointers are protected by RCU and checks that the pointer is 504 * annotated as __rcu. 505 */ 506 #define rcu_dereference_check(p, c) \ 507 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu) 508 509 /** 510 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 511 * @p: The pointer to read, prior to dereferencing 512 * @c: The conditions under which the dereference will take place 513 * 514 * This is the RCU-bh counterpart to rcu_dereference_check(). 515 */ 516 #define rcu_dereference_bh_check(p, c) \ 517 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu) 518 519 /** 520 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 521 * @p: The pointer to read, prior to dereferencing 522 * @c: The conditions under which the dereference will take place 523 * 524 * This is the RCU-sched counterpart to rcu_dereference_check(). 525 */ 526 #define rcu_dereference_sched_check(p, c) \ 527 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \ 528 __rcu) 529 530 /* 531 * The tracing infrastructure traces RCU (we want that), but unfortunately 532 * some of the RCU checks causes tracing to lock up the system. 533 * 534 * The no-tracing version of rcu_dereference_raw() must not call 535 * rcu_read_lock_held(). 536 */ 537 #define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu) 538 539 /** 540 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 541 * @p: The pointer to read, prior to dereferencing 542 * @c: The conditions under which the dereference will take place 543 * 544 * Return the value of the specified RCU-protected pointer, but omit 545 * the READ_ONCE(). This is useful in cases where update-side locks 546 * prevent the value of the pointer from changing. Please note that this 547 * primitive does *not* prevent the compiler from repeating this reference 548 * or combining it with other references, so it should not be used without 549 * protection of appropriate locks. 550 * 551 * This function is only for update-side use. Using this function 552 * when protected only by rcu_read_lock() will result in infrequent 553 * but very ugly failures. 554 */ 555 #define rcu_dereference_protected(p, c) \ 556 __rcu_dereference_protected((p), (c), __rcu) 557 558 559 /** 560 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 561 * @p: The pointer to read, prior to dereferencing 562 * 563 * This is a simple wrapper around rcu_dereference_check(). 564 */ 565 #define rcu_dereference(p) rcu_dereference_check(p, 0) 566 567 /** 568 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 569 * @p: The pointer to read, prior to dereferencing 570 * 571 * Makes rcu_dereference_check() do the dirty work. 572 */ 573 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 574 575 /** 576 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 577 * @p: The pointer to read, prior to dereferencing 578 * 579 * Makes rcu_dereference_check() do the dirty work. 580 */ 581 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 582 583 /** 584 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 585 * @p: The pointer to hand off 586 * 587 * This is simply an identity function, but it documents where a pointer 588 * is handed off from RCU to some other synchronization mechanism, for 589 * example, reference counting or locking. In C11, it would map to 590 * kill_dependency(). It could be used as follows:: 591 * 592 * rcu_read_lock(); 593 * p = rcu_dereference(gp); 594 * long_lived = is_long_lived(p); 595 * if (long_lived) { 596 * if (!atomic_inc_not_zero(p->refcnt)) 597 * long_lived = false; 598 * else 599 * p = rcu_pointer_handoff(p); 600 * } 601 * rcu_read_unlock(); 602 */ 603 #define rcu_pointer_handoff(p) (p) 604 605 /** 606 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 607 * 608 * When synchronize_rcu() is invoked on one CPU while other CPUs 609 * are within RCU read-side critical sections, then the 610 * synchronize_rcu() is guaranteed to block until after all the other 611 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 612 * on one CPU while other CPUs are within RCU read-side critical 613 * sections, invocation of the corresponding RCU callback is deferred 614 * until after the all the other CPUs exit their critical sections. 615 * 616 * Note, however, that RCU callbacks are permitted to run concurrently 617 * with new RCU read-side critical sections. One way that this can happen 618 * is via the following sequence of events: (1) CPU 0 enters an RCU 619 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 620 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 621 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 622 * callback is invoked. This is legal, because the RCU read-side critical 623 * section that was running concurrently with the call_rcu() (and which 624 * therefore might be referencing something that the corresponding RCU 625 * callback would free up) has completed before the corresponding 626 * RCU callback is invoked. 627 * 628 * RCU read-side critical sections may be nested. Any deferred actions 629 * will be deferred until the outermost RCU read-side critical section 630 * completes. 631 * 632 * You can avoid reading and understanding the next paragraph by 633 * following this rule: don't put anything in an rcu_read_lock() RCU 634 * read-side critical section that would block in a !PREEMPT kernel. 635 * But if you want the full story, read on! 636 * 637 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), 638 * it is illegal to block while in an RCU read-side critical section. 639 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION 640 * kernel builds, RCU read-side critical sections may be preempted, 641 * but explicit blocking is illegal. Finally, in preemptible RCU 642 * implementations in real-time (with -rt patchset) kernel builds, RCU 643 * read-side critical sections may be preempted and they may also block, but 644 * only when acquiring spinlocks that are subject to priority inheritance. 645 */ rcu_read_lock(void)646 static __always_inline void rcu_read_lock(void) 647 { 648 __rcu_read_lock(); 649 __acquire(RCU); 650 rcu_lock_acquire(&rcu_lock_map); 651 RCU_LOCKDEP_WARN(!rcu_is_watching(), 652 "rcu_read_lock() used illegally while idle"); 653 } 654 655 /* 656 * So where is rcu_write_lock()? It does not exist, as there is no 657 * way for writers to lock out RCU readers. This is a feature, not 658 * a bug -- this property is what provides RCU's performance benefits. 659 * Of course, writers must coordinate with each other. The normal 660 * spinlock primitives work well for this, but any other technique may be 661 * used as well. RCU does not care how the writers keep out of each 662 * others' way, as long as they do so. 663 */ 664 665 /** 666 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 667 * 668 * In most situations, rcu_read_unlock() is immune from deadlock. 669 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock() 670 * is responsible for deboosting, which it does via rt_mutex_unlock(). 671 * Unfortunately, this function acquires the scheduler's runqueue and 672 * priority-inheritance spinlocks. This means that deadlock could result 673 * if the caller of rcu_read_unlock() already holds one of these locks or 674 * any lock that is ever acquired while holding them. 675 * 676 * That said, RCU readers are never priority boosted unless they were 677 * preempted. Therefore, one way to avoid deadlock is to make sure 678 * that preemption never happens within any RCU read-side critical 679 * section whose outermost rcu_read_unlock() is called with one of 680 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in 681 * a number of ways, for example, by invoking preempt_disable() before 682 * critical section's outermost rcu_read_lock(). 683 * 684 * Given that the set of locks acquired by rt_mutex_unlock() might change 685 * at any time, a somewhat more future-proofed approach is to make sure 686 * that that preemption never happens within any RCU read-side critical 687 * section whose outermost rcu_read_unlock() is called with irqs disabled. 688 * This approach relies on the fact that rt_mutex_unlock() currently only 689 * acquires irq-disabled locks. 690 * 691 * The second of these two approaches is best in most situations, 692 * however, the first approach can also be useful, at least to those 693 * developers willing to keep abreast of the set of locks acquired by 694 * rt_mutex_unlock(). 695 * 696 * See rcu_read_lock() for more information. 697 */ rcu_read_unlock(void)698 static inline void rcu_read_unlock(void) 699 { 700 RCU_LOCKDEP_WARN(!rcu_is_watching(), 701 "rcu_read_unlock() used illegally while idle"); 702 __release(RCU); 703 __rcu_read_unlock(); 704 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 705 } 706 707 /** 708 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 709 * 710 * This is equivalent of rcu_read_lock(), but also disables softirqs. 711 * Note that anything else that disables softirqs can also serve as 712 * an RCU read-side critical section. 713 * 714 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 715 * must occur in the same context, for example, it is illegal to invoke 716 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 717 * was invoked from some other task. 718 */ rcu_read_lock_bh(void)719 static inline void rcu_read_lock_bh(void) 720 { 721 local_bh_disable(); 722 __acquire(RCU_BH); 723 rcu_lock_acquire(&rcu_bh_lock_map); 724 RCU_LOCKDEP_WARN(!rcu_is_watching(), 725 "rcu_read_lock_bh() used illegally while idle"); 726 } 727 728 /* 729 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section 730 * 731 * See rcu_read_lock_bh() for more information. 732 */ rcu_read_unlock_bh(void)733 static inline void rcu_read_unlock_bh(void) 734 { 735 RCU_LOCKDEP_WARN(!rcu_is_watching(), 736 "rcu_read_unlock_bh() used illegally while idle"); 737 rcu_lock_release(&rcu_bh_lock_map); 738 __release(RCU_BH); 739 local_bh_enable(); 740 } 741 742 /** 743 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 744 * 745 * This is equivalent of rcu_read_lock(), but disables preemption. 746 * Read-side critical sections can also be introduced by anything else 747 * that disables preemption, including local_irq_disable() and friends. 748 * 749 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 750 * must occur in the same context, for example, it is illegal to invoke 751 * rcu_read_unlock_sched() from process context if the matching 752 * rcu_read_lock_sched() was invoked from an NMI handler. 753 */ rcu_read_lock_sched(void)754 static inline void rcu_read_lock_sched(void) 755 { 756 preempt_disable(); 757 __acquire(RCU_SCHED); 758 rcu_lock_acquire(&rcu_sched_lock_map); 759 RCU_LOCKDEP_WARN(!rcu_is_watching(), 760 "rcu_read_lock_sched() used illegally while idle"); 761 } 762 763 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ rcu_read_lock_sched_notrace(void)764 static inline notrace void rcu_read_lock_sched_notrace(void) 765 { 766 preempt_disable_notrace(); 767 __acquire(RCU_SCHED); 768 } 769 770 /* 771 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section 772 * 773 * See rcu_read_lock_sched for more information. 774 */ rcu_read_unlock_sched(void)775 static inline void rcu_read_unlock_sched(void) 776 { 777 RCU_LOCKDEP_WARN(!rcu_is_watching(), 778 "rcu_read_unlock_sched() used illegally while idle"); 779 rcu_lock_release(&rcu_sched_lock_map); 780 __release(RCU_SCHED); 781 preempt_enable(); 782 } 783 784 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ rcu_read_unlock_sched_notrace(void)785 static inline notrace void rcu_read_unlock_sched_notrace(void) 786 { 787 __release(RCU_SCHED); 788 preempt_enable_notrace(); 789 } 790 791 /** 792 * RCU_INIT_POINTER() - initialize an RCU protected pointer 793 * @p: The pointer to be initialized. 794 * @v: The value to initialized the pointer to. 795 * 796 * Initialize an RCU-protected pointer in special cases where readers 797 * do not need ordering constraints on the CPU or the compiler. These 798 * special cases are: 799 * 800 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* 801 * 2. The caller has taken whatever steps are required to prevent 802 * RCU readers from concurrently accessing this pointer *or* 803 * 3. The referenced data structure has already been exposed to 804 * readers either at compile time or via rcu_assign_pointer() *and* 805 * 806 * a. You have not made *any* reader-visible changes to 807 * this structure since then *or* 808 * b. It is OK for readers accessing this structure from its 809 * new location to see the old state of the structure. (For 810 * example, the changes were to statistical counters or to 811 * other state where exact synchronization is not required.) 812 * 813 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 814 * result in impossible-to-diagnose memory corruption. As in the structures 815 * will look OK in crash dumps, but any concurrent RCU readers might 816 * see pre-initialized values of the referenced data structure. So 817 * please be very careful how you use RCU_INIT_POINTER()!!! 818 * 819 * If you are creating an RCU-protected linked structure that is accessed 820 * by a single external-to-structure RCU-protected pointer, then you may 821 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 822 * pointers, but you must use rcu_assign_pointer() to initialize the 823 * external-to-structure pointer *after* you have completely initialized 824 * the reader-accessible portions of the linked structure. 825 * 826 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 827 * ordering guarantees for either the CPU or the compiler. 828 */ 829 #define RCU_INIT_POINTER(p, v) \ 830 do { \ 831 rcu_check_sparse(p, __rcu); \ 832 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 833 } while (0) 834 835 /** 836 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 837 * @p: The pointer to be initialized. 838 * @v: The value to initialized the pointer to. 839 * 840 * GCC-style initialization for an RCU-protected pointer in a structure field. 841 */ 842 #define RCU_POINTER_INITIALIZER(p, v) \ 843 .p = RCU_INITIALIZER(v) 844 845 /* 846 * Does the specified offset indicate that the corresponding rcu_head 847 * structure can be handled by kfree_rcu()? 848 */ 849 #define __is_kfree_rcu_offset(offset) ((offset) < 4096) 850 851 /* 852 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. 853 */ 854 #define __kfree_rcu(head, offset) \ 855 do { \ 856 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \ 857 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \ 858 } while (0) 859 860 /** 861 * kfree_rcu() - kfree an object after a grace period. 862 * @ptr: pointer to kfree 863 * @rhf: the name of the struct rcu_head within the type of @ptr. 864 * 865 * Many rcu callbacks functions just call kfree() on the base structure. 866 * These functions are trivial, but their size adds up, and furthermore 867 * when they are used in a kernel module, that module must invoke the 868 * high-latency rcu_barrier() function at module-unload time. 869 * 870 * The kfree_rcu() function handles this issue. Rather than encoding a 871 * function address in the embedded rcu_head structure, kfree_rcu() instead 872 * encodes the offset of the rcu_head structure within the base structure. 873 * Because the functions are not allowed in the low-order 4096 bytes of 874 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 875 * If the offset is larger than 4095 bytes, a compile-time error will 876 * be generated in __kfree_rcu(). If this error is triggered, you can 877 * either fall back to use of call_rcu() or rearrange the structure to 878 * position the rcu_head structure into the first 4096 bytes. 879 * 880 * Note that the allowable offset might decrease in the future, for example, 881 * to allow something like kmem_cache_free_rcu(). 882 * 883 * The BUILD_BUG_ON check must not involve any function calls, hence the 884 * checks are done in macros here. 885 */ 886 #define kfree_rcu(ptr, rhf) \ 887 do { \ 888 typeof (ptr) ___p = (ptr); \ 889 \ 890 if (___p) \ 891 __kfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \ 892 } while (0) 893 894 /* 895 * Place this after a lock-acquisition primitive to guarantee that 896 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies 897 * if the UNLOCK and LOCK are executed by the same CPU or if the 898 * UNLOCK and LOCK operate on the same lock variable. 899 */ 900 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE 901 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ 902 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 903 #define smp_mb__after_unlock_lock() do { } while (0) 904 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 905 906 907 /* Has the specified rcu_head structure been handed to call_rcu()? */ 908 909 /** 910 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() 911 * @rhp: The rcu_head structure to initialize. 912 * 913 * If you intend to invoke rcu_head_after_call_rcu() to test whether a 914 * given rcu_head structure has already been passed to call_rcu(), then 915 * you must also invoke this rcu_head_init() function on it just after 916 * allocating that structure. Calls to this function must not race with 917 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. 918 */ rcu_head_init(struct rcu_head * rhp)919 static inline void rcu_head_init(struct rcu_head *rhp) 920 { 921 rhp->func = (rcu_callback_t)~0L; 922 } 923 924 /** 925 * rcu_head_after_call_rcu - Has this rcu_head been passed to call_rcu()? 926 * @rhp: The rcu_head structure to test. 927 * @f: The function passed to call_rcu() along with @rhp. 928 * 929 * Returns @true if the @rhp has been passed to call_rcu() with @func, 930 * and @false otherwise. Emits a warning in any other case, including 931 * the case where @rhp has already been invoked after a grace period. 932 * Calls to this function must not race with callback invocation. One way 933 * to avoid such races is to enclose the call to rcu_head_after_call_rcu() 934 * in an RCU read-side critical section that includes a read-side fetch 935 * of the pointer to the structure containing @rhp. 936 */ 937 static inline bool rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)938 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) 939 { 940 rcu_callback_t func = READ_ONCE(rhp->func); 941 942 if (func == f) 943 return true; 944 WARN_ON_ONCE(func != (rcu_callback_t)~0L); 945 return false; 946 } 947 948 #endif /* __LINUX_RCUPDATE_H */ 949