1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/exit.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/slab.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/stat.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/task_stack.h> 15 #include <linux/sched/cputime.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/capability.h> 19 #include <linux/completion.h> 20 #include <linux/personality.h> 21 #include <linux/tty.h> 22 #include <linux/iocontext.h> 23 #include <linux/key.h> 24 #include <linux/cpu.h> 25 #include <linux/acct.h> 26 #include <linux/tsacct_kern.h> 27 #include <linux/file.h> 28 #include <linux/fdtable.h> 29 #include <linux/freezer.h> 30 #include <linux/binfmts.h> 31 #include <linux/nsproxy.h> 32 #include <linux/pid_namespace.h> 33 #include <linux/ptrace.h> 34 #include <linux/profile.h> 35 #include <linux/mount.h> 36 #include <linux/proc_fs.h> 37 #include <linux/kthread.h> 38 #include <linux/mempolicy.h> 39 #include <linux/taskstats_kern.h> 40 #include <linux/delayacct.h> 41 #include <linux/cgroup.h> 42 #include <linux/syscalls.h> 43 #include <linux/signal.h> 44 #include <linux/posix-timers.h> 45 #include <linux/cn_proc.h> 46 #include <linux/mutex.h> 47 #include <linux/futex.h> 48 #include <linux/pipe_fs_i.h> 49 #include <linux/audit.h> /* for audit_free() */ 50 #include <linux/resource.h> 51 #include <linux/blkdev.h> 52 #include <linux/task_io_accounting_ops.h> 53 #include <linux/tracehook.h> 54 #include <linux/fs_struct.h> 55 #include <linux/init_task.h> 56 #include <linux/perf_event.h> 57 #include <trace/events/sched.h> 58 #include <linux/hw_breakpoint.h> 59 #include <linux/oom.h> 60 #include <linux/writeback.h> 61 #include <linux/shm.h> 62 #include <linux/kcov.h> 63 #include <linux/random.h> 64 #include <linux/rcuwait.h> 65 #include <linux/compat.h> 66 #include <linux/sysfs.h> 67 68 #include <linux/uaccess.h> 69 #include <asm/unistd.h> 70 #include <asm/pgtable.h> 71 #include <asm/mmu_context.h> 72 73 /* 74 * The default value should be high enough to not crash a system that randomly 75 * crashes its kernel from time to time, but low enough to at least not permit 76 * overflowing 32-bit refcounts or the ldsem writer count. 77 */ 78 static unsigned int oops_limit = 10000; 79 80 #ifdef CONFIG_SYSCTL 81 static struct ctl_table kern_exit_table[] = { 82 { 83 .procname = "oops_limit", 84 .data = &oops_limit, 85 .maxlen = sizeof(oops_limit), 86 .mode = 0644, 87 .proc_handler = proc_douintvec, 88 }, 89 { } 90 }; 91 kernel_exit_sysctls_init(void)92 static __init int kernel_exit_sysctls_init(void) 93 { 94 register_sysctl_init("kernel", kern_exit_table); 95 return 0; 96 } 97 late_initcall(kernel_exit_sysctls_init); 98 #endif 99 100 static atomic_t oops_count = ATOMIC_INIT(0); 101 102 #ifdef CONFIG_SYSFS oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)103 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr, 104 char *page) 105 { 106 return sysfs_emit(page, "%d\n", atomic_read(&oops_count)); 107 } 108 109 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count); 110 kernel_exit_sysfs_init(void)111 static __init int kernel_exit_sysfs_init(void) 112 { 113 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL); 114 return 0; 115 } 116 late_initcall(kernel_exit_sysfs_init); 117 #endif 118 __unhash_process(struct task_struct * p,bool group_dead)119 static void __unhash_process(struct task_struct *p, bool group_dead) 120 { 121 nr_threads--; 122 detach_pid(p, PIDTYPE_PID); 123 if (group_dead) { 124 detach_pid(p, PIDTYPE_TGID); 125 detach_pid(p, PIDTYPE_PGID); 126 detach_pid(p, PIDTYPE_SID); 127 128 list_del_rcu(&p->tasks); 129 list_del_init(&p->sibling); 130 __this_cpu_dec(process_counts); 131 } 132 list_del_rcu(&p->thread_group); 133 list_del_rcu(&p->thread_node); 134 } 135 136 /* 137 * This function expects the tasklist_lock write-locked. 138 */ __exit_signal(struct task_struct * tsk)139 static void __exit_signal(struct task_struct *tsk) 140 { 141 struct signal_struct *sig = tsk->signal; 142 bool group_dead = thread_group_leader(tsk); 143 struct sighand_struct *sighand; 144 struct tty_struct *tty; 145 u64 utime, stime; 146 147 sighand = rcu_dereference_check(tsk->sighand, 148 lockdep_tasklist_lock_is_held()); 149 spin_lock(&sighand->siglock); 150 151 #ifdef CONFIG_POSIX_TIMERS 152 posix_cpu_timers_exit(tsk); 153 if (group_dead) { 154 posix_cpu_timers_exit_group(tsk); 155 } else { 156 /* 157 * This can only happen if the caller is de_thread(). 158 * FIXME: this is the temporary hack, we should teach 159 * posix-cpu-timers to handle this case correctly. 160 */ 161 if (unlikely(has_group_leader_pid(tsk))) 162 posix_cpu_timers_exit_group(tsk); 163 } 164 #endif 165 166 if (group_dead) { 167 tty = sig->tty; 168 sig->tty = NULL; 169 } else { 170 /* 171 * If there is any task waiting for the group exit 172 * then notify it: 173 */ 174 if (sig->notify_count > 0 && !--sig->notify_count) 175 wake_up_process(sig->group_exit_task); 176 177 if (tsk == sig->curr_target) 178 sig->curr_target = next_thread(tsk); 179 } 180 181 add_device_randomness((const void*) &tsk->se.sum_exec_runtime, 182 sizeof(unsigned long long)); 183 184 /* 185 * Accumulate here the counters for all threads as they die. We could 186 * skip the group leader because it is the last user of signal_struct, 187 * but we want to avoid the race with thread_group_cputime() which can 188 * see the empty ->thread_head list. 189 */ 190 task_cputime(tsk, &utime, &stime); 191 write_seqlock(&sig->stats_lock); 192 sig->utime += utime; 193 sig->stime += stime; 194 sig->gtime += task_gtime(tsk); 195 sig->min_flt += tsk->min_flt; 196 sig->maj_flt += tsk->maj_flt; 197 sig->nvcsw += tsk->nvcsw; 198 sig->nivcsw += tsk->nivcsw; 199 sig->inblock += task_io_get_inblock(tsk); 200 sig->oublock += task_io_get_oublock(tsk); 201 task_io_accounting_add(&sig->ioac, &tsk->ioac); 202 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 203 sig->nr_threads--; 204 __unhash_process(tsk, group_dead); 205 write_sequnlock(&sig->stats_lock); 206 207 /* 208 * Do this under ->siglock, we can race with another thread 209 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 210 */ 211 flush_sigqueue(&tsk->pending); 212 tsk->sighand = NULL; 213 spin_unlock(&sighand->siglock); 214 215 __cleanup_sighand(sighand); 216 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 217 if (group_dead) { 218 flush_sigqueue(&sig->shared_pending); 219 tty_kref_put(tty); 220 } 221 } 222 delayed_put_task_struct(struct rcu_head * rhp)223 static void delayed_put_task_struct(struct rcu_head *rhp) 224 { 225 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 226 227 perf_event_delayed_put(tsk); 228 trace_sched_process_free(tsk); 229 put_task_struct(tsk); 230 } 231 put_task_struct_rcu_user(struct task_struct * task)232 void put_task_struct_rcu_user(struct task_struct *task) 233 { 234 if (refcount_dec_and_test(&task->rcu_users)) 235 call_rcu(&task->rcu, delayed_put_task_struct); 236 } 237 release_task(struct task_struct * p)238 void release_task(struct task_struct *p) 239 { 240 struct task_struct *leader; 241 int zap_leader; 242 repeat: 243 /* don't need to get the RCU readlock here - the process is dead and 244 * can't be modifying its own credentials. But shut RCU-lockdep up */ 245 rcu_read_lock(); 246 atomic_dec(&__task_cred(p)->user->processes); 247 rcu_read_unlock(); 248 249 proc_flush_task(p); 250 cgroup_release(p); 251 252 write_lock_irq(&tasklist_lock); 253 ptrace_release_task(p); 254 __exit_signal(p); 255 256 /* 257 * If we are the last non-leader member of the thread 258 * group, and the leader is zombie, then notify the 259 * group leader's parent process. (if it wants notification.) 260 */ 261 zap_leader = 0; 262 leader = p->group_leader; 263 if (leader != p && thread_group_empty(leader) 264 && leader->exit_state == EXIT_ZOMBIE) { 265 /* 266 * If we were the last child thread and the leader has 267 * exited already, and the leader's parent ignores SIGCHLD, 268 * then we are the one who should release the leader. 269 */ 270 zap_leader = do_notify_parent(leader, leader->exit_signal); 271 if (zap_leader) 272 leader->exit_state = EXIT_DEAD; 273 } 274 275 write_unlock_irq(&tasklist_lock); 276 release_thread(p); 277 put_task_struct_rcu_user(p); 278 279 p = leader; 280 if (unlikely(zap_leader)) 281 goto repeat; 282 } 283 rcuwait_wake_up(struct rcuwait * w)284 void rcuwait_wake_up(struct rcuwait *w) 285 { 286 struct task_struct *task; 287 288 rcu_read_lock(); 289 290 /* 291 * Order condition vs @task, such that everything prior to the load 292 * of @task is visible. This is the condition as to why the user called 293 * rcuwait_trywake() in the first place. Pairs with set_current_state() 294 * barrier (A) in rcuwait_wait_event(). 295 * 296 * WAIT WAKE 297 * [S] tsk = current [S] cond = true 298 * MB (A) MB (B) 299 * [L] cond [L] tsk 300 */ 301 smp_mb(); /* (B) */ 302 303 task = rcu_dereference(w->task); 304 if (task) 305 wake_up_process(task); 306 rcu_read_unlock(); 307 } 308 309 /* 310 * Determine if a process group is "orphaned", according to the POSIX 311 * definition in 2.2.2.52. Orphaned process groups are not to be affected 312 * by terminal-generated stop signals. Newly orphaned process groups are 313 * to receive a SIGHUP and a SIGCONT. 314 * 315 * "I ask you, have you ever known what it is to be an orphan?" 316 */ will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)317 static int will_become_orphaned_pgrp(struct pid *pgrp, 318 struct task_struct *ignored_task) 319 { 320 struct task_struct *p; 321 322 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 323 if ((p == ignored_task) || 324 (p->exit_state && thread_group_empty(p)) || 325 is_global_init(p->real_parent)) 326 continue; 327 328 if (task_pgrp(p->real_parent) != pgrp && 329 task_session(p->real_parent) == task_session(p)) 330 return 0; 331 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 332 333 return 1; 334 } 335 is_current_pgrp_orphaned(void)336 int is_current_pgrp_orphaned(void) 337 { 338 int retval; 339 340 read_lock(&tasklist_lock); 341 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 342 read_unlock(&tasklist_lock); 343 344 return retval; 345 } 346 has_stopped_jobs(struct pid * pgrp)347 static bool has_stopped_jobs(struct pid *pgrp) 348 { 349 struct task_struct *p; 350 351 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 352 if (p->signal->flags & SIGNAL_STOP_STOPPED) 353 return true; 354 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 355 356 return false; 357 } 358 359 /* 360 * Check to see if any process groups have become orphaned as 361 * a result of our exiting, and if they have any stopped jobs, 362 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 363 */ 364 static void kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)365 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 366 { 367 struct pid *pgrp = task_pgrp(tsk); 368 struct task_struct *ignored_task = tsk; 369 370 if (!parent) 371 /* exit: our father is in a different pgrp than 372 * we are and we were the only connection outside. 373 */ 374 parent = tsk->real_parent; 375 else 376 /* reparent: our child is in a different pgrp than 377 * we are, and it was the only connection outside. 378 */ 379 ignored_task = NULL; 380 381 if (task_pgrp(parent) != pgrp && 382 task_session(parent) == task_session(tsk) && 383 will_become_orphaned_pgrp(pgrp, ignored_task) && 384 has_stopped_jobs(pgrp)) { 385 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 386 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 387 } 388 } 389 390 #ifdef CONFIG_MEMCG 391 /* 392 * A task is exiting. If it owned this mm, find a new owner for the mm. 393 */ mm_update_next_owner(struct mm_struct * mm)394 void mm_update_next_owner(struct mm_struct *mm) 395 { 396 struct task_struct *c, *g, *p = current; 397 398 retry: 399 /* 400 * If the exiting or execing task is not the owner, it's 401 * someone else's problem. 402 */ 403 if (mm->owner != p) 404 return; 405 /* 406 * The current owner is exiting/execing and there are no other 407 * candidates. Do not leave the mm pointing to a possibly 408 * freed task structure. 409 */ 410 if (atomic_read(&mm->mm_users) <= 1) { 411 WRITE_ONCE(mm->owner, NULL); 412 return; 413 } 414 415 read_lock(&tasklist_lock); 416 /* 417 * Search in the children 418 */ 419 list_for_each_entry(c, &p->children, sibling) { 420 if (c->mm == mm) 421 goto assign_new_owner; 422 } 423 424 /* 425 * Search in the siblings 426 */ 427 list_for_each_entry(c, &p->real_parent->children, sibling) { 428 if (c->mm == mm) 429 goto assign_new_owner; 430 } 431 432 /* 433 * Search through everything else, we should not get here often. 434 */ 435 for_each_process(g) { 436 if (g->flags & PF_KTHREAD) 437 continue; 438 for_each_thread(g, c) { 439 if (c->mm == mm) 440 goto assign_new_owner; 441 if (c->mm) 442 break; 443 } 444 } 445 read_unlock(&tasklist_lock); 446 /* 447 * We found no owner yet mm_users > 1: this implies that we are 448 * most likely racing with swapoff (try_to_unuse()) or /proc or 449 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 450 */ 451 WRITE_ONCE(mm->owner, NULL); 452 return; 453 454 assign_new_owner: 455 BUG_ON(c == p); 456 get_task_struct(c); 457 /* 458 * The task_lock protects c->mm from changing. 459 * We always want mm->owner->mm == mm 460 */ 461 task_lock(c); 462 /* 463 * Delay read_unlock() till we have the task_lock() 464 * to ensure that c does not slip away underneath us 465 */ 466 read_unlock(&tasklist_lock); 467 if (c->mm != mm) { 468 task_unlock(c); 469 put_task_struct(c); 470 goto retry; 471 } 472 WRITE_ONCE(mm->owner, c); 473 task_unlock(c); 474 put_task_struct(c); 475 } 476 #endif /* CONFIG_MEMCG */ 477 478 /* 479 * Turn us into a lazy TLB process if we 480 * aren't already.. 481 */ exit_mm(void)482 static void exit_mm(void) 483 { 484 struct mm_struct *mm = current->mm; 485 struct core_state *core_state; 486 487 exit_mm_release(current, mm); 488 if (!mm) 489 return; 490 sync_mm_rss(mm); 491 /* 492 * Serialize with any possible pending coredump. 493 * We must hold mmap_sem around checking core_state 494 * and clearing tsk->mm. The core-inducing thread 495 * will increment ->nr_threads for each thread in the 496 * group with ->mm != NULL. 497 */ 498 down_read(&mm->mmap_sem); 499 core_state = mm->core_state; 500 if (core_state) { 501 struct core_thread self; 502 503 up_read(&mm->mmap_sem); 504 505 self.task = current; 506 if (self.task->flags & PF_SIGNALED) 507 self.next = xchg(&core_state->dumper.next, &self); 508 else 509 self.task = NULL; 510 /* 511 * Implies mb(), the result of xchg() must be visible 512 * to core_state->dumper. 513 */ 514 if (atomic_dec_and_test(&core_state->nr_threads)) 515 complete(&core_state->startup); 516 517 for (;;) { 518 set_current_state(TASK_UNINTERRUPTIBLE); 519 if (!self.task) /* see coredump_finish() */ 520 break; 521 freezable_schedule(); 522 } 523 __set_current_state(TASK_RUNNING); 524 down_read(&mm->mmap_sem); 525 } 526 mmgrab(mm); 527 BUG_ON(mm != current->active_mm); 528 /* more a memory barrier than a real lock */ 529 task_lock(current); 530 current->mm = NULL; 531 up_read(&mm->mmap_sem); 532 enter_lazy_tlb(mm, current); 533 task_unlock(current); 534 mm_update_next_owner(mm); 535 mmput(mm); 536 if (test_thread_flag(TIF_MEMDIE)) 537 exit_oom_victim(); 538 } 539 find_alive_thread(struct task_struct * p)540 static struct task_struct *find_alive_thread(struct task_struct *p) 541 { 542 struct task_struct *t; 543 544 for_each_thread(p, t) { 545 if (!(t->flags & PF_EXITING)) 546 return t; 547 } 548 return NULL; 549 } 550 find_child_reaper(struct task_struct * father,struct list_head * dead)551 static struct task_struct *find_child_reaper(struct task_struct *father, 552 struct list_head *dead) 553 __releases(&tasklist_lock) 554 __acquires(&tasklist_lock) 555 { 556 struct pid_namespace *pid_ns = task_active_pid_ns(father); 557 struct task_struct *reaper = pid_ns->child_reaper; 558 struct task_struct *p, *n; 559 560 if (likely(reaper != father)) 561 return reaper; 562 563 reaper = find_alive_thread(father); 564 if (reaper) { 565 pid_ns->child_reaper = reaper; 566 return reaper; 567 } 568 569 write_unlock_irq(&tasklist_lock); 570 571 list_for_each_entry_safe(p, n, dead, ptrace_entry) { 572 list_del_init(&p->ptrace_entry); 573 release_task(p); 574 } 575 576 zap_pid_ns_processes(pid_ns); 577 write_lock_irq(&tasklist_lock); 578 579 return father; 580 } 581 582 /* 583 * When we die, we re-parent all our children, and try to: 584 * 1. give them to another thread in our thread group, if such a member exists 585 * 2. give it to the first ancestor process which prctl'd itself as a 586 * child_subreaper for its children (like a service manager) 587 * 3. give it to the init process (PID 1) in our pid namespace 588 */ find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)589 static struct task_struct *find_new_reaper(struct task_struct *father, 590 struct task_struct *child_reaper) 591 { 592 struct task_struct *thread, *reaper; 593 594 thread = find_alive_thread(father); 595 if (thread) 596 return thread; 597 598 if (father->signal->has_child_subreaper) { 599 unsigned int ns_level = task_pid(father)->level; 600 /* 601 * Find the first ->is_child_subreaper ancestor in our pid_ns. 602 * We can't check reaper != child_reaper to ensure we do not 603 * cross the namespaces, the exiting parent could be injected 604 * by setns() + fork(). 605 * We check pid->level, this is slightly more efficient than 606 * task_active_pid_ns(reaper) != task_active_pid_ns(father). 607 */ 608 for (reaper = father->real_parent; 609 task_pid(reaper)->level == ns_level; 610 reaper = reaper->real_parent) { 611 if (reaper == &init_task) 612 break; 613 if (!reaper->signal->is_child_subreaper) 614 continue; 615 thread = find_alive_thread(reaper); 616 if (thread) 617 return thread; 618 } 619 } 620 621 return child_reaper; 622 } 623 624 /* 625 * Any that need to be release_task'd are put on the @dead list. 626 */ reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)627 static void reparent_leader(struct task_struct *father, struct task_struct *p, 628 struct list_head *dead) 629 { 630 if (unlikely(p->exit_state == EXIT_DEAD)) 631 return; 632 633 /* We don't want people slaying init. */ 634 p->exit_signal = SIGCHLD; 635 636 /* If it has exited notify the new parent about this child's death. */ 637 if (!p->ptrace && 638 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 639 if (do_notify_parent(p, p->exit_signal)) { 640 p->exit_state = EXIT_DEAD; 641 list_add(&p->ptrace_entry, dead); 642 } 643 } 644 645 kill_orphaned_pgrp(p, father); 646 } 647 648 /* 649 * This does two things: 650 * 651 * A. Make init inherit all the child processes 652 * B. Check to see if any process groups have become orphaned 653 * as a result of our exiting, and if they have any stopped 654 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 655 */ forget_original_parent(struct task_struct * father,struct list_head * dead)656 static void forget_original_parent(struct task_struct *father, 657 struct list_head *dead) 658 { 659 struct task_struct *p, *t, *reaper; 660 661 if (unlikely(!list_empty(&father->ptraced))) 662 exit_ptrace(father, dead); 663 664 /* Can drop and reacquire tasklist_lock */ 665 reaper = find_child_reaper(father, dead); 666 if (list_empty(&father->children)) 667 return; 668 669 reaper = find_new_reaper(father, reaper); 670 list_for_each_entry(p, &father->children, sibling) { 671 for_each_thread(p, t) { 672 t->real_parent = reaper; 673 BUG_ON((!t->ptrace) != (t->parent == father)); 674 if (likely(!t->ptrace)) 675 t->parent = t->real_parent; 676 if (t->pdeath_signal) 677 group_send_sig_info(t->pdeath_signal, 678 SEND_SIG_NOINFO, t, 679 PIDTYPE_TGID); 680 } 681 /* 682 * If this is a threaded reparent there is no need to 683 * notify anyone anything has happened. 684 */ 685 if (!same_thread_group(reaper, father)) 686 reparent_leader(father, p, dead); 687 } 688 list_splice_tail_init(&father->children, &reaper->children); 689 } 690 691 /* 692 * Send signals to all our closest relatives so that they know 693 * to properly mourn us.. 694 */ exit_notify(struct task_struct * tsk,int group_dead)695 static void exit_notify(struct task_struct *tsk, int group_dead) 696 { 697 bool autoreap; 698 struct task_struct *p, *n; 699 LIST_HEAD(dead); 700 701 write_lock_irq(&tasklist_lock); 702 forget_original_parent(tsk, &dead); 703 704 if (group_dead) 705 kill_orphaned_pgrp(tsk->group_leader, NULL); 706 707 tsk->exit_state = EXIT_ZOMBIE; 708 if (unlikely(tsk->ptrace)) { 709 int sig = thread_group_leader(tsk) && 710 thread_group_empty(tsk) && 711 !ptrace_reparented(tsk) ? 712 tsk->exit_signal : SIGCHLD; 713 autoreap = do_notify_parent(tsk, sig); 714 } else if (thread_group_leader(tsk)) { 715 autoreap = thread_group_empty(tsk) && 716 do_notify_parent(tsk, tsk->exit_signal); 717 } else { 718 autoreap = true; 719 } 720 721 if (autoreap) { 722 tsk->exit_state = EXIT_DEAD; 723 list_add(&tsk->ptrace_entry, &dead); 724 } 725 726 /* mt-exec, de_thread() is waiting for group leader */ 727 if (unlikely(tsk->signal->notify_count < 0)) 728 wake_up_process(tsk->signal->group_exit_task); 729 write_unlock_irq(&tasklist_lock); 730 731 list_for_each_entry_safe(p, n, &dead, ptrace_entry) { 732 list_del_init(&p->ptrace_entry); 733 release_task(p); 734 } 735 } 736 737 #ifdef CONFIG_DEBUG_STACK_USAGE check_stack_usage(void)738 static void check_stack_usage(void) 739 { 740 static DEFINE_SPINLOCK(low_water_lock); 741 static int lowest_to_date = THREAD_SIZE; 742 unsigned long free; 743 744 free = stack_not_used(current); 745 746 if (free >= lowest_to_date) 747 return; 748 749 spin_lock(&low_water_lock); 750 if (free < lowest_to_date) { 751 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", 752 current->comm, task_pid_nr(current), free); 753 lowest_to_date = free; 754 } 755 spin_unlock(&low_water_lock); 756 } 757 #else check_stack_usage(void)758 static inline void check_stack_usage(void) {} 759 #endif 760 do_exit(long code)761 void __noreturn do_exit(long code) 762 { 763 struct task_struct *tsk = current; 764 int group_dead; 765 766 /* 767 * We can get here from a kernel oops, sometimes with preemption off. 768 * Start by checking for critical errors. 769 * Then fix up important state like USER_DS and preemption. 770 * Then do everything else. 771 */ 772 773 WARN_ON(blk_needs_flush_plug(tsk)); 774 775 if (unlikely(in_interrupt())) 776 panic("Aiee, killing interrupt handler!"); 777 if (unlikely(!tsk->pid)) 778 panic("Attempted to kill the idle task!"); 779 780 /* 781 * If do_exit is called because this processes oopsed, it's possible 782 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 783 * continuing. Amongst other possible reasons, this is to prevent 784 * mm_release()->clear_child_tid() from writing to a user-controlled 785 * kernel address. 786 */ 787 set_fs(USER_DS); 788 789 if (unlikely(in_atomic())) { 790 pr_info("note: %s[%d] exited with preempt_count %d\n", 791 current->comm, task_pid_nr(current), 792 preempt_count()); 793 preempt_count_set(PREEMPT_ENABLED); 794 } 795 796 profile_task_exit(tsk); 797 kcov_task_exit(tsk); 798 799 ptrace_event(PTRACE_EVENT_EXIT, code); 800 801 validate_creds_for_do_exit(tsk); 802 803 /* 804 * We're taking recursive faults here in do_exit. Safest is to just 805 * leave this task alone and wait for reboot. 806 */ 807 if (unlikely(tsk->flags & PF_EXITING)) { 808 pr_alert("Fixing recursive fault but reboot is needed!\n"); 809 futex_exit_recursive(tsk); 810 set_current_state(TASK_UNINTERRUPTIBLE); 811 schedule(); 812 } 813 814 exit_signals(tsk); /* sets PF_EXITING */ 815 816 /* sync mm's RSS info before statistics gathering */ 817 if (tsk->mm) 818 sync_mm_rss(tsk->mm); 819 acct_update_integrals(tsk); 820 group_dead = atomic_dec_and_test(&tsk->signal->live); 821 if (group_dead) { 822 /* 823 * If the last thread of global init has exited, panic 824 * immediately to get a useable coredump. 825 */ 826 if (unlikely(is_global_init(tsk))) 827 panic("Attempted to kill init! exitcode=0x%08x\n", 828 tsk->signal->group_exit_code ?: (int)code); 829 830 #ifdef CONFIG_POSIX_TIMERS 831 hrtimer_cancel(&tsk->signal->real_timer); 832 exit_itimers(tsk->signal); 833 #endif 834 if (tsk->mm) 835 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 836 } 837 acct_collect(code, group_dead); 838 if (group_dead) 839 tty_audit_exit(); 840 audit_free(tsk); 841 842 tsk->exit_code = code; 843 taskstats_exit(tsk, group_dead); 844 845 exit_mm(); 846 847 if (group_dead) 848 acct_process(); 849 trace_sched_process_exit(tsk); 850 851 exit_sem(tsk); 852 exit_shm(tsk); 853 exit_files(tsk); 854 exit_fs(tsk); 855 if (group_dead) 856 disassociate_ctty(1); 857 exit_task_namespaces(tsk); 858 exit_task_work(tsk); 859 exit_thread(tsk); 860 exit_umh(tsk); 861 862 /* 863 * Flush inherited counters to the parent - before the parent 864 * gets woken up by child-exit notifications. 865 * 866 * because of cgroup mode, must be called before cgroup_exit() 867 */ 868 perf_event_exit_task(tsk); 869 870 sched_autogroup_exit_task(tsk); 871 cgroup_exit(tsk); 872 873 /* 874 * FIXME: do that only when needed, using sched_exit tracepoint 875 */ 876 flush_ptrace_hw_breakpoint(tsk); 877 878 exit_tasks_rcu_start(); 879 exit_notify(tsk, group_dead); 880 proc_exit_connector(tsk); 881 mpol_put_task_policy(tsk); 882 #ifdef CONFIG_FUTEX 883 if (unlikely(current->pi_state_cache)) 884 kfree(current->pi_state_cache); 885 #endif 886 /* 887 * Make sure we are holding no locks: 888 */ 889 debug_check_no_locks_held(); 890 891 if (tsk->io_context) 892 exit_io_context(tsk); 893 894 if (tsk->splice_pipe) 895 free_pipe_info(tsk->splice_pipe); 896 897 if (tsk->task_frag.page) 898 put_page(tsk->task_frag.page); 899 900 validate_creds_for_do_exit(tsk); 901 902 check_stack_usage(); 903 preempt_disable(); 904 if (tsk->nr_dirtied) 905 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 906 exit_rcu(); 907 exit_tasks_rcu_finish(); 908 909 lockdep_free_task(tsk); 910 do_task_dead(); 911 } 912 EXPORT_SYMBOL_GPL(do_exit); 913 make_task_dead(int signr)914 void __noreturn make_task_dead(int signr) 915 { 916 /* 917 * Take the task off the cpu after something catastrophic has 918 * happened. 919 */ 920 unsigned int limit; 921 922 /* 923 * Every time the system oopses, if the oops happens while a reference 924 * to an object was held, the reference leaks. 925 * If the oops doesn't also leak memory, repeated oopsing can cause 926 * reference counters to wrap around (if they're not using refcount_t). 927 * This means that repeated oopsing can make unexploitable-looking bugs 928 * exploitable through repeated oopsing. 929 * To make sure this can't happen, place an upper bound on how often the 930 * kernel may oops without panic(). 931 */ 932 limit = READ_ONCE(oops_limit); 933 if (atomic_inc_return(&oops_count) >= limit && limit) 934 panic("Oopsed too often (kernel.oops_limit is %d)", limit); 935 936 do_exit(signr); 937 } 938 complete_and_exit(struct completion * comp,long code)939 void complete_and_exit(struct completion *comp, long code) 940 { 941 if (comp) 942 complete(comp); 943 944 do_exit(code); 945 } 946 EXPORT_SYMBOL(complete_and_exit); 947 SYSCALL_DEFINE1(exit,int,error_code)948 SYSCALL_DEFINE1(exit, int, error_code) 949 { 950 do_exit((error_code&0xff)<<8); 951 } 952 953 /* 954 * Take down every thread in the group. This is called by fatal signals 955 * as well as by sys_exit_group (below). 956 */ 957 void do_group_exit(int exit_code)958 do_group_exit(int exit_code) 959 { 960 struct signal_struct *sig = current->signal; 961 962 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 963 964 if (signal_group_exit(sig)) 965 exit_code = sig->group_exit_code; 966 else if (!thread_group_empty(current)) { 967 struct sighand_struct *const sighand = current->sighand; 968 969 spin_lock_irq(&sighand->siglock); 970 if (signal_group_exit(sig)) 971 /* Another thread got here before we took the lock. */ 972 exit_code = sig->group_exit_code; 973 else { 974 sig->group_exit_code = exit_code; 975 sig->flags = SIGNAL_GROUP_EXIT; 976 zap_other_threads(current); 977 } 978 spin_unlock_irq(&sighand->siglock); 979 } 980 981 do_exit(exit_code); 982 /* NOTREACHED */ 983 } 984 985 /* 986 * this kills every thread in the thread group. Note that any externally 987 * wait4()-ing process will get the correct exit code - even if this 988 * thread is not the thread group leader. 989 */ SYSCALL_DEFINE1(exit_group,int,error_code)990 SYSCALL_DEFINE1(exit_group, int, error_code) 991 { 992 do_group_exit((error_code & 0xff) << 8); 993 /* NOTREACHED */ 994 return 0; 995 } 996 997 struct waitid_info { 998 pid_t pid; 999 uid_t uid; 1000 int status; 1001 int cause; 1002 }; 1003 1004 struct wait_opts { 1005 enum pid_type wo_type; 1006 int wo_flags; 1007 struct pid *wo_pid; 1008 1009 struct waitid_info *wo_info; 1010 int wo_stat; 1011 struct rusage *wo_rusage; 1012 1013 wait_queue_entry_t child_wait; 1014 int notask_error; 1015 }; 1016 eligible_pid(struct wait_opts * wo,struct task_struct * p)1017 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 1018 { 1019 return wo->wo_type == PIDTYPE_MAX || 1020 task_pid_type(p, wo->wo_type) == wo->wo_pid; 1021 } 1022 1023 static int eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1024 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) 1025 { 1026 if (!eligible_pid(wo, p)) 1027 return 0; 1028 1029 /* 1030 * Wait for all children (clone and not) if __WALL is set or 1031 * if it is traced by us. 1032 */ 1033 if (ptrace || (wo->wo_flags & __WALL)) 1034 return 1; 1035 1036 /* 1037 * Otherwise, wait for clone children *only* if __WCLONE is set; 1038 * otherwise, wait for non-clone children *only*. 1039 * 1040 * Note: a "clone" child here is one that reports to its parent 1041 * using a signal other than SIGCHLD, or a non-leader thread which 1042 * we can only see if it is traced by us. 1043 */ 1044 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 1045 return 0; 1046 1047 return 1; 1048 } 1049 1050 /* 1051 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 1052 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1053 * the lock and this task is uninteresting. If we return nonzero, we have 1054 * released the lock and the system call should return. 1055 */ wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1056 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 1057 { 1058 int state, status; 1059 pid_t pid = task_pid_vnr(p); 1060 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1061 struct waitid_info *infop; 1062 1063 if (!likely(wo->wo_flags & WEXITED)) 1064 return 0; 1065 1066 if (unlikely(wo->wo_flags & WNOWAIT)) { 1067 status = p->exit_code; 1068 get_task_struct(p); 1069 read_unlock(&tasklist_lock); 1070 sched_annotate_sleep(); 1071 if (wo->wo_rusage) 1072 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1073 put_task_struct(p); 1074 goto out_info; 1075 } 1076 /* 1077 * Move the task's state to DEAD/TRACE, only one thread can do this. 1078 */ 1079 state = (ptrace_reparented(p) && thread_group_leader(p)) ? 1080 EXIT_TRACE : EXIT_DEAD; 1081 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1082 return 0; 1083 /* 1084 * We own this thread, nobody else can reap it. 1085 */ 1086 read_unlock(&tasklist_lock); 1087 sched_annotate_sleep(); 1088 1089 /* 1090 * Check thread_group_leader() to exclude the traced sub-threads. 1091 */ 1092 if (state == EXIT_DEAD && thread_group_leader(p)) { 1093 struct signal_struct *sig = p->signal; 1094 struct signal_struct *psig = current->signal; 1095 unsigned long maxrss; 1096 u64 tgutime, tgstime; 1097 1098 /* 1099 * The resource counters for the group leader are in its 1100 * own task_struct. Those for dead threads in the group 1101 * are in its signal_struct, as are those for the child 1102 * processes it has previously reaped. All these 1103 * accumulate in the parent's signal_struct c* fields. 1104 * 1105 * We don't bother to take a lock here to protect these 1106 * p->signal fields because the whole thread group is dead 1107 * and nobody can change them. 1108 * 1109 * psig->stats_lock also protects us from our sub-theads 1110 * which can reap other children at the same time. Until 1111 * we change k_getrusage()-like users to rely on this lock 1112 * we have to take ->siglock as well. 1113 * 1114 * We use thread_group_cputime_adjusted() to get times for 1115 * the thread group, which consolidates times for all threads 1116 * in the group including the group leader. 1117 */ 1118 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1119 spin_lock_irq(¤t->sighand->siglock); 1120 write_seqlock(&psig->stats_lock); 1121 psig->cutime += tgutime + sig->cutime; 1122 psig->cstime += tgstime + sig->cstime; 1123 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1124 psig->cmin_flt += 1125 p->min_flt + sig->min_flt + sig->cmin_flt; 1126 psig->cmaj_flt += 1127 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1128 psig->cnvcsw += 1129 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1130 psig->cnivcsw += 1131 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1132 psig->cinblock += 1133 task_io_get_inblock(p) + 1134 sig->inblock + sig->cinblock; 1135 psig->coublock += 1136 task_io_get_oublock(p) + 1137 sig->oublock + sig->coublock; 1138 maxrss = max(sig->maxrss, sig->cmaxrss); 1139 if (psig->cmaxrss < maxrss) 1140 psig->cmaxrss = maxrss; 1141 task_io_accounting_add(&psig->ioac, &p->ioac); 1142 task_io_accounting_add(&psig->ioac, &sig->ioac); 1143 write_sequnlock(&psig->stats_lock); 1144 spin_unlock_irq(¤t->sighand->siglock); 1145 } 1146 1147 if (wo->wo_rusage) 1148 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1149 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1150 ? p->signal->group_exit_code : p->exit_code; 1151 wo->wo_stat = status; 1152 1153 if (state == EXIT_TRACE) { 1154 write_lock_irq(&tasklist_lock); 1155 /* We dropped tasklist, ptracer could die and untrace */ 1156 ptrace_unlink(p); 1157 1158 /* If parent wants a zombie, don't release it now */ 1159 state = EXIT_ZOMBIE; 1160 if (do_notify_parent(p, p->exit_signal)) 1161 state = EXIT_DEAD; 1162 p->exit_state = state; 1163 write_unlock_irq(&tasklist_lock); 1164 } 1165 if (state == EXIT_DEAD) 1166 release_task(p); 1167 1168 out_info: 1169 infop = wo->wo_info; 1170 if (infop) { 1171 if ((status & 0x7f) == 0) { 1172 infop->cause = CLD_EXITED; 1173 infop->status = status >> 8; 1174 } else { 1175 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1176 infop->status = status & 0x7f; 1177 } 1178 infop->pid = pid; 1179 infop->uid = uid; 1180 } 1181 1182 return pid; 1183 } 1184 task_stopped_code(struct task_struct * p,bool ptrace)1185 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1186 { 1187 if (ptrace) { 1188 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) 1189 return &p->exit_code; 1190 } else { 1191 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1192 return &p->signal->group_exit_code; 1193 } 1194 return NULL; 1195 } 1196 1197 /** 1198 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1199 * @wo: wait options 1200 * @ptrace: is the wait for ptrace 1201 * @p: task to wait for 1202 * 1203 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1204 * 1205 * CONTEXT: 1206 * read_lock(&tasklist_lock), which is released if return value is 1207 * non-zero. Also, grabs and releases @p->sighand->siglock. 1208 * 1209 * RETURNS: 1210 * 0 if wait condition didn't exist and search for other wait conditions 1211 * should continue. Non-zero return, -errno on failure and @p's pid on 1212 * success, implies that tasklist_lock is released and wait condition 1213 * search should terminate. 1214 */ wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1215 static int wait_task_stopped(struct wait_opts *wo, 1216 int ptrace, struct task_struct *p) 1217 { 1218 struct waitid_info *infop; 1219 int exit_code, *p_code, why; 1220 uid_t uid = 0; /* unneeded, required by compiler */ 1221 pid_t pid; 1222 1223 /* 1224 * Traditionally we see ptrace'd stopped tasks regardless of options. 1225 */ 1226 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1227 return 0; 1228 1229 if (!task_stopped_code(p, ptrace)) 1230 return 0; 1231 1232 exit_code = 0; 1233 spin_lock_irq(&p->sighand->siglock); 1234 1235 p_code = task_stopped_code(p, ptrace); 1236 if (unlikely(!p_code)) 1237 goto unlock_sig; 1238 1239 exit_code = *p_code; 1240 if (!exit_code) 1241 goto unlock_sig; 1242 1243 if (!unlikely(wo->wo_flags & WNOWAIT)) 1244 *p_code = 0; 1245 1246 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1247 unlock_sig: 1248 spin_unlock_irq(&p->sighand->siglock); 1249 if (!exit_code) 1250 return 0; 1251 1252 /* 1253 * Now we are pretty sure this task is interesting. 1254 * Make sure it doesn't get reaped out from under us while we 1255 * give up the lock and then examine it below. We don't want to 1256 * keep holding onto the tasklist_lock while we call getrusage and 1257 * possibly take page faults for user memory. 1258 */ 1259 get_task_struct(p); 1260 pid = task_pid_vnr(p); 1261 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1262 read_unlock(&tasklist_lock); 1263 sched_annotate_sleep(); 1264 if (wo->wo_rusage) 1265 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1266 put_task_struct(p); 1267 1268 if (likely(!(wo->wo_flags & WNOWAIT))) 1269 wo->wo_stat = (exit_code << 8) | 0x7f; 1270 1271 infop = wo->wo_info; 1272 if (infop) { 1273 infop->cause = why; 1274 infop->status = exit_code; 1275 infop->pid = pid; 1276 infop->uid = uid; 1277 } 1278 return pid; 1279 } 1280 1281 /* 1282 * Handle do_wait work for one task in a live, non-stopped state. 1283 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1284 * the lock and this task is uninteresting. If we return nonzero, we have 1285 * released the lock and the system call should return. 1286 */ wait_task_continued(struct wait_opts * wo,struct task_struct * p)1287 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1288 { 1289 struct waitid_info *infop; 1290 pid_t pid; 1291 uid_t uid; 1292 1293 if (!unlikely(wo->wo_flags & WCONTINUED)) 1294 return 0; 1295 1296 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1297 return 0; 1298 1299 spin_lock_irq(&p->sighand->siglock); 1300 /* Re-check with the lock held. */ 1301 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1302 spin_unlock_irq(&p->sighand->siglock); 1303 return 0; 1304 } 1305 if (!unlikely(wo->wo_flags & WNOWAIT)) 1306 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1307 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1308 spin_unlock_irq(&p->sighand->siglock); 1309 1310 pid = task_pid_vnr(p); 1311 get_task_struct(p); 1312 read_unlock(&tasklist_lock); 1313 sched_annotate_sleep(); 1314 if (wo->wo_rusage) 1315 getrusage(p, RUSAGE_BOTH, wo->wo_rusage); 1316 put_task_struct(p); 1317 1318 infop = wo->wo_info; 1319 if (!infop) { 1320 wo->wo_stat = 0xffff; 1321 } else { 1322 infop->cause = CLD_CONTINUED; 1323 infop->pid = pid; 1324 infop->uid = uid; 1325 infop->status = SIGCONT; 1326 } 1327 return pid; 1328 } 1329 1330 /* 1331 * Consider @p for a wait by @parent. 1332 * 1333 * -ECHILD should be in ->notask_error before the first call. 1334 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1335 * Returns zero if the search for a child should continue; 1336 * then ->notask_error is 0 if @p is an eligible child, 1337 * or still -ECHILD. 1338 */ wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1339 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1340 struct task_struct *p) 1341 { 1342 /* 1343 * We can race with wait_task_zombie() from another thread. 1344 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition 1345 * can't confuse the checks below. 1346 */ 1347 int exit_state = READ_ONCE(p->exit_state); 1348 int ret; 1349 1350 if (unlikely(exit_state == EXIT_DEAD)) 1351 return 0; 1352 1353 ret = eligible_child(wo, ptrace, p); 1354 if (!ret) 1355 return ret; 1356 1357 if (unlikely(exit_state == EXIT_TRACE)) { 1358 /* 1359 * ptrace == 0 means we are the natural parent. In this case 1360 * we should clear notask_error, debugger will notify us. 1361 */ 1362 if (likely(!ptrace)) 1363 wo->notask_error = 0; 1364 return 0; 1365 } 1366 1367 if (likely(!ptrace) && unlikely(p->ptrace)) { 1368 /* 1369 * If it is traced by its real parent's group, just pretend 1370 * the caller is ptrace_do_wait() and reap this child if it 1371 * is zombie. 1372 * 1373 * This also hides group stop state from real parent; otherwise 1374 * a single stop can be reported twice as group and ptrace stop. 1375 * If a ptracer wants to distinguish these two events for its 1376 * own children it should create a separate process which takes 1377 * the role of real parent. 1378 */ 1379 if (!ptrace_reparented(p)) 1380 ptrace = 1; 1381 } 1382 1383 /* slay zombie? */ 1384 if (exit_state == EXIT_ZOMBIE) { 1385 /* we don't reap group leaders with subthreads */ 1386 if (!delay_group_leader(p)) { 1387 /* 1388 * A zombie ptracee is only visible to its ptracer. 1389 * Notification and reaping will be cascaded to the 1390 * real parent when the ptracer detaches. 1391 */ 1392 if (unlikely(ptrace) || likely(!p->ptrace)) 1393 return wait_task_zombie(wo, p); 1394 } 1395 1396 /* 1397 * Allow access to stopped/continued state via zombie by 1398 * falling through. Clearing of notask_error is complex. 1399 * 1400 * When !@ptrace: 1401 * 1402 * If WEXITED is set, notask_error should naturally be 1403 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1404 * so, if there are live subthreads, there are events to 1405 * wait for. If all subthreads are dead, it's still safe 1406 * to clear - this function will be called again in finite 1407 * amount time once all the subthreads are released and 1408 * will then return without clearing. 1409 * 1410 * When @ptrace: 1411 * 1412 * Stopped state is per-task and thus can't change once the 1413 * target task dies. Only continued and exited can happen. 1414 * Clear notask_error if WCONTINUED | WEXITED. 1415 */ 1416 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1417 wo->notask_error = 0; 1418 } else { 1419 /* 1420 * @p is alive and it's gonna stop, continue or exit, so 1421 * there always is something to wait for. 1422 */ 1423 wo->notask_error = 0; 1424 } 1425 1426 /* 1427 * Wait for stopped. Depending on @ptrace, different stopped state 1428 * is used and the two don't interact with each other. 1429 */ 1430 ret = wait_task_stopped(wo, ptrace, p); 1431 if (ret) 1432 return ret; 1433 1434 /* 1435 * Wait for continued. There's only one continued state and the 1436 * ptracer can consume it which can confuse the real parent. Don't 1437 * use WCONTINUED from ptracer. You don't need or want it. 1438 */ 1439 return wait_task_continued(wo, p); 1440 } 1441 1442 /* 1443 * Do the work of do_wait() for one thread in the group, @tsk. 1444 * 1445 * -ECHILD should be in ->notask_error before the first call. 1446 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1447 * Returns zero if the search for a child should continue; then 1448 * ->notask_error is 0 if there were any eligible children, 1449 * or still -ECHILD. 1450 */ do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1451 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1452 { 1453 struct task_struct *p; 1454 1455 list_for_each_entry(p, &tsk->children, sibling) { 1456 int ret = wait_consider_task(wo, 0, p); 1457 1458 if (ret) 1459 return ret; 1460 } 1461 1462 return 0; 1463 } 1464 ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1465 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1466 { 1467 struct task_struct *p; 1468 1469 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1470 int ret = wait_consider_task(wo, 1, p); 1471 1472 if (ret) 1473 return ret; 1474 } 1475 1476 return 0; 1477 } 1478 child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1479 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, 1480 int sync, void *key) 1481 { 1482 struct wait_opts *wo = container_of(wait, struct wait_opts, 1483 child_wait); 1484 struct task_struct *p = key; 1485 1486 if (!eligible_pid(wo, p)) 1487 return 0; 1488 1489 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1490 return 0; 1491 1492 return default_wake_function(wait, mode, sync, key); 1493 } 1494 __wake_up_parent(struct task_struct * p,struct task_struct * parent)1495 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1496 { 1497 __wake_up_sync_key(&parent->signal->wait_chldexit, 1498 TASK_INTERRUPTIBLE, 1, p); 1499 } 1500 do_wait(struct wait_opts * wo)1501 static long do_wait(struct wait_opts *wo) 1502 { 1503 struct task_struct *tsk; 1504 int retval; 1505 1506 trace_sched_process_wait(wo->wo_pid); 1507 1508 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1509 wo->child_wait.private = current; 1510 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1511 repeat: 1512 /* 1513 * If there is nothing that can match our criteria, just get out. 1514 * We will clear ->notask_error to zero if we see any child that 1515 * might later match our criteria, even if we are not able to reap 1516 * it yet. 1517 */ 1518 wo->notask_error = -ECHILD; 1519 if ((wo->wo_type < PIDTYPE_MAX) && 1520 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1521 goto notask; 1522 1523 set_current_state(TASK_INTERRUPTIBLE); 1524 read_lock(&tasklist_lock); 1525 tsk = current; 1526 do { 1527 retval = do_wait_thread(wo, tsk); 1528 if (retval) 1529 goto end; 1530 1531 retval = ptrace_do_wait(wo, tsk); 1532 if (retval) 1533 goto end; 1534 1535 if (wo->wo_flags & __WNOTHREAD) 1536 break; 1537 } while_each_thread(current, tsk); 1538 read_unlock(&tasklist_lock); 1539 1540 notask: 1541 retval = wo->notask_error; 1542 if (!retval && !(wo->wo_flags & WNOHANG)) { 1543 retval = -ERESTARTSYS; 1544 if (!signal_pending(current)) { 1545 schedule(); 1546 goto repeat; 1547 } 1548 } 1549 end: 1550 __set_current_state(TASK_RUNNING); 1551 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); 1552 return retval; 1553 } 1554 pidfd_get_pid(unsigned int fd)1555 static struct pid *pidfd_get_pid(unsigned int fd) 1556 { 1557 struct fd f; 1558 struct pid *pid; 1559 1560 f = fdget(fd); 1561 if (!f.file) 1562 return ERR_PTR(-EBADF); 1563 1564 pid = pidfd_pid(f.file); 1565 if (!IS_ERR(pid)) 1566 get_pid(pid); 1567 1568 fdput(f); 1569 return pid; 1570 } 1571 kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1572 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, 1573 int options, struct rusage *ru) 1574 { 1575 struct wait_opts wo; 1576 struct pid *pid = NULL; 1577 enum pid_type type; 1578 long ret; 1579 1580 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| 1581 __WNOTHREAD|__WCLONE|__WALL)) 1582 return -EINVAL; 1583 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1584 return -EINVAL; 1585 1586 switch (which) { 1587 case P_ALL: 1588 type = PIDTYPE_MAX; 1589 break; 1590 case P_PID: 1591 type = PIDTYPE_PID; 1592 if (upid <= 0) 1593 return -EINVAL; 1594 1595 pid = find_get_pid(upid); 1596 break; 1597 case P_PGID: 1598 type = PIDTYPE_PGID; 1599 if (upid < 0) 1600 return -EINVAL; 1601 1602 if (upid) 1603 pid = find_get_pid(upid); 1604 else 1605 pid = get_task_pid(current, PIDTYPE_PGID); 1606 break; 1607 case P_PIDFD: 1608 type = PIDTYPE_PID; 1609 if (upid < 0) 1610 return -EINVAL; 1611 1612 pid = pidfd_get_pid(upid); 1613 if (IS_ERR(pid)) 1614 return PTR_ERR(pid); 1615 break; 1616 default: 1617 return -EINVAL; 1618 } 1619 1620 wo.wo_type = type; 1621 wo.wo_pid = pid; 1622 wo.wo_flags = options; 1623 wo.wo_info = infop; 1624 wo.wo_rusage = ru; 1625 ret = do_wait(&wo); 1626 1627 put_pid(pid); 1628 return ret; 1629 } 1630 SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1631 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1632 infop, int, options, struct rusage __user *, ru) 1633 { 1634 struct rusage r; 1635 struct waitid_info info = {.status = 0}; 1636 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); 1637 int signo = 0; 1638 1639 if (err > 0) { 1640 signo = SIGCHLD; 1641 err = 0; 1642 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1643 return -EFAULT; 1644 } 1645 if (!infop) 1646 return err; 1647 1648 if (!user_access_begin(infop, sizeof(*infop))) 1649 return -EFAULT; 1650 1651 unsafe_put_user(signo, &infop->si_signo, Efault); 1652 unsafe_put_user(0, &infop->si_errno, Efault); 1653 unsafe_put_user(info.cause, &infop->si_code, Efault); 1654 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1655 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1656 unsafe_put_user(info.status, &infop->si_status, Efault); 1657 user_access_end(); 1658 return err; 1659 Efault: 1660 user_access_end(); 1661 return -EFAULT; 1662 } 1663 kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1664 long kernel_wait4(pid_t upid, int __user *stat_addr, int options, 1665 struct rusage *ru) 1666 { 1667 struct wait_opts wo; 1668 struct pid *pid = NULL; 1669 enum pid_type type; 1670 long ret; 1671 1672 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1673 __WNOTHREAD|__WCLONE|__WALL)) 1674 return -EINVAL; 1675 1676 /* -INT_MIN is not defined */ 1677 if (upid == INT_MIN) 1678 return -ESRCH; 1679 1680 if (upid == -1) 1681 type = PIDTYPE_MAX; 1682 else if (upid < 0) { 1683 type = PIDTYPE_PGID; 1684 pid = find_get_pid(-upid); 1685 } else if (upid == 0) { 1686 type = PIDTYPE_PGID; 1687 pid = get_task_pid(current, PIDTYPE_PGID); 1688 } else /* upid > 0 */ { 1689 type = PIDTYPE_PID; 1690 pid = find_get_pid(upid); 1691 } 1692 1693 wo.wo_type = type; 1694 wo.wo_pid = pid; 1695 wo.wo_flags = options | WEXITED; 1696 wo.wo_info = NULL; 1697 wo.wo_stat = 0; 1698 wo.wo_rusage = ru; 1699 ret = do_wait(&wo); 1700 put_pid(pid); 1701 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) 1702 ret = -EFAULT; 1703 1704 return ret; 1705 } 1706 SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1707 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1708 int, options, struct rusage __user *, ru) 1709 { 1710 struct rusage r; 1711 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); 1712 1713 if (err > 0) { 1714 if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) 1715 return -EFAULT; 1716 } 1717 return err; 1718 } 1719 1720 #ifdef __ARCH_WANT_SYS_WAITPID 1721 1722 /* 1723 * sys_waitpid() remains for compatibility. waitpid() should be 1724 * implemented by calling sys_wait4() from libc.a. 1725 */ SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1726 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1727 { 1728 return kernel_wait4(pid, stat_addr, options, NULL); 1729 } 1730 1731 #endif 1732 1733 #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1734 COMPAT_SYSCALL_DEFINE4(wait4, 1735 compat_pid_t, pid, 1736 compat_uint_t __user *, stat_addr, 1737 int, options, 1738 struct compat_rusage __user *, ru) 1739 { 1740 struct rusage r; 1741 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); 1742 if (err > 0) { 1743 if (ru && put_compat_rusage(&r, ru)) 1744 return -EFAULT; 1745 } 1746 return err; 1747 } 1748 COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1749 COMPAT_SYSCALL_DEFINE5(waitid, 1750 int, which, compat_pid_t, pid, 1751 struct compat_siginfo __user *, infop, int, options, 1752 struct compat_rusage __user *, uru) 1753 { 1754 struct rusage ru; 1755 struct waitid_info info = {.status = 0}; 1756 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); 1757 int signo = 0; 1758 if (err > 0) { 1759 signo = SIGCHLD; 1760 err = 0; 1761 if (uru) { 1762 /* kernel_waitid() overwrites everything in ru */ 1763 if (COMPAT_USE_64BIT_TIME) 1764 err = copy_to_user(uru, &ru, sizeof(ru)); 1765 else 1766 err = put_compat_rusage(&ru, uru); 1767 if (err) 1768 return -EFAULT; 1769 } 1770 } 1771 1772 if (!infop) 1773 return err; 1774 1775 if (!user_access_begin(infop, sizeof(*infop))) 1776 return -EFAULT; 1777 1778 unsafe_put_user(signo, &infop->si_signo, Efault); 1779 unsafe_put_user(0, &infop->si_errno, Efault); 1780 unsafe_put_user(info.cause, &infop->si_code, Efault); 1781 unsafe_put_user(info.pid, &infop->si_pid, Efault); 1782 unsafe_put_user(info.uid, &infop->si_uid, Efault); 1783 unsafe_put_user(info.status, &infop->si_status, Efault); 1784 user_access_end(); 1785 return err; 1786 Efault: 1787 user_access_end(); 1788 return -EFAULT; 1789 } 1790 #endif 1791 abort(void)1792 __weak void abort(void) 1793 { 1794 BUG(); 1795 1796 /* if that doesn't kill us, halt */ 1797 panic("Oops failed to kill thread"); 1798 } 1799 EXPORT_SYMBOL(abort); 1800