• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/kernel/exit.c
4   *
5   *  Copyright (C) 1991, 1992  Linus Torvalds
6   */
7  
8  #include <linux/mm.h>
9  #include <linux/slab.h>
10  #include <linux/sched/autogroup.h>
11  #include <linux/sched/mm.h>
12  #include <linux/sched/stat.h>
13  #include <linux/sched/task.h>
14  #include <linux/sched/task_stack.h>
15  #include <linux/sched/cputime.h>
16  #include <linux/interrupt.h>
17  #include <linux/module.h>
18  #include <linux/capability.h>
19  #include <linux/completion.h>
20  #include <linux/personality.h>
21  #include <linux/tty.h>
22  #include <linux/iocontext.h>
23  #include <linux/key.h>
24  #include <linux/cpu.h>
25  #include <linux/acct.h>
26  #include <linux/tsacct_kern.h>
27  #include <linux/file.h>
28  #include <linux/fdtable.h>
29  #include <linux/freezer.h>
30  #include <linux/binfmts.h>
31  #include <linux/nsproxy.h>
32  #include <linux/pid_namespace.h>
33  #include <linux/ptrace.h>
34  #include <linux/profile.h>
35  #include <linux/mount.h>
36  #include <linux/proc_fs.h>
37  #include <linux/kthread.h>
38  #include <linux/mempolicy.h>
39  #include <linux/taskstats_kern.h>
40  #include <linux/delayacct.h>
41  #include <linux/cgroup.h>
42  #include <linux/syscalls.h>
43  #include <linux/signal.h>
44  #include <linux/posix-timers.h>
45  #include <linux/cn_proc.h>
46  #include <linux/mutex.h>
47  #include <linux/futex.h>
48  #include <linux/pipe_fs_i.h>
49  #include <linux/audit.h> /* for audit_free() */
50  #include <linux/resource.h>
51  #include <linux/blkdev.h>
52  #include <linux/task_io_accounting_ops.h>
53  #include <linux/tracehook.h>
54  #include <linux/fs_struct.h>
55  #include <linux/init_task.h>
56  #include <linux/perf_event.h>
57  #include <trace/events/sched.h>
58  #include <linux/hw_breakpoint.h>
59  #include <linux/oom.h>
60  #include <linux/writeback.h>
61  #include <linux/shm.h>
62  #include <linux/kcov.h>
63  #include <linux/random.h>
64  #include <linux/rcuwait.h>
65  #include <linux/compat.h>
66  #include <linux/sysfs.h>
67  
68  #include <linux/uaccess.h>
69  #include <asm/unistd.h>
70  #include <asm/pgtable.h>
71  #include <asm/mmu_context.h>
72  
73  /*
74   * The default value should be high enough to not crash a system that randomly
75   * crashes its kernel from time to time, but low enough to at least not permit
76   * overflowing 32-bit refcounts or the ldsem writer count.
77   */
78  static unsigned int oops_limit = 10000;
79  
80  #ifdef CONFIG_SYSCTL
81  static struct ctl_table kern_exit_table[] = {
82  	{
83  		.procname       = "oops_limit",
84  		.data           = &oops_limit,
85  		.maxlen         = sizeof(oops_limit),
86  		.mode           = 0644,
87  		.proc_handler   = proc_douintvec,
88  	},
89  	{ }
90  };
91  
kernel_exit_sysctls_init(void)92  static __init int kernel_exit_sysctls_init(void)
93  {
94  	register_sysctl_init("kernel", kern_exit_table);
95  	return 0;
96  }
97  late_initcall(kernel_exit_sysctls_init);
98  #endif
99  
100  static atomic_t oops_count = ATOMIC_INIT(0);
101  
102  #ifdef CONFIG_SYSFS
oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)103  static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
104  			       char *page)
105  {
106  	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
107  }
108  
109  static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
110  
kernel_exit_sysfs_init(void)111  static __init int kernel_exit_sysfs_init(void)
112  {
113  	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
114  	return 0;
115  }
116  late_initcall(kernel_exit_sysfs_init);
117  #endif
118  
__unhash_process(struct task_struct * p,bool group_dead)119  static void __unhash_process(struct task_struct *p, bool group_dead)
120  {
121  	nr_threads--;
122  	detach_pid(p, PIDTYPE_PID);
123  	if (group_dead) {
124  		detach_pid(p, PIDTYPE_TGID);
125  		detach_pid(p, PIDTYPE_PGID);
126  		detach_pid(p, PIDTYPE_SID);
127  
128  		list_del_rcu(&p->tasks);
129  		list_del_init(&p->sibling);
130  		__this_cpu_dec(process_counts);
131  	}
132  	list_del_rcu(&p->thread_group);
133  	list_del_rcu(&p->thread_node);
134  }
135  
136  /*
137   * This function expects the tasklist_lock write-locked.
138   */
__exit_signal(struct task_struct * tsk)139  static void __exit_signal(struct task_struct *tsk)
140  {
141  	struct signal_struct *sig = tsk->signal;
142  	bool group_dead = thread_group_leader(tsk);
143  	struct sighand_struct *sighand;
144  	struct tty_struct *tty;
145  	u64 utime, stime;
146  
147  	sighand = rcu_dereference_check(tsk->sighand,
148  					lockdep_tasklist_lock_is_held());
149  	spin_lock(&sighand->siglock);
150  
151  #ifdef CONFIG_POSIX_TIMERS
152  	posix_cpu_timers_exit(tsk);
153  	if (group_dead) {
154  		posix_cpu_timers_exit_group(tsk);
155  	} else {
156  		/*
157  		 * This can only happen if the caller is de_thread().
158  		 * FIXME: this is the temporary hack, we should teach
159  		 * posix-cpu-timers to handle this case correctly.
160  		 */
161  		if (unlikely(has_group_leader_pid(tsk)))
162  			posix_cpu_timers_exit_group(tsk);
163  	}
164  #endif
165  
166  	if (group_dead) {
167  		tty = sig->tty;
168  		sig->tty = NULL;
169  	} else {
170  		/*
171  		 * If there is any task waiting for the group exit
172  		 * then notify it:
173  		 */
174  		if (sig->notify_count > 0 && !--sig->notify_count)
175  			wake_up_process(sig->group_exit_task);
176  
177  		if (tsk == sig->curr_target)
178  			sig->curr_target = next_thread(tsk);
179  	}
180  
181  	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
182  			      sizeof(unsigned long long));
183  
184  	/*
185  	 * Accumulate here the counters for all threads as they die. We could
186  	 * skip the group leader because it is the last user of signal_struct,
187  	 * but we want to avoid the race with thread_group_cputime() which can
188  	 * see the empty ->thread_head list.
189  	 */
190  	task_cputime(tsk, &utime, &stime);
191  	write_seqlock(&sig->stats_lock);
192  	sig->utime += utime;
193  	sig->stime += stime;
194  	sig->gtime += task_gtime(tsk);
195  	sig->min_flt += tsk->min_flt;
196  	sig->maj_flt += tsk->maj_flt;
197  	sig->nvcsw += tsk->nvcsw;
198  	sig->nivcsw += tsk->nivcsw;
199  	sig->inblock += task_io_get_inblock(tsk);
200  	sig->oublock += task_io_get_oublock(tsk);
201  	task_io_accounting_add(&sig->ioac, &tsk->ioac);
202  	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
203  	sig->nr_threads--;
204  	__unhash_process(tsk, group_dead);
205  	write_sequnlock(&sig->stats_lock);
206  
207  	/*
208  	 * Do this under ->siglock, we can race with another thread
209  	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
210  	 */
211  	flush_sigqueue(&tsk->pending);
212  	tsk->sighand = NULL;
213  	spin_unlock(&sighand->siglock);
214  
215  	__cleanup_sighand(sighand);
216  	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
217  	if (group_dead) {
218  		flush_sigqueue(&sig->shared_pending);
219  		tty_kref_put(tty);
220  	}
221  }
222  
delayed_put_task_struct(struct rcu_head * rhp)223  static void delayed_put_task_struct(struct rcu_head *rhp)
224  {
225  	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
226  
227  	perf_event_delayed_put(tsk);
228  	trace_sched_process_free(tsk);
229  	put_task_struct(tsk);
230  }
231  
put_task_struct_rcu_user(struct task_struct * task)232  void put_task_struct_rcu_user(struct task_struct *task)
233  {
234  	if (refcount_dec_and_test(&task->rcu_users))
235  		call_rcu(&task->rcu, delayed_put_task_struct);
236  }
237  
release_task(struct task_struct * p)238  void release_task(struct task_struct *p)
239  {
240  	struct task_struct *leader;
241  	int zap_leader;
242  repeat:
243  	/* don't need to get the RCU readlock here - the process is dead and
244  	 * can't be modifying its own credentials. But shut RCU-lockdep up */
245  	rcu_read_lock();
246  	atomic_dec(&__task_cred(p)->user->processes);
247  	rcu_read_unlock();
248  
249  	proc_flush_task(p);
250  	cgroup_release(p);
251  
252  	write_lock_irq(&tasklist_lock);
253  	ptrace_release_task(p);
254  	__exit_signal(p);
255  
256  	/*
257  	 * If we are the last non-leader member of the thread
258  	 * group, and the leader is zombie, then notify the
259  	 * group leader's parent process. (if it wants notification.)
260  	 */
261  	zap_leader = 0;
262  	leader = p->group_leader;
263  	if (leader != p && thread_group_empty(leader)
264  			&& leader->exit_state == EXIT_ZOMBIE) {
265  		/*
266  		 * If we were the last child thread and the leader has
267  		 * exited already, and the leader's parent ignores SIGCHLD,
268  		 * then we are the one who should release the leader.
269  		 */
270  		zap_leader = do_notify_parent(leader, leader->exit_signal);
271  		if (zap_leader)
272  			leader->exit_state = EXIT_DEAD;
273  	}
274  
275  	write_unlock_irq(&tasklist_lock);
276  	release_thread(p);
277  	put_task_struct_rcu_user(p);
278  
279  	p = leader;
280  	if (unlikely(zap_leader))
281  		goto repeat;
282  }
283  
rcuwait_wake_up(struct rcuwait * w)284  void rcuwait_wake_up(struct rcuwait *w)
285  {
286  	struct task_struct *task;
287  
288  	rcu_read_lock();
289  
290  	/*
291  	 * Order condition vs @task, such that everything prior to the load
292  	 * of @task is visible. This is the condition as to why the user called
293  	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
294  	 * barrier (A) in rcuwait_wait_event().
295  	 *
296  	 *    WAIT                WAKE
297  	 *    [S] tsk = current	  [S] cond = true
298  	 *        MB (A)	      MB (B)
299  	 *    [L] cond		  [L] tsk
300  	 */
301  	smp_mb(); /* (B) */
302  
303  	task = rcu_dereference(w->task);
304  	if (task)
305  		wake_up_process(task);
306  	rcu_read_unlock();
307  }
308  
309  /*
310   * Determine if a process group is "orphaned", according to the POSIX
311   * definition in 2.2.2.52.  Orphaned process groups are not to be affected
312   * by terminal-generated stop signals.  Newly orphaned process groups are
313   * to receive a SIGHUP and a SIGCONT.
314   *
315   * "I ask you, have you ever known what it is to be an orphan?"
316   */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)317  static int will_become_orphaned_pgrp(struct pid *pgrp,
318  					struct task_struct *ignored_task)
319  {
320  	struct task_struct *p;
321  
322  	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
323  		if ((p == ignored_task) ||
324  		    (p->exit_state && thread_group_empty(p)) ||
325  		    is_global_init(p->real_parent))
326  			continue;
327  
328  		if (task_pgrp(p->real_parent) != pgrp &&
329  		    task_session(p->real_parent) == task_session(p))
330  			return 0;
331  	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
332  
333  	return 1;
334  }
335  
is_current_pgrp_orphaned(void)336  int is_current_pgrp_orphaned(void)
337  {
338  	int retval;
339  
340  	read_lock(&tasklist_lock);
341  	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
342  	read_unlock(&tasklist_lock);
343  
344  	return retval;
345  }
346  
has_stopped_jobs(struct pid * pgrp)347  static bool has_stopped_jobs(struct pid *pgrp)
348  {
349  	struct task_struct *p;
350  
351  	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
352  		if (p->signal->flags & SIGNAL_STOP_STOPPED)
353  			return true;
354  	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
355  
356  	return false;
357  }
358  
359  /*
360   * Check to see if any process groups have become orphaned as
361   * a result of our exiting, and if they have any stopped jobs,
362   * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
363   */
364  static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)365  kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
366  {
367  	struct pid *pgrp = task_pgrp(tsk);
368  	struct task_struct *ignored_task = tsk;
369  
370  	if (!parent)
371  		/* exit: our father is in a different pgrp than
372  		 * we are and we were the only connection outside.
373  		 */
374  		parent = tsk->real_parent;
375  	else
376  		/* reparent: our child is in a different pgrp than
377  		 * we are, and it was the only connection outside.
378  		 */
379  		ignored_task = NULL;
380  
381  	if (task_pgrp(parent) != pgrp &&
382  	    task_session(parent) == task_session(tsk) &&
383  	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
384  	    has_stopped_jobs(pgrp)) {
385  		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
386  		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
387  	}
388  }
389  
390  #ifdef CONFIG_MEMCG
391  /*
392   * A task is exiting.   If it owned this mm, find a new owner for the mm.
393   */
mm_update_next_owner(struct mm_struct * mm)394  void mm_update_next_owner(struct mm_struct *mm)
395  {
396  	struct task_struct *c, *g, *p = current;
397  
398  retry:
399  	/*
400  	 * If the exiting or execing task is not the owner, it's
401  	 * someone else's problem.
402  	 */
403  	if (mm->owner != p)
404  		return;
405  	/*
406  	 * The current owner is exiting/execing and there are no other
407  	 * candidates.  Do not leave the mm pointing to a possibly
408  	 * freed task structure.
409  	 */
410  	if (atomic_read(&mm->mm_users) <= 1) {
411  		WRITE_ONCE(mm->owner, NULL);
412  		return;
413  	}
414  
415  	read_lock(&tasklist_lock);
416  	/*
417  	 * Search in the children
418  	 */
419  	list_for_each_entry(c, &p->children, sibling) {
420  		if (c->mm == mm)
421  			goto assign_new_owner;
422  	}
423  
424  	/*
425  	 * Search in the siblings
426  	 */
427  	list_for_each_entry(c, &p->real_parent->children, sibling) {
428  		if (c->mm == mm)
429  			goto assign_new_owner;
430  	}
431  
432  	/*
433  	 * Search through everything else, we should not get here often.
434  	 */
435  	for_each_process(g) {
436  		if (g->flags & PF_KTHREAD)
437  			continue;
438  		for_each_thread(g, c) {
439  			if (c->mm == mm)
440  				goto assign_new_owner;
441  			if (c->mm)
442  				break;
443  		}
444  	}
445  	read_unlock(&tasklist_lock);
446  	/*
447  	 * We found no owner yet mm_users > 1: this implies that we are
448  	 * most likely racing with swapoff (try_to_unuse()) or /proc or
449  	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
450  	 */
451  	WRITE_ONCE(mm->owner, NULL);
452  	return;
453  
454  assign_new_owner:
455  	BUG_ON(c == p);
456  	get_task_struct(c);
457  	/*
458  	 * The task_lock protects c->mm from changing.
459  	 * We always want mm->owner->mm == mm
460  	 */
461  	task_lock(c);
462  	/*
463  	 * Delay read_unlock() till we have the task_lock()
464  	 * to ensure that c does not slip away underneath us
465  	 */
466  	read_unlock(&tasklist_lock);
467  	if (c->mm != mm) {
468  		task_unlock(c);
469  		put_task_struct(c);
470  		goto retry;
471  	}
472  	WRITE_ONCE(mm->owner, c);
473  	task_unlock(c);
474  	put_task_struct(c);
475  }
476  #endif /* CONFIG_MEMCG */
477  
478  /*
479   * Turn us into a lazy TLB process if we
480   * aren't already..
481   */
exit_mm(void)482  static void exit_mm(void)
483  {
484  	struct mm_struct *mm = current->mm;
485  	struct core_state *core_state;
486  
487  	exit_mm_release(current, mm);
488  	if (!mm)
489  		return;
490  	sync_mm_rss(mm);
491  	/*
492  	 * Serialize with any possible pending coredump.
493  	 * We must hold mmap_sem around checking core_state
494  	 * and clearing tsk->mm.  The core-inducing thread
495  	 * will increment ->nr_threads for each thread in the
496  	 * group with ->mm != NULL.
497  	 */
498  	down_read(&mm->mmap_sem);
499  	core_state = mm->core_state;
500  	if (core_state) {
501  		struct core_thread self;
502  
503  		up_read(&mm->mmap_sem);
504  
505  		self.task = current;
506  		if (self.task->flags & PF_SIGNALED)
507  			self.next = xchg(&core_state->dumper.next, &self);
508  		else
509  			self.task = NULL;
510  		/*
511  		 * Implies mb(), the result of xchg() must be visible
512  		 * to core_state->dumper.
513  		 */
514  		if (atomic_dec_and_test(&core_state->nr_threads))
515  			complete(&core_state->startup);
516  
517  		for (;;) {
518  			set_current_state(TASK_UNINTERRUPTIBLE);
519  			if (!self.task) /* see coredump_finish() */
520  				break;
521  			freezable_schedule();
522  		}
523  		__set_current_state(TASK_RUNNING);
524  		down_read(&mm->mmap_sem);
525  	}
526  	mmgrab(mm);
527  	BUG_ON(mm != current->active_mm);
528  	/* more a memory barrier than a real lock */
529  	task_lock(current);
530  	current->mm = NULL;
531  	up_read(&mm->mmap_sem);
532  	enter_lazy_tlb(mm, current);
533  	task_unlock(current);
534  	mm_update_next_owner(mm);
535  	mmput(mm);
536  	if (test_thread_flag(TIF_MEMDIE))
537  		exit_oom_victim();
538  }
539  
find_alive_thread(struct task_struct * p)540  static struct task_struct *find_alive_thread(struct task_struct *p)
541  {
542  	struct task_struct *t;
543  
544  	for_each_thread(p, t) {
545  		if (!(t->flags & PF_EXITING))
546  			return t;
547  	}
548  	return NULL;
549  }
550  
find_child_reaper(struct task_struct * father,struct list_head * dead)551  static struct task_struct *find_child_reaper(struct task_struct *father,
552  						struct list_head *dead)
553  	__releases(&tasklist_lock)
554  	__acquires(&tasklist_lock)
555  {
556  	struct pid_namespace *pid_ns = task_active_pid_ns(father);
557  	struct task_struct *reaper = pid_ns->child_reaper;
558  	struct task_struct *p, *n;
559  
560  	if (likely(reaper != father))
561  		return reaper;
562  
563  	reaper = find_alive_thread(father);
564  	if (reaper) {
565  		pid_ns->child_reaper = reaper;
566  		return reaper;
567  	}
568  
569  	write_unlock_irq(&tasklist_lock);
570  
571  	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
572  		list_del_init(&p->ptrace_entry);
573  		release_task(p);
574  	}
575  
576  	zap_pid_ns_processes(pid_ns);
577  	write_lock_irq(&tasklist_lock);
578  
579  	return father;
580  }
581  
582  /*
583   * When we die, we re-parent all our children, and try to:
584   * 1. give them to another thread in our thread group, if such a member exists
585   * 2. give it to the first ancestor process which prctl'd itself as a
586   *    child_subreaper for its children (like a service manager)
587   * 3. give it to the init process (PID 1) in our pid namespace
588   */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)589  static struct task_struct *find_new_reaper(struct task_struct *father,
590  					   struct task_struct *child_reaper)
591  {
592  	struct task_struct *thread, *reaper;
593  
594  	thread = find_alive_thread(father);
595  	if (thread)
596  		return thread;
597  
598  	if (father->signal->has_child_subreaper) {
599  		unsigned int ns_level = task_pid(father)->level;
600  		/*
601  		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
602  		 * We can't check reaper != child_reaper to ensure we do not
603  		 * cross the namespaces, the exiting parent could be injected
604  		 * by setns() + fork().
605  		 * We check pid->level, this is slightly more efficient than
606  		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
607  		 */
608  		for (reaper = father->real_parent;
609  		     task_pid(reaper)->level == ns_level;
610  		     reaper = reaper->real_parent) {
611  			if (reaper == &init_task)
612  				break;
613  			if (!reaper->signal->is_child_subreaper)
614  				continue;
615  			thread = find_alive_thread(reaper);
616  			if (thread)
617  				return thread;
618  		}
619  	}
620  
621  	return child_reaper;
622  }
623  
624  /*
625  * Any that need to be release_task'd are put on the @dead list.
626   */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)627  static void reparent_leader(struct task_struct *father, struct task_struct *p,
628  				struct list_head *dead)
629  {
630  	if (unlikely(p->exit_state == EXIT_DEAD))
631  		return;
632  
633  	/* We don't want people slaying init. */
634  	p->exit_signal = SIGCHLD;
635  
636  	/* If it has exited notify the new parent about this child's death. */
637  	if (!p->ptrace &&
638  	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
639  		if (do_notify_parent(p, p->exit_signal)) {
640  			p->exit_state = EXIT_DEAD;
641  			list_add(&p->ptrace_entry, dead);
642  		}
643  	}
644  
645  	kill_orphaned_pgrp(p, father);
646  }
647  
648  /*
649   * This does two things:
650   *
651   * A.  Make init inherit all the child processes
652   * B.  Check to see if any process groups have become orphaned
653   *	as a result of our exiting, and if they have any stopped
654   *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
655   */
forget_original_parent(struct task_struct * father,struct list_head * dead)656  static void forget_original_parent(struct task_struct *father,
657  					struct list_head *dead)
658  {
659  	struct task_struct *p, *t, *reaper;
660  
661  	if (unlikely(!list_empty(&father->ptraced)))
662  		exit_ptrace(father, dead);
663  
664  	/* Can drop and reacquire tasklist_lock */
665  	reaper = find_child_reaper(father, dead);
666  	if (list_empty(&father->children))
667  		return;
668  
669  	reaper = find_new_reaper(father, reaper);
670  	list_for_each_entry(p, &father->children, sibling) {
671  		for_each_thread(p, t) {
672  			t->real_parent = reaper;
673  			BUG_ON((!t->ptrace) != (t->parent == father));
674  			if (likely(!t->ptrace))
675  				t->parent = t->real_parent;
676  			if (t->pdeath_signal)
677  				group_send_sig_info(t->pdeath_signal,
678  						    SEND_SIG_NOINFO, t,
679  						    PIDTYPE_TGID);
680  		}
681  		/*
682  		 * If this is a threaded reparent there is no need to
683  		 * notify anyone anything has happened.
684  		 */
685  		if (!same_thread_group(reaper, father))
686  			reparent_leader(father, p, dead);
687  	}
688  	list_splice_tail_init(&father->children, &reaper->children);
689  }
690  
691  /*
692   * Send signals to all our closest relatives so that they know
693   * to properly mourn us..
694   */
exit_notify(struct task_struct * tsk,int group_dead)695  static void exit_notify(struct task_struct *tsk, int group_dead)
696  {
697  	bool autoreap;
698  	struct task_struct *p, *n;
699  	LIST_HEAD(dead);
700  
701  	write_lock_irq(&tasklist_lock);
702  	forget_original_parent(tsk, &dead);
703  
704  	if (group_dead)
705  		kill_orphaned_pgrp(tsk->group_leader, NULL);
706  
707  	tsk->exit_state = EXIT_ZOMBIE;
708  	if (unlikely(tsk->ptrace)) {
709  		int sig = thread_group_leader(tsk) &&
710  				thread_group_empty(tsk) &&
711  				!ptrace_reparented(tsk) ?
712  			tsk->exit_signal : SIGCHLD;
713  		autoreap = do_notify_parent(tsk, sig);
714  	} else if (thread_group_leader(tsk)) {
715  		autoreap = thread_group_empty(tsk) &&
716  			do_notify_parent(tsk, tsk->exit_signal);
717  	} else {
718  		autoreap = true;
719  	}
720  
721  	if (autoreap) {
722  		tsk->exit_state = EXIT_DEAD;
723  		list_add(&tsk->ptrace_entry, &dead);
724  	}
725  
726  	/* mt-exec, de_thread() is waiting for group leader */
727  	if (unlikely(tsk->signal->notify_count < 0))
728  		wake_up_process(tsk->signal->group_exit_task);
729  	write_unlock_irq(&tasklist_lock);
730  
731  	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
732  		list_del_init(&p->ptrace_entry);
733  		release_task(p);
734  	}
735  }
736  
737  #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)738  static void check_stack_usage(void)
739  {
740  	static DEFINE_SPINLOCK(low_water_lock);
741  	static int lowest_to_date = THREAD_SIZE;
742  	unsigned long free;
743  
744  	free = stack_not_used(current);
745  
746  	if (free >= lowest_to_date)
747  		return;
748  
749  	spin_lock(&low_water_lock);
750  	if (free < lowest_to_date) {
751  		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
752  			current->comm, task_pid_nr(current), free);
753  		lowest_to_date = free;
754  	}
755  	spin_unlock(&low_water_lock);
756  }
757  #else
check_stack_usage(void)758  static inline void check_stack_usage(void) {}
759  #endif
760  
do_exit(long code)761  void __noreturn do_exit(long code)
762  {
763  	struct task_struct *tsk = current;
764  	int group_dead;
765  
766  	/*
767  	 * We can get here from a kernel oops, sometimes with preemption off.
768  	 * Start by checking for critical errors.
769  	 * Then fix up important state like USER_DS and preemption.
770  	 * Then do everything else.
771  	 */
772  
773  	WARN_ON(blk_needs_flush_plug(tsk));
774  
775  	if (unlikely(in_interrupt()))
776  		panic("Aiee, killing interrupt handler!");
777  	if (unlikely(!tsk->pid))
778  		panic("Attempted to kill the idle task!");
779  
780  	/*
781  	 * If do_exit is called because this processes oopsed, it's possible
782  	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
783  	 * continuing. Amongst other possible reasons, this is to prevent
784  	 * mm_release()->clear_child_tid() from writing to a user-controlled
785  	 * kernel address.
786  	 */
787  	set_fs(USER_DS);
788  
789  	if (unlikely(in_atomic())) {
790  		pr_info("note: %s[%d] exited with preempt_count %d\n",
791  			current->comm, task_pid_nr(current),
792  			preempt_count());
793  		preempt_count_set(PREEMPT_ENABLED);
794  	}
795  
796  	profile_task_exit(tsk);
797  	kcov_task_exit(tsk);
798  
799  	ptrace_event(PTRACE_EVENT_EXIT, code);
800  
801  	validate_creds_for_do_exit(tsk);
802  
803  	/*
804  	 * We're taking recursive faults here in do_exit. Safest is to just
805  	 * leave this task alone and wait for reboot.
806  	 */
807  	if (unlikely(tsk->flags & PF_EXITING)) {
808  		pr_alert("Fixing recursive fault but reboot is needed!\n");
809  		futex_exit_recursive(tsk);
810  		set_current_state(TASK_UNINTERRUPTIBLE);
811  		schedule();
812  	}
813  
814  	exit_signals(tsk);  /* sets PF_EXITING */
815  
816  	/* sync mm's RSS info before statistics gathering */
817  	if (tsk->mm)
818  		sync_mm_rss(tsk->mm);
819  	acct_update_integrals(tsk);
820  	group_dead = atomic_dec_and_test(&tsk->signal->live);
821  	if (group_dead) {
822  		/*
823  		 * If the last thread of global init has exited, panic
824  		 * immediately to get a useable coredump.
825  		 */
826  		if (unlikely(is_global_init(tsk)))
827  			panic("Attempted to kill init! exitcode=0x%08x\n",
828  				tsk->signal->group_exit_code ?: (int)code);
829  
830  #ifdef CONFIG_POSIX_TIMERS
831  		hrtimer_cancel(&tsk->signal->real_timer);
832  		exit_itimers(tsk->signal);
833  #endif
834  		if (tsk->mm)
835  			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
836  	}
837  	acct_collect(code, group_dead);
838  	if (group_dead)
839  		tty_audit_exit();
840  	audit_free(tsk);
841  
842  	tsk->exit_code = code;
843  	taskstats_exit(tsk, group_dead);
844  
845  	exit_mm();
846  
847  	if (group_dead)
848  		acct_process();
849  	trace_sched_process_exit(tsk);
850  
851  	exit_sem(tsk);
852  	exit_shm(tsk);
853  	exit_files(tsk);
854  	exit_fs(tsk);
855  	if (group_dead)
856  		disassociate_ctty(1);
857  	exit_task_namespaces(tsk);
858  	exit_task_work(tsk);
859  	exit_thread(tsk);
860  	exit_umh(tsk);
861  
862  	/*
863  	 * Flush inherited counters to the parent - before the parent
864  	 * gets woken up by child-exit notifications.
865  	 *
866  	 * because of cgroup mode, must be called before cgroup_exit()
867  	 */
868  	perf_event_exit_task(tsk);
869  
870  	sched_autogroup_exit_task(tsk);
871  	cgroup_exit(tsk);
872  
873  	/*
874  	 * FIXME: do that only when needed, using sched_exit tracepoint
875  	 */
876  	flush_ptrace_hw_breakpoint(tsk);
877  
878  	exit_tasks_rcu_start();
879  	exit_notify(tsk, group_dead);
880  	proc_exit_connector(tsk);
881  	mpol_put_task_policy(tsk);
882  #ifdef CONFIG_FUTEX
883  	if (unlikely(current->pi_state_cache))
884  		kfree(current->pi_state_cache);
885  #endif
886  	/*
887  	 * Make sure we are holding no locks:
888  	 */
889  	debug_check_no_locks_held();
890  
891  	if (tsk->io_context)
892  		exit_io_context(tsk);
893  
894  	if (tsk->splice_pipe)
895  		free_pipe_info(tsk->splice_pipe);
896  
897  	if (tsk->task_frag.page)
898  		put_page(tsk->task_frag.page);
899  
900  	validate_creds_for_do_exit(tsk);
901  
902  	check_stack_usage();
903  	preempt_disable();
904  	if (tsk->nr_dirtied)
905  		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
906  	exit_rcu();
907  	exit_tasks_rcu_finish();
908  
909  	lockdep_free_task(tsk);
910  	do_task_dead();
911  }
912  EXPORT_SYMBOL_GPL(do_exit);
913  
make_task_dead(int signr)914  void __noreturn make_task_dead(int signr)
915  {
916  	/*
917  	 * Take the task off the cpu after something catastrophic has
918  	 * happened.
919  	 */
920  	unsigned int limit;
921  
922  	/*
923  	 * Every time the system oopses, if the oops happens while a reference
924  	 * to an object was held, the reference leaks.
925  	 * If the oops doesn't also leak memory, repeated oopsing can cause
926  	 * reference counters to wrap around (if they're not using refcount_t).
927  	 * This means that repeated oopsing can make unexploitable-looking bugs
928  	 * exploitable through repeated oopsing.
929  	 * To make sure this can't happen, place an upper bound on how often the
930  	 * kernel may oops without panic().
931  	 */
932  	limit = READ_ONCE(oops_limit);
933  	if (atomic_inc_return(&oops_count) >= limit && limit)
934  		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
935  
936  	do_exit(signr);
937  }
938  
complete_and_exit(struct completion * comp,long code)939  void complete_and_exit(struct completion *comp, long code)
940  {
941  	if (comp)
942  		complete(comp);
943  
944  	do_exit(code);
945  }
946  EXPORT_SYMBOL(complete_and_exit);
947  
SYSCALL_DEFINE1(exit,int,error_code)948  SYSCALL_DEFINE1(exit, int, error_code)
949  {
950  	do_exit((error_code&0xff)<<8);
951  }
952  
953  /*
954   * Take down every thread in the group.  This is called by fatal signals
955   * as well as by sys_exit_group (below).
956   */
957  void
do_group_exit(int exit_code)958  do_group_exit(int exit_code)
959  {
960  	struct signal_struct *sig = current->signal;
961  
962  	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
963  
964  	if (signal_group_exit(sig))
965  		exit_code = sig->group_exit_code;
966  	else if (!thread_group_empty(current)) {
967  		struct sighand_struct *const sighand = current->sighand;
968  
969  		spin_lock_irq(&sighand->siglock);
970  		if (signal_group_exit(sig))
971  			/* Another thread got here before we took the lock.  */
972  			exit_code = sig->group_exit_code;
973  		else {
974  			sig->group_exit_code = exit_code;
975  			sig->flags = SIGNAL_GROUP_EXIT;
976  			zap_other_threads(current);
977  		}
978  		spin_unlock_irq(&sighand->siglock);
979  	}
980  
981  	do_exit(exit_code);
982  	/* NOTREACHED */
983  }
984  
985  /*
986   * this kills every thread in the thread group. Note that any externally
987   * wait4()-ing process will get the correct exit code - even if this
988   * thread is not the thread group leader.
989   */
SYSCALL_DEFINE1(exit_group,int,error_code)990  SYSCALL_DEFINE1(exit_group, int, error_code)
991  {
992  	do_group_exit((error_code & 0xff) << 8);
993  	/* NOTREACHED */
994  	return 0;
995  }
996  
997  struct waitid_info {
998  	pid_t pid;
999  	uid_t uid;
1000  	int status;
1001  	int cause;
1002  };
1003  
1004  struct wait_opts {
1005  	enum pid_type		wo_type;
1006  	int			wo_flags;
1007  	struct pid		*wo_pid;
1008  
1009  	struct waitid_info	*wo_info;
1010  	int			wo_stat;
1011  	struct rusage		*wo_rusage;
1012  
1013  	wait_queue_entry_t		child_wait;
1014  	int			notask_error;
1015  };
1016  
eligible_pid(struct wait_opts * wo,struct task_struct * p)1017  static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1018  {
1019  	return	wo->wo_type == PIDTYPE_MAX ||
1020  		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1021  }
1022  
1023  static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1024  eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1025  {
1026  	if (!eligible_pid(wo, p))
1027  		return 0;
1028  
1029  	/*
1030  	 * Wait for all children (clone and not) if __WALL is set or
1031  	 * if it is traced by us.
1032  	 */
1033  	if (ptrace || (wo->wo_flags & __WALL))
1034  		return 1;
1035  
1036  	/*
1037  	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1038  	 * otherwise, wait for non-clone children *only*.
1039  	 *
1040  	 * Note: a "clone" child here is one that reports to its parent
1041  	 * using a signal other than SIGCHLD, or a non-leader thread which
1042  	 * we can only see if it is traced by us.
1043  	 */
1044  	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1045  		return 0;
1046  
1047  	return 1;
1048  }
1049  
1050  /*
1051   * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1052   * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1053   * the lock and this task is uninteresting.  If we return nonzero, we have
1054   * released the lock and the system call should return.
1055   */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1056  static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1057  {
1058  	int state, status;
1059  	pid_t pid = task_pid_vnr(p);
1060  	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1061  	struct waitid_info *infop;
1062  
1063  	if (!likely(wo->wo_flags & WEXITED))
1064  		return 0;
1065  
1066  	if (unlikely(wo->wo_flags & WNOWAIT)) {
1067  		status = p->exit_code;
1068  		get_task_struct(p);
1069  		read_unlock(&tasklist_lock);
1070  		sched_annotate_sleep();
1071  		if (wo->wo_rusage)
1072  			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1073  		put_task_struct(p);
1074  		goto out_info;
1075  	}
1076  	/*
1077  	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1078  	 */
1079  	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1080  		EXIT_TRACE : EXIT_DEAD;
1081  	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1082  		return 0;
1083  	/*
1084  	 * We own this thread, nobody else can reap it.
1085  	 */
1086  	read_unlock(&tasklist_lock);
1087  	sched_annotate_sleep();
1088  
1089  	/*
1090  	 * Check thread_group_leader() to exclude the traced sub-threads.
1091  	 */
1092  	if (state == EXIT_DEAD && thread_group_leader(p)) {
1093  		struct signal_struct *sig = p->signal;
1094  		struct signal_struct *psig = current->signal;
1095  		unsigned long maxrss;
1096  		u64 tgutime, tgstime;
1097  
1098  		/*
1099  		 * The resource counters for the group leader are in its
1100  		 * own task_struct.  Those for dead threads in the group
1101  		 * are in its signal_struct, as are those for the child
1102  		 * processes it has previously reaped.  All these
1103  		 * accumulate in the parent's signal_struct c* fields.
1104  		 *
1105  		 * We don't bother to take a lock here to protect these
1106  		 * p->signal fields because the whole thread group is dead
1107  		 * and nobody can change them.
1108  		 *
1109  		 * psig->stats_lock also protects us from our sub-theads
1110  		 * which can reap other children at the same time. Until
1111  		 * we change k_getrusage()-like users to rely on this lock
1112  		 * we have to take ->siglock as well.
1113  		 *
1114  		 * We use thread_group_cputime_adjusted() to get times for
1115  		 * the thread group, which consolidates times for all threads
1116  		 * in the group including the group leader.
1117  		 */
1118  		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1119  		spin_lock_irq(&current->sighand->siglock);
1120  		write_seqlock(&psig->stats_lock);
1121  		psig->cutime += tgutime + sig->cutime;
1122  		psig->cstime += tgstime + sig->cstime;
1123  		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1124  		psig->cmin_flt +=
1125  			p->min_flt + sig->min_flt + sig->cmin_flt;
1126  		psig->cmaj_flt +=
1127  			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1128  		psig->cnvcsw +=
1129  			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1130  		psig->cnivcsw +=
1131  			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1132  		psig->cinblock +=
1133  			task_io_get_inblock(p) +
1134  			sig->inblock + sig->cinblock;
1135  		psig->coublock +=
1136  			task_io_get_oublock(p) +
1137  			sig->oublock + sig->coublock;
1138  		maxrss = max(sig->maxrss, sig->cmaxrss);
1139  		if (psig->cmaxrss < maxrss)
1140  			psig->cmaxrss = maxrss;
1141  		task_io_accounting_add(&psig->ioac, &p->ioac);
1142  		task_io_accounting_add(&psig->ioac, &sig->ioac);
1143  		write_sequnlock(&psig->stats_lock);
1144  		spin_unlock_irq(&current->sighand->siglock);
1145  	}
1146  
1147  	if (wo->wo_rusage)
1148  		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1149  	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1150  		? p->signal->group_exit_code : p->exit_code;
1151  	wo->wo_stat = status;
1152  
1153  	if (state == EXIT_TRACE) {
1154  		write_lock_irq(&tasklist_lock);
1155  		/* We dropped tasklist, ptracer could die and untrace */
1156  		ptrace_unlink(p);
1157  
1158  		/* If parent wants a zombie, don't release it now */
1159  		state = EXIT_ZOMBIE;
1160  		if (do_notify_parent(p, p->exit_signal))
1161  			state = EXIT_DEAD;
1162  		p->exit_state = state;
1163  		write_unlock_irq(&tasklist_lock);
1164  	}
1165  	if (state == EXIT_DEAD)
1166  		release_task(p);
1167  
1168  out_info:
1169  	infop = wo->wo_info;
1170  	if (infop) {
1171  		if ((status & 0x7f) == 0) {
1172  			infop->cause = CLD_EXITED;
1173  			infop->status = status >> 8;
1174  		} else {
1175  			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1176  			infop->status = status & 0x7f;
1177  		}
1178  		infop->pid = pid;
1179  		infop->uid = uid;
1180  	}
1181  
1182  	return pid;
1183  }
1184  
task_stopped_code(struct task_struct * p,bool ptrace)1185  static int *task_stopped_code(struct task_struct *p, bool ptrace)
1186  {
1187  	if (ptrace) {
1188  		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1189  			return &p->exit_code;
1190  	} else {
1191  		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1192  			return &p->signal->group_exit_code;
1193  	}
1194  	return NULL;
1195  }
1196  
1197  /**
1198   * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1199   * @wo: wait options
1200   * @ptrace: is the wait for ptrace
1201   * @p: task to wait for
1202   *
1203   * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1204   *
1205   * CONTEXT:
1206   * read_lock(&tasklist_lock), which is released if return value is
1207   * non-zero.  Also, grabs and releases @p->sighand->siglock.
1208   *
1209   * RETURNS:
1210   * 0 if wait condition didn't exist and search for other wait conditions
1211   * should continue.  Non-zero return, -errno on failure and @p's pid on
1212   * success, implies that tasklist_lock is released and wait condition
1213   * search should terminate.
1214   */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1215  static int wait_task_stopped(struct wait_opts *wo,
1216  				int ptrace, struct task_struct *p)
1217  {
1218  	struct waitid_info *infop;
1219  	int exit_code, *p_code, why;
1220  	uid_t uid = 0; /* unneeded, required by compiler */
1221  	pid_t pid;
1222  
1223  	/*
1224  	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1225  	 */
1226  	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1227  		return 0;
1228  
1229  	if (!task_stopped_code(p, ptrace))
1230  		return 0;
1231  
1232  	exit_code = 0;
1233  	spin_lock_irq(&p->sighand->siglock);
1234  
1235  	p_code = task_stopped_code(p, ptrace);
1236  	if (unlikely(!p_code))
1237  		goto unlock_sig;
1238  
1239  	exit_code = *p_code;
1240  	if (!exit_code)
1241  		goto unlock_sig;
1242  
1243  	if (!unlikely(wo->wo_flags & WNOWAIT))
1244  		*p_code = 0;
1245  
1246  	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1247  unlock_sig:
1248  	spin_unlock_irq(&p->sighand->siglock);
1249  	if (!exit_code)
1250  		return 0;
1251  
1252  	/*
1253  	 * Now we are pretty sure this task is interesting.
1254  	 * Make sure it doesn't get reaped out from under us while we
1255  	 * give up the lock and then examine it below.  We don't want to
1256  	 * keep holding onto the tasklist_lock while we call getrusage and
1257  	 * possibly take page faults for user memory.
1258  	 */
1259  	get_task_struct(p);
1260  	pid = task_pid_vnr(p);
1261  	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1262  	read_unlock(&tasklist_lock);
1263  	sched_annotate_sleep();
1264  	if (wo->wo_rusage)
1265  		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1266  	put_task_struct(p);
1267  
1268  	if (likely(!(wo->wo_flags & WNOWAIT)))
1269  		wo->wo_stat = (exit_code << 8) | 0x7f;
1270  
1271  	infop = wo->wo_info;
1272  	if (infop) {
1273  		infop->cause = why;
1274  		infop->status = exit_code;
1275  		infop->pid = pid;
1276  		infop->uid = uid;
1277  	}
1278  	return pid;
1279  }
1280  
1281  /*
1282   * Handle do_wait work for one task in a live, non-stopped state.
1283   * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1284   * the lock and this task is uninteresting.  If we return nonzero, we have
1285   * released the lock and the system call should return.
1286   */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1287  static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1288  {
1289  	struct waitid_info *infop;
1290  	pid_t pid;
1291  	uid_t uid;
1292  
1293  	if (!unlikely(wo->wo_flags & WCONTINUED))
1294  		return 0;
1295  
1296  	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1297  		return 0;
1298  
1299  	spin_lock_irq(&p->sighand->siglock);
1300  	/* Re-check with the lock held.  */
1301  	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1302  		spin_unlock_irq(&p->sighand->siglock);
1303  		return 0;
1304  	}
1305  	if (!unlikely(wo->wo_flags & WNOWAIT))
1306  		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1307  	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1308  	spin_unlock_irq(&p->sighand->siglock);
1309  
1310  	pid = task_pid_vnr(p);
1311  	get_task_struct(p);
1312  	read_unlock(&tasklist_lock);
1313  	sched_annotate_sleep();
1314  	if (wo->wo_rusage)
1315  		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1316  	put_task_struct(p);
1317  
1318  	infop = wo->wo_info;
1319  	if (!infop) {
1320  		wo->wo_stat = 0xffff;
1321  	} else {
1322  		infop->cause = CLD_CONTINUED;
1323  		infop->pid = pid;
1324  		infop->uid = uid;
1325  		infop->status = SIGCONT;
1326  	}
1327  	return pid;
1328  }
1329  
1330  /*
1331   * Consider @p for a wait by @parent.
1332   *
1333   * -ECHILD should be in ->notask_error before the first call.
1334   * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1335   * Returns zero if the search for a child should continue;
1336   * then ->notask_error is 0 if @p is an eligible child,
1337   * or still -ECHILD.
1338   */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1339  static int wait_consider_task(struct wait_opts *wo, int ptrace,
1340  				struct task_struct *p)
1341  {
1342  	/*
1343  	 * We can race with wait_task_zombie() from another thread.
1344  	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1345  	 * can't confuse the checks below.
1346  	 */
1347  	int exit_state = READ_ONCE(p->exit_state);
1348  	int ret;
1349  
1350  	if (unlikely(exit_state == EXIT_DEAD))
1351  		return 0;
1352  
1353  	ret = eligible_child(wo, ptrace, p);
1354  	if (!ret)
1355  		return ret;
1356  
1357  	if (unlikely(exit_state == EXIT_TRACE)) {
1358  		/*
1359  		 * ptrace == 0 means we are the natural parent. In this case
1360  		 * we should clear notask_error, debugger will notify us.
1361  		 */
1362  		if (likely(!ptrace))
1363  			wo->notask_error = 0;
1364  		return 0;
1365  	}
1366  
1367  	if (likely(!ptrace) && unlikely(p->ptrace)) {
1368  		/*
1369  		 * If it is traced by its real parent's group, just pretend
1370  		 * the caller is ptrace_do_wait() and reap this child if it
1371  		 * is zombie.
1372  		 *
1373  		 * This also hides group stop state from real parent; otherwise
1374  		 * a single stop can be reported twice as group and ptrace stop.
1375  		 * If a ptracer wants to distinguish these two events for its
1376  		 * own children it should create a separate process which takes
1377  		 * the role of real parent.
1378  		 */
1379  		if (!ptrace_reparented(p))
1380  			ptrace = 1;
1381  	}
1382  
1383  	/* slay zombie? */
1384  	if (exit_state == EXIT_ZOMBIE) {
1385  		/* we don't reap group leaders with subthreads */
1386  		if (!delay_group_leader(p)) {
1387  			/*
1388  			 * A zombie ptracee is only visible to its ptracer.
1389  			 * Notification and reaping will be cascaded to the
1390  			 * real parent when the ptracer detaches.
1391  			 */
1392  			if (unlikely(ptrace) || likely(!p->ptrace))
1393  				return wait_task_zombie(wo, p);
1394  		}
1395  
1396  		/*
1397  		 * Allow access to stopped/continued state via zombie by
1398  		 * falling through.  Clearing of notask_error is complex.
1399  		 *
1400  		 * When !@ptrace:
1401  		 *
1402  		 * If WEXITED is set, notask_error should naturally be
1403  		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1404  		 * so, if there are live subthreads, there are events to
1405  		 * wait for.  If all subthreads are dead, it's still safe
1406  		 * to clear - this function will be called again in finite
1407  		 * amount time once all the subthreads are released and
1408  		 * will then return without clearing.
1409  		 *
1410  		 * When @ptrace:
1411  		 *
1412  		 * Stopped state is per-task and thus can't change once the
1413  		 * target task dies.  Only continued and exited can happen.
1414  		 * Clear notask_error if WCONTINUED | WEXITED.
1415  		 */
1416  		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1417  			wo->notask_error = 0;
1418  	} else {
1419  		/*
1420  		 * @p is alive and it's gonna stop, continue or exit, so
1421  		 * there always is something to wait for.
1422  		 */
1423  		wo->notask_error = 0;
1424  	}
1425  
1426  	/*
1427  	 * Wait for stopped.  Depending on @ptrace, different stopped state
1428  	 * is used and the two don't interact with each other.
1429  	 */
1430  	ret = wait_task_stopped(wo, ptrace, p);
1431  	if (ret)
1432  		return ret;
1433  
1434  	/*
1435  	 * Wait for continued.  There's only one continued state and the
1436  	 * ptracer can consume it which can confuse the real parent.  Don't
1437  	 * use WCONTINUED from ptracer.  You don't need or want it.
1438  	 */
1439  	return wait_task_continued(wo, p);
1440  }
1441  
1442  /*
1443   * Do the work of do_wait() for one thread in the group, @tsk.
1444   *
1445   * -ECHILD should be in ->notask_error before the first call.
1446   * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1447   * Returns zero if the search for a child should continue; then
1448   * ->notask_error is 0 if there were any eligible children,
1449   * or still -ECHILD.
1450   */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1451  static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1452  {
1453  	struct task_struct *p;
1454  
1455  	list_for_each_entry(p, &tsk->children, sibling) {
1456  		int ret = wait_consider_task(wo, 0, p);
1457  
1458  		if (ret)
1459  			return ret;
1460  	}
1461  
1462  	return 0;
1463  }
1464  
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1465  static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1466  {
1467  	struct task_struct *p;
1468  
1469  	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1470  		int ret = wait_consider_task(wo, 1, p);
1471  
1472  		if (ret)
1473  			return ret;
1474  	}
1475  
1476  	return 0;
1477  }
1478  
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1479  static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1480  				int sync, void *key)
1481  {
1482  	struct wait_opts *wo = container_of(wait, struct wait_opts,
1483  						child_wait);
1484  	struct task_struct *p = key;
1485  
1486  	if (!eligible_pid(wo, p))
1487  		return 0;
1488  
1489  	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1490  		return 0;
1491  
1492  	return default_wake_function(wait, mode, sync, key);
1493  }
1494  
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1495  void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1496  {
1497  	__wake_up_sync_key(&parent->signal->wait_chldexit,
1498  				TASK_INTERRUPTIBLE, 1, p);
1499  }
1500  
do_wait(struct wait_opts * wo)1501  static long do_wait(struct wait_opts *wo)
1502  {
1503  	struct task_struct *tsk;
1504  	int retval;
1505  
1506  	trace_sched_process_wait(wo->wo_pid);
1507  
1508  	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1509  	wo->child_wait.private = current;
1510  	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1511  repeat:
1512  	/*
1513  	 * If there is nothing that can match our criteria, just get out.
1514  	 * We will clear ->notask_error to zero if we see any child that
1515  	 * might later match our criteria, even if we are not able to reap
1516  	 * it yet.
1517  	 */
1518  	wo->notask_error = -ECHILD;
1519  	if ((wo->wo_type < PIDTYPE_MAX) &&
1520  	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1521  		goto notask;
1522  
1523  	set_current_state(TASK_INTERRUPTIBLE);
1524  	read_lock(&tasklist_lock);
1525  	tsk = current;
1526  	do {
1527  		retval = do_wait_thread(wo, tsk);
1528  		if (retval)
1529  			goto end;
1530  
1531  		retval = ptrace_do_wait(wo, tsk);
1532  		if (retval)
1533  			goto end;
1534  
1535  		if (wo->wo_flags & __WNOTHREAD)
1536  			break;
1537  	} while_each_thread(current, tsk);
1538  	read_unlock(&tasklist_lock);
1539  
1540  notask:
1541  	retval = wo->notask_error;
1542  	if (!retval && !(wo->wo_flags & WNOHANG)) {
1543  		retval = -ERESTARTSYS;
1544  		if (!signal_pending(current)) {
1545  			schedule();
1546  			goto repeat;
1547  		}
1548  	}
1549  end:
1550  	__set_current_state(TASK_RUNNING);
1551  	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1552  	return retval;
1553  }
1554  
pidfd_get_pid(unsigned int fd)1555  static struct pid *pidfd_get_pid(unsigned int fd)
1556  {
1557  	struct fd f;
1558  	struct pid *pid;
1559  
1560  	f = fdget(fd);
1561  	if (!f.file)
1562  		return ERR_PTR(-EBADF);
1563  
1564  	pid = pidfd_pid(f.file);
1565  	if (!IS_ERR(pid))
1566  		get_pid(pid);
1567  
1568  	fdput(f);
1569  	return pid;
1570  }
1571  
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1572  static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1573  			  int options, struct rusage *ru)
1574  {
1575  	struct wait_opts wo;
1576  	struct pid *pid = NULL;
1577  	enum pid_type type;
1578  	long ret;
1579  
1580  	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1581  			__WNOTHREAD|__WCLONE|__WALL))
1582  		return -EINVAL;
1583  	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1584  		return -EINVAL;
1585  
1586  	switch (which) {
1587  	case P_ALL:
1588  		type = PIDTYPE_MAX;
1589  		break;
1590  	case P_PID:
1591  		type = PIDTYPE_PID;
1592  		if (upid <= 0)
1593  			return -EINVAL;
1594  
1595  		pid = find_get_pid(upid);
1596  		break;
1597  	case P_PGID:
1598  		type = PIDTYPE_PGID;
1599  		if (upid < 0)
1600  			return -EINVAL;
1601  
1602  		if (upid)
1603  			pid = find_get_pid(upid);
1604  		else
1605  			pid = get_task_pid(current, PIDTYPE_PGID);
1606  		break;
1607  	case P_PIDFD:
1608  		type = PIDTYPE_PID;
1609  		if (upid < 0)
1610  			return -EINVAL;
1611  
1612  		pid = pidfd_get_pid(upid);
1613  		if (IS_ERR(pid))
1614  			return PTR_ERR(pid);
1615  		break;
1616  	default:
1617  		return -EINVAL;
1618  	}
1619  
1620  	wo.wo_type	= type;
1621  	wo.wo_pid	= pid;
1622  	wo.wo_flags	= options;
1623  	wo.wo_info	= infop;
1624  	wo.wo_rusage	= ru;
1625  	ret = do_wait(&wo);
1626  
1627  	put_pid(pid);
1628  	return ret;
1629  }
1630  
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1631  SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1632  		infop, int, options, struct rusage __user *, ru)
1633  {
1634  	struct rusage r;
1635  	struct waitid_info info = {.status = 0};
1636  	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1637  	int signo = 0;
1638  
1639  	if (err > 0) {
1640  		signo = SIGCHLD;
1641  		err = 0;
1642  		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1643  			return -EFAULT;
1644  	}
1645  	if (!infop)
1646  		return err;
1647  
1648  	if (!user_access_begin(infop, sizeof(*infop)))
1649  		return -EFAULT;
1650  
1651  	unsafe_put_user(signo, &infop->si_signo, Efault);
1652  	unsafe_put_user(0, &infop->si_errno, Efault);
1653  	unsafe_put_user(info.cause, &infop->si_code, Efault);
1654  	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1655  	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1656  	unsafe_put_user(info.status, &infop->si_status, Efault);
1657  	user_access_end();
1658  	return err;
1659  Efault:
1660  	user_access_end();
1661  	return -EFAULT;
1662  }
1663  
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1664  long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1665  		  struct rusage *ru)
1666  {
1667  	struct wait_opts wo;
1668  	struct pid *pid = NULL;
1669  	enum pid_type type;
1670  	long ret;
1671  
1672  	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1673  			__WNOTHREAD|__WCLONE|__WALL))
1674  		return -EINVAL;
1675  
1676  	/* -INT_MIN is not defined */
1677  	if (upid == INT_MIN)
1678  		return -ESRCH;
1679  
1680  	if (upid == -1)
1681  		type = PIDTYPE_MAX;
1682  	else if (upid < 0) {
1683  		type = PIDTYPE_PGID;
1684  		pid = find_get_pid(-upid);
1685  	} else if (upid == 0) {
1686  		type = PIDTYPE_PGID;
1687  		pid = get_task_pid(current, PIDTYPE_PGID);
1688  	} else /* upid > 0 */ {
1689  		type = PIDTYPE_PID;
1690  		pid = find_get_pid(upid);
1691  	}
1692  
1693  	wo.wo_type	= type;
1694  	wo.wo_pid	= pid;
1695  	wo.wo_flags	= options | WEXITED;
1696  	wo.wo_info	= NULL;
1697  	wo.wo_stat	= 0;
1698  	wo.wo_rusage	= ru;
1699  	ret = do_wait(&wo);
1700  	put_pid(pid);
1701  	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1702  		ret = -EFAULT;
1703  
1704  	return ret;
1705  }
1706  
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1707  SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1708  		int, options, struct rusage __user *, ru)
1709  {
1710  	struct rusage r;
1711  	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1712  
1713  	if (err > 0) {
1714  		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1715  			return -EFAULT;
1716  	}
1717  	return err;
1718  }
1719  
1720  #ifdef __ARCH_WANT_SYS_WAITPID
1721  
1722  /*
1723   * sys_waitpid() remains for compatibility. waitpid() should be
1724   * implemented by calling sys_wait4() from libc.a.
1725   */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1726  SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1727  {
1728  	return kernel_wait4(pid, stat_addr, options, NULL);
1729  }
1730  
1731  #endif
1732  
1733  #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1734  COMPAT_SYSCALL_DEFINE4(wait4,
1735  	compat_pid_t, pid,
1736  	compat_uint_t __user *, stat_addr,
1737  	int, options,
1738  	struct compat_rusage __user *, ru)
1739  {
1740  	struct rusage r;
1741  	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1742  	if (err > 0) {
1743  		if (ru && put_compat_rusage(&r, ru))
1744  			return -EFAULT;
1745  	}
1746  	return err;
1747  }
1748  
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1749  COMPAT_SYSCALL_DEFINE5(waitid,
1750  		int, which, compat_pid_t, pid,
1751  		struct compat_siginfo __user *, infop, int, options,
1752  		struct compat_rusage __user *, uru)
1753  {
1754  	struct rusage ru;
1755  	struct waitid_info info = {.status = 0};
1756  	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1757  	int signo = 0;
1758  	if (err > 0) {
1759  		signo = SIGCHLD;
1760  		err = 0;
1761  		if (uru) {
1762  			/* kernel_waitid() overwrites everything in ru */
1763  			if (COMPAT_USE_64BIT_TIME)
1764  				err = copy_to_user(uru, &ru, sizeof(ru));
1765  			else
1766  				err = put_compat_rusage(&ru, uru);
1767  			if (err)
1768  				return -EFAULT;
1769  		}
1770  	}
1771  
1772  	if (!infop)
1773  		return err;
1774  
1775  	if (!user_access_begin(infop, sizeof(*infop)))
1776  		return -EFAULT;
1777  
1778  	unsafe_put_user(signo, &infop->si_signo, Efault);
1779  	unsafe_put_user(0, &infop->si_errno, Efault);
1780  	unsafe_put_user(info.cause, &infop->si_code, Efault);
1781  	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1782  	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1783  	unsafe_put_user(info.status, &infop->si_status, Efault);
1784  	user_access_end();
1785  	return err;
1786  Efault:
1787  	user_access_end();
1788  	return -EFAULT;
1789  }
1790  #endif
1791  
abort(void)1792  __weak void abort(void)
1793  {
1794  	BUG();
1795  
1796  	/* if that doesn't kill us, halt */
1797  	panic("Oops failed to kill thread");
1798  }
1799  EXPORT_SYMBOL(abort);
1800