• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/sysfs.h>
67 
68 #include <linux/uaccess.h>
69 #include <asm/unistd.h>
70 #include <asm/pgtable.h>
71 #include <asm/mmu_context.h>
72 
73 /*
74  * The default value should be high enough to not crash a system that randomly
75  * crashes its kernel from time to time, but low enough to at least not permit
76  * overflowing 32-bit refcounts or the ldsem writer count.
77  */
78 static unsigned int oops_limit = 10000;
79 
80 #ifdef CONFIG_SYSCTL
81 static struct ctl_table kern_exit_table[] = {
82 	{
83 		.procname       = "oops_limit",
84 		.data           = &oops_limit,
85 		.maxlen         = sizeof(oops_limit),
86 		.mode           = 0644,
87 		.proc_handler   = proc_douintvec,
88 	},
89 	{ }
90 };
91 
kernel_exit_sysctls_init(void)92 static __init int kernel_exit_sysctls_init(void)
93 {
94 	register_sysctl_init("kernel", kern_exit_table);
95 	return 0;
96 }
97 late_initcall(kernel_exit_sysctls_init);
98 #endif
99 
100 static atomic_t oops_count = ATOMIC_INIT(0);
101 
102 #ifdef CONFIG_SYSFS
oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)103 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
104 			       char *page)
105 {
106 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
107 }
108 
109 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
110 
kernel_exit_sysfs_init(void)111 static __init int kernel_exit_sysfs_init(void)
112 {
113 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
114 	return 0;
115 }
116 late_initcall(kernel_exit_sysfs_init);
117 #endif
118 
__unhash_process(struct task_struct * p,bool group_dead)119 static void __unhash_process(struct task_struct *p, bool group_dead)
120 {
121 	nr_threads--;
122 	detach_pid(p, PIDTYPE_PID);
123 	if (group_dead) {
124 		detach_pid(p, PIDTYPE_TGID);
125 		detach_pid(p, PIDTYPE_PGID);
126 		detach_pid(p, PIDTYPE_SID);
127 
128 		list_del_rcu(&p->tasks);
129 		list_del_init(&p->sibling);
130 		__this_cpu_dec(process_counts);
131 	}
132 	list_del_rcu(&p->thread_group);
133 	list_del_rcu(&p->thread_node);
134 }
135 
136 /*
137  * This function expects the tasklist_lock write-locked.
138  */
__exit_signal(struct task_struct * tsk)139 static void __exit_signal(struct task_struct *tsk)
140 {
141 	struct signal_struct *sig = tsk->signal;
142 	bool group_dead = thread_group_leader(tsk);
143 	struct sighand_struct *sighand;
144 	struct tty_struct *tty;
145 	u64 utime, stime;
146 
147 	sighand = rcu_dereference_check(tsk->sighand,
148 					lockdep_tasklist_lock_is_held());
149 	spin_lock(&sighand->siglock);
150 
151 #ifdef CONFIG_POSIX_TIMERS
152 	posix_cpu_timers_exit(tsk);
153 	if (group_dead) {
154 		posix_cpu_timers_exit_group(tsk);
155 	} else {
156 		/*
157 		 * This can only happen if the caller is de_thread().
158 		 * FIXME: this is the temporary hack, we should teach
159 		 * posix-cpu-timers to handle this case correctly.
160 		 */
161 		if (unlikely(has_group_leader_pid(tsk)))
162 			posix_cpu_timers_exit_group(tsk);
163 	}
164 #endif
165 
166 	if (group_dead) {
167 		tty = sig->tty;
168 		sig->tty = NULL;
169 	} else {
170 		/*
171 		 * If there is any task waiting for the group exit
172 		 * then notify it:
173 		 */
174 		if (sig->notify_count > 0 && !--sig->notify_count)
175 			wake_up_process(sig->group_exit_task);
176 
177 		if (tsk == sig->curr_target)
178 			sig->curr_target = next_thread(tsk);
179 	}
180 
181 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
182 			      sizeof(unsigned long long));
183 
184 	/*
185 	 * Accumulate here the counters for all threads as they die. We could
186 	 * skip the group leader because it is the last user of signal_struct,
187 	 * but we want to avoid the race with thread_group_cputime() which can
188 	 * see the empty ->thread_head list.
189 	 */
190 	task_cputime(tsk, &utime, &stime);
191 	write_seqlock(&sig->stats_lock);
192 	sig->utime += utime;
193 	sig->stime += stime;
194 	sig->gtime += task_gtime(tsk);
195 	sig->min_flt += tsk->min_flt;
196 	sig->maj_flt += tsk->maj_flt;
197 	sig->nvcsw += tsk->nvcsw;
198 	sig->nivcsw += tsk->nivcsw;
199 	sig->inblock += task_io_get_inblock(tsk);
200 	sig->oublock += task_io_get_oublock(tsk);
201 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
202 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
203 	sig->nr_threads--;
204 	__unhash_process(tsk, group_dead);
205 	write_sequnlock(&sig->stats_lock);
206 
207 	/*
208 	 * Do this under ->siglock, we can race with another thread
209 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
210 	 */
211 	flush_sigqueue(&tsk->pending);
212 	tsk->sighand = NULL;
213 	spin_unlock(&sighand->siglock);
214 
215 	__cleanup_sighand(sighand);
216 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
217 	if (group_dead) {
218 		flush_sigqueue(&sig->shared_pending);
219 		tty_kref_put(tty);
220 	}
221 }
222 
delayed_put_task_struct(struct rcu_head * rhp)223 static void delayed_put_task_struct(struct rcu_head *rhp)
224 {
225 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
226 
227 	perf_event_delayed_put(tsk);
228 	trace_sched_process_free(tsk);
229 	put_task_struct(tsk);
230 }
231 
put_task_struct_rcu_user(struct task_struct * task)232 void put_task_struct_rcu_user(struct task_struct *task)
233 {
234 	if (refcount_dec_and_test(&task->rcu_users))
235 		call_rcu(&task->rcu, delayed_put_task_struct);
236 }
237 
release_task(struct task_struct * p)238 void release_task(struct task_struct *p)
239 {
240 	struct task_struct *leader;
241 	int zap_leader;
242 repeat:
243 	/* don't need to get the RCU readlock here - the process is dead and
244 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
245 	rcu_read_lock();
246 	atomic_dec(&__task_cred(p)->user->processes);
247 	rcu_read_unlock();
248 
249 	proc_flush_task(p);
250 	cgroup_release(p);
251 
252 	write_lock_irq(&tasklist_lock);
253 	ptrace_release_task(p);
254 	__exit_signal(p);
255 
256 	/*
257 	 * If we are the last non-leader member of the thread
258 	 * group, and the leader is zombie, then notify the
259 	 * group leader's parent process. (if it wants notification.)
260 	 */
261 	zap_leader = 0;
262 	leader = p->group_leader;
263 	if (leader != p && thread_group_empty(leader)
264 			&& leader->exit_state == EXIT_ZOMBIE) {
265 		/*
266 		 * If we were the last child thread and the leader has
267 		 * exited already, and the leader's parent ignores SIGCHLD,
268 		 * then we are the one who should release the leader.
269 		 */
270 		zap_leader = do_notify_parent(leader, leader->exit_signal);
271 		if (zap_leader)
272 			leader->exit_state = EXIT_DEAD;
273 	}
274 
275 	write_unlock_irq(&tasklist_lock);
276 	release_thread(p);
277 	put_task_struct_rcu_user(p);
278 
279 	p = leader;
280 	if (unlikely(zap_leader))
281 		goto repeat;
282 }
283 
rcuwait_wake_up(struct rcuwait * w)284 void rcuwait_wake_up(struct rcuwait *w)
285 {
286 	struct task_struct *task;
287 
288 	rcu_read_lock();
289 
290 	/*
291 	 * Order condition vs @task, such that everything prior to the load
292 	 * of @task is visible. This is the condition as to why the user called
293 	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
294 	 * barrier (A) in rcuwait_wait_event().
295 	 *
296 	 *    WAIT                WAKE
297 	 *    [S] tsk = current	  [S] cond = true
298 	 *        MB (A)	      MB (B)
299 	 *    [L] cond		  [L] tsk
300 	 */
301 	smp_mb(); /* (B) */
302 
303 	task = rcu_dereference(w->task);
304 	if (task)
305 		wake_up_process(task);
306 	rcu_read_unlock();
307 }
308 
309 /*
310  * Determine if a process group is "orphaned", according to the POSIX
311  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
312  * by terminal-generated stop signals.  Newly orphaned process groups are
313  * to receive a SIGHUP and a SIGCONT.
314  *
315  * "I ask you, have you ever known what it is to be an orphan?"
316  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)317 static int will_become_orphaned_pgrp(struct pid *pgrp,
318 					struct task_struct *ignored_task)
319 {
320 	struct task_struct *p;
321 
322 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
323 		if ((p == ignored_task) ||
324 		    (p->exit_state && thread_group_empty(p)) ||
325 		    is_global_init(p->real_parent))
326 			continue;
327 
328 		if (task_pgrp(p->real_parent) != pgrp &&
329 		    task_session(p->real_parent) == task_session(p))
330 			return 0;
331 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
332 
333 	return 1;
334 }
335 
is_current_pgrp_orphaned(void)336 int is_current_pgrp_orphaned(void)
337 {
338 	int retval;
339 
340 	read_lock(&tasklist_lock);
341 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
342 	read_unlock(&tasklist_lock);
343 
344 	return retval;
345 }
346 
has_stopped_jobs(struct pid * pgrp)347 static bool has_stopped_jobs(struct pid *pgrp)
348 {
349 	struct task_struct *p;
350 
351 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
352 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
353 			return true;
354 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
355 
356 	return false;
357 }
358 
359 /*
360  * Check to see if any process groups have become orphaned as
361  * a result of our exiting, and if they have any stopped jobs,
362  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
363  */
364 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)365 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
366 {
367 	struct pid *pgrp = task_pgrp(tsk);
368 	struct task_struct *ignored_task = tsk;
369 
370 	if (!parent)
371 		/* exit: our father is in a different pgrp than
372 		 * we are and we were the only connection outside.
373 		 */
374 		parent = tsk->real_parent;
375 	else
376 		/* reparent: our child is in a different pgrp than
377 		 * we are, and it was the only connection outside.
378 		 */
379 		ignored_task = NULL;
380 
381 	if (task_pgrp(parent) != pgrp &&
382 	    task_session(parent) == task_session(tsk) &&
383 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
384 	    has_stopped_jobs(pgrp)) {
385 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
386 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
387 	}
388 }
389 
390 #ifdef CONFIG_MEMCG
391 /*
392  * A task is exiting.   If it owned this mm, find a new owner for the mm.
393  */
mm_update_next_owner(struct mm_struct * mm)394 void mm_update_next_owner(struct mm_struct *mm)
395 {
396 	struct task_struct *c, *g, *p = current;
397 
398 retry:
399 	/*
400 	 * If the exiting or execing task is not the owner, it's
401 	 * someone else's problem.
402 	 */
403 	if (mm->owner != p)
404 		return;
405 	/*
406 	 * The current owner is exiting/execing and there are no other
407 	 * candidates.  Do not leave the mm pointing to a possibly
408 	 * freed task structure.
409 	 */
410 	if (atomic_read(&mm->mm_users) <= 1) {
411 		WRITE_ONCE(mm->owner, NULL);
412 		return;
413 	}
414 
415 	read_lock(&tasklist_lock);
416 	/*
417 	 * Search in the children
418 	 */
419 	list_for_each_entry(c, &p->children, sibling) {
420 		if (c->mm == mm)
421 			goto assign_new_owner;
422 	}
423 
424 	/*
425 	 * Search in the siblings
426 	 */
427 	list_for_each_entry(c, &p->real_parent->children, sibling) {
428 		if (c->mm == mm)
429 			goto assign_new_owner;
430 	}
431 
432 	/*
433 	 * Search through everything else, we should not get here often.
434 	 */
435 	for_each_process(g) {
436 		if (g->flags & PF_KTHREAD)
437 			continue;
438 		for_each_thread(g, c) {
439 			if (c->mm == mm)
440 				goto assign_new_owner;
441 			if (c->mm)
442 				break;
443 		}
444 	}
445 	read_unlock(&tasklist_lock);
446 	/*
447 	 * We found no owner yet mm_users > 1: this implies that we are
448 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
449 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
450 	 */
451 	WRITE_ONCE(mm->owner, NULL);
452 	return;
453 
454 assign_new_owner:
455 	BUG_ON(c == p);
456 	get_task_struct(c);
457 	/*
458 	 * The task_lock protects c->mm from changing.
459 	 * We always want mm->owner->mm == mm
460 	 */
461 	task_lock(c);
462 	/*
463 	 * Delay read_unlock() till we have the task_lock()
464 	 * to ensure that c does not slip away underneath us
465 	 */
466 	read_unlock(&tasklist_lock);
467 	if (c->mm != mm) {
468 		task_unlock(c);
469 		put_task_struct(c);
470 		goto retry;
471 	}
472 	WRITE_ONCE(mm->owner, c);
473 	task_unlock(c);
474 	put_task_struct(c);
475 }
476 #endif /* CONFIG_MEMCG */
477 
478 /*
479  * Turn us into a lazy TLB process if we
480  * aren't already..
481  */
exit_mm(void)482 static void exit_mm(void)
483 {
484 	struct mm_struct *mm = current->mm;
485 	struct core_state *core_state;
486 
487 	exit_mm_release(current, mm);
488 	if (!mm)
489 		return;
490 	sync_mm_rss(mm);
491 	/*
492 	 * Serialize with any possible pending coredump.
493 	 * We must hold mmap_sem around checking core_state
494 	 * and clearing tsk->mm.  The core-inducing thread
495 	 * will increment ->nr_threads for each thread in the
496 	 * group with ->mm != NULL.
497 	 */
498 	down_read(&mm->mmap_sem);
499 	core_state = mm->core_state;
500 	if (core_state) {
501 		struct core_thread self;
502 
503 		up_read(&mm->mmap_sem);
504 
505 		self.task = current;
506 		if (self.task->flags & PF_SIGNALED)
507 			self.next = xchg(&core_state->dumper.next, &self);
508 		else
509 			self.task = NULL;
510 		/*
511 		 * Implies mb(), the result of xchg() must be visible
512 		 * to core_state->dumper.
513 		 */
514 		if (atomic_dec_and_test(&core_state->nr_threads))
515 			complete(&core_state->startup);
516 
517 		for (;;) {
518 			set_current_state(TASK_UNINTERRUPTIBLE);
519 			if (!self.task) /* see coredump_finish() */
520 				break;
521 			freezable_schedule();
522 		}
523 		__set_current_state(TASK_RUNNING);
524 		down_read(&mm->mmap_sem);
525 	}
526 	mmgrab(mm);
527 	BUG_ON(mm != current->active_mm);
528 	/* more a memory barrier than a real lock */
529 	task_lock(current);
530 	current->mm = NULL;
531 	up_read(&mm->mmap_sem);
532 	enter_lazy_tlb(mm, current);
533 	task_unlock(current);
534 	mm_update_next_owner(mm);
535 	mmput(mm);
536 	if (test_thread_flag(TIF_MEMDIE))
537 		exit_oom_victim();
538 }
539 
find_alive_thread(struct task_struct * p)540 static struct task_struct *find_alive_thread(struct task_struct *p)
541 {
542 	struct task_struct *t;
543 
544 	for_each_thread(p, t) {
545 		if (!(t->flags & PF_EXITING))
546 			return t;
547 	}
548 	return NULL;
549 }
550 
find_child_reaper(struct task_struct * father,struct list_head * dead)551 static struct task_struct *find_child_reaper(struct task_struct *father,
552 						struct list_head *dead)
553 	__releases(&tasklist_lock)
554 	__acquires(&tasklist_lock)
555 {
556 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
557 	struct task_struct *reaper = pid_ns->child_reaper;
558 	struct task_struct *p, *n;
559 
560 	if (likely(reaper != father))
561 		return reaper;
562 
563 	reaper = find_alive_thread(father);
564 	if (reaper) {
565 		pid_ns->child_reaper = reaper;
566 		return reaper;
567 	}
568 
569 	write_unlock_irq(&tasklist_lock);
570 
571 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
572 		list_del_init(&p->ptrace_entry);
573 		release_task(p);
574 	}
575 
576 	zap_pid_ns_processes(pid_ns);
577 	write_lock_irq(&tasklist_lock);
578 
579 	return father;
580 }
581 
582 /*
583  * When we die, we re-parent all our children, and try to:
584  * 1. give them to another thread in our thread group, if such a member exists
585  * 2. give it to the first ancestor process which prctl'd itself as a
586  *    child_subreaper for its children (like a service manager)
587  * 3. give it to the init process (PID 1) in our pid namespace
588  */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)589 static struct task_struct *find_new_reaper(struct task_struct *father,
590 					   struct task_struct *child_reaper)
591 {
592 	struct task_struct *thread, *reaper;
593 
594 	thread = find_alive_thread(father);
595 	if (thread)
596 		return thread;
597 
598 	if (father->signal->has_child_subreaper) {
599 		unsigned int ns_level = task_pid(father)->level;
600 		/*
601 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
602 		 * We can't check reaper != child_reaper to ensure we do not
603 		 * cross the namespaces, the exiting parent could be injected
604 		 * by setns() + fork().
605 		 * We check pid->level, this is slightly more efficient than
606 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
607 		 */
608 		for (reaper = father->real_parent;
609 		     task_pid(reaper)->level == ns_level;
610 		     reaper = reaper->real_parent) {
611 			if (reaper == &init_task)
612 				break;
613 			if (!reaper->signal->is_child_subreaper)
614 				continue;
615 			thread = find_alive_thread(reaper);
616 			if (thread)
617 				return thread;
618 		}
619 	}
620 
621 	return child_reaper;
622 }
623 
624 /*
625 * Any that need to be release_task'd are put on the @dead list.
626  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)627 static void reparent_leader(struct task_struct *father, struct task_struct *p,
628 				struct list_head *dead)
629 {
630 	if (unlikely(p->exit_state == EXIT_DEAD))
631 		return;
632 
633 	/* We don't want people slaying init. */
634 	p->exit_signal = SIGCHLD;
635 
636 	/* If it has exited notify the new parent about this child's death. */
637 	if (!p->ptrace &&
638 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
639 		if (do_notify_parent(p, p->exit_signal)) {
640 			p->exit_state = EXIT_DEAD;
641 			list_add(&p->ptrace_entry, dead);
642 		}
643 	}
644 
645 	kill_orphaned_pgrp(p, father);
646 }
647 
648 /*
649  * This does two things:
650  *
651  * A.  Make init inherit all the child processes
652  * B.  Check to see if any process groups have become orphaned
653  *	as a result of our exiting, and if they have any stopped
654  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
655  */
forget_original_parent(struct task_struct * father,struct list_head * dead)656 static void forget_original_parent(struct task_struct *father,
657 					struct list_head *dead)
658 {
659 	struct task_struct *p, *t, *reaper;
660 
661 	if (unlikely(!list_empty(&father->ptraced)))
662 		exit_ptrace(father, dead);
663 
664 	/* Can drop and reacquire tasklist_lock */
665 	reaper = find_child_reaper(father, dead);
666 	if (list_empty(&father->children))
667 		return;
668 
669 	reaper = find_new_reaper(father, reaper);
670 	list_for_each_entry(p, &father->children, sibling) {
671 		for_each_thread(p, t) {
672 			t->real_parent = reaper;
673 			BUG_ON((!t->ptrace) != (t->parent == father));
674 			if (likely(!t->ptrace))
675 				t->parent = t->real_parent;
676 			if (t->pdeath_signal)
677 				group_send_sig_info(t->pdeath_signal,
678 						    SEND_SIG_NOINFO, t,
679 						    PIDTYPE_TGID);
680 		}
681 		/*
682 		 * If this is a threaded reparent there is no need to
683 		 * notify anyone anything has happened.
684 		 */
685 		if (!same_thread_group(reaper, father))
686 			reparent_leader(father, p, dead);
687 	}
688 	list_splice_tail_init(&father->children, &reaper->children);
689 }
690 
691 /*
692  * Send signals to all our closest relatives so that they know
693  * to properly mourn us..
694  */
exit_notify(struct task_struct * tsk,int group_dead)695 static void exit_notify(struct task_struct *tsk, int group_dead)
696 {
697 	bool autoreap;
698 	struct task_struct *p, *n;
699 	LIST_HEAD(dead);
700 
701 	write_lock_irq(&tasklist_lock);
702 	forget_original_parent(tsk, &dead);
703 
704 	if (group_dead)
705 		kill_orphaned_pgrp(tsk->group_leader, NULL);
706 
707 	tsk->exit_state = EXIT_ZOMBIE;
708 	if (unlikely(tsk->ptrace)) {
709 		int sig = thread_group_leader(tsk) &&
710 				thread_group_empty(tsk) &&
711 				!ptrace_reparented(tsk) ?
712 			tsk->exit_signal : SIGCHLD;
713 		autoreap = do_notify_parent(tsk, sig);
714 	} else if (thread_group_leader(tsk)) {
715 		autoreap = thread_group_empty(tsk) &&
716 			do_notify_parent(tsk, tsk->exit_signal);
717 	} else {
718 		autoreap = true;
719 	}
720 
721 	if (autoreap) {
722 		tsk->exit_state = EXIT_DEAD;
723 		list_add(&tsk->ptrace_entry, &dead);
724 	}
725 
726 	/* mt-exec, de_thread() is waiting for group leader */
727 	if (unlikely(tsk->signal->notify_count < 0))
728 		wake_up_process(tsk->signal->group_exit_task);
729 	write_unlock_irq(&tasklist_lock);
730 
731 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
732 		list_del_init(&p->ptrace_entry);
733 		release_task(p);
734 	}
735 }
736 
737 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)738 static void check_stack_usage(void)
739 {
740 	static DEFINE_SPINLOCK(low_water_lock);
741 	static int lowest_to_date = THREAD_SIZE;
742 	unsigned long free;
743 
744 	free = stack_not_used(current);
745 
746 	if (free >= lowest_to_date)
747 		return;
748 
749 	spin_lock(&low_water_lock);
750 	if (free < lowest_to_date) {
751 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
752 			current->comm, task_pid_nr(current), free);
753 		lowest_to_date = free;
754 	}
755 	spin_unlock(&low_water_lock);
756 }
757 #else
check_stack_usage(void)758 static inline void check_stack_usage(void) {}
759 #endif
760 
do_exit(long code)761 void __noreturn do_exit(long code)
762 {
763 	struct task_struct *tsk = current;
764 	int group_dead;
765 
766 	/*
767 	 * We can get here from a kernel oops, sometimes with preemption off.
768 	 * Start by checking for critical errors.
769 	 * Then fix up important state like USER_DS and preemption.
770 	 * Then do everything else.
771 	 */
772 
773 	WARN_ON(blk_needs_flush_plug(tsk));
774 
775 	if (unlikely(in_interrupt()))
776 		panic("Aiee, killing interrupt handler!");
777 	if (unlikely(!tsk->pid))
778 		panic("Attempted to kill the idle task!");
779 
780 	/*
781 	 * If do_exit is called because this processes oopsed, it's possible
782 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
783 	 * continuing. Amongst other possible reasons, this is to prevent
784 	 * mm_release()->clear_child_tid() from writing to a user-controlled
785 	 * kernel address.
786 	 */
787 	set_fs(USER_DS);
788 
789 	if (unlikely(in_atomic())) {
790 		pr_info("note: %s[%d] exited with preempt_count %d\n",
791 			current->comm, task_pid_nr(current),
792 			preempt_count());
793 		preempt_count_set(PREEMPT_ENABLED);
794 	}
795 
796 	profile_task_exit(tsk);
797 	kcov_task_exit(tsk);
798 
799 	ptrace_event(PTRACE_EVENT_EXIT, code);
800 
801 	validate_creds_for_do_exit(tsk);
802 
803 	/*
804 	 * We're taking recursive faults here in do_exit. Safest is to just
805 	 * leave this task alone and wait for reboot.
806 	 */
807 	if (unlikely(tsk->flags & PF_EXITING)) {
808 		pr_alert("Fixing recursive fault but reboot is needed!\n");
809 		futex_exit_recursive(tsk);
810 		set_current_state(TASK_UNINTERRUPTIBLE);
811 		schedule();
812 	}
813 
814 	exit_signals(tsk);  /* sets PF_EXITING */
815 
816 	/* sync mm's RSS info before statistics gathering */
817 	if (tsk->mm)
818 		sync_mm_rss(tsk->mm);
819 	acct_update_integrals(tsk);
820 	group_dead = atomic_dec_and_test(&tsk->signal->live);
821 	if (group_dead) {
822 		/*
823 		 * If the last thread of global init has exited, panic
824 		 * immediately to get a useable coredump.
825 		 */
826 		if (unlikely(is_global_init(tsk)))
827 			panic("Attempted to kill init! exitcode=0x%08x\n",
828 				tsk->signal->group_exit_code ?: (int)code);
829 
830 #ifdef CONFIG_POSIX_TIMERS
831 		hrtimer_cancel(&tsk->signal->real_timer);
832 		exit_itimers(tsk->signal);
833 #endif
834 		if (tsk->mm)
835 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
836 	}
837 	acct_collect(code, group_dead);
838 	if (group_dead)
839 		tty_audit_exit();
840 	audit_free(tsk);
841 
842 	tsk->exit_code = code;
843 	taskstats_exit(tsk, group_dead);
844 
845 	exit_mm();
846 
847 	if (group_dead)
848 		acct_process();
849 	trace_sched_process_exit(tsk);
850 
851 	exit_sem(tsk);
852 	exit_shm(tsk);
853 	exit_files(tsk);
854 	exit_fs(tsk);
855 	if (group_dead)
856 		disassociate_ctty(1);
857 	exit_task_namespaces(tsk);
858 	exit_task_work(tsk);
859 	exit_thread(tsk);
860 	exit_umh(tsk);
861 
862 	/*
863 	 * Flush inherited counters to the parent - before the parent
864 	 * gets woken up by child-exit notifications.
865 	 *
866 	 * because of cgroup mode, must be called before cgroup_exit()
867 	 */
868 	perf_event_exit_task(tsk);
869 
870 	sched_autogroup_exit_task(tsk);
871 	cgroup_exit(tsk);
872 
873 	/*
874 	 * FIXME: do that only when needed, using sched_exit tracepoint
875 	 */
876 	flush_ptrace_hw_breakpoint(tsk);
877 
878 	exit_tasks_rcu_start();
879 	exit_notify(tsk, group_dead);
880 	proc_exit_connector(tsk);
881 	mpol_put_task_policy(tsk);
882 #ifdef CONFIG_FUTEX
883 	if (unlikely(current->pi_state_cache))
884 		kfree(current->pi_state_cache);
885 #endif
886 	/*
887 	 * Make sure we are holding no locks:
888 	 */
889 	debug_check_no_locks_held();
890 
891 	if (tsk->io_context)
892 		exit_io_context(tsk);
893 
894 	if (tsk->splice_pipe)
895 		free_pipe_info(tsk->splice_pipe);
896 
897 	if (tsk->task_frag.page)
898 		put_page(tsk->task_frag.page);
899 
900 	validate_creds_for_do_exit(tsk);
901 
902 	check_stack_usage();
903 	preempt_disable();
904 	if (tsk->nr_dirtied)
905 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
906 	exit_rcu();
907 	exit_tasks_rcu_finish();
908 
909 	lockdep_free_task(tsk);
910 	do_task_dead();
911 }
912 EXPORT_SYMBOL_GPL(do_exit);
913 
make_task_dead(int signr)914 void __noreturn make_task_dead(int signr)
915 {
916 	/*
917 	 * Take the task off the cpu after something catastrophic has
918 	 * happened.
919 	 */
920 	unsigned int limit;
921 
922 	/*
923 	 * Every time the system oopses, if the oops happens while a reference
924 	 * to an object was held, the reference leaks.
925 	 * If the oops doesn't also leak memory, repeated oopsing can cause
926 	 * reference counters to wrap around (if they're not using refcount_t).
927 	 * This means that repeated oopsing can make unexploitable-looking bugs
928 	 * exploitable through repeated oopsing.
929 	 * To make sure this can't happen, place an upper bound on how often the
930 	 * kernel may oops without panic().
931 	 */
932 	limit = READ_ONCE(oops_limit);
933 	if (atomic_inc_return(&oops_count) >= limit && limit)
934 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
935 
936 	do_exit(signr);
937 }
938 
complete_and_exit(struct completion * comp,long code)939 void complete_and_exit(struct completion *comp, long code)
940 {
941 	if (comp)
942 		complete(comp);
943 
944 	do_exit(code);
945 }
946 EXPORT_SYMBOL(complete_and_exit);
947 
SYSCALL_DEFINE1(exit,int,error_code)948 SYSCALL_DEFINE1(exit, int, error_code)
949 {
950 	do_exit((error_code&0xff)<<8);
951 }
952 
953 /*
954  * Take down every thread in the group.  This is called by fatal signals
955  * as well as by sys_exit_group (below).
956  */
957 void
do_group_exit(int exit_code)958 do_group_exit(int exit_code)
959 {
960 	struct signal_struct *sig = current->signal;
961 
962 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
963 
964 	if (signal_group_exit(sig))
965 		exit_code = sig->group_exit_code;
966 	else if (!thread_group_empty(current)) {
967 		struct sighand_struct *const sighand = current->sighand;
968 
969 		spin_lock_irq(&sighand->siglock);
970 		if (signal_group_exit(sig))
971 			/* Another thread got here before we took the lock.  */
972 			exit_code = sig->group_exit_code;
973 		else {
974 			sig->group_exit_code = exit_code;
975 			sig->flags = SIGNAL_GROUP_EXIT;
976 			zap_other_threads(current);
977 		}
978 		spin_unlock_irq(&sighand->siglock);
979 	}
980 
981 	do_exit(exit_code);
982 	/* NOTREACHED */
983 }
984 
985 /*
986  * this kills every thread in the thread group. Note that any externally
987  * wait4()-ing process will get the correct exit code - even if this
988  * thread is not the thread group leader.
989  */
SYSCALL_DEFINE1(exit_group,int,error_code)990 SYSCALL_DEFINE1(exit_group, int, error_code)
991 {
992 	do_group_exit((error_code & 0xff) << 8);
993 	/* NOTREACHED */
994 	return 0;
995 }
996 
997 struct waitid_info {
998 	pid_t pid;
999 	uid_t uid;
1000 	int status;
1001 	int cause;
1002 };
1003 
1004 struct wait_opts {
1005 	enum pid_type		wo_type;
1006 	int			wo_flags;
1007 	struct pid		*wo_pid;
1008 
1009 	struct waitid_info	*wo_info;
1010 	int			wo_stat;
1011 	struct rusage		*wo_rusage;
1012 
1013 	wait_queue_entry_t		child_wait;
1014 	int			notask_error;
1015 };
1016 
eligible_pid(struct wait_opts * wo,struct task_struct * p)1017 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1018 {
1019 	return	wo->wo_type == PIDTYPE_MAX ||
1020 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1021 }
1022 
1023 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1024 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1025 {
1026 	if (!eligible_pid(wo, p))
1027 		return 0;
1028 
1029 	/*
1030 	 * Wait for all children (clone and not) if __WALL is set or
1031 	 * if it is traced by us.
1032 	 */
1033 	if (ptrace || (wo->wo_flags & __WALL))
1034 		return 1;
1035 
1036 	/*
1037 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1038 	 * otherwise, wait for non-clone children *only*.
1039 	 *
1040 	 * Note: a "clone" child here is one that reports to its parent
1041 	 * using a signal other than SIGCHLD, or a non-leader thread which
1042 	 * we can only see if it is traced by us.
1043 	 */
1044 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1045 		return 0;
1046 
1047 	return 1;
1048 }
1049 
1050 /*
1051  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1052  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1053  * the lock and this task is uninteresting.  If we return nonzero, we have
1054  * released the lock and the system call should return.
1055  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1056 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1057 {
1058 	int state, status;
1059 	pid_t pid = task_pid_vnr(p);
1060 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1061 	struct waitid_info *infop;
1062 
1063 	if (!likely(wo->wo_flags & WEXITED))
1064 		return 0;
1065 
1066 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1067 		status = p->exit_code;
1068 		get_task_struct(p);
1069 		read_unlock(&tasklist_lock);
1070 		sched_annotate_sleep();
1071 		if (wo->wo_rusage)
1072 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1073 		put_task_struct(p);
1074 		goto out_info;
1075 	}
1076 	/*
1077 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1078 	 */
1079 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1080 		EXIT_TRACE : EXIT_DEAD;
1081 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1082 		return 0;
1083 	/*
1084 	 * We own this thread, nobody else can reap it.
1085 	 */
1086 	read_unlock(&tasklist_lock);
1087 	sched_annotate_sleep();
1088 
1089 	/*
1090 	 * Check thread_group_leader() to exclude the traced sub-threads.
1091 	 */
1092 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1093 		struct signal_struct *sig = p->signal;
1094 		struct signal_struct *psig = current->signal;
1095 		unsigned long maxrss;
1096 		u64 tgutime, tgstime;
1097 
1098 		/*
1099 		 * The resource counters for the group leader are in its
1100 		 * own task_struct.  Those for dead threads in the group
1101 		 * are in its signal_struct, as are those for the child
1102 		 * processes it has previously reaped.  All these
1103 		 * accumulate in the parent's signal_struct c* fields.
1104 		 *
1105 		 * We don't bother to take a lock here to protect these
1106 		 * p->signal fields because the whole thread group is dead
1107 		 * and nobody can change them.
1108 		 *
1109 		 * psig->stats_lock also protects us from our sub-theads
1110 		 * which can reap other children at the same time. Until
1111 		 * we change k_getrusage()-like users to rely on this lock
1112 		 * we have to take ->siglock as well.
1113 		 *
1114 		 * We use thread_group_cputime_adjusted() to get times for
1115 		 * the thread group, which consolidates times for all threads
1116 		 * in the group including the group leader.
1117 		 */
1118 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1119 		spin_lock_irq(&current->sighand->siglock);
1120 		write_seqlock(&psig->stats_lock);
1121 		psig->cutime += tgutime + sig->cutime;
1122 		psig->cstime += tgstime + sig->cstime;
1123 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1124 		psig->cmin_flt +=
1125 			p->min_flt + sig->min_flt + sig->cmin_flt;
1126 		psig->cmaj_flt +=
1127 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1128 		psig->cnvcsw +=
1129 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1130 		psig->cnivcsw +=
1131 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1132 		psig->cinblock +=
1133 			task_io_get_inblock(p) +
1134 			sig->inblock + sig->cinblock;
1135 		psig->coublock +=
1136 			task_io_get_oublock(p) +
1137 			sig->oublock + sig->coublock;
1138 		maxrss = max(sig->maxrss, sig->cmaxrss);
1139 		if (psig->cmaxrss < maxrss)
1140 			psig->cmaxrss = maxrss;
1141 		task_io_accounting_add(&psig->ioac, &p->ioac);
1142 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1143 		write_sequnlock(&psig->stats_lock);
1144 		spin_unlock_irq(&current->sighand->siglock);
1145 	}
1146 
1147 	if (wo->wo_rusage)
1148 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1149 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1150 		? p->signal->group_exit_code : p->exit_code;
1151 	wo->wo_stat = status;
1152 
1153 	if (state == EXIT_TRACE) {
1154 		write_lock_irq(&tasklist_lock);
1155 		/* We dropped tasklist, ptracer could die and untrace */
1156 		ptrace_unlink(p);
1157 
1158 		/* If parent wants a zombie, don't release it now */
1159 		state = EXIT_ZOMBIE;
1160 		if (do_notify_parent(p, p->exit_signal))
1161 			state = EXIT_DEAD;
1162 		p->exit_state = state;
1163 		write_unlock_irq(&tasklist_lock);
1164 	}
1165 	if (state == EXIT_DEAD)
1166 		release_task(p);
1167 
1168 out_info:
1169 	infop = wo->wo_info;
1170 	if (infop) {
1171 		if ((status & 0x7f) == 0) {
1172 			infop->cause = CLD_EXITED;
1173 			infop->status = status >> 8;
1174 		} else {
1175 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1176 			infop->status = status & 0x7f;
1177 		}
1178 		infop->pid = pid;
1179 		infop->uid = uid;
1180 	}
1181 
1182 	return pid;
1183 }
1184 
task_stopped_code(struct task_struct * p,bool ptrace)1185 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1186 {
1187 	if (ptrace) {
1188 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1189 			return &p->exit_code;
1190 	} else {
1191 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1192 			return &p->signal->group_exit_code;
1193 	}
1194 	return NULL;
1195 }
1196 
1197 /**
1198  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1199  * @wo: wait options
1200  * @ptrace: is the wait for ptrace
1201  * @p: task to wait for
1202  *
1203  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1204  *
1205  * CONTEXT:
1206  * read_lock(&tasklist_lock), which is released if return value is
1207  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1208  *
1209  * RETURNS:
1210  * 0 if wait condition didn't exist and search for other wait conditions
1211  * should continue.  Non-zero return, -errno on failure and @p's pid on
1212  * success, implies that tasklist_lock is released and wait condition
1213  * search should terminate.
1214  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1215 static int wait_task_stopped(struct wait_opts *wo,
1216 				int ptrace, struct task_struct *p)
1217 {
1218 	struct waitid_info *infop;
1219 	int exit_code, *p_code, why;
1220 	uid_t uid = 0; /* unneeded, required by compiler */
1221 	pid_t pid;
1222 
1223 	/*
1224 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1225 	 */
1226 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1227 		return 0;
1228 
1229 	if (!task_stopped_code(p, ptrace))
1230 		return 0;
1231 
1232 	exit_code = 0;
1233 	spin_lock_irq(&p->sighand->siglock);
1234 
1235 	p_code = task_stopped_code(p, ptrace);
1236 	if (unlikely(!p_code))
1237 		goto unlock_sig;
1238 
1239 	exit_code = *p_code;
1240 	if (!exit_code)
1241 		goto unlock_sig;
1242 
1243 	if (!unlikely(wo->wo_flags & WNOWAIT))
1244 		*p_code = 0;
1245 
1246 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1247 unlock_sig:
1248 	spin_unlock_irq(&p->sighand->siglock);
1249 	if (!exit_code)
1250 		return 0;
1251 
1252 	/*
1253 	 * Now we are pretty sure this task is interesting.
1254 	 * Make sure it doesn't get reaped out from under us while we
1255 	 * give up the lock and then examine it below.  We don't want to
1256 	 * keep holding onto the tasklist_lock while we call getrusage and
1257 	 * possibly take page faults for user memory.
1258 	 */
1259 	get_task_struct(p);
1260 	pid = task_pid_vnr(p);
1261 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1262 	read_unlock(&tasklist_lock);
1263 	sched_annotate_sleep();
1264 	if (wo->wo_rusage)
1265 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1266 	put_task_struct(p);
1267 
1268 	if (likely(!(wo->wo_flags & WNOWAIT)))
1269 		wo->wo_stat = (exit_code << 8) | 0x7f;
1270 
1271 	infop = wo->wo_info;
1272 	if (infop) {
1273 		infop->cause = why;
1274 		infop->status = exit_code;
1275 		infop->pid = pid;
1276 		infop->uid = uid;
1277 	}
1278 	return pid;
1279 }
1280 
1281 /*
1282  * Handle do_wait work for one task in a live, non-stopped state.
1283  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1284  * the lock and this task is uninteresting.  If we return nonzero, we have
1285  * released the lock and the system call should return.
1286  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1287 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1288 {
1289 	struct waitid_info *infop;
1290 	pid_t pid;
1291 	uid_t uid;
1292 
1293 	if (!unlikely(wo->wo_flags & WCONTINUED))
1294 		return 0;
1295 
1296 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1297 		return 0;
1298 
1299 	spin_lock_irq(&p->sighand->siglock);
1300 	/* Re-check with the lock held.  */
1301 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1302 		spin_unlock_irq(&p->sighand->siglock);
1303 		return 0;
1304 	}
1305 	if (!unlikely(wo->wo_flags & WNOWAIT))
1306 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1307 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1308 	spin_unlock_irq(&p->sighand->siglock);
1309 
1310 	pid = task_pid_vnr(p);
1311 	get_task_struct(p);
1312 	read_unlock(&tasklist_lock);
1313 	sched_annotate_sleep();
1314 	if (wo->wo_rusage)
1315 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1316 	put_task_struct(p);
1317 
1318 	infop = wo->wo_info;
1319 	if (!infop) {
1320 		wo->wo_stat = 0xffff;
1321 	} else {
1322 		infop->cause = CLD_CONTINUED;
1323 		infop->pid = pid;
1324 		infop->uid = uid;
1325 		infop->status = SIGCONT;
1326 	}
1327 	return pid;
1328 }
1329 
1330 /*
1331  * Consider @p for a wait by @parent.
1332  *
1333  * -ECHILD should be in ->notask_error before the first call.
1334  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1335  * Returns zero if the search for a child should continue;
1336  * then ->notask_error is 0 if @p is an eligible child,
1337  * or still -ECHILD.
1338  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1339 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1340 				struct task_struct *p)
1341 {
1342 	/*
1343 	 * We can race with wait_task_zombie() from another thread.
1344 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1345 	 * can't confuse the checks below.
1346 	 */
1347 	int exit_state = READ_ONCE(p->exit_state);
1348 	int ret;
1349 
1350 	if (unlikely(exit_state == EXIT_DEAD))
1351 		return 0;
1352 
1353 	ret = eligible_child(wo, ptrace, p);
1354 	if (!ret)
1355 		return ret;
1356 
1357 	if (unlikely(exit_state == EXIT_TRACE)) {
1358 		/*
1359 		 * ptrace == 0 means we are the natural parent. In this case
1360 		 * we should clear notask_error, debugger will notify us.
1361 		 */
1362 		if (likely(!ptrace))
1363 			wo->notask_error = 0;
1364 		return 0;
1365 	}
1366 
1367 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1368 		/*
1369 		 * If it is traced by its real parent's group, just pretend
1370 		 * the caller is ptrace_do_wait() and reap this child if it
1371 		 * is zombie.
1372 		 *
1373 		 * This also hides group stop state from real parent; otherwise
1374 		 * a single stop can be reported twice as group and ptrace stop.
1375 		 * If a ptracer wants to distinguish these two events for its
1376 		 * own children it should create a separate process which takes
1377 		 * the role of real parent.
1378 		 */
1379 		if (!ptrace_reparented(p))
1380 			ptrace = 1;
1381 	}
1382 
1383 	/* slay zombie? */
1384 	if (exit_state == EXIT_ZOMBIE) {
1385 		/* we don't reap group leaders with subthreads */
1386 		if (!delay_group_leader(p)) {
1387 			/*
1388 			 * A zombie ptracee is only visible to its ptracer.
1389 			 * Notification and reaping will be cascaded to the
1390 			 * real parent when the ptracer detaches.
1391 			 */
1392 			if (unlikely(ptrace) || likely(!p->ptrace))
1393 				return wait_task_zombie(wo, p);
1394 		}
1395 
1396 		/*
1397 		 * Allow access to stopped/continued state via zombie by
1398 		 * falling through.  Clearing of notask_error is complex.
1399 		 *
1400 		 * When !@ptrace:
1401 		 *
1402 		 * If WEXITED is set, notask_error should naturally be
1403 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1404 		 * so, if there are live subthreads, there are events to
1405 		 * wait for.  If all subthreads are dead, it's still safe
1406 		 * to clear - this function will be called again in finite
1407 		 * amount time once all the subthreads are released and
1408 		 * will then return without clearing.
1409 		 *
1410 		 * When @ptrace:
1411 		 *
1412 		 * Stopped state is per-task and thus can't change once the
1413 		 * target task dies.  Only continued and exited can happen.
1414 		 * Clear notask_error if WCONTINUED | WEXITED.
1415 		 */
1416 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1417 			wo->notask_error = 0;
1418 	} else {
1419 		/*
1420 		 * @p is alive and it's gonna stop, continue or exit, so
1421 		 * there always is something to wait for.
1422 		 */
1423 		wo->notask_error = 0;
1424 	}
1425 
1426 	/*
1427 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1428 	 * is used and the two don't interact with each other.
1429 	 */
1430 	ret = wait_task_stopped(wo, ptrace, p);
1431 	if (ret)
1432 		return ret;
1433 
1434 	/*
1435 	 * Wait for continued.  There's only one continued state and the
1436 	 * ptracer can consume it which can confuse the real parent.  Don't
1437 	 * use WCONTINUED from ptracer.  You don't need or want it.
1438 	 */
1439 	return wait_task_continued(wo, p);
1440 }
1441 
1442 /*
1443  * Do the work of do_wait() for one thread in the group, @tsk.
1444  *
1445  * -ECHILD should be in ->notask_error before the first call.
1446  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1447  * Returns zero if the search for a child should continue; then
1448  * ->notask_error is 0 if there were any eligible children,
1449  * or still -ECHILD.
1450  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1451 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1452 {
1453 	struct task_struct *p;
1454 
1455 	list_for_each_entry(p, &tsk->children, sibling) {
1456 		int ret = wait_consider_task(wo, 0, p);
1457 
1458 		if (ret)
1459 			return ret;
1460 	}
1461 
1462 	return 0;
1463 }
1464 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1465 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1466 {
1467 	struct task_struct *p;
1468 
1469 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1470 		int ret = wait_consider_task(wo, 1, p);
1471 
1472 		if (ret)
1473 			return ret;
1474 	}
1475 
1476 	return 0;
1477 }
1478 
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1479 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1480 				int sync, void *key)
1481 {
1482 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1483 						child_wait);
1484 	struct task_struct *p = key;
1485 
1486 	if (!eligible_pid(wo, p))
1487 		return 0;
1488 
1489 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1490 		return 0;
1491 
1492 	return default_wake_function(wait, mode, sync, key);
1493 }
1494 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1495 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1496 {
1497 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1498 				TASK_INTERRUPTIBLE, 1, p);
1499 }
1500 
do_wait(struct wait_opts * wo)1501 static long do_wait(struct wait_opts *wo)
1502 {
1503 	struct task_struct *tsk;
1504 	int retval;
1505 
1506 	trace_sched_process_wait(wo->wo_pid);
1507 
1508 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1509 	wo->child_wait.private = current;
1510 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1511 repeat:
1512 	/*
1513 	 * If there is nothing that can match our criteria, just get out.
1514 	 * We will clear ->notask_error to zero if we see any child that
1515 	 * might later match our criteria, even if we are not able to reap
1516 	 * it yet.
1517 	 */
1518 	wo->notask_error = -ECHILD;
1519 	if ((wo->wo_type < PIDTYPE_MAX) &&
1520 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1521 		goto notask;
1522 
1523 	set_current_state(TASK_INTERRUPTIBLE);
1524 	read_lock(&tasklist_lock);
1525 	tsk = current;
1526 	do {
1527 		retval = do_wait_thread(wo, tsk);
1528 		if (retval)
1529 			goto end;
1530 
1531 		retval = ptrace_do_wait(wo, tsk);
1532 		if (retval)
1533 			goto end;
1534 
1535 		if (wo->wo_flags & __WNOTHREAD)
1536 			break;
1537 	} while_each_thread(current, tsk);
1538 	read_unlock(&tasklist_lock);
1539 
1540 notask:
1541 	retval = wo->notask_error;
1542 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1543 		retval = -ERESTARTSYS;
1544 		if (!signal_pending(current)) {
1545 			schedule();
1546 			goto repeat;
1547 		}
1548 	}
1549 end:
1550 	__set_current_state(TASK_RUNNING);
1551 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1552 	return retval;
1553 }
1554 
pidfd_get_pid(unsigned int fd)1555 static struct pid *pidfd_get_pid(unsigned int fd)
1556 {
1557 	struct fd f;
1558 	struct pid *pid;
1559 
1560 	f = fdget(fd);
1561 	if (!f.file)
1562 		return ERR_PTR(-EBADF);
1563 
1564 	pid = pidfd_pid(f.file);
1565 	if (!IS_ERR(pid))
1566 		get_pid(pid);
1567 
1568 	fdput(f);
1569 	return pid;
1570 }
1571 
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1572 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1573 			  int options, struct rusage *ru)
1574 {
1575 	struct wait_opts wo;
1576 	struct pid *pid = NULL;
1577 	enum pid_type type;
1578 	long ret;
1579 
1580 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1581 			__WNOTHREAD|__WCLONE|__WALL))
1582 		return -EINVAL;
1583 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1584 		return -EINVAL;
1585 
1586 	switch (which) {
1587 	case P_ALL:
1588 		type = PIDTYPE_MAX;
1589 		break;
1590 	case P_PID:
1591 		type = PIDTYPE_PID;
1592 		if (upid <= 0)
1593 			return -EINVAL;
1594 
1595 		pid = find_get_pid(upid);
1596 		break;
1597 	case P_PGID:
1598 		type = PIDTYPE_PGID;
1599 		if (upid < 0)
1600 			return -EINVAL;
1601 
1602 		if (upid)
1603 			pid = find_get_pid(upid);
1604 		else
1605 			pid = get_task_pid(current, PIDTYPE_PGID);
1606 		break;
1607 	case P_PIDFD:
1608 		type = PIDTYPE_PID;
1609 		if (upid < 0)
1610 			return -EINVAL;
1611 
1612 		pid = pidfd_get_pid(upid);
1613 		if (IS_ERR(pid))
1614 			return PTR_ERR(pid);
1615 		break;
1616 	default:
1617 		return -EINVAL;
1618 	}
1619 
1620 	wo.wo_type	= type;
1621 	wo.wo_pid	= pid;
1622 	wo.wo_flags	= options;
1623 	wo.wo_info	= infop;
1624 	wo.wo_rusage	= ru;
1625 	ret = do_wait(&wo);
1626 
1627 	put_pid(pid);
1628 	return ret;
1629 }
1630 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1631 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1632 		infop, int, options, struct rusage __user *, ru)
1633 {
1634 	struct rusage r;
1635 	struct waitid_info info = {.status = 0};
1636 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1637 	int signo = 0;
1638 
1639 	if (err > 0) {
1640 		signo = SIGCHLD;
1641 		err = 0;
1642 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1643 			return -EFAULT;
1644 	}
1645 	if (!infop)
1646 		return err;
1647 
1648 	if (!user_access_begin(infop, sizeof(*infop)))
1649 		return -EFAULT;
1650 
1651 	unsafe_put_user(signo, &infop->si_signo, Efault);
1652 	unsafe_put_user(0, &infop->si_errno, Efault);
1653 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1654 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1655 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1656 	unsafe_put_user(info.status, &infop->si_status, Efault);
1657 	user_access_end();
1658 	return err;
1659 Efault:
1660 	user_access_end();
1661 	return -EFAULT;
1662 }
1663 
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1664 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1665 		  struct rusage *ru)
1666 {
1667 	struct wait_opts wo;
1668 	struct pid *pid = NULL;
1669 	enum pid_type type;
1670 	long ret;
1671 
1672 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1673 			__WNOTHREAD|__WCLONE|__WALL))
1674 		return -EINVAL;
1675 
1676 	/* -INT_MIN is not defined */
1677 	if (upid == INT_MIN)
1678 		return -ESRCH;
1679 
1680 	if (upid == -1)
1681 		type = PIDTYPE_MAX;
1682 	else if (upid < 0) {
1683 		type = PIDTYPE_PGID;
1684 		pid = find_get_pid(-upid);
1685 	} else if (upid == 0) {
1686 		type = PIDTYPE_PGID;
1687 		pid = get_task_pid(current, PIDTYPE_PGID);
1688 	} else /* upid > 0 */ {
1689 		type = PIDTYPE_PID;
1690 		pid = find_get_pid(upid);
1691 	}
1692 
1693 	wo.wo_type	= type;
1694 	wo.wo_pid	= pid;
1695 	wo.wo_flags	= options | WEXITED;
1696 	wo.wo_info	= NULL;
1697 	wo.wo_stat	= 0;
1698 	wo.wo_rusage	= ru;
1699 	ret = do_wait(&wo);
1700 	put_pid(pid);
1701 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1702 		ret = -EFAULT;
1703 
1704 	return ret;
1705 }
1706 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1707 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1708 		int, options, struct rusage __user *, ru)
1709 {
1710 	struct rusage r;
1711 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1712 
1713 	if (err > 0) {
1714 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1715 			return -EFAULT;
1716 	}
1717 	return err;
1718 }
1719 
1720 #ifdef __ARCH_WANT_SYS_WAITPID
1721 
1722 /*
1723  * sys_waitpid() remains for compatibility. waitpid() should be
1724  * implemented by calling sys_wait4() from libc.a.
1725  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1726 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1727 {
1728 	return kernel_wait4(pid, stat_addr, options, NULL);
1729 }
1730 
1731 #endif
1732 
1733 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1734 COMPAT_SYSCALL_DEFINE4(wait4,
1735 	compat_pid_t, pid,
1736 	compat_uint_t __user *, stat_addr,
1737 	int, options,
1738 	struct compat_rusage __user *, ru)
1739 {
1740 	struct rusage r;
1741 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1742 	if (err > 0) {
1743 		if (ru && put_compat_rusage(&r, ru))
1744 			return -EFAULT;
1745 	}
1746 	return err;
1747 }
1748 
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1749 COMPAT_SYSCALL_DEFINE5(waitid,
1750 		int, which, compat_pid_t, pid,
1751 		struct compat_siginfo __user *, infop, int, options,
1752 		struct compat_rusage __user *, uru)
1753 {
1754 	struct rusage ru;
1755 	struct waitid_info info = {.status = 0};
1756 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1757 	int signo = 0;
1758 	if (err > 0) {
1759 		signo = SIGCHLD;
1760 		err = 0;
1761 		if (uru) {
1762 			/* kernel_waitid() overwrites everything in ru */
1763 			if (COMPAT_USE_64BIT_TIME)
1764 				err = copy_to_user(uru, &ru, sizeof(ru));
1765 			else
1766 				err = put_compat_rusage(&ru, uru);
1767 			if (err)
1768 				return -EFAULT;
1769 		}
1770 	}
1771 
1772 	if (!infop)
1773 		return err;
1774 
1775 	if (!user_access_begin(infop, sizeof(*infop)))
1776 		return -EFAULT;
1777 
1778 	unsafe_put_user(signo, &infop->si_signo, Efault);
1779 	unsafe_put_user(0, &infop->si_errno, Efault);
1780 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1781 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1782 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1783 	unsafe_put_user(info.status, &infop->si_status, Efault);
1784 	user_access_end();
1785 	return err;
1786 Efault:
1787 	user_access_end();
1788 	return -EFAULT;
1789 }
1790 #endif
1791 
abort(void)1792 __weak void abort(void)
1793 {
1794 	BUG();
1795 
1796 	/* if that doesn't kill us, halt */
1797 	panic("Oops failed to kill thread");
1798 }
1799 EXPORT_SYMBOL(abort);
1800