• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/ioremap.c
4  *
5  * Re-map IO memory to kernel address space so that we can access it.
6  *
7  * (C) Copyright 1995 1996 Linus Torvalds
8  *
9  * Hacked for ARM by Phil Blundell <philb@gnu.org>
10  * Hacked to allow all architectures to build, and various cleanups
11  * by Russell King
12  *
13  * This allows a driver to remap an arbitrary region of bus memory into
14  * virtual space.  One should *only* use readl, writel, memcpy_toio and
15  * so on with such remapped areas.
16  *
17  * Because the ARM only has a 32-bit address space we can't address the
18  * whole of the (physical) PCI space at once.  PCI huge-mode addressing
19  * allows us to circumvent this restriction by splitting PCI space into
20  * two 2GB chunks and mapping only one at a time into processor memory.
21  * We use MMU protection domains to trap any attempt to access the bank
22  * that is not currently mapped.  (This isn't fully implemented yet.)
23  */
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/mm.h>
27 #include <linux/vmalloc.h>
28 #include <linux/io.h>
29 #include <linux/sizes.h>
30 #include <linux/memblock.h>
31 
32 #include <asm/cp15.h>
33 #include <asm/cputype.h>
34 #include <asm/cacheflush.h>
35 #include <asm/early_ioremap.h>
36 #include <asm/mmu_context.h>
37 #include <asm/pgalloc.h>
38 #include <asm/tlbflush.h>
39 #include <asm/system_info.h>
40 
41 #include <asm/mach/map.h>
42 #include <asm/mach/pci.h>
43 #include "mm.h"
44 
45 
46 LIST_HEAD(static_vmlist);
47 
find_static_vm_paddr(phys_addr_t paddr,size_t size,unsigned int mtype)48 static struct static_vm *find_static_vm_paddr(phys_addr_t paddr,
49 			size_t size, unsigned int mtype)
50 {
51 	struct static_vm *svm;
52 	struct vm_struct *vm;
53 
54 	list_for_each_entry(svm, &static_vmlist, list) {
55 		vm = &svm->vm;
56 		if (!(vm->flags & VM_ARM_STATIC_MAPPING))
57 			continue;
58 		if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
59 			continue;
60 
61 		if (vm->phys_addr > paddr ||
62 			paddr + size - 1 > vm->phys_addr + vm->size - 1)
63 			continue;
64 
65 		return svm;
66 	}
67 
68 	return NULL;
69 }
70 
find_static_vm_vaddr(void * vaddr)71 struct static_vm *find_static_vm_vaddr(void *vaddr)
72 {
73 	struct static_vm *svm;
74 	struct vm_struct *vm;
75 
76 	list_for_each_entry(svm, &static_vmlist, list) {
77 		vm = &svm->vm;
78 
79 		/* static_vmlist is ascending order */
80 		if (vm->addr > vaddr)
81 			break;
82 
83 		if (vm->addr <= vaddr && vm->addr + vm->size > vaddr)
84 			return svm;
85 	}
86 
87 	return NULL;
88 }
89 
add_static_vm_early(struct static_vm * svm)90 void __init add_static_vm_early(struct static_vm *svm)
91 {
92 	struct static_vm *curr_svm;
93 	struct vm_struct *vm;
94 	void *vaddr;
95 
96 	vm = &svm->vm;
97 	vm_area_add_early(vm);
98 	vaddr = vm->addr;
99 
100 	list_for_each_entry(curr_svm, &static_vmlist, list) {
101 		vm = &curr_svm->vm;
102 
103 		if (vm->addr > vaddr)
104 			break;
105 	}
106 	list_add_tail(&svm->list, &curr_svm->list);
107 }
108 
ioremap_page(unsigned long virt,unsigned long phys,const struct mem_type * mtype)109 int ioremap_page(unsigned long virt, unsigned long phys,
110 		 const struct mem_type *mtype)
111 {
112 	return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
113 				  __pgprot(mtype->prot_pte));
114 }
115 EXPORT_SYMBOL(ioremap_page);
116 
__check_vmalloc_seq(struct mm_struct * mm)117 void __check_vmalloc_seq(struct mm_struct *mm)
118 {
119 	unsigned int seq;
120 
121 	do {
122 		seq = init_mm.context.vmalloc_seq;
123 		memcpy(pgd_offset(mm, VMALLOC_START),
124 		       pgd_offset_k(VMALLOC_START),
125 		       sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
126 					pgd_index(VMALLOC_START)));
127 		mm->context.vmalloc_seq = seq;
128 	} while (seq != init_mm.context.vmalloc_seq);
129 }
130 
131 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
132 /*
133  * Section support is unsafe on SMP - If you iounmap and ioremap a region,
134  * the other CPUs will not see this change until their next context switch.
135  * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
136  * which requires the new ioremap'd region to be referenced, the CPU will
137  * reference the _old_ region.
138  *
139  * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
140  * mask the size back to 1MB aligned or we will overflow in the loop below.
141  */
unmap_area_sections(unsigned long virt,unsigned long size)142 static void unmap_area_sections(unsigned long virt, unsigned long size)
143 {
144 	unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
145 	pgd_t *pgd;
146 	pud_t *pud;
147 	pmd_t *pmdp;
148 
149 	flush_cache_vunmap(addr, end);
150 	pgd = pgd_offset_k(addr);
151 	pud = pud_offset(pgd, addr);
152 	pmdp = pmd_offset(pud, addr);
153 	do {
154 		pmd_t pmd = *pmdp;
155 
156 		if (!pmd_none(pmd)) {
157 			/*
158 			 * Clear the PMD from the page table, and
159 			 * increment the vmalloc sequence so others
160 			 * notice this change.
161 			 *
162 			 * Note: this is still racy on SMP machines.
163 			 */
164 			pmd_clear(pmdp);
165 			init_mm.context.vmalloc_seq++;
166 
167 			/*
168 			 * Free the page table, if there was one.
169 			 */
170 			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
171 				pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
172 		}
173 
174 		addr += PMD_SIZE;
175 		pmdp += 2;
176 	} while (addr < end);
177 
178 	/*
179 	 * Ensure that the active_mm is up to date - we want to
180 	 * catch any use-after-iounmap cases.
181 	 */
182 	if (current->active_mm->context.vmalloc_seq != init_mm.context.vmalloc_seq)
183 		__check_vmalloc_seq(current->active_mm);
184 
185 	flush_tlb_kernel_range(virt, end);
186 }
187 
188 static int
remap_area_sections(unsigned long virt,unsigned long pfn,size_t size,const struct mem_type * type)189 remap_area_sections(unsigned long virt, unsigned long pfn,
190 		    size_t size, const struct mem_type *type)
191 {
192 	unsigned long addr = virt, end = virt + size;
193 	pgd_t *pgd;
194 	pud_t *pud;
195 	pmd_t *pmd;
196 
197 	/*
198 	 * Remove and free any PTE-based mapping, and
199 	 * sync the current kernel mapping.
200 	 */
201 	unmap_area_sections(virt, size);
202 
203 	pgd = pgd_offset_k(addr);
204 	pud = pud_offset(pgd, addr);
205 	pmd = pmd_offset(pud, addr);
206 	do {
207 		pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
208 		pfn += SZ_1M >> PAGE_SHIFT;
209 		pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
210 		pfn += SZ_1M >> PAGE_SHIFT;
211 		flush_pmd_entry(pmd);
212 
213 		addr += PMD_SIZE;
214 		pmd += 2;
215 	} while (addr < end);
216 
217 	return 0;
218 }
219 
220 static int
remap_area_supersections(unsigned long virt,unsigned long pfn,size_t size,const struct mem_type * type)221 remap_area_supersections(unsigned long virt, unsigned long pfn,
222 			 size_t size, const struct mem_type *type)
223 {
224 	unsigned long addr = virt, end = virt + size;
225 	pgd_t *pgd;
226 	pud_t *pud;
227 	pmd_t *pmd;
228 
229 	/*
230 	 * Remove and free any PTE-based mapping, and
231 	 * sync the current kernel mapping.
232 	 */
233 	unmap_area_sections(virt, size);
234 
235 	pgd = pgd_offset_k(virt);
236 	pud = pud_offset(pgd, addr);
237 	pmd = pmd_offset(pud, addr);
238 	do {
239 		unsigned long super_pmd_val, i;
240 
241 		super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
242 				PMD_SECT_SUPER;
243 		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
244 
245 		for (i = 0; i < 8; i++) {
246 			pmd[0] = __pmd(super_pmd_val);
247 			pmd[1] = __pmd(super_pmd_val);
248 			flush_pmd_entry(pmd);
249 
250 			addr += PMD_SIZE;
251 			pmd += 2;
252 		}
253 
254 		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
255 	} while (addr < end);
256 
257 	return 0;
258 }
259 #endif
260 
__arm_ioremap_pfn_caller(unsigned long pfn,unsigned long offset,size_t size,unsigned int mtype,void * caller)261 static void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
262 	unsigned long offset, size_t size, unsigned int mtype, void *caller)
263 {
264 	const struct mem_type *type;
265 	int err;
266 	unsigned long addr;
267 	struct vm_struct *area;
268 	phys_addr_t paddr = __pfn_to_phys(pfn);
269 
270 #ifndef CONFIG_ARM_LPAE
271 	/*
272 	 * High mappings must be supersection aligned
273 	 */
274 	if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK))
275 		return NULL;
276 #endif
277 
278 	type = get_mem_type(mtype);
279 	if (!type)
280 		return NULL;
281 
282 	/*
283 	 * Page align the mapping size, taking account of any offset.
284 	 */
285 	size = PAGE_ALIGN(offset + size);
286 
287 	/*
288 	 * Try to reuse one of the static mapping whenever possible.
289 	 */
290 	if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) {
291 		struct static_vm *svm;
292 
293 		svm = find_static_vm_paddr(paddr, size, mtype);
294 		if (svm) {
295 			addr = (unsigned long)svm->vm.addr;
296 			addr += paddr - svm->vm.phys_addr;
297 			return (void __iomem *) (offset + addr);
298 		}
299 	}
300 
301 	/*
302 	 * Don't allow RAM to be mapped with mismatched attributes - this
303 	 * causes problems with ARMv6+
304 	 */
305 	if (WARN_ON(memblock_is_map_memory(PFN_PHYS(pfn)) &&
306 		    mtype != MT_MEMORY_RW))
307 		return NULL;
308 
309 	area = get_vm_area_caller(size, VM_IOREMAP, caller);
310  	if (!area)
311  		return NULL;
312  	addr = (unsigned long)area->addr;
313 	area->phys_addr = paddr;
314 
315 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
316 	if (DOMAIN_IO == 0 &&
317 	    (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
318 	       cpu_is_xsc3()) && pfn >= 0x100000 &&
319 	       !((paddr | size | addr) & ~SUPERSECTION_MASK)) {
320 		area->flags |= VM_ARM_SECTION_MAPPING;
321 		err = remap_area_supersections(addr, pfn, size, type);
322 	} else if (!((paddr | size | addr) & ~PMD_MASK)) {
323 		area->flags |= VM_ARM_SECTION_MAPPING;
324 		err = remap_area_sections(addr, pfn, size, type);
325 	} else
326 #endif
327 		err = ioremap_page_range(addr, addr + size, paddr,
328 					 __pgprot(type->prot_pte));
329 
330 	if (err) {
331  		vunmap((void *)addr);
332  		return NULL;
333  	}
334 
335 	flush_cache_vmap(addr, addr + size);
336 	return (void __iomem *) (offset + addr);
337 }
338 
__arm_ioremap_caller(phys_addr_t phys_addr,size_t size,unsigned int mtype,void * caller)339 void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
340 	unsigned int mtype, void *caller)
341 {
342 	phys_addr_t last_addr;
343  	unsigned long offset = phys_addr & ~PAGE_MASK;
344  	unsigned long pfn = __phys_to_pfn(phys_addr);
345 
346  	/*
347  	 * Don't allow wraparound or zero size
348 	 */
349 	last_addr = phys_addr + size - 1;
350 	if (!size || last_addr < phys_addr)
351 		return NULL;
352 
353 	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
354 			caller);
355 }
356 
357 /*
358  * Remap an arbitrary physical address space into the kernel virtual
359  * address space. Needed when the kernel wants to access high addresses
360  * directly.
361  *
362  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
363  * have to convert them into an offset in a page-aligned mapping, but the
364  * caller shouldn't need to know that small detail.
365  */
366 void __iomem *
__arm_ioremap_pfn(unsigned long pfn,unsigned long offset,size_t size,unsigned int mtype)367 __arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
368 		  unsigned int mtype)
369 {
370 	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
371 					__builtin_return_address(0));
372 }
373 EXPORT_SYMBOL(__arm_ioremap_pfn);
374 
375 void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
376 				      unsigned int, void *) =
377 	__arm_ioremap_caller;
378 
ioremap(resource_size_t res_cookie,size_t size)379 void __iomem *ioremap(resource_size_t res_cookie, size_t size)
380 {
381 	return arch_ioremap_caller(res_cookie, size, MT_DEVICE,
382 				   __builtin_return_address(0));
383 }
384 EXPORT_SYMBOL(ioremap);
385 
386 void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
387 	__alias(ioremap_cached);
388 
ioremap_cached(resource_size_t res_cookie,size_t size)389 void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size)
390 {
391 	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
392 				   __builtin_return_address(0));
393 }
394 EXPORT_SYMBOL(ioremap_cache);
395 EXPORT_SYMBOL(ioremap_cached);
396 
ioremap_wc(resource_size_t res_cookie,size_t size)397 void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
398 {
399 	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
400 				   __builtin_return_address(0));
401 }
402 EXPORT_SYMBOL(ioremap_wc);
403 
404 /*
405  * Remap an arbitrary physical address space into the kernel virtual
406  * address space as memory. Needed when the kernel wants to execute
407  * code in external memory. This is needed for reprogramming source
408  * clocks that would affect normal memory for example. Please see
409  * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
410  */
411 void __iomem *
__arm_ioremap_exec(phys_addr_t phys_addr,size_t size,bool cached)412 __arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached)
413 {
414 	unsigned int mtype;
415 
416 	if (cached)
417 		mtype = MT_MEMORY_RWX;
418 	else
419 		mtype = MT_MEMORY_RWX_NONCACHED;
420 
421 	return __arm_ioremap_caller(phys_addr, size, mtype,
422 			__builtin_return_address(0));
423 }
424 
arch_memremap_wb(phys_addr_t phys_addr,size_t size)425 void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
426 {
427 	return (__force void *)arch_ioremap_caller(phys_addr, size,
428 						   MT_MEMORY_RW,
429 						   __builtin_return_address(0));
430 }
431 
__iounmap(volatile void __iomem * io_addr)432 void __iounmap(volatile void __iomem *io_addr)
433 {
434 	void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
435 	struct static_vm *svm;
436 
437 	/* If this is a static mapping, we must leave it alone */
438 	svm = find_static_vm_vaddr(addr);
439 	if (svm)
440 		return;
441 
442 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
443 	{
444 		struct vm_struct *vm;
445 
446 		vm = find_vm_area(addr);
447 
448 		/*
449 		 * If this is a section based mapping we need to handle it
450 		 * specially as the VM subsystem does not know how to handle
451 		 * such a beast.
452 		 */
453 		if (vm && (vm->flags & VM_ARM_SECTION_MAPPING))
454 			unmap_area_sections((unsigned long)vm->addr, vm->size);
455 	}
456 #endif
457 
458 	vunmap(addr);
459 }
460 
461 void (*arch_iounmap)(volatile void __iomem *) = __iounmap;
462 
iounmap(volatile void __iomem * cookie)463 void iounmap(volatile void __iomem *cookie)
464 {
465 	arch_iounmap(cookie);
466 }
467 EXPORT_SYMBOL(iounmap);
468 
469 #ifdef CONFIG_PCI
470 static int pci_ioremap_mem_type = MT_DEVICE;
471 
pci_ioremap_set_mem_type(int mem_type)472 void pci_ioremap_set_mem_type(int mem_type)
473 {
474 	pci_ioremap_mem_type = mem_type;
475 }
476 
pci_ioremap_io(unsigned int offset,phys_addr_t phys_addr)477 int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr)
478 {
479 	BUG_ON(offset + SZ_64K - 1 > IO_SPACE_LIMIT);
480 
481 	return ioremap_page_range(PCI_IO_VIRT_BASE + offset,
482 				  PCI_IO_VIRT_BASE + offset + SZ_64K,
483 				  phys_addr,
484 				  __pgprot(get_mem_type(pci_ioremap_mem_type)->prot_pte));
485 }
486 EXPORT_SYMBOL_GPL(pci_ioremap_io);
487 
pci_remap_cfgspace(resource_size_t res_cookie,size_t size)488 void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size)
489 {
490 	return arch_ioremap_caller(res_cookie, size, MT_UNCACHED,
491 				   __builtin_return_address(0));
492 }
493 EXPORT_SYMBOL_GPL(pci_remap_cfgspace);
494 #endif
495 
496 /*
497  * Must be called after early_fixmap_init
498  */
early_ioremap_init(void)499 void __init early_ioremap_init(void)
500 {
501 	early_ioremap_setup();
502 }
503 
arch_memremap_can_ram_remap(resource_size_t offset,size_t size,unsigned long flags)504 bool arch_memremap_can_ram_remap(resource_size_t offset, size_t size,
505 				 unsigned long flags)
506 {
507 	unsigned long pfn = PHYS_PFN(offset);
508 
509 	return memblock_is_map_memory(pfn);
510 }
511