1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Just-In-Time compiler for eBPF filters on 32bit ARM
4 *
5 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
6 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
7 */
8
9 #include <linux/bpf.h>
10 #include <linux/bitops.h>
11 #include <linux/compiler.h>
12 #include <linux/errno.h>
13 #include <linux/filter.h>
14 #include <linux/netdevice.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/if_vlan.h>
18
19 #include <asm/cacheflush.h>
20 #include <asm/hwcap.h>
21 #include <asm/opcodes.h>
22 #include <asm/system_info.h>
23
24 #include "bpf_jit_32.h"
25
26 /*
27 * eBPF prog stack layout:
28 *
29 * high
30 * original ARM_SP => +-----+
31 * | | callee saved registers
32 * +-----+ <= (BPF_FP + SCRATCH_SIZE)
33 * | ... | eBPF JIT scratch space
34 * eBPF fp register => +-----+
35 * (BPF_FP) | ... | eBPF prog stack
36 * +-----+
37 * |RSVD | JIT scratchpad
38 * current ARM_SP => +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
39 * | ... | caller-saved registers
40 * +-----+
41 * | ... | arguments passed on stack
42 * ARM_SP during call => +-----|
43 * | |
44 * | ... | Function call stack
45 * | |
46 * +-----+
47 * low
48 *
49 * The callee saved registers depends on whether frame pointers are enabled.
50 * With frame pointers (to be compliant with the ABI):
51 *
52 * high
53 * original ARM_SP => +--------------+ \
54 * | pc | |
55 * current ARM_FP => +--------------+ } callee saved registers
56 * |r4-r9,fp,ip,lr| |
57 * +--------------+ /
58 * low
59 *
60 * Without frame pointers:
61 *
62 * high
63 * original ARM_SP => +--------------+
64 * | r4-r9,fp,lr | callee saved registers
65 * current ARM_FP => +--------------+
66 * low
67 *
68 * When popping registers off the stack at the end of a BPF function, we
69 * reference them via the current ARM_FP register.
70 *
71 * Some eBPF operations are implemented via a call to a helper function.
72 * Such calls are "invisible" in the eBPF code, so it is up to the calling
73 * program to preserve any caller-saved ARM registers during the call. The
74 * JIT emits code to push and pop those registers onto the stack, immediately
75 * above the callee stack frame.
76 */
77 #define CALLEE_MASK (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
78 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
79 1 << ARM_FP)
80 #define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
81 #define CALLEE_POP_MASK (CALLEE_MASK | 1 << ARM_PC)
82
83 #define CALLER_MASK (1 << ARM_R0 | 1 << ARM_R1 | 1 << ARM_R2 | 1 << ARM_R3)
84
85 enum {
86 /* Stack layout - these are offsets from (top of stack - 4) */
87 BPF_R2_HI,
88 BPF_R2_LO,
89 BPF_R3_HI,
90 BPF_R3_LO,
91 BPF_R4_HI,
92 BPF_R4_LO,
93 BPF_R5_HI,
94 BPF_R5_LO,
95 BPF_R7_HI,
96 BPF_R7_LO,
97 BPF_R8_HI,
98 BPF_R8_LO,
99 BPF_R9_HI,
100 BPF_R9_LO,
101 BPF_FP_HI,
102 BPF_FP_LO,
103 BPF_TC_HI,
104 BPF_TC_LO,
105 BPF_AX_HI,
106 BPF_AX_LO,
107 /* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
108 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
109 * BPF_REG_FP and Tail call counts.
110 */
111 BPF_JIT_SCRATCH_REGS,
112 };
113
114 /*
115 * Negative "register" values indicate the register is stored on the stack
116 * and are the offset from the top of the eBPF JIT scratch space.
117 */
118 #define STACK_OFFSET(k) (-4 - (k) * 4)
119 #define SCRATCH_SIZE (BPF_JIT_SCRATCH_REGS * 4)
120
121 #ifdef CONFIG_FRAME_POINTER
122 #define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
123 #else
124 #define EBPF_SCRATCH_TO_ARM_FP(x) (x)
125 #endif
126
127 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) /* TEMP Register 1 */
128 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) /* TEMP Register 2 */
129 #define TCALL_CNT (MAX_BPF_JIT_REG + 2) /* Tail Call Count */
130
131 #define FLAG_IMM_OVERFLOW (1 << 0)
132
133 /*
134 * Map eBPF registers to ARM 32bit registers or stack scratch space.
135 *
136 * 1. First argument is passed using the arm 32bit registers and rest of the
137 * arguments are passed on stack scratch space.
138 * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
139 * arguments are mapped to scratch space on stack.
140 * 3. We need two 64 bit temp registers to do complex operations on eBPF
141 * registers.
142 *
143 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
144 * registers, we have to map each eBPF registers with two arm 32 bit regs or
145 * scratch memory space and we have to build eBPF 64 bit register from those.
146 *
147 */
148 static const s8 bpf2a32[][2] = {
149 /* return value from in-kernel function, and exit value from eBPF */
150 [BPF_REG_0] = {ARM_R1, ARM_R0},
151 /* arguments from eBPF program to in-kernel function */
152 [BPF_REG_1] = {ARM_R3, ARM_R2},
153 /* Stored on stack scratch space */
154 [BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)},
155 [BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)},
156 [BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)},
157 [BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)},
158 /* callee saved registers that in-kernel function will preserve */
159 [BPF_REG_6] = {ARM_R5, ARM_R4},
160 /* Stored on stack scratch space */
161 [BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
162 [BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
163 [BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
164 /* Read only Frame Pointer to access Stack */
165 [BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)},
166 /* Temporary Register for internal BPF JIT, can be used
167 * for constant blindings and others.
168 */
169 [TMP_REG_1] = {ARM_R7, ARM_R6},
170 [TMP_REG_2] = {ARM_R9, ARM_R8},
171 /* Tail call count. Stored on stack scratch space. */
172 [TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)},
173 /* temporary register for blinding constants.
174 * Stored on stack scratch space.
175 */
176 [BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
177 };
178
179 #define dst_lo dst[1]
180 #define dst_hi dst[0]
181 #define src_lo src[1]
182 #define src_hi src[0]
183
184 /*
185 * JIT Context:
186 *
187 * prog : bpf_prog
188 * idx : index of current last JITed instruction.
189 * prologue_bytes : bytes used in prologue.
190 * epilogue_offset : offset of epilogue starting.
191 * offsets : array of eBPF instruction offsets in
192 * JITed code.
193 * target : final JITed code.
194 * epilogue_bytes : no of bytes used in epilogue.
195 * imm_count : no of immediate counts used for global
196 * variables.
197 * imms : array of global variable addresses.
198 */
199
200 struct jit_ctx {
201 const struct bpf_prog *prog;
202 unsigned int idx;
203 unsigned int prologue_bytes;
204 unsigned int epilogue_offset;
205 unsigned int cpu_architecture;
206 u32 flags;
207 u32 *offsets;
208 u32 *target;
209 u32 stack_size;
210 #if __LINUX_ARM_ARCH__ < 7
211 u16 epilogue_bytes;
212 u16 imm_count;
213 u32 *imms;
214 #endif
215 };
216
217 /*
218 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
219 * (where the assembly routines like __aeabi_uidiv could cause problems).
220 */
jit_udiv32(u32 dividend,u32 divisor)221 static u32 jit_udiv32(u32 dividend, u32 divisor)
222 {
223 return dividend / divisor;
224 }
225
jit_mod32(u32 dividend,u32 divisor)226 static u32 jit_mod32(u32 dividend, u32 divisor)
227 {
228 return dividend % divisor;
229 }
230
_emit(int cond,u32 inst,struct jit_ctx * ctx)231 static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
232 {
233 inst |= (cond << 28);
234 inst = __opcode_to_mem_arm(inst);
235
236 if (ctx->target != NULL)
237 ctx->target[ctx->idx] = inst;
238
239 ctx->idx++;
240 }
241
242 /*
243 * Emit an instruction that will be executed unconditionally.
244 */
emit(u32 inst,struct jit_ctx * ctx)245 static inline void emit(u32 inst, struct jit_ctx *ctx)
246 {
247 _emit(ARM_COND_AL, inst, ctx);
248 }
249
250 /*
251 * This is rather horrid, but necessary to convert an integer constant
252 * to an immediate operand for the opcodes, and be able to detect at
253 * build time whether the constant can't be converted (iow, usable in
254 * BUILD_BUG_ON()).
255 */
256 #define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
257 #define const_imm8m(x) \
258 ({ int r; \
259 u32 v = (x); \
260 if (!(v & ~0x000000ff)) \
261 r = imm12val(v, 0); \
262 else if (!(v & ~0xc000003f)) \
263 r = imm12val(v, 2); \
264 else if (!(v & ~0xf000000f)) \
265 r = imm12val(v, 4); \
266 else if (!(v & ~0xfc000003)) \
267 r = imm12val(v, 6); \
268 else if (!(v & ~0xff000000)) \
269 r = imm12val(v, 8); \
270 else if (!(v & ~0x3fc00000)) \
271 r = imm12val(v, 10); \
272 else if (!(v & ~0x0ff00000)) \
273 r = imm12val(v, 12); \
274 else if (!(v & ~0x03fc0000)) \
275 r = imm12val(v, 14); \
276 else if (!(v & ~0x00ff0000)) \
277 r = imm12val(v, 16); \
278 else if (!(v & ~0x003fc000)) \
279 r = imm12val(v, 18); \
280 else if (!(v & ~0x000ff000)) \
281 r = imm12val(v, 20); \
282 else if (!(v & ~0x0003fc00)) \
283 r = imm12val(v, 22); \
284 else if (!(v & ~0x0000ff00)) \
285 r = imm12val(v, 24); \
286 else if (!(v & ~0x00003fc0)) \
287 r = imm12val(v, 26); \
288 else if (!(v & ~0x00000ff0)) \
289 r = imm12val(v, 28); \
290 else if (!(v & ~0x000003fc)) \
291 r = imm12val(v, 30); \
292 else \
293 r = -1; \
294 r; })
295
296 /*
297 * Checks if immediate value can be converted to imm12(12 bits) value.
298 */
imm8m(u32 x)299 static int imm8m(u32 x)
300 {
301 u32 rot;
302
303 for (rot = 0; rot < 16; rot++)
304 if ((x & ~ror32(0xff, 2 * rot)) == 0)
305 return rol32(x, 2 * rot) | (rot << 8);
306 return -1;
307 }
308
309 #define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
310
arm_bpf_ldst_imm12(u32 op,u8 rt,u8 rn,s16 imm12)311 static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12)
312 {
313 op |= rt << 12 | rn << 16;
314 if (imm12 >= 0)
315 op |= ARM_INST_LDST__U;
316 else
317 imm12 = -imm12;
318 return op | (imm12 & ARM_INST_LDST__IMM12);
319 }
320
arm_bpf_ldst_imm8(u32 op,u8 rt,u8 rn,s16 imm8)321 static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8)
322 {
323 op |= rt << 12 | rn << 16;
324 if (imm8 >= 0)
325 op |= ARM_INST_LDST__U;
326 else
327 imm8 = -imm8;
328 return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f);
329 }
330
331 #define ARM_LDR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
332 #define ARM_LDRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
333 #define ARM_LDRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
334 #define ARM_LDRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
335
336 #define ARM_STR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
337 #define ARM_STRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
338 #define ARM_STRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
339 #define ARM_STRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
340
341 /*
342 * Initializes the JIT space with undefined instructions.
343 */
jit_fill_hole(void * area,unsigned int size)344 static void jit_fill_hole(void *area, unsigned int size)
345 {
346 u32 *ptr;
347 /* We are guaranteed to have aligned memory. */
348 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
349 *ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
350 }
351
352 #if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
353 /* EABI requires the stack to be aligned to 64-bit boundaries */
354 #define STACK_ALIGNMENT 8
355 #else
356 /* Stack must be aligned to 32-bit boundaries */
357 #define STACK_ALIGNMENT 4
358 #endif
359
360 /* total stack size used in JITed code */
361 #define _STACK_SIZE (ctx->prog->aux->stack_depth + SCRATCH_SIZE)
362 #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
363
364 #if __LINUX_ARM_ARCH__ < 7
365
imm_offset(u32 k,struct jit_ctx * ctx)366 static u16 imm_offset(u32 k, struct jit_ctx *ctx)
367 {
368 unsigned int i = 0, offset;
369 u16 imm;
370
371 /* on the "fake" run we just count them (duplicates included) */
372 if (ctx->target == NULL) {
373 ctx->imm_count++;
374 return 0;
375 }
376
377 while ((i < ctx->imm_count) && ctx->imms[i]) {
378 if (ctx->imms[i] == k)
379 break;
380 i++;
381 }
382
383 if (ctx->imms[i] == 0)
384 ctx->imms[i] = k;
385
386 /* constants go just after the epilogue */
387 offset = ctx->offsets[ctx->prog->len - 1] * 4;
388 offset += ctx->prologue_bytes;
389 offset += ctx->epilogue_bytes;
390 offset += i * 4;
391
392 ctx->target[offset / 4] = k;
393
394 /* PC in ARM mode == address of the instruction + 8 */
395 imm = offset - (8 + ctx->idx * 4);
396
397 if (imm & ~0xfff) {
398 /*
399 * literal pool is too far, signal it into flags. we
400 * can only detect it on the second pass unfortunately.
401 */
402 ctx->flags |= FLAG_IMM_OVERFLOW;
403 return 0;
404 }
405
406 return imm;
407 }
408
409 #endif /* __LINUX_ARM_ARCH__ */
410
bpf2a32_offset(int bpf_to,int bpf_from,const struct jit_ctx * ctx)411 static inline int bpf2a32_offset(int bpf_to, int bpf_from,
412 const struct jit_ctx *ctx) {
413 int to, from;
414
415 if (ctx->target == NULL)
416 return 0;
417 to = ctx->offsets[bpf_to];
418 from = ctx->offsets[bpf_from];
419
420 return to - from - 1;
421 }
422
423 /*
424 * Move an immediate that's not an imm8m to a core register.
425 */
emit_mov_i_no8m(const u8 rd,u32 val,struct jit_ctx * ctx)426 static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
427 {
428 #if __LINUX_ARM_ARCH__ < 7
429 emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
430 #else
431 emit(ARM_MOVW(rd, val & 0xffff), ctx);
432 if (val > 0xffff)
433 emit(ARM_MOVT(rd, val >> 16), ctx);
434 #endif
435 }
436
emit_mov_i(const u8 rd,u32 val,struct jit_ctx * ctx)437 static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
438 {
439 int imm12 = imm8m(val);
440
441 if (imm12 >= 0)
442 emit(ARM_MOV_I(rd, imm12), ctx);
443 else
444 emit_mov_i_no8m(rd, val, ctx);
445 }
446
emit_bx_r(u8 tgt_reg,struct jit_ctx * ctx)447 static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
448 {
449 if (elf_hwcap & HWCAP_THUMB)
450 emit(ARM_BX(tgt_reg), ctx);
451 else
452 emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
453 }
454
emit_blx_r(u8 tgt_reg,struct jit_ctx * ctx)455 static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
456 {
457 #if __LINUX_ARM_ARCH__ < 5
458 emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
459 emit_bx_r(tgt_reg, ctx);
460 #else
461 emit(ARM_BLX_R(tgt_reg), ctx);
462 #endif
463 }
464
epilogue_offset(const struct jit_ctx * ctx)465 static inline int epilogue_offset(const struct jit_ctx *ctx)
466 {
467 int to, from;
468 /* No need for 1st dummy run */
469 if (ctx->target == NULL)
470 return 0;
471 to = ctx->epilogue_offset;
472 from = ctx->idx;
473
474 return to - from - 2;
475 }
476
emit_udivmod(u8 rd,u8 rm,u8 rn,struct jit_ctx * ctx,u8 op)477 static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
478 {
479 const int exclude_mask = BIT(ARM_R0) | BIT(ARM_R1);
480 const s8 *tmp = bpf2a32[TMP_REG_1];
481
482 #if __LINUX_ARM_ARCH__ == 7
483 if (elf_hwcap & HWCAP_IDIVA) {
484 if (op == BPF_DIV)
485 emit(ARM_UDIV(rd, rm, rn), ctx);
486 else {
487 emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
488 emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
489 }
490 return;
491 }
492 #endif
493
494 /*
495 * For BPF_ALU | BPF_DIV | BPF_K instructions
496 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
497 * function, we need to save it on caller side to save
498 * it from getting destroyed within callee.
499 * After the return from the callee, we restore ARM_R0
500 * ARM_R1.
501 */
502 if (rn != ARM_R1) {
503 emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
504 emit(ARM_MOV_R(ARM_R1, rn), ctx);
505 }
506 if (rm != ARM_R0) {
507 emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
508 emit(ARM_MOV_R(ARM_R0, rm), ctx);
509 }
510
511 /* Push caller-saved registers on stack */
512 emit(ARM_PUSH(CALLER_MASK & ~exclude_mask), ctx);
513
514 /* Call appropriate function */
515 emit_mov_i(ARM_IP, op == BPF_DIV ?
516 (u32)jit_udiv32 : (u32)jit_mod32, ctx);
517 emit_blx_r(ARM_IP, ctx);
518
519 /* Restore caller-saved registers from stack */
520 emit(ARM_POP(CALLER_MASK & ~exclude_mask), ctx);
521
522 /* Save return value */
523 if (rd != ARM_R0)
524 emit(ARM_MOV_R(rd, ARM_R0), ctx);
525
526 /* Restore ARM_R0 and ARM_R1 */
527 if (rn != ARM_R1)
528 emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
529 if (rm != ARM_R0)
530 emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
531 }
532
533 /* Is the translated BPF register on stack? */
is_stacked(s8 reg)534 static bool is_stacked(s8 reg)
535 {
536 return reg < 0;
537 }
538
539 /* If a BPF register is on the stack (stk is true), load it to the
540 * supplied temporary register and return the temporary register
541 * for subsequent operations, otherwise just use the CPU register.
542 */
arm_bpf_get_reg32(s8 reg,s8 tmp,struct jit_ctx * ctx)543 static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx)
544 {
545 if (is_stacked(reg)) {
546 emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
547 reg = tmp;
548 }
549 return reg;
550 }
551
arm_bpf_get_reg64(const s8 * reg,const s8 * tmp,struct jit_ctx * ctx)552 static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp,
553 struct jit_ctx *ctx)
554 {
555 if (is_stacked(reg[1])) {
556 if (__LINUX_ARM_ARCH__ >= 6 ||
557 ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
558 emit(ARM_LDRD_I(tmp[1], ARM_FP,
559 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
560 } else {
561 emit(ARM_LDR_I(tmp[1], ARM_FP,
562 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
563 emit(ARM_LDR_I(tmp[0], ARM_FP,
564 EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
565 }
566 reg = tmp;
567 }
568 return reg;
569 }
570
571 /* If a BPF register is on the stack (stk is true), save the register
572 * back to the stack. If the source register is not the same, then
573 * move it into the correct register.
574 */
arm_bpf_put_reg32(s8 reg,s8 src,struct jit_ctx * ctx)575 static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx)
576 {
577 if (is_stacked(reg))
578 emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
579 else if (reg != src)
580 emit(ARM_MOV_R(reg, src), ctx);
581 }
582
arm_bpf_put_reg64(const s8 * reg,const s8 * src,struct jit_ctx * ctx)583 static void arm_bpf_put_reg64(const s8 *reg, const s8 *src,
584 struct jit_ctx *ctx)
585 {
586 if (is_stacked(reg[1])) {
587 if (__LINUX_ARM_ARCH__ >= 6 ||
588 ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
589 emit(ARM_STRD_I(src[1], ARM_FP,
590 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
591 } else {
592 emit(ARM_STR_I(src[1], ARM_FP,
593 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
594 emit(ARM_STR_I(src[0], ARM_FP,
595 EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
596 }
597 } else {
598 if (reg[1] != src[1])
599 emit(ARM_MOV_R(reg[1], src[1]), ctx);
600 if (reg[0] != src[0])
601 emit(ARM_MOV_R(reg[0], src[0]), ctx);
602 }
603 }
604
emit_a32_mov_i(const s8 dst,const u32 val,struct jit_ctx * ctx)605 static inline void emit_a32_mov_i(const s8 dst, const u32 val,
606 struct jit_ctx *ctx)
607 {
608 const s8 *tmp = bpf2a32[TMP_REG_1];
609
610 if (is_stacked(dst)) {
611 emit_mov_i(tmp[1], val, ctx);
612 arm_bpf_put_reg32(dst, tmp[1], ctx);
613 } else {
614 emit_mov_i(dst, val, ctx);
615 }
616 }
617
emit_a32_mov_i64(const s8 dst[],u64 val,struct jit_ctx * ctx)618 static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx)
619 {
620 const s8 *tmp = bpf2a32[TMP_REG_1];
621 const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
622
623 emit_mov_i(rd[1], (u32)val, ctx);
624 emit_mov_i(rd[0], val >> 32, ctx);
625
626 arm_bpf_put_reg64(dst, rd, ctx);
627 }
628
629 /* Sign extended move */
emit_a32_mov_se_i64(const bool is64,const s8 dst[],const u32 val,struct jit_ctx * ctx)630 static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[],
631 const u32 val, struct jit_ctx *ctx) {
632 u64 val64 = val;
633
634 if (is64 && (val & (1<<31)))
635 val64 |= 0xffffffff00000000ULL;
636 emit_a32_mov_i64(dst, val64, ctx);
637 }
638
emit_a32_add_r(const u8 dst,const u8 src,const bool is64,const bool hi,struct jit_ctx * ctx)639 static inline void emit_a32_add_r(const u8 dst, const u8 src,
640 const bool is64, const bool hi,
641 struct jit_ctx *ctx) {
642 /* 64 bit :
643 * adds dst_lo, dst_lo, src_lo
644 * adc dst_hi, dst_hi, src_hi
645 * 32 bit :
646 * add dst_lo, dst_lo, src_lo
647 */
648 if (!hi && is64)
649 emit(ARM_ADDS_R(dst, dst, src), ctx);
650 else if (hi && is64)
651 emit(ARM_ADC_R(dst, dst, src), ctx);
652 else
653 emit(ARM_ADD_R(dst, dst, src), ctx);
654 }
655
emit_a32_sub_r(const u8 dst,const u8 src,const bool is64,const bool hi,struct jit_ctx * ctx)656 static inline void emit_a32_sub_r(const u8 dst, const u8 src,
657 const bool is64, const bool hi,
658 struct jit_ctx *ctx) {
659 /* 64 bit :
660 * subs dst_lo, dst_lo, src_lo
661 * sbc dst_hi, dst_hi, src_hi
662 * 32 bit :
663 * sub dst_lo, dst_lo, src_lo
664 */
665 if (!hi && is64)
666 emit(ARM_SUBS_R(dst, dst, src), ctx);
667 else if (hi && is64)
668 emit(ARM_SBC_R(dst, dst, src), ctx);
669 else
670 emit(ARM_SUB_R(dst, dst, src), ctx);
671 }
672
emit_alu_r(const u8 dst,const u8 src,const bool is64,const bool hi,const u8 op,struct jit_ctx * ctx)673 static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
674 const bool hi, const u8 op, struct jit_ctx *ctx){
675 switch (BPF_OP(op)) {
676 /* dst = dst + src */
677 case BPF_ADD:
678 emit_a32_add_r(dst, src, is64, hi, ctx);
679 break;
680 /* dst = dst - src */
681 case BPF_SUB:
682 emit_a32_sub_r(dst, src, is64, hi, ctx);
683 break;
684 /* dst = dst | src */
685 case BPF_OR:
686 emit(ARM_ORR_R(dst, dst, src), ctx);
687 break;
688 /* dst = dst & src */
689 case BPF_AND:
690 emit(ARM_AND_R(dst, dst, src), ctx);
691 break;
692 /* dst = dst ^ src */
693 case BPF_XOR:
694 emit(ARM_EOR_R(dst, dst, src), ctx);
695 break;
696 /* dst = dst * src */
697 case BPF_MUL:
698 emit(ARM_MUL(dst, dst, src), ctx);
699 break;
700 /* dst = dst << src */
701 case BPF_LSH:
702 emit(ARM_LSL_R(dst, dst, src), ctx);
703 break;
704 /* dst = dst >> src */
705 case BPF_RSH:
706 emit(ARM_LSR_R(dst, dst, src), ctx);
707 break;
708 /* dst = dst >> src (signed)*/
709 case BPF_ARSH:
710 emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
711 break;
712 }
713 }
714
715 /* ALU operation (32 bit)
716 * dst = dst (op) src
717 */
emit_a32_alu_r(const s8 dst,const s8 src,struct jit_ctx * ctx,const bool is64,const bool hi,const u8 op)718 static inline void emit_a32_alu_r(const s8 dst, const s8 src,
719 struct jit_ctx *ctx, const bool is64,
720 const bool hi, const u8 op) {
721 const s8 *tmp = bpf2a32[TMP_REG_1];
722 s8 rn, rd;
723
724 rn = arm_bpf_get_reg32(src, tmp[1], ctx);
725 rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
726 /* ALU operation */
727 emit_alu_r(rd, rn, is64, hi, op, ctx);
728 arm_bpf_put_reg32(dst, rd, ctx);
729 }
730
731 /* ALU operation (64 bit) */
emit_a32_alu_r64(const bool is64,const s8 dst[],const s8 src[],struct jit_ctx * ctx,const u8 op)732 static inline void emit_a32_alu_r64(const bool is64, const s8 dst[],
733 const s8 src[], struct jit_ctx *ctx,
734 const u8 op) {
735 const s8 *tmp = bpf2a32[TMP_REG_1];
736 const s8 *tmp2 = bpf2a32[TMP_REG_2];
737 const s8 *rd;
738
739 rd = arm_bpf_get_reg64(dst, tmp, ctx);
740 if (is64) {
741 const s8 *rs;
742
743 rs = arm_bpf_get_reg64(src, tmp2, ctx);
744
745 /* ALU operation */
746 emit_alu_r(rd[1], rs[1], true, false, op, ctx);
747 emit_alu_r(rd[0], rs[0], true, true, op, ctx);
748 } else {
749 s8 rs;
750
751 rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
752
753 /* ALU operation */
754 emit_alu_r(rd[1], rs, true, false, op, ctx);
755 if (!ctx->prog->aux->verifier_zext)
756 emit_a32_mov_i(rd[0], 0, ctx);
757 }
758
759 arm_bpf_put_reg64(dst, rd, ctx);
760 }
761
762 /* dst = src (4 bytes)*/
emit_a32_mov_r(const s8 dst,const s8 src,struct jit_ctx * ctx)763 static inline void emit_a32_mov_r(const s8 dst, const s8 src,
764 struct jit_ctx *ctx) {
765 const s8 *tmp = bpf2a32[TMP_REG_1];
766 s8 rt;
767
768 rt = arm_bpf_get_reg32(src, tmp[0], ctx);
769 arm_bpf_put_reg32(dst, rt, ctx);
770 }
771
772 /* dst = src */
emit_a32_mov_r64(const bool is64,const s8 dst[],const s8 src[],struct jit_ctx * ctx)773 static inline void emit_a32_mov_r64(const bool is64, const s8 dst[],
774 const s8 src[],
775 struct jit_ctx *ctx) {
776 if (!is64) {
777 emit_a32_mov_r(dst_lo, src_lo, ctx);
778 if (!ctx->prog->aux->verifier_zext)
779 /* Zero out high 4 bytes */
780 emit_a32_mov_i(dst_hi, 0, ctx);
781 } else if (__LINUX_ARM_ARCH__ < 6 &&
782 ctx->cpu_architecture < CPU_ARCH_ARMv5TE) {
783 /* complete 8 byte move */
784 emit_a32_mov_r(dst_lo, src_lo, ctx);
785 emit_a32_mov_r(dst_hi, src_hi, ctx);
786 } else if (is_stacked(src_lo) && is_stacked(dst_lo)) {
787 const u8 *tmp = bpf2a32[TMP_REG_1];
788
789 emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
790 emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
791 } else if (is_stacked(src_lo)) {
792 emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
793 } else if (is_stacked(dst_lo)) {
794 emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
795 } else {
796 emit(ARM_MOV_R(dst[0], src[0]), ctx);
797 emit(ARM_MOV_R(dst[1], src[1]), ctx);
798 }
799 }
800
801 /* Shift operations */
emit_a32_alu_i(const s8 dst,const u32 val,struct jit_ctx * ctx,const u8 op)802 static inline void emit_a32_alu_i(const s8 dst, const u32 val,
803 struct jit_ctx *ctx, const u8 op) {
804 const s8 *tmp = bpf2a32[TMP_REG_1];
805 s8 rd;
806
807 rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
808
809 /* Do shift operation */
810 switch (op) {
811 case BPF_LSH:
812 emit(ARM_LSL_I(rd, rd, val), ctx);
813 break;
814 case BPF_RSH:
815 emit(ARM_LSR_I(rd, rd, val), ctx);
816 break;
817 case BPF_NEG:
818 emit(ARM_RSB_I(rd, rd, val), ctx);
819 break;
820 }
821
822 arm_bpf_put_reg32(dst, rd, ctx);
823 }
824
825 /* dst = ~dst (64 bit) */
emit_a32_neg64(const s8 dst[],struct jit_ctx * ctx)826 static inline void emit_a32_neg64(const s8 dst[],
827 struct jit_ctx *ctx){
828 const s8 *tmp = bpf2a32[TMP_REG_1];
829 const s8 *rd;
830
831 /* Setup Operand */
832 rd = arm_bpf_get_reg64(dst, tmp, ctx);
833
834 /* Do Negate Operation */
835 emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx);
836 emit(ARM_RSC_I(rd[0], rd[0], 0), ctx);
837
838 arm_bpf_put_reg64(dst, rd, ctx);
839 }
840
841 /* dst = dst << src */
emit_a32_lsh_r64(const s8 dst[],const s8 src[],struct jit_ctx * ctx)842 static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[],
843 struct jit_ctx *ctx) {
844 const s8 *tmp = bpf2a32[TMP_REG_1];
845 const s8 *tmp2 = bpf2a32[TMP_REG_2];
846 const s8 *rd;
847 s8 rt;
848
849 /* Setup Operands */
850 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
851 rd = arm_bpf_get_reg64(dst, tmp, ctx);
852
853 /* Do LSH operation */
854 emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
855 emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
856 emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx);
857 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx);
858 emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx);
859 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx);
860
861 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
862 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
863 }
864
865 /* dst = dst >> src (signed)*/
emit_a32_arsh_r64(const s8 dst[],const s8 src[],struct jit_ctx * ctx)866 static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[],
867 struct jit_ctx *ctx) {
868 const s8 *tmp = bpf2a32[TMP_REG_1];
869 const s8 *tmp2 = bpf2a32[TMP_REG_2];
870 const s8 *rd;
871 s8 rt;
872
873 /* Setup Operands */
874 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
875 rd = arm_bpf_get_reg64(dst, tmp, ctx);
876
877 /* Do the ARSH operation */
878 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
879 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
880 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
881 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
882 _emit(ARM_COND_MI, ARM_B(0), ctx);
883 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx);
884 emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx);
885
886 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
887 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
888 }
889
890 /* dst = dst >> src */
emit_a32_rsh_r64(const s8 dst[],const s8 src[],struct jit_ctx * ctx)891 static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[],
892 struct jit_ctx *ctx) {
893 const s8 *tmp = bpf2a32[TMP_REG_1];
894 const s8 *tmp2 = bpf2a32[TMP_REG_2];
895 const s8 *rd;
896 s8 rt;
897
898 /* Setup Operands */
899 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
900 rd = arm_bpf_get_reg64(dst, tmp, ctx);
901
902 /* Do RSH operation */
903 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
904 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
905 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
906 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
907 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx);
908 emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx);
909
910 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
911 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
912 }
913
914 /* dst = dst << val */
emit_a32_lsh_i64(const s8 dst[],const u32 val,struct jit_ctx * ctx)915 static inline void emit_a32_lsh_i64(const s8 dst[],
916 const u32 val, struct jit_ctx *ctx){
917 const s8 *tmp = bpf2a32[TMP_REG_1];
918 const s8 *tmp2 = bpf2a32[TMP_REG_2];
919 const s8 *rd;
920
921 /* Setup operands */
922 rd = arm_bpf_get_reg64(dst, tmp, ctx);
923
924 /* Do LSH operation */
925 if (val < 32) {
926 emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx);
927 emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx);
928 emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx);
929 } else {
930 if (val == 32)
931 emit(ARM_MOV_R(rd[0], rd[1]), ctx);
932 else
933 emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx);
934 emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx);
935 }
936
937 arm_bpf_put_reg64(dst, rd, ctx);
938 }
939
940 /* dst = dst >> val */
emit_a32_rsh_i64(const s8 dst[],const u32 val,struct jit_ctx * ctx)941 static inline void emit_a32_rsh_i64(const s8 dst[],
942 const u32 val, struct jit_ctx *ctx) {
943 const s8 *tmp = bpf2a32[TMP_REG_1];
944 const s8 *tmp2 = bpf2a32[TMP_REG_2];
945 const s8 *rd;
946
947 /* Setup operands */
948 rd = arm_bpf_get_reg64(dst, tmp, ctx);
949
950 /* Do LSR operation */
951 if (val == 0) {
952 /* An immediate value of 0 encodes a shift amount of 32
953 * for LSR. To shift by 0, don't do anything.
954 */
955 } else if (val < 32) {
956 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
957 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
958 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);
959 } else if (val == 32) {
960 emit(ARM_MOV_R(rd[1], rd[0]), ctx);
961 emit(ARM_MOV_I(rd[0], 0), ctx);
962 } else {
963 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx);
964 emit(ARM_MOV_I(rd[0], 0), ctx);
965 }
966
967 arm_bpf_put_reg64(dst, rd, ctx);
968 }
969
970 /* dst = dst >> val (signed) */
emit_a32_arsh_i64(const s8 dst[],const u32 val,struct jit_ctx * ctx)971 static inline void emit_a32_arsh_i64(const s8 dst[],
972 const u32 val, struct jit_ctx *ctx){
973 const s8 *tmp = bpf2a32[TMP_REG_1];
974 const s8 *tmp2 = bpf2a32[TMP_REG_2];
975 const s8 *rd;
976
977 /* Setup operands */
978 rd = arm_bpf_get_reg64(dst, tmp, ctx);
979
980 /* Do ARSH operation */
981 if (val == 0) {
982 /* An immediate value of 0 encodes a shift amount of 32
983 * for ASR. To shift by 0, don't do anything.
984 */
985 } else if (val < 32) {
986 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
987 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
988 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx);
989 } else if (val == 32) {
990 emit(ARM_MOV_R(rd[1], rd[0]), ctx);
991 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
992 } else {
993 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx);
994 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
995 }
996
997 arm_bpf_put_reg64(dst, rd, ctx);
998 }
999
emit_a32_mul_r64(const s8 dst[],const s8 src[],struct jit_ctx * ctx)1000 static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[],
1001 struct jit_ctx *ctx) {
1002 const s8 *tmp = bpf2a32[TMP_REG_1];
1003 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1004 const s8 *rd, *rt;
1005
1006 /* Setup operands for multiplication */
1007 rd = arm_bpf_get_reg64(dst, tmp, ctx);
1008 rt = arm_bpf_get_reg64(src, tmp2, ctx);
1009
1010 /* Do Multiplication */
1011 emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx);
1012 emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx);
1013 emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
1014
1015 emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx);
1016 emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx);
1017
1018 arm_bpf_put_reg32(dst_lo, ARM_IP, ctx);
1019 arm_bpf_put_reg32(dst_hi, rd[0], ctx);
1020 }
1021
is_ldst_imm(s16 off,const u8 size)1022 static bool is_ldst_imm(s16 off, const u8 size)
1023 {
1024 s16 off_max = 0;
1025
1026 switch (size) {
1027 case BPF_B:
1028 case BPF_W:
1029 off_max = 0xfff;
1030 break;
1031 case BPF_H:
1032 off_max = 0xff;
1033 break;
1034 case BPF_DW:
1035 /* Need to make sure off+4 does not overflow. */
1036 off_max = 0xfff - 4;
1037 break;
1038 }
1039 return -off_max <= off && off <= off_max;
1040 }
1041
1042 /* *(size *)(dst + off) = src */
emit_str_r(const s8 dst,const s8 src[],s16 off,struct jit_ctx * ctx,const u8 sz)1043 static inline void emit_str_r(const s8 dst, const s8 src[],
1044 s16 off, struct jit_ctx *ctx, const u8 sz){
1045 const s8 *tmp = bpf2a32[TMP_REG_1];
1046 s8 rd;
1047
1048 rd = arm_bpf_get_reg32(dst, tmp[1], ctx);
1049
1050 if (!is_ldst_imm(off, sz)) {
1051 emit_a32_mov_i(tmp[0], off, ctx);
1052 emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx);
1053 rd = tmp[0];
1054 off = 0;
1055 }
1056 switch (sz) {
1057 case BPF_B:
1058 /* Store a Byte */
1059 emit(ARM_STRB_I(src_lo, rd, off), ctx);
1060 break;
1061 case BPF_H:
1062 /* Store a HalfWord */
1063 emit(ARM_STRH_I(src_lo, rd, off), ctx);
1064 break;
1065 case BPF_W:
1066 /* Store a Word */
1067 emit(ARM_STR_I(src_lo, rd, off), ctx);
1068 break;
1069 case BPF_DW:
1070 /* Store a Double Word */
1071 emit(ARM_STR_I(src_lo, rd, off), ctx);
1072 emit(ARM_STR_I(src_hi, rd, off + 4), ctx);
1073 break;
1074 }
1075 }
1076
1077 /* dst = *(size*)(src + off) */
emit_ldx_r(const s8 dst[],const s8 src,s16 off,struct jit_ctx * ctx,const u8 sz)1078 static inline void emit_ldx_r(const s8 dst[], const s8 src,
1079 s16 off, struct jit_ctx *ctx, const u8 sz){
1080 const s8 *tmp = bpf2a32[TMP_REG_1];
1081 const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1082 s8 rm = src;
1083
1084 if (!is_ldst_imm(off, sz)) {
1085 emit_a32_mov_i(tmp[0], off, ctx);
1086 emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1087 rm = tmp[0];
1088 off = 0;
1089 } else if (rd[1] == rm) {
1090 emit(ARM_MOV_R(tmp[0], rm), ctx);
1091 rm = tmp[0];
1092 }
1093 switch (sz) {
1094 case BPF_B:
1095 /* Load a Byte */
1096 emit(ARM_LDRB_I(rd[1], rm, off), ctx);
1097 if (!ctx->prog->aux->verifier_zext)
1098 emit_a32_mov_i(rd[0], 0, ctx);
1099 break;
1100 case BPF_H:
1101 /* Load a HalfWord */
1102 emit(ARM_LDRH_I(rd[1], rm, off), ctx);
1103 if (!ctx->prog->aux->verifier_zext)
1104 emit_a32_mov_i(rd[0], 0, ctx);
1105 break;
1106 case BPF_W:
1107 /* Load a Word */
1108 emit(ARM_LDR_I(rd[1], rm, off), ctx);
1109 if (!ctx->prog->aux->verifier_zext)
1110 emit_a32_mov_i(rd[0], 0, ctx);
1111 break;
1112 case BPF_DW:
1113 /* Load a Double Word */
1114 emit(ARM_LDR_I(rd[1], rm, off), ctx);
1115 emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
1116 break;
1117 }
1118 arm_bpf_put_reg64(dst, rd, ctx);
1119 }
1120
1121 /* Arithmatic Operation */
emit_ar_r(const u8 rd,const u8 rt,const u8 rm,const u8 rn,struct jit_ctx * ctx,u8 op,bool is_jmp64)1122 static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
1123 const u8 rn, struct jit_ctx *ctx, u8 op,
1124 bool is_jmp64) {
1125 switch (op) {
1126 case BPF_JSET:
1127 if (is_jmp64) {
1128 emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
1129 emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
1130 emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
1131 } else {
1132 emit(ARM_ANDS_R(ARM_IP, rt, rn), ctx);
1133 }
1134 break;
1135 case BPF_JEQ:
1136 case BPF_JNE:
1137 case BPF_JGT:
1138 case BPF_JGE:
1139 case BPF_JLE:
1140 case BPF_JLT:
1141 if (is_jmp64) {
1142 emit(ARM_CMP_R(rd, rm), ctx);
1143 /* Only compare low halve if high halve are equal. */
1144 _emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
1145 } else {
1146 emit(ARM_CMP_R(rt, rn), ctx);
1147 }
1148 break;
1149 case BPF_JSLE:
1150 case BPF_JSGT:
1151 emit(ARM_CMP_R(rn, rt), ctx);
1152 if (is_jmp64)
1153 emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
1154 break;
1155 case BPF_JSLT:
1156 case BPF_JSGE:
1157 emit(ARM_CMP_R(rt, rn), ctx);
1158 if (is_jmp64)
1159 emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
1160 break;
1161 }
1162 }
1163
1164 static int out_offset = -1; /* initialized on the first pass of build_body() */
emit_bpf_tail_call(struct jit_ctx * ctx)1165 static int emit_bpf_tail_call(struct jit_ctx *ctx)
1166 {
1167
1168 /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
1169 const s8 *r2 = bpf2a32[BPF_REG_2];
1170 const s8 *r3 = bpf2a32[BPF_REG_3];
1171 const s8 *tmp = bpf2a32[TMP_REG_1];
1172 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1173 const s8 *tcc = bpf2a32[TCALL_CNT];
1174 const s8 *tc;
1175 const int idx0 = ctx->idx;
1176 #define cur_offset (ctx->idx - idx0)
1177 #define jmp_offset (out_offset - (cur_offset) - 2)
1178 u32 lo, hi;
1179 s8 r_array, r_index;
1180 int off;
1181
1182 /* if (index >= array->map.max_entries)
1183 * goto out;
1184 */
1185 BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) >
1186 ARM_INST_LDST__IMM12);
1187 off = offsetof(struct bpf_array, map.max_entries);
1188 r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx);
1189 /* index is 32-bit for arrays */
1190 r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx);
1191 /* array->map.max_entries */
1192 emit(ARM_LDR_I(tmp[1], r_array, off), ctx);
1193 /* index >= array->map.max_entries */
1194 emit(ARM_CMP_R(r_index, tmp[1]), ctx);
1195 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1196
1197 /* tmp2[0] = array, tmp2[1] = index */
1198
1199 /* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
1200 * goto out;
1201 * tail_call_cnt++;
1202 */
1203 lo = (u32)MAX_TAIL_CALL_CNT;
1204 hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1205 tc = arm_bpf_get_reg64(tcc, tmp, ctx);
1206 emit(ARM_CMP_I(tc[0], hi), ctx);
1207 _emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx);
1208 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1209 emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx);
1210 emit(ARM_ADC_I(tc[0], tc[0], 0), ctx);
1211 arm_bpf_put_reg64(tcc, tmp, ctx);
1212
1213 /* prog = array->ptrs[index]
1214 * if (prog == NULL)
1215 * goto out;
1216 */
1217 BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0);
1218 off = imm8m(offsetof(struct bpf_array, ptrs));
1219 emit(ARM_ADD_I(tmp[1], r_array, off), ctx);
1220 emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx);
1221 emit(ARM_CMP_I(tmp[1], 0), ctx);
1222 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1223
1224 /* goto *(prog->bpf_func + prologue_size); */
1225 BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) >
1226 ARM_INST_LDST__IMM12);
1227 off = offsetof(struct bpf_prog, bpf_func);
1228 emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx);
1229 emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
1230 emit_bx_r(tmp[1], ctx);
1231
1232 /* out: */
1233 if (out_offset == -1)
1234 out_offset = cur_offset;
1235 if (cur_offset != out_offset) {
1236 pr_err_once("tail_call out_offset = %d, expected %d!\n",
1237 cur_offset, out_offset);
1238 return -1;
1239 }
1240 return 0;
1241 #undef cur_offset
1242 #undef jmp_offset
1243 }
1244
1245 /* 0xabcd => 0xcdab */
emit_rev16(const u8 rd,const u8 rn,struct jit_ctx * ctx)1246 static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1247 {
1248 #if __LINUX_ARM_ARCH__ < 6
1249 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1250
1251 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1252 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1253 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1254 emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1255 #else /* ARMv6+ */
1256 emit(ARM_REV16(rd, rn), ctx);
1257 #endif
1258 }
1259
1260 /* 0xabcdefgh => 0xghefcdab */
emit_rev32(const u8 rd,const u8 rn,struct jit_ctx * ctx)1261 static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1262 {
1263 #if __LINUX_ARM_ARCH__ < 6
1264 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1265
1266 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1267 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1268 emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1269
1270 emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1271 emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1272 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1273 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1274 emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1275 emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1276 emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1277
1278 #else /* ARMv6+ */
1279 emit(ARM_REV(rd, rn), ctx);
1280 #endif
1281 }
1282
1283 // push the scratch stack register on top of the stack
emit_push_r64(const s8 src[],struct jit_ctx * ctx)1284 static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx)
1285 {
1286 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1287 const s8 *rt;
1288 u16 reg_set = 0;
1289
1290 rt = arm_bpf_get_reg64(src, tmp2, ctx);
1291
1292 reg_set = (1 << rt[1]) | (1 << rt[0]);
1293 emit(ARM_PUSH(reg_set), ctx);
1294 }
1295
build_prologue(struct jit_ctx * ctx)1296 static void build_prologue(struct jit_ctx *ctx)
1297 {
1298 const s8 r0 = bpf2a32[BPF_REG_0][1];
1299 const s8 r2 = bpf2a32[BPF_REG_1][1];
1300 const s8 r3 = bpf2a32[BPF_REG_1][0];
1301 const s8 r4 = bpf2a32[BPF_REG_6][1];
1302 const s8 fplo = bpf2a32[BPF_REG_FP][1];
1303 const s8 fphi = bpf2a32[BPF_REG_FP][0];
1304 const s8 *tcc = bpf2a32[TCALL_CNT];
1305
1306 /* Save callee saved registers. */
1307 #ifdef CONFIG_FRAME_POINTER
1308 u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1309 emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
1310 emit(ARM_PUSH(reg_set), ctx);
1311 emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1312 #else
1313 emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1314 emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
1315 #endif
1316 /* Save frame pointer for later */
1317 emit(ARM_SUB_I(ARM_IP, ARM_SP, SCRATCH_SIZE), ctx);
1318
1319 ctx->stack_size = imm8m(STACK_SIZE);
1320
1321 /* Set up function call stack */
1322 emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
1323
1324 /* Set up BPF prog stack base register */
1325 emit_a32_mov_r(fplo, ARM_IP, ctx);
1326 emit_a32_mov_i(fphi, 0, ctx);
1327
1328 /* mov r4, 0 */
1329 emit(ARM_MOV_I(r4, 0), ctx);
1330
1331 /* Move BPF_CTX to BPF_R1 */
1332 emit(ARM_MOV_R(r3, r4), ctx);
1333 emit(ARM_MOV_R(r2, r0), ctx);
1334 /* Initialize Tail Count */
1335 emit(ARM_STR_I(r4, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(tcc[0])), ctx);
1336 emit(ARM_STR_I(r4, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(tcc[1])), ctx);
1337 /* end of prologue */
1338 }
1339
1340 /* restore callee saved registers. */
build_epilogue(struct jit_ctx * ctx)1341 static void build_epilogue(struct jit_ctx *ctx)
1342 {
1343 #ifdef CONFIG_FRAME_POINTER
1344 /* When using frame pointers, some additional registers need to
1345 * be loaded. */
1346 u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1347 emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
1348 emit(ARM_LDM(ARM_SP, reg_set), ctx);
1349 #else
1350 /* Restore callee saved registers. */
1351 emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1352 emit(ARM_POP(CALLEE_POP_MASK), ctx);
1353 #endif
1354 }
1355
1356 /*
1357 * Convert an eBPF instruction to native instruction, i.e
1358 * JITs an eBPF instruction.
1359 * Returns :
1360 * 0 - Successfully JITed an 8-byte eBPF instruction
1361 * >0 - Successfully JITed a 16-byte eBPF instruction
1362 * <0 - Failed to JIT.
1363 */
build_insn(const struct bpf_insn * insn,struct jit_ctx * ctx)1364 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1365 {
1366 const u8 code = insn->code;
1367 const s8 *dst = bpf2a32[insn->dst_reg];
1368 const s8 *src = bpf2a32[insn->src_reg];
1369 const s8 *tmp = bpf2a32[TMP_REG_1];
1370 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1371 const s16 off = insn->off;
1372 const s32 imm = insn->imm;
1373 const int i = insn - ctx->prog->insnsi;
1374 const bool is64 = BPF_CLASS(code) == BPF_ALU64;
1375 const s8 *rd, *rs;
1376 s8 rd_lo, rt, rm, rn;
1377 s32 jmp_offset;
1378
1379 #define check_imm(bits, imm) do { \
1380 if ((imm) >= (1 << ((bits) - 1)) || \
1381 (imm) < -(1 << ((bits) - 1))) { \
1382 pr_info("[%2d] imm=%d(0x%x) out of range\n", \
1383 i, imm, imm); \
1384 return -EINVAL; \
1385 } \
1386 } while (0)
1387 #define check_imm24(imm) check_imm(24, imm)
1388
1389 switch (code) {
1390 /* ALU operations */
1391
1392 /* dst = src */
1393 case BPF_ALU | BPF_MOV | BPF_K:
1394 case BPF_ALU | BPF_MOV | BPF_X:
1395 case BPF_ALU64 | BPF_MOV | BPF_K:
1396 case BPF_ALU64 | BPF_MOV | BPF_X:
1397 switch (BPF_SRC(code)) {
1398 case BPF_X:
1399 if (imm == 1) {
1400 /* Special mov32 for zext */
1401 emit_a32_mov_i(dst_hi, 0, ctx);
1402 break;
1403 }
1404 emit_a32_mov_r64(is64, dst, src, ctx);
1405 break;
1406 case BPF_K:
1407 /* Sign-extend immediate value to destination reg */
1408 emit_a32_mov_se_i64(is64, dst, imm, ctx);
1409 break;
1410 }
1411 break;
1412 /* dst = dst + src/imm */
1413 /* dst = dst - src/imm */
1414 /* dst = dst | src/imm */
1415 /* dst = dst & src/imm */
1416 /* dst = dst ^ src/imm */
1417 /* dst = dst * src/imm */
1418 /* dst = dst << src */
1419 /* dst = dst >> src */
1420 case BPF_ALU | BPF_ADD | BPF_K:
1421 case BPF_ALU | BPF_ADD | BPF_X:
1422 case BPF_ALU | BPF_SUB | BPF_K:
1423 case BPF_ALU | BPF_SUB | BPF_X:
1424 case BPF_ALU | BPF_OR | BPF_K:
1425 case BPF_ALU | BPF_OR | BPF_X:
1426 case BPF_ALU | BPF_AND | BPF_K:
1427 case BPF_ALU | BPF_AND | BPF_X:
1428 case BPF_ALU | BPF_XOR | BPF_K:
1429 case BPF_ALU | BPF_XOR | BPF_X:
1430 case BPF_ALU | BPF_MUL | BPF_K:
1431 case BPF_ALU | BPF_MUL | BPF_X:
1432 case BPF_ALU | BPF_LSH | BPF_X:
1433 case BPF_ALU | BPF_RSH | BPF_X:
1434 case BPF_ALU | BPF_ARSH | BPF_K:
1435 case BPF_ALU | BPF_ARSH | BPF_X:
1436 case BPF_ALU64 | BPF_ADD | BPF_K:
1437 case BPF_ALU64 | BPF_ADD | BPF_X:
1438 case BPF_ALU64 | BPF_SUB | BPF_K:
1439 case BPF_ALU64 | BPF_SUB | BPF_X:
1440 case BPF_ALU64 | BPF_OR | BPF_K:
1441 case BPF_ALU64 | BPF_OR | BPF_X:
1442 case BPF_ALU64 | BPF_AND | BPF_K:
1443 case BPF_ALU64 | BPF_AND | BPF_X:
1444 case BPF_ALU64 | BPF_XOR | BPF_K:
1445 case BPF_ALU64 | BPF_XOR | BPF_X:
1446 switch (BPF_SRC(code)) {
1447 case BPF_X:
1448 emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code));
1449 break;
1450 case BPF_K:
1451 /* Move immediate value to the temporary register
1452 * and then do the ALU operation on the temporary
1453 * register as this will sign-extend the immediate
1454 * value into temporary reg and then it would be
1455 * safe to do the operation on it.
1456 */
1457 emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1458 emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code));
1459 break;
1460 }
1461 break;
1462 /* dst = dst / src(imm) */
1463 /* dst = dst % src(imm) */
1464 case BPF_ALU | BPF_DIV | BPF_K:
1465 case BPF_ALU | BPF_DIV | BPF_X:
1466 case BPF_ALU | BPF_MOD | BPF_K:
1467 case BPF_ALU | BPF_MOD | BPF_X:
1468 rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx);
1469 switch (BPF_SRC(code)) {
1470 case BPF_X:
1471 rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx);
1472 break;
1473 case BPF_K:
1474 rt = tmp2[0];
1475 emit_a32_mov_i(rt, imm, ctx);
1476 break;
1477 default:
1478 rt = src_lo;
1479 break;
1480 }
1481 emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code));
1482 arm_bpf_put_reg32(dst_lo, rd_lo, ctx);
1483 if (!ctx->prog->aux->verifier_zext)
1484 emit_a32_mov_i(dst_hi, 0, ctx);
1485 break;
1486 case BPF_ALU64 | BPF_DIV | BPF_K:
1487 case BPF_ALU64 | BPF_DIV | BPF_X:
1488 case BPF_ALU64 | BPF_MOD | BPF_K:
1489 case BPF_ALU64 | BPF_MOD | BPF_X:
1490 goto notyet;
1491 /* dst = dst >> imm */
1492 /* dst = dst << imm */
1493 case BPF_ALU | BPF_RSH | BPF_K:
1494 case BPF_ALU | BPF_LSH | BPF_K:
1495 if (unlikely(imm > 31))
1496 return -EINVAL;
1497 if (imm)
1498 emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code));
1499 if (!ctx->prog->aux->verifier_zext)
1500 emit_a32_mov_i(dst_hi, 0, ctx);
1501 break;
1502 /* dst = dst << imm */
1503 case BPF_ALU64 | BPF_LSH | BPF_K:
1504 if (unlikely(imm > 63))
1505 return -EINVAL;
1506 emit_a32_lsh_i64(dst, imm, ctx);
1507 break;
1508 /* dst = dst >> imm */
1509 case BPF_ALU64 | BPF_RSH | BPF_K:
1510 if (unlikely(imm > 63))
1511 return -EINVAL;
1512 emit_a32_rsh_i64(dst, imm, ctx);
1513 break;
1514 /* dst = dst << src */
1515 case BPF_ALU64 | BPF_LSH | BPF_X:
1516 emit_a32_lsh_r64(dst, src, ctx);
1517 break;
1518 /* dst = dst >> src */
1519 case BPF_ALU64 | BPF_RSH | BPF_X:
1520 emit_a32_rsh_r64(dst, src, ctx);
1521 break;
1522 /* dst = dst >> src (signed) */
1523 case BPF_ALU64 | BPF_ARSH | BPF_X:
1524 emit_a32_arsh_r64(dst, src, ctx);
1525 break;
1526 /* dst = dst >> imm (signed) */
1527 case BPF_ALU64 | BPF_ARSH | BPF_K:
1528 if (unlikely(imm > 63))
1529 return -EINVAL;
1530 emit_a32_arsh_i64(dst, imm, ctx);
1531 break;
1532 /* dst = ~dst */
1533 case BPF_ALU | BPF_NEG:
1534 emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code));
1535 if (!ctx->prog->aux->verifier_zext)
1536 emit_a32_mov_i(dst_hi, 0, ctx);
1537 break;
1538 /* dst = ~dst (64 bit) */
1539 case BPF_ALU64 | BPF_NEG:
1540 emit_a32_neg64(dst, ctx);
1541 break;
1542 /* dst = dst * src/imm */
1543 case BPF_ALU64 | BPF_MUL | BPF_X:
1544 case BPF_ALU64 | BPF_MUL | BPF_K:
1545 switch (BPF_SRC(code)) {
1546 case BPF_X:
1547 emit_a32_mul_r64(dst, src, ctx);
1548 break;
1549 case BPF_K:
1550 /* Move immediate value to the temporary register
1551 * and then do the multiplication on it as this
1552 * will sign-extend the immediate value into temp
1553 * reg then it would be safe to do the operation
1554 * on it.
1555 */
1556 emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1557 emit_a32_mul_r64(dst, tmp2, ctx);
1558 break;
1559 }
1560 break;
1561 /* dst = htole(dst) */
1562 /* dst = htobe(dst) */
1563 case BPF_ALU | BPF_END | BPF_FROM_LE:
1564 case BPF_ALU | BPF_END | BPF_FROM_BE:
1565 rd = arm_bpf_get_reg64(dst, tmp, ctx);
1566 if (BPF_SRC(code) == BPF_FROM_LE)
1567 goto emit_bswap_uxt;
1568 switch (imm) {
1569 case 16:
1570 emit_rev16(rd[1], rd[1], ctx);
1571 goto emit_bswap_uxt;
1572 case 32:
1573 emit_rev32(rd[1], rd[1], ctx);
1574 goto emit_bswap_uxt;
1575 case 64:
1576 emit_rev32(ARM_LR, rd[1], ctx);
1577 emit_rev32(rd[1], rd[0], ctx);
1578 emit(ARM_MOV_R(rd[0], ARM_LR), ctx);
1579 break;
1580 }
1581 goto exit;
1582 emit_bswap_uxt:
1583 switch (imm) {
1584 case 16:
1585 /* zero-extend 16 bits into 64 bits */
1586 #if __LINUX_ARM_ARCH__ < 6
1587 emit_a32_mov_i(tmp2[1], 0xffff, ctx);
1588 emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx);
1589 #else /* ARMv6+ */
1590 emit(ARM_UXTH(rd[1], rd[1]), ctx);
1591 #endif
1592 if (!ctx->prog->aux->verifier_zext)
1593 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1594 break;
1595 case 32:
1596 /* zero-extend 32 bits into 64 bits */
1597 if (!ctx->prog->aux->verifier_zext)
1598 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1599 break;
1600 case 64:
1601 /* nop */
1602 break;
1603 }
1604 exit:
1605 arm_bpf_put_reg64(dst, rd, ctx);
1606 break;
1607 /* dst = imm64 */
1608 case BPF_LD | BPF_IMM | BPF_DW:
1609 {
1610 u64 val = (u32)imm | (u64)insn[1].imm << 32;
1611
1612 emit_a32_mov_i64(dst, val, ctx);
1613
1614 return 1;
1615 }
1616 /* LDX: dst = *(size *)(src + off) */
1617 case BPF_LDX | BPF_MEM | BPF_W:
1618 case BPF_LDX | BPF_MEM | BPF_H:
1619 case BPF_LDX | BPF_MEM | BPF_B:
1620 case BPF_LDX | BPF_MEM | BPF_DW:
1621 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1622 emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code));
1623 break;
1624 /* speculation barrier */
1625 case BPF_ST | BPF_NOSPEC:
1626 break;
1627 /* ST: *(size *)(dst + off) = imm */
1628 case BPF_ST | BPF_MEM | BPF_W:
1629 case BPF_ST | BPF_MEM | BPF_H:
1630 case BPF_ST | BPF_MEM | BPF_B:
1631 case BPF_ST | BPF_MEM | BPF_DW:
1632 switch (BPF_SIZE(code)) {
1633 case BPF_DW:
1634 /* Sign-extend immediate value into temp reg */
1635 emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1636 break;
1637 case BPF_W:
1638 case BPF_H:
1639 case BPF_B:
1640 emit_a32_mov_i(tmp2[1], imm, ctx);
1641 break;
1642 }
1643 emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code));
1644 break;
1645 /* STX XADD: lock *(u32 *)(dst + off) += src */
1646 case BPF_STX | BPF_XADD | BPF_W:
1647 /* STX XADD: lock *(u64 *)(dst + off) += src */
1648 case BPF_STX | BPF_XADD | BPF_DW:
1649 goto notyet;
1650 /* STX: *(size *)(dst + off) = src */
1651 case BPF_STX | BPF_MEM | BPF_W:
1652 case BPF_STX | BPF_MEM | BPF_H:
1653 case BPF_STX | BPF_MEM | BPF_B:
1654 case BPF_STX | BPF_MEM | BPF_DW:
1655 rs = arm_bpf_get_reg64(src, tmp2, ctx);
1656 emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code));
1657 break;
1658 /* PC += off if dst == src */
1659 /* PC += off if dst > src */
1660 /* PC += off if dst >= src */
1661 /* PC += off if dst < src */
1662 /* PC += off if dst <= src */
1663 /* PC += off if dst != src */
1664 /* PC += off if dst > src (signed) */
1665 /* PC += off if dst >= src (signed) */
1666 /* PC += off if dst < src (signed) */
1667 /* PC += off if dst <= src (signed) */
1668 /* PC += off if dst & src */
1669 case BPF_JMP | BPF_JEQ | BPF_X:
1670 case BPF_JMP | BPF_JGT | BPF_X:
1671 case BPF_JMP | BPF_JGE | BPF_X:
1672 case BPF_JMP | BPF_JNE | BPF_X:
1673 case BPF_JMP | BPF_JSGT | BPF_X:
1674 case BPF_JMP | BPF_JSGE | BPF_X:
1675 case BPF_JMP | BPF_JSET | BPF_X:
1676 case BPF_JMP | BPF_JLE | BPF_X:
1677 case BPF_JMP | BPF_JLT | BPF_X:
1678 case BPF_JMP | BPF_JSLT | BPF_X:
1679 case BPF_JMP | BPF_JSLE | BPF_X:
1680 case BPF_JMP32 | BPF_JEQ | BPF_X:
1681 case BPF_JMP32 | BPF_JGT | BPF_X:
1682 case BPF_JMP32 | BPF_JGE | BPF_X:
1683 case BPF_JMP32 | BPF_JNE | BPF_X:
1684 case BPF_JMP32 | BPF_JSGT | BPF_X:
1685 case BPF_JMP32 | BPF_JSGE | BPF_X:
1686 case BPF_JMP32 | BPF_JSET | BPF_X:
1687 case BPF_JMP32 | BPF_JLE | BPF_X:
1688 case BPF_JMP32 | BPF_JLT | BPF_X:
1689 case BPF_JMP32 | BPF_JSLT | BPF_X:
1690 case BPF_JMP32 | BPF_JSLE | BPF_X:
1691 /* Setup source registers */
1692 rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx);
1693 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1694 goto go_jmp;
1695 /* PC += off if dst == imm */
1696 /* PC += off if dst > imm */
1697 /* PC += off if dst >= imm */
1698 /* PC += off if dst < imm */
1699 /* PC += off if dst <= imm */
1700 /* PC += off if dst != imm */
1701 /* PC += off if dst > imm (signed) */
1702 /* PC += off if dst >= imm (signed) */
1703 /* PC += off if dst < imm (signed) */
1704 /* PC += off if dst <= imm (signed) */
1705 /* PC += off if dst & imm */
1706 case BPF_JMP | BPF_JEQ | BPF_K:
1707 case BPF_JMP | BPF_JGT | BPF_K:
1708 case BPF_JMP | BPF_JGE | BPF_K:
1709 case BPF_JMP | BPF_JNE | BPF_K:
1710 case BPF_JMP | BPF_JSGT | BPF_K:
1711 case BPF_JMP | BPF_JSGE | BPF_K:
1712 case BPF_JMP | BPF_JSET | BPF_K:
1713 case BPF_JMP | BPF_JLT | BPF_K:
1714 case BPF_JMP | BPF_JLE | BPF_K:
1715 case BPF_JMP | BPF_JSLT | BPF_K:
1716 case BPF_JMP | BPF_JSLE | BPF_K:
1717 case BPF_JMP32 | BPF_JEQ | BPF_K:
1718 case BPF_JMP32 | BPF_JGT | BPF_K:
1719 case BPF_JMP32 | BPF_JGE | BPF_K:
1720 case BPF_JMP32 | BPF_JNE | BPF_K:
1721 case BPF_JMP32 | BPF_JSGT | BPF_K:
1722 case BPF_JMP32 | BPF_JSGE | BPF_K:
1723 case BPF_JMP32 | BPF_JSET | BPF_K:
1724 case BPF_JMP32 | BPF_JLT | BPF_K:
1725 case BPF_JMP32 | BPF_JLE | BPF_K:
1726 case BPF_JMP32 | BPF_JSLT | BPF_K:
1727 case BPF_JMP32 | BPF_JSLE | BPF_K:
1728 if (off == 0)
1729 break;
1730 rm = tmp2[0];
1731 rn = tmp2[1];
1732 /* Sign-extend immediate value */
1733 emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1734 go_jmp:
1735 /* Setup destination register */
1736 rd = arm_bpf_get_reg64(dst, tmp, ctx);
1737
1738 /* Check for the condition */
1739 emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code),
1740 BPF_CLASS(code) == BPF_JMP);
1741
1742 /* Setup JUMP instruction */
1743 jmp_offset = bpf2a32_offset(i+off, i, ctx);
1744 switch (BPF_OP(code)) {
1745 case BPF_JNE:
1746 case BPF_JSET:
1747 _emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
1748 break;
1749 case BPF_JEQ:
1750 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1751 break;
1752 case BPF_JGT:
1753 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1754 break;
1755 case BPF_JGE:
1756 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1757 break;
1758 case BPF_JSGT:
1759 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1760 break;
1761 case BPF_JSGE:
1762 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1763 break;
1764 case BPF_JLE:
1765 _emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
1766 break;
1767 case BPF_JLT:
1768 _emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
1769 break;
1770 case BPF_JSLT:
1771 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1772 break;
1773 case BPF_JSLE:
1774 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1775 break;
1776 }
1777 break;
1778 /* JMP OFF */
1779 case BPF_JMP | BPF_JA:
1780 {
1781 if (off == 0)
1782 break;
1783 jmp_offset = bpf2a32_offset(i+off, i, ctx);
1784 check_imm24(jmp_offset);
1785 emit(ARM_B(jmp_offset), ctx);
1786 break;
1787 }
1788 /* tail call */
1789 case BPF_JMP | BPF_TAIL_CALL:
1790 if (emit_bpf_tail_call(ctx))
1791 return -EFAULT;
1792 break;
1793 /* function call */
1794 case BPF_JMP | BPF_CALL:
1795 {
1796 const s8 *r0 = bpf2a32[BPF_REG_0];
1797 const s8 *r1 = bpf2a32[BPF_REG_1];
1798 const s8 *r2 = bpf2a32[BPF_REG_2];
1799 const s8 *r3 = bpf2a32[BPF_REG_3];
1800 const s8 *r4 = bpf2a32[BPF_REG_4];
1801 const s8 *r5 = bpf2a32[BPF_REG_5];
1802 const u32 func = (u32)__bpf_call_base + (u32)imm;
1803
1804 emit_a32_mov_r64(true, r0, r1, ctx);
1805 emit_a32_mov_r64(true, r1, r2, ctx);
1806 emit_push_r64(r5, ctx);
1807 emit_push_r64(r4, ctx);
1808 emit_push_r64(r3, ctx);
1809
1810 emit_a32_mov_i(tmp[1], func, ctx);
1811 emit_blx_r(tmp[1], ctx);
1812
1813 emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
1814 break;
1815 }
1816 /* function return */
1817 case BPF_JMP | BPF_EXIT:
1818 /* Optimization: when last instruction is EXIT
1819 * simply fallthrough to epilogue.
1820 */
1821 if (i == ctx->prog->len - 1)
1822 break;
1823 jmp_offset = epilogue_offset(ctx);
1824 check_imm24(jmp_offset);
1825 emit(ARM_B(jmp_offset), ctx);
1826 break;
1827 notyet:
1828 pr_info_once("*** NOT YET: opcode %02x ***\n", code);
1829 return -EFAULT;
1830 default:
1831 pr_err_once("unknown opcode %02x\n", code);
1832 return -EINVAL;
1833 }
1834
1835 if (ctx->flags & FLAG_IMM_OVERFLOW)
1836 /*
1837 * this instruction generated an overflow when
1838 * trying to access the literal pool, so
1839 * delegate this filter to the kernel interpreter.
1840 */
1841 return -1;
1842 return 0;
1843 }
1844
build_body(struct jit_ctx * ctx)1845 static int build_body(struct jit_ctx *ctx)
1846 {
1847 const struct bpf_prog *prog = ctx->prog;
1848 unsigned int i;
1849
1850 for (i = 0; i < prog->len; i++) {
1851 const struct bpf_insn *insn = &(prog->insnsi[i]);
1852 int ret;
1853
1854 ret = build_insn(insn, ctx);
1855
1856 /* It's used with loading the 64 bit immediate value. */
1857 if (ret > 0) {
1858 i++;
1859 if (ctx->target == NULL)
1860 ctx->offsets[i] = ctx->idx;
1861 continue;
1862 }
1863
1864 if (ctx->target == NULL)
1865 ctx->offsets[i] = ctx->idx;
1866
1867 /* If unsuccesfull, return with error code */
1868 if (ret)
1869 return ret;
1870 }
1871 return 0;
1872 }
1873
validate_code(struct jit_ctx * ctx)1874 static int validate_code(struct jit_ctx *ctx)
1875 {
1876 int i;
1877
1878 for (i = 0; i < ctx->idx; i++) {
1879 if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
1880 return -1;
1881 }
1882
1883 return 0;
1884 }
1885
bpf_jit_compile(struct bpf_prog * prog)1886 void bpf_jit_compile(struct bpf_prog *prog)
1887 {
1888 /* Nothing to do here. We support Internal BPF. */
1889 }
1890
bpf_jit_needs_zext(void)1891 bool bpf_jit_needs_zext(void)
1892 {
1893 return true;
1894 }
1895
bpf_int_jit_compile(struct bpf_prog * prog)1896 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1897 {
1898 struct bpf_prog *tmp, *orig_prog = prog;
1899 struct bpf_binary_header *header;
1900 bool tmp_blinded = false;
1901 struct jit_ctx ctx;
1902 unsigned int tmp_idx;
1903 unsigned int image_size;
1904 u8 *image_ptr;
1905
1906 /* If BPF JIT was not enabled then we must fall back to
1907 * the interpreter.
1908 */
1909 if (!prog->jit_requested)
1910 return orig_prog;
1911
1912 /* If constant blinding was enabled and we failed during blinding
1913 * then we must fall back to the interpreter. Otherwise, we save
1914 * the new JITed code.
1915 */
1916 tmp = bpf_jit_blind_constants(prog);
1917
1918 if (IS_ERR(tmp))
1919 return orig_prog;
1920 if (tmp != prog) {
1921 tmp_blinded = true;
1922 prog = tmp;
1923 }
1924
1925 memset(&ctx, 0, sizeof(ctx));
1926 ctx.prog = prog;
1927 ctx.cpu_architecture = cpu_architecture();
1928
1929 /* Not able to allocate memory for offsets[] , then
1930 * we must fall back to the interpreter
1931 */
1932 ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
1933 if (ctx.offsets == NULL) {
1934 prog = orig_prog;
1935 goto out;
1936 }
1937
1938 /* 1) fake pass to find in the length of the JITed code,
1939 * to compute ctx->offsets and other context variables
1940 * needed to compute final JITed code.
1941 * Also, calculate random starting pointer/start of JITed code
1942 * which is prefixed by random number of fault instructions.
1943 *
1944 * If the first pass fails then there is no chance of it
1945 * being successful in the second pass, so just fall back
1946 * to the interpreter.
1947 */
1948 if (build_body(&ctx)) {
1949 prog = orig_prog;
1950 goto out_off;
1951 }
1952
1953 tmp_idx = ctx.idx;
1954 build_prologue(&ctx);
1955 ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1956
1957 ctx.epilogue_offset = ctx.idx;
1958
1959 #if __LINUX_ARM_ARCH__ < 7
1960 tmp_idx = ctx.idx;
1961 build_epilogue(&ctx);
1962 ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1963
1964 ctx.idx += ctx.imm_count;
1965 if (ctx.imm_count) {
1966 ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
1967 if (ctx.imms == NULL) {
1968 prog = orig_prog;
1969 goto out_off;
1970 }
1971 }
1972 #else
1973 /* there's nothing about the epilogue on ARMv7 */
1974 build_epilogue(&ctx);
1975 #endif
1976 /* Now we can get the actual image size of the JITed arm code.
1977 * Currently, we are not considering the THUMB-2 instructions
1978 * for jit, although it can decrease the size of the image.
1979 *
1980 * As each arm instruction is of length 32bit, we are translating
1981 * number of JITed intructions into the size required to store these
1982 * JITed code.
1983 */
1984 image_size = sizeof(u32) * ctx.idx;
1985
1986 /* Now we know the size of the structure to make */
1987 header = bpf_jit_binary_alloc(image_size, &image_ptr,
1988 sizeof(u32), jit_fill_hole);
1989 /* Not able to allocate memory for the structure then
1990 * we must fall back to the interpretation
1991 */
1992 if (header == NULL) {
1993 prog = orig_prog;
1994 goto out_imms;
1995 }
1996
1997 /* 2.) Actual pass to generate final JIT code */
1998 ctx.target = (u32 *) image_ptr;
1999 ctx.idx = 0;
2000
2001 build_prologue(&ctx);
2002
2003 /* If building the body of the JITed code fails somehow,
2004 * we fall back to the interpretation.
2005 */
2006 if (build_body(&ctx) < 0) {
2007 image_ptr = NULL;
2008 bpf_jit_binary_free(header);
2009 prog = orig_prog;
2010 goto out_imms;
2011 }
2012 build_epilogue(&ctx);
2013
2014 /* 3.) Extra pass to validate JITed Code */
2015 if (validate_code(&ctx)) {
2016 image_ptr = NULL;
2017 bpf_jit_binary_free(header);
2018 prog = orig_prog;
2019 goto out_imms;
2020 }
2021 flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
2022
2023 if (bpf_jit_enable > 1)
2024 /* there are 2 passes here */
2025 bpf_jit_dump(prog->len, image_size, 2, ctx.target);
2026
2027 bpf_jit_binary_lock_ro(header);
2028 prog->bpf_func = (void *)ctx.target;
2029 prog->jited = 1;
2030 prog->jited_len = image_size;
2031
2032 out_imms:
2033 #if __LINUX_ARM_ARCH__ < 7
2034 if (ctx.imm_count)
2035 kfree(ctx.imms);
2036 #endif
2037 out_off:
2038 kfree(ctx.offsets);
2039 out:
2040 if (tmp_blinded)
2041 bpf_jit_prog_release_other(prog, prog == orig_prog ?
2042 tmp : orig_prog);
2043 return prog;
2044 }
2045
2046