1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * FP/SIMD context switching and fault handling
4 *
5 * Copyright (C) 2012 ARM Ltd.
6 * Author: Catalin Marinas <catalin.marinas@arm.com>
7 */
8
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/kernel.h>
18 #include <linux/linkage.h>
19 #include <linux/irqflags.h>
20 #include <linux/init.h>
21 #include <linux/percpu.h>
22 #include <linux/prctl.h>
23 #include <linux/preempt.h>
24 #include <linux/ptrace.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/signal.h>
28 #include <linux/slab.h>
29 #include <linux/stddef.h>
30 #include <linux/sysctl.h>
31 #include <linux/swab.h>
32
33 #include <asm/esr.h>
34 #include <asm/fpsimd.h>
35 #include <asm/cpufeature.h>
36 #include <asm/cputype.h>
37 #include <asm/processor.h>
38 #include <asm/simd.h>
39 #include <asm/sigcontext.h>
40 #include <asm/sysreg.h>
41 #include <asm/traps.h>
42 #include <asm/virt.h>
43
44 #define FPEXC_IOF (1 << 0)
45 #define FPEXC_DZF (1 << 1)
46 #define FPEXC_OFF (1 << 2)
47 #define FPEXC_UFF (1 << 3)
48 #define FPEXC_IXF (1 << 4)
49 #define FPEXC_IDF (1 << 7)
50
51 /*
52 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
53 *
54 * In order to reduce the number of times the FPSIMD state is needlessly saved
55 * and restored, we need to keep track of two things:
56 * (a) for each task, we need to remember which CPU was the last one to have
57 * the task's FPSIMD state loaded into its FPSIMD registers;
58 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
59 * been loaded into its FPSIMD registers most recently, or whether it has
60 * been used to perform kernel mode NEON in the meantime.
61 *
62 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
63 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
64 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
65 * address of the userland FPSIMD state of the task that was loaded onto the CPU
66 * the most recently, or NULL if kernel mode NEON has been performed after that.
67 *
68 * With this in place, we no longer have to restore the next FPSIMD state right
69 * when switching between tasks. Instead, we can defer this check to userland
70 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
71 * task's fpsimd_cpu are still mutually in sync. If this is the case, we
72 * can omit the FPSIMD restore.
73 *
74 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
75 * indicate whether or not the userland FPSIMD state of the current task is
76 * present in the registers. The flag is set unless the FPSIMD registers of this
77 * CPU currently contain the most recent userland FPSIMD state of the current
78 * task.
79 *
80 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
81 * save the task's FPSIMD context back to task_struct from softirq context.
82 * To prevent this from racing with the manipulation of the task's FPSIMD state
83 * from task context and thereby corrupting the state, it is necessary to
84 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
85 * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
86 * run but prevent them to use FPSIMD.
87 *
88 * For a certain task, the sequence may look something like this:
89 * - the task gets scheduled in; if both the task's fpsimd_cpu field
90 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
91 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
92 * cleared, otherwise it is set;
93 *
94 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
95 * userland FPSIMD state is copied from memory to the registers, the task's
96 * fpsimd_cpu field is set to the id of the current CPU, the current
97 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
98 * TIF_FOREIGN_FPSTATE flag is cleared;
99 *
100 * - the task executes an ordinary syscall; upon return to userland, the
101 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
102 * restored;
103 *
104 * - the task executes a syscall which executes some NEON instructions; this is
105 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
106 * register contents to memory, clears the fpsimd_last_state per-cpu variable
107 * and sets the TIF_FOREIGN_FPSTATE flag;
108 *
109 * - the task gets preempted after kernel_neon_end() is called; as we have not
110 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
111 * whatever is in the FPSIMD registers is not saved to memory, but discarded.
112 */
113 struct fpsimd_last_state_struct {
114 struct user_fpsimd_state *st;
115 void *sve_state;
116 unsigned int sve_vl;
117 };
118
119 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
120
121 /* Default VL for tasks that don't set it explicitly: */
122 static int sve_default_vl = -1;
123
124 #ifdef CONFIG_ARM64_SVE
125
126 /* Maximum supported vector length across all CPUs (initially poisoned) */
127 int __ro_after_init sve_max_vl = SVE_VL_MIN;
128 int __ro_after_init sve_max_virtualisable_vl = SVE_VL_MIN;
129
130 /*
131 * Set of available vector lengths,
132 * where length vq encoded as bit __vq_to_bit(vq):
133 */
134 __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
135 /* Set of vector lengths present on at least one cpu: */
136 static __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
137
138 static void __percpu *efi_sve_state;
139
140 #else /* ! CONFIG_ARM64_SVE */
141
142 /* Dummy declaration for code that will be optimised out: */
143 extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
144 extern __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
145 extern void __percpu *efi_sve_state;
146
147 #endif /* ! CONFIG_ARM64_SVE */
148
149 DEFINE_PER_CPU(bool, fpsimd_context_busy);
150 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
151
__get_cpu_fpsimd_context(void)152 static void __get_cpu_fpsimd_context(void)
153 {
154 bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
155
156 WARN_ON(busy);
157 }
158
159 /*
160 * Claim ownership of the CPU FPSIMD context for use by the calling context.
161 *
162 * The caller may freely manipulate the FPSIMD context metadata until
163 * put_cpu_fpsimd_context() is called.
164 *
165 * The double-underscore version must only be called if you know the task
166 * can't be preempted.
167 */
get_cpu_fpsimd_context(void)168 static void get_cpu_fpsimd_context(void)
169 {
170 preempt_disable();
171 __get_cpu_fpsimd_context();
172 }
173
__put_cpu_fpsimd_context(void)174 static void __put_cpu_fpsimd_context(void)
175 {
176 bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
177
178 WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
179 }
180
181 /*
182 * Release the CPU FPSIMD context.
183 *
184 * Must be called from a context in which get_cpu_fpsimd_context() was
185 * previously called, with no call to put_cpu_fpsimd_context() in the
186 * meantime.
187 */
put_cpu_fpsimd_context(void)188 static void put_cpu_fpsimd_context(void)
189 {
190 __put_cpu_fpsimd_context();
191 preempt_enable();
192 }
193
have_cpu_fpsimd_context(void)194 static bool have_cpu_fpsimd_context(void)
195 {
196 return !preemptible() && __this_cpu_read(fpsimd_context_busy);
197 }
198
199 /*
200 * Call __sve_free() directly only if you know task can't be scheduled
201 * or preempted.
202 */
__sve_free(struct task_struct * task)203 static void __sve_free(struct task_struct *task)
204 {
205 kfree(task->thread.sve_state);
206 task->thread.sve_state = NULL;
207 }
208
sve_free(struct task_struct * task)209 static void sve_free(struct task_struct *task)
210 {
211 WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
212
213 __sve_free(task);
214 }
215
216 /*
217 * TIF_SVE controls whether a task can use SVE without trapping while
218 * in userspace, and also the way a task's FPSIMD/SVE state is stored
219 * in thread_struct.
220 *
221 * The kernel uses this flag to track whether a user task is actively
222 * using SVE, and therefore whether full SVE register state needs to
223 * be tracked. If not, the cheaper FPSIMD context handling code can
224 * be used instead of the more costly SVE equivalents.
225 *
226 * * TIF_SVE set:
227 *
228 * The task can execute SVE instructions while in userspace without
229 * trapping to the kernel.
230 *
231 * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
232 * corresponding Zn), P0-P15 and FFR are encoded in in
233 * task->thread.sve_state, formatted appropriately for vector
234 * length task->thread.sve_vl.
235 *
236 * task->thread.sve_state must point to a valid buffer at least
237 * sve_state_size(task) bytes in size.
238 *
239 * During any syscall, the kernel may optionally clear TIF_SVE and
240 * discard the vector state except for the FPSIMD subset.
241 *
242 * * TIF_SVE clear:
243 *
244 * An attempt by the user task to execute an SVE instruction causes
245 * do_sve_acc() to be called, which does some preparation and then
246 * sets TIF_SVE.
247 *
248 * When stored, FPSIMD registers V0-V31 are encoded in
249 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
250 * logically zero but not stored anywhere; P0-P15 and FFR are not
251 * stored and have unspecified values from userspace's point of
252 * view. For hygiene purposes, the kernel zeroes them on next use,
253 * but userspace is discouraged from relying on this.
254 *
255 * task->thread.sve_state does not need to be non-NULL, valid or any
256 * particular size: it must not be dereferenced.
257 *
258 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
259 * irrespective of whether TIF_SVE is clear or set, since these are
260 * not vector length dependent.
261 */
262
263 /*
264 * Update current's FPSIMD/SVE registers from thread_struct.
265 *
266 * This function should be called only when the FPSIMD/SVE state in
267 * thread_struct is known to be up to date, when preparing to enter
268 * userspace.
269 */
task_fpsimd_load(void)270 static void task_fpsimd_load(void)
271 {
272 WARN_ON(!system_supports_fpsimd());
273 WARN_ON(!have_cpu_fpsimd_context());
274
275 if (system_supports_sve() && test_thread_flag(TIF_SVE))
276 sve_load_state(sve_pffr(¤t->thread),
277 ¤t->thread.uw.fpsimd_state.fpsr,
278 sve_vq_from_vl(current->thread.sve_vl) - 1);
279 else
280 fpsimd_load_state(¤t->thread.uw.fpsimd_state);
281 }
282
283 /*
284 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
285 * date with respect to the CPU registers.
286 */
fpsimd_save(void)287 static void fpsimd_save(void)
288 {
289 struct fpsimd_last_state_struct const *last =
290 this_cpu_ptr(&fpsimd_last_state);
291 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
292
293 WARN_ON(!system_supports_fpsimd());
294 WARN_ON(!have_cpu_fpsimd_context());
295
296 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
297 if (system_supports_sve() && test_thread_flag(TIF_SVE)) {
298 if (WARN_ON(sve_get_vl() != last->sve_vl)) {
299 /*
300 * Can't save the user regs, so current would
301 * re-enter user with corrupt state.
302 * There's no way to recover, so kill it:
303 */
304 force_signal_inject(SIGKILL, SI_KERNEL, 0);
305 return;
306 }
307
308 sve_save_state((char *)last->sve_state +
309 sve_ffr_offset(last->sve_vl),
310 &last->st->fpsr);
311 } else
312 fpsimd_save_state(last->st);
313 }
314 }
315
316 /*
317 * All vector length selection from userspace comes through here.
318 * We're on a slow path, so some sanity-checks are included.
319 * If things go wrong there's a bug somewhere, but try to fall back to a
320 * safe choice.
321 */
find_supported_vector_length(unsigned int vl)322 static unsigned int find_supported_vector_length(unsigned int vl)
323 {
324 int bit;
325 int max_vl = sve_max_vl;
326
327 if (WARN_ON(!sve_vl_valid(vl)))
328 vl = SVE_VL_MIN;
329
330 if (WARN_ON(!sve_vl_valid(max_vl)))
331 max_vl = SVE_VL_MIN;
332
333 if (vl > max_vl)
334 vl = max_vl;
335
336 bit = find_next_bit(sve_vq_map, SVE_VQ_MAX,
337 __vq_to_bit(sve_vq_from_vl(vl)));
338 return sve_vl_from_vq(__bit_to_vq(bit));
339 }
340
341 #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
342
sve_proc_do_default_vl(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)343 static int sve_proc_do_default_vl(struct ctl_table *table, int write,
344 void __user *buffer, size_t *lenp,
345 loff_t *ppos)
346 {
347 int ret;
348 int vl = sve_default_vl;
349 struct ctl_table tmp_table = {
350 .data = &vl,
351 .maxlen = sizeof(vl),
352 };
353
354 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
355 if (ret || !write)
356 return ret;
357
358 /* Writing -1 has the special meaning "set to max": */
359 if (vl == -1)
360 vl = sve_max_vl;
361
362 if (!sve_vl_valid(vl))
363 return -EINVAL;
364
365 sve_default_vl = find_supported_vector_length(vl);
366 return 0;
367 }
368
369 static struct ctl_table sve_default_vl_table[] = {
370 {
371 .procname = "sve_default_vector_length",
372 .mode = 0644,
373 .proc_handler = sve_proc_do_default_vl,
374 },
375 { }
376 };
377
sve_sysctl_init(void)378 static int __init sve_sysctl_init(void)
379 {
380 if (system_supports_sve())
381 if (!register_sysctl("abi", sve_default_vl_table))
382 return -EINVAL;
383
384 return 0;
385 }
386
387 #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
sve_sysctl_init(void)388 static int __init sve_sysctl_init(void) { return 0; }
389 #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
390
391 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
392 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
393
394 #ifdef CONFIG_CPU_BIG_ENDIAN
arm64_cpu_to_le128(__uint128_t x)395 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
396 {
397 u64 a = swab64(x);
398 u64 b = swab64(x >> 64);
399
400 return ((__uint128_t)a << 64) | b;
401 }
402 #else
arm64_cpu_to_le128(__uint128_t x)403 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
404 {
405 return x;
406 }
407 #endif
408
409 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
410
__fpsimd_to_sve(void * sst,struct user_fpsimd_state const * fst,unsigned int vq)411 static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
412 unsigned int vq)
413 {
414 unsigned int i;
415 __uint128_t *p;
416
417 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
418 p = (__uint128_t *)ZREG(sst, vq, i);
419 *p = arm64_cpu_to_le128(fst->vregs[i]);
420 }
421 }
422
423 /*
424 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
425 * task->thread.sve_state.
426 *
427 * Task can be a non-runnable task, or current. In the latter case,
428 * the caller must have ownership of the cpu FPSIMD context before calling
429 * this function.
430 * task->thread.sve_state must point to at least sve_state_size(task)
431 * bytes of allocated kernel memory.
432 * task->thread.uw.fpsimd_state must be up to date before calling this
433 * function.
434 */
fpsimd_to_sve(struct task_struct * task)435 static void fpsimd_to_sve(struct task_struct *task)
436 {
437 unsigned int vq;
438 void *sst = task->thread.sve_state;
439 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
440
441 if (!system_supports_sve())
442 return;
443
444 vq = sve_vq_from_vl(task->thread.sve_vl);
445 __fpsimd_to_sve(sst, fst, vq);
446 }
447
448 /*
449 * Transfer the SVE state in task->thread.sve_state to
450 * task->thread.uw.fpsimd_state.
451 *
452 * Task can be a non-runnable task, or current. In the latter case,
453 * the caller must have ownership of the cpu FPSIMD context before calling
454 * this function.
455 * task->thread.sve_state must point to at least sve_state_size(task)
456 * bytes of allocated kernel memory.
457 * task->thread.sve_state must be up to date before calling this function.
458 */
sve_to_fpsimd(struct task_struct * task)459 static void sve_to_fpsimd(struct task_struct *task)
460 {
461 unsigned int vq;
462 void const *sst = task->thread.sve_state;
463 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
464 unsigned int i;
465 __uint128_t const *p;
466
467 if (!system_supports_sve())
468 return;
469
470 vq = sve_vq_from_vl(task->thread.sve_vl);
471 for (i = 0; i < SVE_NUM_ZREGS; ++i) {
472 p = (__uint128_t const *)ZREG(sst, vq, i);
473 fst->vregs[i] = arm64_le128_to_cpu(*p);
474 }
475 }
476
477 #ifdef CONFIG_ARM64_SVE
478
479 /*
480 * Return how many bytes of memory are required to store the full SVE
481 * state for task, given task's currently configured vector length.
482 */
sve_state_size(struct task_struct const * task)483 size_t sve_state_size(struct task_struct const *task)
484 {
485 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl));
486 }
487
488 /*
489 * Ensure that task->thread.sve_state is allocated and sufficiently large.
490 *
491 * This function should be used only in preparation for replacing
492 * task->thread.sve_state with new data. The memory is always zeroed
493 * here to prevent stale data from showing through: this is done in
494 * the interest of testability and predictability: except in the
495 * do_sve_acc() case, there is no ABI requirement to hide stale data
496 * written previously be task.
497 */
sve_alloc(struct task_struct * task)498 void sve_alloc(struct task_struct *task)
499 {
500 if (task->thread.sve_state) {
501 memset(task->thread.sve_state, 0, sve_state_size(task));
502 return;
503 }
504
505 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
506 task->thread.sve_state =
507 kzalloc(sve_state_size(task), GFP_KERNEL);
508
509 /*
510 * If future SVE revisions can have larger vectors though,
511 * this may cease to be true:
512 */
513 BUG_ON(!task->thread.sve_state);
514 }
515
516
517 /*
518 * Ensure that task->thread.sve_state is up to date with respect to
519 * the user task, irrespective of when SVE is in use or not.
520 *
521 * This should only be called by ptrace. task must be non-runnable.
522 * task->thread.sve_state must point to at least sve_state_size(task)
523 * bytes of allocated kernel memory.
524 */
fpsimd_sync_to_sve(struct task_struct * task)525 void fpsimd_sync_to_sve(struct task_struct *task)
526 {
527 if (!test_tsk_thread_flag(task, TIF_SVE))
528 fpsimd_to_sve(task);
529 }
530
531 /*
532 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
533 * the user task, irrespective of whether SVE is in use or not.
534 *
535 * This should only be called by ptrace. task must be non-runnable.
536 * task->thread.sve_state must point to at least sve_state_size(task)
537 * bytes of allocated kernel memory.
538 */
sve_sync_to_fpsimd(struct task_struct * task)539 void sve_sync_to_fpsimd(struct task_struct *task)
540 {
541 if (test_tsk_thread_flag(task, TIF_SVE))
542 sve_to_fpsimd(task);
543 }
544
545 /*
546 * Ensure that task->thread.sve_state is up to date with respect to
547 * the task->thread.uw.fpsimd_state.
548 *
549 * This should only be called by ptrace to merge new FPSIMD register
550 * values into a task for which SVE is currently active.
551 * task must be non-runnable.
552 * task->thread.sve_state must point to at least sve_state_size(task)
553 * bytes of allocated kernel memory.
554 * task->thread.uw.fpsimd_state must already have been initialised with
555 * the new FPSIMD register values to be merged in.
556 */
sve_sync_from_fpsimd_zeropad(struct task_struct * task)557 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
558 {
559 unsigned int vq;
560 void *sst = task->thread.sve_state;
561 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
562
563 if (!test_tsk_thread_flag(task, TIF_SVE))
564 return;
565
566 vq = sve_vq_from_vl(task->thread.sve_vl);
567
568 memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
569 __fpsimd_to_sve(sst, fst, vq);
570 }
571
sve_set_vector_length(struct task_struct * task,unsigned long vl,unsigned long flags)572 int sve_set_vector_length(struct task_struct *task,
573 unsigned long vl, unsigned long flags)
574 {
575 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
576 PR_SVE_SET_VL_ONEXEC))
577 return -EINVAL;
578
579 if (!sve_vl_valid(vl))
580 return -EINVAL;
581
582 /*
583 * Clamp to the maximum vector length that VL-agnostic SVE code can
584 * work with. A flag may be assigned in the future to allow setting
585 * of larger vector lengths without confusing older software.
586 */
587 if (vl > SVE_VL_ARCH_MAX)
588 vl = SVE_VL_ARCH_MAX;
589
590 vl = find_supported_vector_length(vl);
591
592 if (flags & (PR_SVE_VL_INHERIT |
593 PR_SVE_SET_VL_ONEXEC))
594 task->thread.sve_vl_onexec = vl;
595 else
596 /* Reset VL to system default on next exec: */
597 task->thread.sve_vl_onexec = 0;
598
599 /* Only actually set the VL if not deferred: */
600 if (flags & PR_SVE_SET_VL_ONEXEC)
601 goto out;
602
603 if (vl == task->thread.sve_vl)
604 goto out;
605
606 /*
607 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
608 * write any live register state back to task_struct, and convert to a
609 * non-SVE thread.
610 */
611 if (task == current) {
612 get_cpu_fpsimd_context();
613
614 fpsimd_save();
615 }
616
617 fpsimd_flush_task_state(task);
618 if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
619 sve_to_fpsimd(task);
620
621 if (task == current)
622 put_cpu_fpsimd_context();
623
624 /*
625 * Force reallocation of task SVE state to the correct size
626 * on next use:
627 */
628 sve_free(task);
629
630 task->thread.sve_vl = vl;
631
632 out:
633 update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT,
634 flags & PR_SVE_VL_INHERIT);
635
636 return 0;
637 }
638
639 /*
640 * Encode the current vector length and flags for return.
641 * This is only required for prctl(): ptrace has separate fields
642 *
643 * flags are as for sve_set_vector_length().
644 */
sve_prctl_status(unsigned long flags)645 static int sve_prctl_status(unsigned long flags)
646 {
647 int ret;
648
649 if (flags & PR_SVE_SET_VL_ONEXEC)
650 ret = current->thread.sve_vl_onexec;
651 else
652 ret = current->thread.sve_vl;
653
654 if (test_thread_flag(TIF_SVE_VL_INHERIT))
655 ret |= PR_SVE_VL_INHERIT;
656
657 return ret;
658 }
659
660 /* PR_SVE_SET_VL */
sve_set_current_vl(unsigned long arg)661 int sve_set_current_vl(unsigned long arg)
662 {
663 unsigned long vl, flags;
664 int ret;
665
666 vl = arg & PR_SVE_VL_LEN_MASK;
667 flags = arg & ~vl;
668
669 if (!system_supports_sve())
670 return -EINVAL;
671
672 ret = sve_set_vector_length(current, vl, flags);
673 if (ret)
674 return ret;
675
676 return sve_prctl_status(flags);
677 }
678
679 /* PR_SVE_GET_VL */
sve_get_current_vl(void)680 int sve_get_current_vl(void)
681 {
682 if (!system_supports_sve())
683 return -EINVAL;
684
685 return sve_prctl_status(0);
686 }
687
sve_probe_vqs(DECLARE_BITMAP (map,SVE_VQ_MAX))688 static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX))
689 {
690 unsigned int vq, vl;
691 unsigned long zcr;
692
693 bitmap_zero(map, SVE_VQ_MAX);
694
695 zcr = ZCR_ELx_LEN_MASK;
696 zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr;
697
698 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
699 write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */
700 vl = sve_get_vl();
701 vq = sve_vq_from_vl(vl); /* skip intervening lengths */
702 set_bit(__vq_to_bit(vq), map);
703 }
704 }
705
706 /*
707 * Initialise the set of known supported VQs for the boot CPU.
708 * This is called during kernel boot, before secondary CPUs are brought up.
709 */
sve_init_vq_map(void)710 void __init sve_init_vq_map(void)
711 {
712 sve_probe_vqs(sve_vq_map);
713 bitmap_copy(sve_vq_partial_map, sve_vq_map, SVE_VQ_MAX);
714 }
715
716 /*
717 * If we haven't committed to the set of supported VQs yet, filter out
718 * those not supported by the current CPU.
719 * This function is called during the bring-up of early secondary CPUs only.
720 */
sve_update_vq_map(void)721 void sve_update_vq_map(void)
722 {
723 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
724
725 sve_probe_vqs(tmp_map);
726 bitmap_and(sve_vq_map, sve_vq_map, tmp_map, SVE_VQ_MAX);
727 bitmap_or(sve_vq_partial_map, sve_vq_partial_map, tmp_map, SVE_VQ_MAX);
728 }
729
730 /*
731 * Check whether the current CPU supports all VQs in the committed set.
732 * This function is called during the bring-up of late secondary CPUs only.
733 */
sve_verify_vq_map(void)734 int sve_verify_vq_map(void)
735 {
736 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
737 unsigned long b;
738
739 sve_probe_vqs(tmp_map);
740
741 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
742 if (bitmap_intersects(tmp_map, sve_vq_map, SVE_VQ_MAX)) {
743 pr_warn("SVE: cpu%d: Required vector length(s) missing\n",
744 smp_processor_id());
745 return -EINVAL;
746 }
747
748 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
749 return 0;
750
751 /*
752 * For KVM, it is necessary to ensure that this CPU doesn't
753 * support any vector length that guests may have probed as
754 * unsupported.
755 */
756
757 /* Recover the set of supported VQs: */
758 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
759 /* Find VQs supported that are not globally supported: */
760 bitmap_andnot(tmp_map, tmp_map, sve_vq_map, SVE_VQ_MAX);
761
762 /* Find the lowest such VQ, if any: */
763 b = find_last_bit(tmp_map, SVE_VQ_MAX);
764 if (b >= SVE_VQ_MAX)
765 return 0; /* no mismatches */
766
767 /*
768 * Mismatches above sve_max_virtualisable_vl are fine, since
769 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
770 */
771 if (sve_vl_from_vq(__bit_to_vq(b)) <= sve_max_virtualisable_vl) {
772 pr_warn("SVE: cpu%d: Unsupported vector length(s) present\n",
773 smp_processor_id());
774 return -EINVAL;
775 }
776
777 return 0;
778 }
779
sve_efi_setup(void)780 static void __init sve_efi_setup(void)
781 {
782 if (!IS_ENABLED(CONFIG_EFI))
783 return;
784
785 /*
786 * alloc_percpu() warns and prints a backtrace if this goes wrong.
787 * This is evidence of a crippled system and we are returning void,
788 * so no attempt is made to handle this situation here.
789 */
790 if (!sve_vl_valid(sve_max_vl))
791 goto fail;
792
793 efi_sve_state = __alloc_percpu(
794 SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES);
795 if (!efi_sve_state)
796 goto fail;
797
798 return;
799
800 fail:
801 panic("Cannot allocate percpu memory for EFI SVE save/restore");
802 }
803
804 /*
805 * Enable SVE for EL1.
806 * Intended for use by the cpufeatures code during CPU boot.
807 */
sve_kernel_enable(const struct arm64_cpu_capabilities * __always_unused p)808 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
809 {
810 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
811 isb();
812 }
813
814 /*
815 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
816 * vector length.
817 *
818 * Use only if SVE is present.
819 * This function clobbers the SVE vector length.
820 */
read_zcr_features(void)821 u64 read_zcr_features(void)
822 {
823 u64 zcr;
824 unsigned int vq_max;
825
826 /*
827 * Set the maximum possible VL, and write zeroes to all other
828 * bits to see if they stick.
829 */
830 sve_kernel_enable(NULL);
831 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
832
833 zcr = read_sysreg_s(SYS_ZCR_EL1);
834 zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
835 vq_max = sve_vq_from_vl(sve_get_vl());
836 zcr |= vq_max - 1; /* set LEN field to maximum effective value */
837
838 return zcr;
839 }
840
sve_setup(void)841 void __init sve_setup(void)
842 {
843 u64 zcr;
844 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
845 unsigned long b;
846
847 if (!system_supports_sve())
848 return;
849
850 /*
851 * The SVE architecture mandates support for 128-bit vectors,
852 * so sve_vq_map must have at least SVE_VQ_MIN set.
853 * If something went wrong, at least try to patch it up:
854 */
855 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map)))
856 set_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map);
857
858 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
859 sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
860
861 /*
862 * Sanity-check that the max VL we determined through CPU features
863 * corresponds properly to sve_vq_map. If not, do our best:
864 */
865 if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl)))
866 sve_max_vl = find_supported_vector_length(sve_max_vl);
867
868 /*
869 * For the default VL, pick the maximum supported value <= 64.
870 * VL == 64 is guaranteed not to grow the signal frame.
871 */
872 sve_default_vl = find_supported_vector_length(64);
873
874 bitmap_andnot(tmp_map, sve_vq_partial_map, sve_vq_map,
875 SVE_VQ_MAX);
876
877 b = find_last_bit(tmp_map, SVE_VQ_MAX);
878 if (b >= SVE_VQ_MAX)
879 /* No non-virtualisable VLs found */
880 sve_max_virtualisable_vl = SVE_VQ_MAX;
881 else if (WARN_ON(b == SVE_VQ_MAX - 1))
882 /* No virtualisable VLs? This is architecturally forbidden. */
883 sve_max_virtualisable_vl = SVE_VQ_MIN;
884 else /* b + 1 < SVE_VQ_MAX */
885 sve_max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
886
887 if (sve_max_virtualisable_vl > sve_max_vl)
888 sve_max_virtualisable_vl = sve_max_vl;
889
890 pr_info("SVE: maximum available vector length %u bytes per vector\n",
891 sve_max_vl);
892 pr_info("SVE: default vector length %u bytes per vector\n",
893 sve_default_vl);
894
895 /* KVM decides whether to support mismatched systems. Just warn here: */
896 if (sve_max_virtualisable_vl < sve_max_vl)
897 pr_warn("SVE: unvirtualisable vector lengths present\n");
898
899 sve_efi_setup();
900 }
901
902 /*
903 * Called from the put_task_struct() path, which cannot get here
904 * unless dead_task is really dead and not schedulable.
905 */
fpsimd_release_task(struct task_struct * dead_task)906 void fpsimd_release_task(struct task_struct *dead_task)
907 {
908 __sve_free(dead_task);
909 }
910
911 #endif /* CONFIG_ARM64_SVE */
912
913 /*
914 * Trapped SVE access
915 *
916 * Storage is allocated for the full SVE state, the current FPSIMD
917 * register contents are migrated across, and TIF_SVE is set so that
918 * the SVE access trap will be disabled the next time this task
919 * reaches ret_to_user.
920 *
921 * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load()
922 * would have disabled the SVE access trap for userspace during
923 * ret_to_user, making an SVE access trap impossible in that case.
924 */
do_sve_acc(unsigned int esr,struct pt_regs * regs)925 asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs)
926 {
927 /* Even if we chose not to use SVE, the hardware could still trap: */
928 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
929 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
930 return;
931 }
932
933 sve_alloc(current);
934
935 get_cpu_fpsimd_context();
936
937 fpsimd_save();
938
939 /* Force ret_to_user to reload the registers: */
940 fpsimd_flush_task_state(current);
941
942 fpsimd_to_sve(current);
943 if (test_and_set_thread_flag(TIF_SVE))
944 WARN_ON(1); /* SVE access shouldn't have trapped */
945
946 put_cpu_fpsimd_context();
947 }
948
949 /*
950 * Trapped FP/ASIMD access.
951 */
do_fpsimd_acc(unsigned int esr,struct pt_regs * regs)952 asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
953 {
954 /* TODO: implement lazy context saving/restoring */
955 WARN_ON(1);
956 }
957
958 /*
959 * Raise a SIGFPE for the current process.
960 */
do_fpsimd_exc(unsigned int esr,struct pt_regs * regs)961 asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
962 {
963 unsigned int si_code = FPE_FLTUNK;
964
965 if (esr & ESR_ELx_FP_EXC_TFV) {
966 if (esr & FPEXC_IOF)
967 si_code = FPE_FLTINV;
968 else if (esr & FPEXC_DZF)
969 si_code = FPE_FLTDIV;
970 else if (esr & FPEXC_OFF)
971 si_code = FPE_FLTOVF;
972 else if (esr & FPEXC_UFF)
973 si_code = FPE_FLTUND;
974 else if (esr & FPEXC_IXF)
975 si_code = FPE_FLTRES;
976 }
977
978 send_sig_fault(SIGFPE, si_code,
979 (void __user *)instruction_pointer(regs),
980 current);
981 }
982
fpsimd_thread_switch(struct task_struct * next)983 void fpsimd_thread_switch(struct task_struct *next)
984 {
985 bool wrong_task, wrong_cpu;
986
987 if (!system_supports_fpsimd())
988 return;
989
990 __get_cpu_fpsimd_context();
991
992 /* Save unsaved fpsimd state, if any: */
993 fpsimd_save();
994
995 /*
996 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
997 * state. For kernel threads, FPSIMD registers are never loaded
998 * and wrong_task and wrong_cpu will always be true.
999 */
1000 wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
1001 &next->thread.uw.fpsimd_state;
1002 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1003
1004 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1005 wrong_task || wrong_cpu);
1006
1007 __put_cpu_fpsimd_context();
1008 }
1009
fpsimd_flush_thread(void)1010 void fpsimd_flush_thread(void)
1011 {
1012 int vl, supported_vl;
1013
1014 if (!system_supports_fpsimd())
1015 return;
1016
1017 get_cpu_fpsimd_context();
1018
1019 fpsimd_flush_task_state(current);
1020 memset(¤t->thread.uw.fpsimd_state, 0,
1021 sizeof(current->thread.uw.fpsimd_state));
1022
1023 if (system_supports_sve()) {
1024 clear_thread_flag(TIF_SVE);
1025 sve_free(current);
1026
1027 /*
1028 * Reset the task vector length as required.
1029 * This is where we ensure that all user tasks have a valid
1030 * vector length configured: no kernel task can become a user
1031 * task without an exec and hence a call to this function.
1032 * By the time the first call to this function is made, all
1033 * early hardware probing is complete, so sve_default_vl
1034 * should be valid.
1035 * If a bug causes this to go wrong, we make some noise and
1036 * try to fudge thread.sve_vl to a safe value here.
1037 */
1038 vl = current->thread.sve_vl_onexec ?
1039 current->thread.sve_vl_onexec : sve_default_vl;
1040
1041 if (WARN_ON(!sve_vl_valid(vl)))
1042 vl = SVE_VL_MIN;
1043
1044 supported_vl = find_supported_vector_length(vl);
1045 if (WARN_ON(supported_vl != vl))
1046 vl = supported_vl;
1047
1048 current->thread.sve_vl = vl;
1049
1050 /*
1051 * If the task is not set to inherit, ensure that the vector
1052 * length will be reset by a subsequent exec:
1053 */
1054 if (!test_thread_flag(TIF_SVE_VL_INHERIT))
1055 current->thread.sve_vl_onexec = 0;
1056 }
1057
1058 put_cpu_fpsimd_context();
1059 }
1060
1061 /*
1062 * Save the userland FPSIMD state of 'current' to memory, but only if the state
1063 * currently held in the registers does in fact belong to 'current'
1064 */
fpsimd_preserve_current_state(void)1065 void fpsimd_preserve_current_state(void)
1066 {
1067 if (!system_supports_fpsimd())
1068 return;
1069
1070 get_cpu_fpsimd_context();
1071 fpsimd_save();
1072 put_cpu_fpsimd_context();
1073 }
1074
1075 /*
1076 * Like fpsimd_preserve_current_state(), but ensure that
1077 * current->thread.uw.fpsimd_state is updated so that it can be copied to
1078 * the signal frame.
1079 */
fpsimd_signal_preserve_current_state(void)1080 void fpsimd_signal_preserve_current_state(void)
1081 {
1082 fpsimd_preserve_current_state();
1083 if (system_supports_sve() && test_thread_flag(TIF_SVE))
1084 sve_to_fpsimd(current);
1085 }
1086
1087 /*
1088 * Associate current's FPSIMD context with this cpu
1089 * The caller must have ownership of the cpu FPSIMD context before calling
1090 * this function.
1091 */
fpsimd_bind_task_to_cpu(void)1092 void fpsimd_bind_task_to_cpu(void)
1093 {
1094 struct fpsimd_last_state_struct *last =
1095 this_cpu_ptr(&fpsimd_last_state);
1096
1097 WARN_ON(!system_supports_fpsimd());
1098 last->st = ¤t->thread.uw.fpsimd_state;
1099 last->sve_state = current->thread.sve_state;
1100 last->sve_vl = current->thread.sve_vl;
1101 current->thread.fpsimd_cpu = smp_processor_id();
1102
1103 if (system_supports_sve()) {
1104 /* Toggle SVE trapping for userspace if needed */
1105 if (test_thread_flag(TIF_SVE))
1106 sve_user_enable();
1107 else
1108 sve_user_disable();
1109
1110 /* Serialised by exception return to user */
1111 }
1112 }
1113
fpsimd_bind_state_to_cpu(struct user_fpsimd_state * st,void * sve_state,unsigned int sve_vl)1114 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
1115 unsigned int sve_vl)
1116 {
1117 struct fpsimd_last_state_struct *last =
1118 this_cpu_ptr(&fpsimd_last_state);
1119
1120 WARN_ON(!system_supports_fpsimd());
1121 WARN_ON(!in_softirq() && !irqs_disabled());
1122
1123 last->st = st;
1124 last->sve_state = sve_state;
1125 last->sve_vl = sve_vl;
1126 }
1127
1128 /*
1129 * Load the userland FPSIMD state of 'current' from memory, but only if the
1130 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1131 * state of 'current'
1132 */
fpsimd_restore_current_state(void)1133 void fpsimd_restore_current_state(void)
1134 {
1135 /*
1136 * For the tasks that were created before we detected the absence of
1137 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
1138 * e.g, init. This could be then inherited by the children processes.
1139 * If we later detect that the system doesn't support FP/SIMD,
1140 * we must clear the flag for all the tasks to indicate that the
1141 * FPSTATE is clean (as we can't have one) to avoid looping for ever in
1142 * do_notify_resume().
1143 */
1144 if (!system_supports_fpsimd()) {
1145 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1146 return;
1147 }
1148
1149 get_cpu_fpsimd_context();
1150
1151 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1152 task_fpsimd_load();
1153 fpsimd_bind_task_to_cpu();
1154 }
1155
1156 put_cpu_fpsimd_context();
1157 }
1158
1159 /*
1160 * Load an updated userland FPSIMD state for 'current' from memory and set the
1161 * flag that indicates that the FPSIMD register contents are the most recent
1162 * FPSIMD state of 'current'
1163 */
fpsimd_update_current_state(struct user_fpsimd_state const * state)1164 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1165 {
1166 if (WARN_ON(!system_supports_fpsimd()))
1167 return;
1168
1169 get_cpu_fpsimd_context();
1170
1171 current->thread.uw.fpsimd_state = *state;
1172 if (system_supports_sve() && test_thread_flag(TIF_SVE))
1173 fpsimd_to_sve(current);
1174
1175 task_fpsimd_load();
1176 fpsimd_bind_task_to_cpu();
1177
1178 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1179
1180 put_cpu_fpsimd_context();
1181 }
1182
1183 /*
1184 * Invalidate live CPU copies of task t's FPSIMD state
1185 *
1186 * This function may be called with preemption enabled. The barrier()
1187 * ensures that the assignment to fpsimd_cpu is visible to any
1188 * preemption/softirq that could race with set_tsk_thread_flag(), so
1189 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1190 *
1191 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1192 * subsequent code.
1193 */
fpsimd_flush_task_state(struct task_struct * t)1194 void fpsimd_flush_task_state(struct task_struct *t)
1195 {
1196 t->thread.fpsimd_cpu = NR_CPUS;
1197 /*
1198 * If we don't support fpsimd, bail out after we have
1199 * reset the fpsimd_cpu for this task and clear the
1200 * FPSTATE.
1201 */
1202 if (!system_supports_fpsimd())
1203 return;
1204 barrier();
1205 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1206
1207 barrier();
1208 }
1209
1210 /*
1211 * Invalidate any task's FPSIMD state that is present on this cpu.
1212 * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1213 * before calling this function.
1214 */
fpsimd_flush_cpu_state(void)1215 static void fpsimd_flush_cpu_state(void)
1216 {
1217 WARN_ON(!system_supports_fpsimd());
1218 __this_cpu_write(fpsimd_last_state.st, NULL);
1219 set_thread_flag(TIF_FOREIGN_FPSTATE);
1220 }
1221
1222 /*
1223 * Save the FPSIMD state to memory and invalidate cpu view.
1224 * This function must be called with preemption disabled.
1225 */
fpsimd_save_and_flush_cpu_state(void)1226 void fpsimd_save_and_flush_cpu_state(void)
1227 {
1228 if (!system_supports_fpsimd())
1229 return;
1230 WARN_ON(preemptible());
1231 __get_cpu_fpsimd_context();
1232 fpsimd_save();
1233 fpsimd_flush_cpu_state();
1234 __put_cpu_fpsimd_context();
1235 }
1236
1237 #ifdef CONFIG_KERNEL_MODE_NEON
1238
1239 /*
1240 * Kernel-side NEON support functions
1241 */
1242
1243 /*
1244 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1245 * context
1246 *
1247 * Must not be called unless may_use_simd() returns true.
1248 * Task context in the FPSIMD registers is saved back to memory as necessary.
1249 *
1250 * A matching call to kernel_neon_end() must be made before returning from the
1251 * calling context.
1252 *
1253 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1254 * called.
1255 */
kernel_neon_begin(void)1256 void kernel_neon_begin(void)
1257 {
1258 if (WARN_ON(!system_supports_fpsimd()))
1259 return;
1260
1261 BUG_ON(!may_use_simd());
1262
1263 get_cpu_fpsimd_context();
1264
1265 /* Save unsaved fpsimd state, if any: */
1266 fpsimd_save();
1267
1268 /* Invalidate any task state remaining in the fpsimd regs: */
1269 fpsimd_flush_cpu_state();
1270 }
1271 EXPORT_SYMBOL(kernel_neon_begin);
1272
1273 /*
1274 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1275 *
1276 * Must be called from a context in which kernel_neon_begin() was previously
1277 * called, with no call to kernel_neon_end() in the meantime.
1278 *
1279 * The caller must not use the FPSIMD registers after this function is called,
1280 * unless kernel_neon_begin() is called again in the meantime.
1281 */
kernel_neon_end(void)1282 void kernel_neon_end(void)
1283 {
1284 if (!system_supports_fpsimd())
1285 return;
1286
1287 put_cpu_fpsimd_context();
1288 }
1289 EXPORT_SYMBOL(kernel_neon_end);
1290
1291 #ifdef CONFIG_EFI
1292
1293 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1294 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1295 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1296
1297 /*
1298 * EFI runtime services support functions
1299 *
1300 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1301 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1302 * is always used rather than being an optional accelerator.
1303 *
1304 * These functions provide the necessary support for ensuring FPSIMD
1305 * save/restore in the contexts from which EFI is used.
1306 *
1307 * Do not use them for any other purpose -- if tempted to do so, you are
1308 * either doing something wrong or you need to propose some refactoring.
1309 */
1310
1311 /*
1312 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1313 */
__efi_fpsimd_begin(void)1314 void __efi_fpsimd_begin(void)
1315 {
1316 if (!system_supports_fpsimd())
1317 return;
1318
1319 WARN_ON(preemptible());
1320
1321 if (may_use_simd()) {
1322 kernel_neon_begin();
1323 } else {
1324 /*
1325 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1326 * preserving:
1327 */
1328 if (system_supports_sve() && likely(efi_sve_state)) {
1329 char *sve_state = this_cpu_ptr(efi_sve_state);
1330
1331 __this_cpu_write(efi_sve_state_used, true);
1332
1333 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl),
1334 &this_cpu_ptr(&efi_fpsimd_state)->fpsr);
1335 } else {
1336 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1337 }
1338
1339 __this_cpu_write(efi_fpsimd_state_used, true);
1340 }
1341 }
1342
1343 /*
1344 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1345 */
__efi_fpsimd_end(void)1346 void __efi_fpsimd_end(void)
1347 {
1348 if (!system_supports_fpsimd())
1349 return;
1350
1351 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1352 kernel_neon_end();
1353 } else {
1354 if (system_supports_sve() &&
1355 likely(__this_cpu_read(efi_sve_state_used))) {
1356 char const *sve_state = this_cpu_ptr(efi_sve_state);
1357
1358 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl),
1359 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1360 sve_vq_from_vl(sve_get_vl()) - 1);
1361
1362 __this_cpu_write(efi_sve_state_used, false);
1363 } else {
1364 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1365 }
1366 }
1367 }
1368
1369 #endif /* CONFIG_EFI */
1370
1371 #endif /* CONFIG_KERNEL_MODE_NEON */
1372
1373 #ifdef CONFIG_CPU_PM
fpsimd_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1374 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1375 unsigned long cmd, void *v)
1376 {
1377 switch (cmd) {
1378 case CPU_PM_ENTER:
1379 fpsimd_save_and_flush_cpu_state();
1380 break;
1381 case CPU_PM_EXIT:
1382 break;
1383 case CPU_PM_ENTER_FAILED:
1384 default:
1385 return NOTIFY_DONE;
1386 }
1387 return NOTIFY_OK;
1388 }
1389
1390 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
1391 .notifier_call = fpsimd_cpu_pm_notifier,
1392 };
1393
fpsimd_pm_init(void)1394 static void __init fpsimd_pm_init(void)
1395 {
1396 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
1397 }
1398
1399 #else
fpsimd_pm_init(void)1400 static inline void fpsimd_pm_init(void) { }
1401 #endif /* CONFIG_CPU_PM */
1402
1403 #ifdef CONFIG_HOTPLUG_CPU
fpsimd_cpu_dead(unsigned int cpu)1404 static int fpsimd_cpu_dead(unsigned int cpu)
1405 {
1406 per_cpu(fpsimd_last_state.st, cpu) = NULL;
1407 return 0;
1408 }
1409
fpsimd_hotplug_init(void)1410 static inline void fpsimd_hotplug_init(void)
1411 {
1412 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
1413 NULL, fpsimd_cpu_dead);
1414 }
1415
1416 #else
fpsimd_hotplug_init(void)1417 static inline void fpsimd_hotplug_init(void) { }
1418 #endif
1419
1420 /*
1421 * FP/SIMD support code initialisation.
1422 */
fpsimd_init(void)1423 static int __init fpsimd_init(void)
1424 {
1425 if (cpu_have_named_feature(FP)) {
1426 fpsimd_pm_init();
1427 fpsimd_hotplug_init();
1428 } else {
1429 pr_notice("Floating-point is not implemented\n");
1430 }
1431
1432 if (!cpu_have_named_feature(ASIMD))
1433 pr_notice("Advanced SIMD is not implemented\n");
1434
1435 return sve_sysctl_init();
1436 }
1437 core_initcall(fpsimd_init);
1438