• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/arm-smccc.h>
8 #include <linux/kvm_host.h>
9 #include <linux/types.h>
10 #include <linux/jump_label.h>
11 #include <uapi/linux/psci.h>
12 
13 #include <kvm/arm_psci.h>
14 
15 #include <asm/arch_gicv3.h>
16 #include <asm/cpufeature.h>
17 #include <asm/extable.h>
18 #include <asm/kprobes.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/kvm_host.h>
22 #include <asm/kvm_hyp.h>
23 #include <asm/kvm_mmu.h>
24 #include <asm/fpsimd.h>
25 #include <asm/debug-monitors.h>
26 #include <asm/processor.h>
27 #include <asm/thread_info.h>
28 #include <asm/vectors.h>
29 
30 extern struct exception_table_entry __start___kvm_ex_table;
31 extern struct exception_table_entry __stop___kvm_ex_table;
32 
33 /* Check whether the FP regs were dirtied while in the host-side run loop: */
update_fp_enabled(struct kvm_vcpu * vcpu)34 static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
35 {
36 	/*
37 	 * When the system doesn't support FP/SIMD, we cannot rely on
38 	 * the _TIF_FOREIGN_FPSTATE flag. However, we always inject an
39 	 * abort on the very first access to FP and thus we should never
40 	 * see KVM_ARM64_FP_ENABLED. For added safety, make sure we always
41 	 * trap the accesses.
42 	 */
43 	if (!system_supports_fpsimd() ||
44 	    vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
45 		vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
46 				      KVM_ARM64_FP_HOST);
47 
48 	return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
49 }
50 
51 /* Save the 32-bit only FPSIMD system register state */
__fpsimd_save_fpexc32(struct kvm_vcpu * vcpu)52 static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
53 {
54 	if (!vcpu_el1_is_32bit(vcpu))
55 		return;
56 
57 	vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
58 }
59 
__activate_traps_fpsimd32(struct kvm_vcpu * vcpu)60 static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
61 {
62 	/*
63 	 * We are about to set CPTR_EL2.TFP to trap all floating point
64 	 * register accesses to EL2, however, the ARM ARM clearly states that
65 	 * traps are only taken to EL2 if the operation would not otherwise
66 	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
67 	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
68 	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
69 	 * it will cause an exception.
70 	 */
71 	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
72 		write_sysreg(1 << 30, fpexc32_el2);
73 		isb();
74 	}
75 }
76 
__activate_traps_common(struct kvm_vcpu * vcpu)77 static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
78 {
79 	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
80 	write_sysreg(1 << 15, hstr_el2);
81 
82 	/*
83 	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
84 	 * PMSELR_EL0 to make sure it never contains the cycle
85 	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
86 	 * EL1 instead of being trapped to EL2.
87 	 */
88 	write_sysreg(0, pmselr_el0);
89 	write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
90 	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
91 }
92 
__deactivate_traps_common(void)93 static void __hyp_text __deactivate_traps_common(void)
94 {
95 	write_sysreg(0, hstr_el2);
96 	write_sysreg(0, pmuserenr_el0);
97 }
98 
activate_traps_vhe(struct kvm_vcpu * vcpu)99 static void activate_traps_vhe(struct kvm_vcpu *vcpu)
100 {
101 	u64 val;
102 
103 	val = read_sysreg(cpacr_el1);
104 	val |= CPACR_EL1_TTA;
105 	val &= ~CPACR_EL1_ZEN;
106 
107 	/*
108 	 * With VHE (HCR.E2H == 1), accesses to CPACR_EL1 are routed to
109 	 * CPTR_EL2. In general, CPACR_EL1 has the same layout as CPTR_EL2,
110 	 * except for some missing controls, such as TAM.
111 	 * In this case, CPTR_EL2.TAM has the same position with or without
112 	 * VHE (HCR.E2H == 1) which allows us to use here the CPTR_EL2.TAM
113 	 * shift value for trapping the AMU accesses.
114 	 */
115 
116 	val |= CPTR_EL2_TAM;
117 
118 	if (update_fp_enabled(vcpu)) {
119 		if (vcpu_has_sve(vcpu))
120 			val |= CPACR_EL1_ZEN;
121 	} else {
122 		val &= ~CPACR_EL1_FPEN;
123 		__activate_traps_fpsimd32(vcpu);
124 	}
125 
126 	write_sysreg(val, cpacr_el1);
127 
128 	write_sysreg(kvm_get_hyp_vector(), vbar_el1);
129 }
130 NOKPROBE_SYMBOL(activate_traps_vhe);
131 
__activate_traps_nvhe(struct kvm_vcpu * vcpu)132 static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
133 {
134 	u64 val;
135 
136 	__activate_traps_common(vcpu);
137 
138 	val = CPTR_EL2_DEFAULT;
139 	val |= CPTR_EL2_TTA | CPTR_EL2_TZ | CPTR_EL2_TAM;
140 	if (!update_fp_enabled(vcpu)) {
141 		val |= CPTR_EL2_TFP;
142 		__activate_traps_fpsimd32(vcpu);
143 	}
144 
145 	write_sysreg(val, cptr_el2);
146 }
147 
__activate_traps(struct kvm_vcpu * vcpu)148 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
149 {
150 	u64 hcr = vcpu->arch.hcr_el2;
151 
152 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
153 		hcr |= HCR_TVM;
154 
155 	write_sysreg(hcr, hcr_el2);
156 
157 	if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
158 		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
159 
160 	if (has_vhe())
161 		activate_traps_vhe(vcpu);
162 	else
163 		__activate_traps_nvhe(vcpu);
164 }
165 
deactivate_traps_vhe(void)166 static void deactivate_traps_vhe(void)
167 {
168 	const char *host_vectors = vectors;
169 	write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
170 
171 	/*
172 	 * ARM erratum 1165522 requires the actual execution of the above
173 	 * before we can switch to the EL2/EL0 translation regime used by
174 	 * the host.
175 	 */
176 	asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_1165522));
177 
178 	write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
179 
180 	if (!arm64_kernel_unmapped_at_el0())
181 		host_vectors = __this_cpu_read(this_cpu_vector);
182 	write_sysreg(host_vectors, vbar_el1);
183 }
184 NOKPROBE_SYMBOL(deactivate_traps_vhe);
185 
__deactivate_traps_nvhe(void)186 static void __hyp_text __deactivate_traps_nvhe(void)
187 {
188 	u64 mdcr_el2 = read_sysreg(mdcr_el2);
189 
190 	__deactivate_traps_common();
191 
192 	mdcr_el2 &= MDCR_EL2_HPMN_MASK;
193 	mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
194 
195 	write_sysreg(mdcr_el2, mdcr_el2);
196 	write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
197 	write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
198 }
199 
__deactivate_traps(struct kvm_vcpu * vcpu)200 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
201 {
202 	/*
203 	 * If we pended a virtual abort, preserve it until it gets
204 	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
205 	 * the crucial bit is "On taking a vSError interrupt,
206 	 * HCR_EL2.VSE is cleared to 0."
207 	 */
208 	if (vcpu->arch.hcr_el2 & HCR_VSE) {
209 		vcpu->arch.hcr_el2 &= ~HCR_VSE;
210 		vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
211 	}
212 
213 	if (has_vhe())
214 		deactivate_traps_vhe();
215 	else
216 		__deactivate_traps_nvhe();
217 }
218 
activate_traps_vhe_load(struct kvm_vcpu * vcpu)219 void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
220 {
221 	__activate_traps_common(vcpu);
222 }
223 
deactivate_traps_vhe_put(void)224 void deactivate_traps_vhe_put(void)
225 {
226 	u64 mdcr_el2 = read_sysreg(mdcr_el2);
227 
228 	mdcr_el2 &= MDCR_EL2_HPMN_MASK |
229 		    MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
230 		    MDCR_EL2_TPMS;
231 
232 	write_sysreg(mdcr_el2, mdcr_el2);
233 
234 	__deactivate_traps_common();
235 }
236 
__activate_vm(struct kvm * kvm)237 static void __hyp_text __activate_vm(struct kvm *kvm)
238 {
239 	__load_guest_stage2(kvm);
240 }
241 
__deactivate_vm(struct kvm_vcpu * vcpu)242 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
243 {
244 	write_sysreg(0, vttbr_el2);
245 }
246 
247 /* Save VGICv3 state on non-VHE systems */
__hyp_vgic_save_state(struct kvm_vcpu * vcpu)248 static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
249 {
250 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
251 		__vgic_v3_save_state(vcpu);
252 		__vgic_v3_deactivate_traps(vcpu);
253 	}
254 }
255 
256 /* Restore VGICv3 state on non_VEH systems */
__hyp_vgic_restore_state(struct kvm_vcpu * vcpu)257 static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
258 {
259 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
260 		__vgic_v3_activate_traps(vcpu);
261 		__vgic_v3_restore_state(vcpu);
262 	}
263 }
264 
__translate_far_to_hpfar(u64 far,u64 * hpfar)265 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
266 {
267 	u64 par, tmp;
268 
269 	/*
270 	 * Resolve the IPA the hard way using the guest VA.
271 	 *
272 	 * Stage-1 translation already validated the memory access
273 	 * rights. As such, we can use the EL1 translation regime, and
274 	 * don't have to distinguish between EL0 and EL1 access.
275 	 *
276 	 * We do need to save/restore PAR_EL1 though, as we haven't
277 	 * saved the guest context yet, and we may return early...
278 	 */
279 	par = read_sysreg(par_el1);
280 	if (!__kvm_at("s1e1r", far))
281 		tmp = read_sysreg(par_el1);
282 	else
283 		tmp = SYS_PAR_EL1_F; /* back to the guest */
284 	write_sysreg(par, par_el1);
285 
286 	if (unlikely(tmp & SYS_PAR_EL1_F))
287 		return false; /* Translation failed, back to guest */
288 
289 	/* Convert PAR to HPFAR format */
290 	*hpfar = PAR_TO_HPFAR(tmp);
291 	return true;
292 }
293 
__populate_fault_info(struct kvm_vcpu * vcpu)294 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
295 {
296 	u8 ec;
297 	u64 esr;
298 	u64 hpfar, far;
299 
300 	esr = vcpu->arch.fault.esr_el2;
301 	ec = ESR_ELx_EC(esr);
302 
303 	if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
304 		return true;
305 
306 	far = read_sysreg_el2(SYS_FAR);
307 
308 	/*
309 	 * The HPFAR can be invalid if the stage 2 fault did not
310 	 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
311 	 * bit is clear) and one of the two following cases are true:
312 	 *   1. The fault was due to a permission fault
313 	 *   2. The processor carries errata 834220
314 	 *
315 	 * Therefore, for all non S1PTW faults where we either have a
316 	 * permission fault or the errata workaround is enabled, we
317 	 * resolve the IPA using the AT instruction.
318 	 */
319 	if (!(esr & ESR_ELx_S1PTW) &&
320 	    (cpus_have_const_cap(ARM64_WORKAROUND_834220) ||
321 	     (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
322 		if (!__translate_far_to_hpfar(far, &hpfar))
323 			return false;
324 	} else {
325 		hpfar = read_sysreg(hpfar_el2);
326 	}
327 
328 	vcpu->arch.fault.far_el2 = far;
329 	vcpu->arch.fault.hpfar_el2 = hpfar;
330 	return true;
331 }
332 
333 /* Check for an FPSIMD/SVE trap and handle as appropriate */
__hyp_handle_fpsimd(struct kvm_vcpu * vcpu)334 static bool __hyp_text __hyp_handle_fpsimd(struct kvm_vcpu *vcpu)
335 {
336 	bool vhe, sve_guest, sve_host;
337 	u8 hsr_ec;
338 
339 	if (!system_supports_fpsimd())
340 		return false;
341 
342 	if (system_supports_sve()) {
343 		sve_guest = vcpu_has_sve(vcpu);
344 		sve_host = vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE;
345 		vhe = true;
346 	} else {
347 		sve_guest = false;
348 		sve_host = false;
349 		vhe = has_vhe();
350 	}
351 
352 	hsr_ec = kvm_vcpu_trap_get_class(vcpu);
353 	if (hsr_ec != ESR_ELx_EC_FP_ASIMD &&
354 	    hsr_ec != ESR_ELx_EC_SVE)
355 		return false;
356 
357 	/* Don't handle SVE traps for non-SVE vcpus here: */
358 	if (!sve_guest)
359 		if (hsr_ec != ESR_ELx_EC_FP_ASIMD)
360 			return false;
361 
362 	/* Valid trap.  Switch the context: */
363 
364 	if (vhe) {
365 		u64 reg = read_sysreg(cpacr_el1) | CPACR_EL1_FPEN;
366 
367 		if (sve_guest)
368 			reg |= CPACR_EL1_ZEN;
369 
370 		write_sysreg(reg, cpacr_el1);
371 	} else {
372 		write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
373 			     cptr_el2);
374 	}
375 
376 	isb();
377 
378 	if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
379 		/*
380 		 * In the SVE case, VHE is assumed: it is enforced by
381 		 * Kconfig and kvm_arch_init().
382 		 */
383 		if (sve_host) {
384 			struct thread_struct *thread = container_of(
385 				vcpu->arch.host_fpsimd_state,
386 				struct thread_struct, uw.fpsimd_state);
387 
388 			sve_save_state(sve_pffr(thread),
389 				       &vcpu->arch.host_fpsimd_state->fpsr);
390 		} else {
391 			__fpsimd_save_state(vcpu->arch.host_fpsimd_state);
392 		}
393 
394 		vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
395 	}
396 
397 	if (sve_guest) {
398 		sve_load_state(vcpu_sve_pffr(vcpu),
399 			       &vcpu->arch.ctxt.gp_regs.fp_regs.fpsr,
400 			       sve_vq_from_vl(vcpu->arch.sve_max_vl) - 1);
401 		write_sysreg_s(vcpu->arch.ctxt.sys_regs[ZCR_EL1], SYS_ZCR_EL12);
402 	} else {
403 		__fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);
404 	}
405 
406 	/* Skip restoring fpexc32 for AArch64 guests */
407 	if (!(read_sysreg(hcr_el2) & HCR_RW))
408 		write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
409 			     fpexc32_el2);
410 
411 	vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
412 
413 	return true;
414 }
415 
handle_tx2_tvm(struct kvm_vcpu * vcpu)416 static bool __hyp_text handle_tx2_tvm(struct kvm_vcpu *vcpu)
417 {
418 	u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_hsr(vcpu));
419 	int rt = kvm_vcpu_sys_get_rt(vcpu);
420 	u64 val = vcpu_get_reg(vcpu, rt);
421 
422 	/*
423 	 * The normal sysreg handling code expects to see the traps,
424 	 * let's not do anything here.
425 	 */
426 	if (vcpu->arch.hcr_el2 & HCR_TVM)
427 		return false;
428 
429 	switch (sysreg) {
430 	case SYS_SCTLR_EL1:
431 		write_sysreg_el1(val, SYS_SCTLR);
432 		break;
433 	case SYS_TTBR0_EL1:
434 		write_sysreg_el1(val, SYS_TTBR0);
435 		break;
436 	case SYS_TTBR1_EL1:
437 		write_sysreg_el1(val, SYS_TTBR1);
438 		break;
439 	case SYS_TCR_EL1:
440 		write_sysreg_el1(val, SYS_TCR);
441 		break;
442 	case SYS_ESR_EL1:
443 		write_sysreg_el1(val, SYS_ESR);
444 		break;
445 	case SYS_FAR_EL1:
446 		write_sysreg_el1(val, SYS_FAR);
447 		break;
448 	case SYS_AFSR0_EL1:
449 		write_sysreg_el1(val, SYS_AFSR0);
450 		break;
451 	case SYS_AFSR1_EL1:
452 		write_sysreg_el1(val, SYS_AFSR1);
453 		break;
454 	case SYS_MAIR_EL1:
455 		write_sysreg_el1(val, SYS_MAIR);
456 		break;
457 	case SYS_AMAIR_EL1:
458 		write_sysreg_el1(val, SYS_AMAIR);
459 		break;
460 	case SYS_CONTEXTIDR_EL1:
461 		write_sysreg_el1(val, SYS_CONTEXTIDR);
462 		break;
463 	default:
464 		return false;
465 	}
466 
467 	__kvm_skip_instr(vcpu);
468 	return true;
469 }
470 
471 /*
472  * Return true when we were able to fixup the guest exit and should return to
473  * the guest, false when we should restore the host state and return to the
474  * main run loop.
475  */
fixup_guest_exit(struct kvm_vcpu * vcpu,u64 * exit_code)476 static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
477 {
478 	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
479 		vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
480 
481 	/*
482 	 * We're using the raw exception code in order to only process
483 	 * the trap if no SError is pending. We will come back to the
484 	 * same PC once the SError has been injected, and replay the
485 	 * trapping instruction.
486 	 */
487 	if (*exit_code != ARM_EXCEPTION_TRAP)
488 		goto exit;
489 
490 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
491 	    kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 &&
492 	    handle_tx2_tvm(vcpu))
493 		return true;
494 
495 	/*
496 	 * We trap the first access to the FP/SIMD to save the host context
497 	 * and restore the guest context lazily.
498 	 * If FP/SIMD is not implemented, handle the trap and inject an
499 	 * undefined instruction exception to the guest.
500 	 * Similarly for trapped SVE accesses.
501 	 */
502 	if (__hyp_handle_fpsimd(vcpu))
503 		return true;
504 
505 	if (!__populate_fault_info(vcpu))
506 		return true;
507 
508 	if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
509 		bool valid;
510 
511 		valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
512 			kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
513 			kvm_vcpu_dabt_isvalid(vcpu) &&
514 			!kvm_vcpu_dabt_isextabt(vcpu) &&
515 			!kvm_vcpu_abt_iss1tw(vcpu);
516 
517 		if (valid) {
518 			int ret = __vgic_v2_perform_cpuif_access(vcpu);
519 
520 			if (ret == 1)
521 				return true;
522 
523 			/* Promote an illegal access to an SError.*/
524 			if (ret == -1)
525 				*exit_code = ARM_EXCEPTION_EL1_SERROR;
526 
527 			goto exit;
528 		}
529 	}
530 
531 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
532 	    (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
533 	     kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
534 		int ret = __vgic_v3_perform_cpuif_access(vcpu);
535 
536 		if (ret == 1)
537 			return true;
538 	}
539 
540 exit:
541 	/* Return to the host kernel and handle the exit */
542 	return false;
543 }
544 
__needs_ssbd_off(struct kvm_vcpu * vcpu)545 static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
546 {
547 	if (!cpus_have_const_cap(ARM64_SSBD))
548 		return false;
549 
550 	return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
551 }
552 
__set_guest_arch_workaround_state(struct kvm_vcpu * vcpu)553 static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
554 {
555 #ifdef CONFIG_ARM64_SSBD
556 	/*
557 	 * The host runs with the workaround always present. If the
558 	 * guest wants it disabled, so be it...
559 	 */
560 	if (__needs_ssbd_off(vcpu) &&
561 	    __hyp_this_cpu_read(arm64_ssbd_callback_required))
562 		arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
563 #endif
564 }
565 
__set_host_arch_workaround_state(struct kvm_vcpu * vcpu)566 static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
567 {
568 #ifdef CONFIG_ARM64_SSBD
569 	/*
570 	 * If the guest has disabled the workaround, bring it back on.
571 	 */
572 	if (__needs_ssbd_off(vcpu) &&
573 	    __hyp_this_cpu_read(arm64_ssbd_callback_required))
574 		arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
575 #endif
576 }
577 
578 /**
579  * Disable host events, enable guest events
580  */
__pmu_switch_to_guest(struct kvm_cpu_context * host_ctxt)581 static bool __hyp_text __pmu_switch_to_guest(struct kvm_cpu_context *host_ctxt)
582 {
583 	struct kvm_host_data *host;
584 	struct kvm_pmu_events *pmu;
585 
586 	host = container_of(host_ctxt, struct kvm_host_data, host_ctxt);
587 	pmu = &host->pmu_events;
588 
589 	if (pmu->events_host)
590 		write_sysreg(pmu->events_host, pmcntenclr_el0);
591 
592 	if (pmu->events_guest)
593 		write_sysreg(pmu->events_guest, pmcntenset_el0);
594 
595 	return (pmu->events_host || pmu->events_guest);
596 }
597 
598 /**
599  * Disable guest events, enable host events
600  */
__pmu_switch_to_host(struct kvm_cpu_context * host_ctxt)601 static void __hyp_text __pmu_switch_to_host(struct kvm_cpu_context *host_ctxt)
602 {
603 	struct kvm_host_data *host;
604 	struct kvm_pmu_events *pmu;
605 
606 	host = container_of(host_ctxt, struct kvm_host_data, host_ctxt);
607 	pmu = &host->pmu_events;
608 
609 	if (pmu->events_guest)
610 		write_sysreg(pmu->events_guest, pmcntenclr_el0);
611 
612 	if (pmu->events_host)
613 		write_sysreg(pmu->events_host, pmcntenset_el0);
614 }
615 
616 /* Switch to the guest for VHE systems running in EL2 */
kvm_vcpu_run_vhe(struct kvm_vcpu * vcpu)617 int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
618 {
619 	struct kvm_cpu_context *host_ctxt;
620 	struct kvm_cpu_context *guest_ctxt;
621 	u64 exit_code;
622 
623 	host_ctxt = vcpu->arch.host_cpu_context;
624 	host_ctxt->__hyp_running_vcpu = vcpu;
625 	guest_ctxt = &vcpu->arch.ctxt;
626 
627 	sysreg_save_host_state_vhe(host_ctxt);
628 
629 	/*
630 	 * ARM erratum 1165522 requires us to configure both stage 1 and
631 	 * stage 2 translation for the guest context before we clear
632 	 * HCR_EL2.TGE.
633 	 *
634 	 * We have already configured the guest's stage 1 translation in
635 	 * kvm_vcpu_load_sysregs above.  We must now call __activate_vm
636 	 * before __activate_traps, because __activate_vm configures
637 	 * stage 2 translation, and __activate_traps clear HCR_EL2.TGE
638 	 * (among other things).
639 	 */
640 	__activate_vm(vcpu->kvm);
641 	__activate_traps(vcpu);
642 
643 	sysreg_restore_guest_state_vhe(guest_ctxt);
644 	__debug_switch_to_guest(vcpu);
645 
646 	__set_guest_arch_workaround_state(vcpu);
647 
648 	do {
649 		/* Jump in the fire! */
650 		exit_code = __guest_enter(vcpu, host_ctxt);
651 
652 		/* And we're baaack! */
653 	} while (fixup_guest_exit(vcpu, &exit_code));
654 
655 	__set_host_arch_workaround_state(vcpu);
656 
657 	sysreg_save_guest_state_vhe(guest_ctxt);
658 
659 	__deactivate_traps(vcpu);
660 
661 	sysreg_restore_host_state_vhe(host_ctxt);
662 
663 	if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
664 		__fpsimd_save_fpexc32(vcpu);
665 
666 	__debug_switch_to_host(vcpu);
667 
668 	return exit_code;
669 }
670 NOKPROBE_SYMBOL(kvm_vcpu_run_vhe);
671 
672 /* Switch to the guest for legacy non-VHE systems */
__kvm_vcpu_run_nvhe(struct kvm_vcpu * vcpu)673 int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
674 {
675 	struct kvm_cpu_context *host_ctxt;
676 	struct kvm_cpu_context *guest_ctxt;
677 	bool pmu_switch_needed;
678 	u64 exit_code;
679 
680 	/*
681 	 * Having IRQs masked via PMR when entering the guest means the GIC
682 	 * will not signal the CPU of interrupts of lower priority, and the
683 	 * only way to get out will be via guest exceptions.
684 	 * Naturally, we want to avoid this.
685 	 */
686 	if (system_uses_irq_prio_masking()) {
687 		gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
688 		dsb(sy);
689 	}
690 
691 	vcpu = kern_hyp_va(vcpu);
692 
693 	host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
694 	host_ctxt->__hyp_running_vcpu = vcpu;
695 	guest_ctxt = &vcpu->arch.ctxt;
696 
697 	pmu_switch_needed = __pmu_switch_to_guest(host_ctxt);
698 
699 	__sysreg_save_state_nvhe(host_ctxt);
700 
701 	/*
702 	 * We must flush and disable the SPE buffer for nVHE, as
703 	 * the translation regime(EL1&0) is going to be loaded with
704 	 * that of the guest. And we must do this before we change the
705 	 * translation regime to EL2 (via MDCR_EL2_EPB == 0) and
706 	 * before we load guest Stage1.
707 	 */
708 	__debug_save_host_buffers_nvhe(vcpu);
709 
710 	__activate_vm(kern_hyp_va(vcpu->kvm));
711 	__activate_traps(vcpu);
712 
713 	__hyp_vgic_restore_state(vcpu);
714 	__timer_enable_traps(vcpu);
715 
716 	/*
717 	 * We must restore the 32-bit state before the sysregs, thanks
718 	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
719 	 */
720 	__sysreg32_restore_state(vcpu);
721 	__sysreg_restore_state_nvhe(guest_ctxt);
722 	__debug_switch_to_guest(vcpu);
723 
724 	__set_guest_arch_workaround_state(vcpu);
725 
726 	do {
727 		/* Jump in the fire! */
728 		exit_code = __guest_enter(vcpu, host_ctxt);
729 
730 		/* And we're baaack! */
731 	} while (fixup_guest_exit(vcpu, &exit_code));
732 
733 	__set_host_arch_workaround_state(vcpu);
734 
735 	__sysreg_save_state_nvhe(guest_ctxt);
736 	__sysreg32_save_state(vcpu);
737 	__timer_disable_traps(vcpu);
738 	__hyp_vgic_save_state(vcpu);
739 
740 	__deactivate_traps(vcpu);
741 	__deactivate_vm(vcpu);
742 
743 	__sysreg_restore_state_nvhe(host_ctxt);
744 
745 	if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
746 		__fpsimd_save_fpexc32(vcpu);
747 
748 	__debug_switch_to_host(vcpu);
749 
750 	/*
751 	 * This must come after restoring the host sysregs, since a non-VHE
752 	 * system may enable SPE here and make use of the TTBRs.
753 	 */
754 	__debug_restore_host_buffers_nvhe(vcpu);
755 
756 	if (pmu_switch_needed)
757 		__pmu_switch_to_host(host_ctxt);
758 
759 	/* Returning to host will clear PSR.I, remask PMR if needed */
760 	if (system_uses_irq_prio_masking())
761 		gic_write_pmr(GIC_PRIO_IRQOFF);
762 
763 	return exit_code;
764 }
765 
766 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
767 
__hyp_call_panic_nvhe(u64 spsr,u64 elr,u64 par,struct kvm_cpu_context * __host_ctxt)768 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
769 					     struct kvm_cpu_context *__host_ctxt)
770 {
771 	struct kvm_vcpu *vcpu;
772 	unsigned long str_va;
773 
774 	vcpu = __host_ctxt->__hyp_running_vcpu;
775 
776 	if (read_sysreg(vttbr_el2)) {
777 		__timer_disable_traps(vcpu);
778 		__deactivate_traps(vcpu);
779 		__deactivate_vm(vcpu);
780 		__sysreg_restore_state_nvhe(__host_ctxt);
781 	}
782 
783 	/*
784 	 * Force the panic string to be loaded from the literal pool,
785 	 * making sure it is a kernel address and not a PC-relative
786 	 * reference.
787 	 */
788 	asm volatile("ldr %0, =%1" : "=r" (str_va) : "S" (__hyp_panic_string));
789 
790 	__hyp_do_panic(str_va,
791 		       spsr, elr,
792 		       read_sysreg(esr_el2), read_sysreg_el2(SYS_FAR),
793 		       read_sysreg(hpfar_el2), par, vcpu);
794 }
795 
__hyp_call_panic_vhe(u64 spsr,u64 elr,u64 par,struct kvm_cpu_context * host_ctxt)796 static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
797 				 struct kvm_cpu_context *host_ctxt)
798 {
799 	struct kvm_vcpu *vcpu;
800 	vcpu = host_ctxt->__hyp_running_vcpu;
801 
802 	__deactivate_traps(vcpu);
803 	sysreg_restore_host_state_vhe(host_ctxt);
804 
805 	panic(__hyp_panic_string,
806 	      spsr,  elr,
807 	      read_sysreg_el2(SYS_ESR),   read_sysreg_el2(SYS_FAR),
808 	      read_sysreg(hpfar_el2), par, vcpu);
809 }
810 NOKPROBE_SYMBOL(__hyp_call_panic_vhe);
811 
hyp_panic(struct kvm_cpu_context * host_ctxt)812 void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
813 {
814 	u64 spsr = read_sysreg_el2(SYS_SPSR);
815 	u64 elr = read_sysreg_el2(SYS_ELR);
816 	u64 par = read_sysreg(par_el1);
817 
818 	if (!has_vhe())
819 		__hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
820 	else
821 		__hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
822 
823 	unreachable();
824 }
825 
kvm_unexpected_el2_exception(void)826 asmlinkage void __hyp_text kvm_unexpected_el2_exception(void)
827 {
828 	unsigned long addr, fixup;
829 	struct kvm_cpu_context *host_ctxt;
830 	struct exception_table_entry *entry, *end;
831 	unsigned long elr_el2 = read_sysreg(elr_el2);
832 
833 	entry = hyp_symbol_addr(__start___kvm_ex_table);
834 	end = hyp_symbol_addr(__stop___kvm_ex_table);
835 	host_ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt;
836 
837 	while (entry < end) {
838 		addr = (unsigned long)&entry->insn + entry->insn;
839 		fixup = (unsigned long)&entry->fixup + entry->fixup;
840 
841 		if (addr != elr_el2) {
842 			entry++;
843 			continue;
844 		}
845 
846 		write_sysreg(fixup, elr_el2);
847 		return;
848 	}
849 
850 	hyp_panic(host_ctxt);
851 }
852