1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/arm-smccc.h>
8 #include <linux/kvm_host.h>
9 #include <linux/types.h>
10 #include <linux/jump_label.h>
11 #include <uapi/linux/psci.h>
12
13 #include <kvm/arm_psci.h>
14
15 #include <asm/arch_gicv3.h>
16 #include <asm/cpufeature.h>
17 #include <asm/extable.h>
18 #include <asm/kprobes.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/kvm_host.h>
22 #include <asm/kvm_hyp.h>
23 #include <asm/kvm_mmu.h>
24 #include <asm/fpsimd.h>
25 #include <asm/debug-monitors.h>
26 #include <asm/processor.h>
27 #include <asm/thread_info.h>
28 #include <asm/vectors.h>
29
30 extern struct exception_table_entry __start___kvm_ex_table;
31 extern struct exception_table_entry __stop___kvm_ex_table;
32
33 /* Check whether the FP regs were dirtied while in the host-side run loop: */
update_fp_enabled(struct kvm_vcpu * vcpu)34 static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
35 {
36 /*
37 * When the system doesn't support FP/SIMD, we cannot rely on
38 * the _TIF_FOREIGN_FPSTATE flag. However, we always inject an
39 * abort on the very first access to FP and thus we should never
40 * see KVM_ARM64_FP_ENABLED. For added safety, make sure we always
41 * trap the accesses.
42 */
43 if (!system_supports_fpsimd() ||
44 vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
45 vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
46 KVM_ARM64_FP_HOST);
47
48 return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
49 }
50
51 /* Save the 32-bit only FPSIMD system register state */
__fpsimd_save_fpexc32(struct kvm_vcpu * vcpu)52 static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
53 {
54 if (!vcpu_el1_is_32bit(vcpu))
55 return;
56
57 vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
58 }
59
__activate_traps_fpsimd32(struct kvm_vcpu * vcpu)60 static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
61 {
62 /*
63 * We are about to set CPTR_EL2.TFP to trap all floating point
64 * register accesses to EL2, however, the ARM ARM clearly states that
65 * traps are only taken to EL2 if the operation would not otherwise
66 * trap to EL1. Therefore, always make sure that for 32-bit guests,
67 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
68 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
69 * it will cause an exception.
70 */
71 if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
72 write_sysreg(1 << 30, fpexc32_el2);
73 isb();
74 }
75 }
76
__activate_traps_common(struct kvm_vcpu * vcpu)77 static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
78 {
79 /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
80 write_sysreg(1 << 15, hstr_el2);
81
82 /*
83 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
84 * PMSELR_EL0 to make sure it never contains the cycle
85 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
86 * EL1 instead of being trapped to EL2.
87 */
88 write_sysreg(0, pmselr_el0);
89 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
90 write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
91 }
92
__deactivate_traps_common(void)93 static void __hyp_text __deactivate_traps_common(void)
94 {
95 write_sysreg(0, hstr_el2);
96 write_sysreg(0, pmuserenr_el0);
97 }
98
activate_traps_vhe(struct kvm_vcpu * vcpu)99 static void activate_traps_vhe(struct kvm_vcpu *vcpu)
100 {
101 u64 val;
102
103 val = read_sysreg(cpacr_el1);
104 val |= CPACR_EL1_TTA;
105 val &= ~CPACR_EL1_ZEN;
106
107 /*
108 * With VHE (HCR.E2H == 1), accesses to CPACR_EL1 are routed to
109 * CPTR_EL2. In general, CPACR_EL1 has the same layout as CPTR_EL2,
110 * except for some missing controls, such as TAM.
111 * In this case, CPTR_EL2.TAM has the same position with or without
112 * VHE (HCR.E2H == 1) which allows us to use here the CPTR_EL2.TAM
113 * shift value for trapping the AMU accesses.
114 */
115
116 val |= CPTR_EL2_TAM;
117
118 if (update_fp_enabled(vcpu)) {
119 if (vcpu_has_sve(vcpu))
120 val |= CPACR_EL1_ZEN;
121 } else {
122 val &= ~CPACR_EL1_FPEN;
123 __activate_traps_fpsimd32(vcpu);
124 }
125
126 write_sysreg(val, cpacr_el1);
127
128 write_sysreg(kvm_get_hyp_vector(), vbar_el1);
129 }
130 NOKPROBE_SYMBOL(activate_traps_vhe);
131
__activate_traps_nvhe(struct kvm_vcpu * vcpu)132 static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
133 {
134 u64 val;
135
136 __activate_traps_common(vcpu);
137
138 val = CPTR_EL2_DEFAULT;
139 val |= CPTR_EL2_TTA | CPTR_EL2_TZ | CPTR_EL2_TAM;
140 if (!update_fp_enabled(vcpu)) {
141 val |= CPTR_EL2_TFP;
142 __activate_traps_fpsimd32(vcpu);
143 }
144
145 write_sysreg(val, cptr_el2);
146 }
147
__activate_traps(struct kvm_vcpu * vcpu)148 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
149 {
150 u64 hcr = vcpu->arch.hcr_el2;
151
152 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
153 hcr |= HCR_TVM;
154
155 write_sysreg(hcr, hcr_el2);
156
157 if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
158 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
159
160 if (has_vhe())
161 activate_traps_vhe(vcpu);
162 else
163 __activate_traps_nvhe(vcpu);
164 }
165
deactivate_traps_vhe(void)166 static void deactivate_traps_vhe(void)
167 {
168 const char *host_vectors = vectors;
169 write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
170
171 /*
172 * ARM erratum 1165522 requires the actual execution of the above
173 * before we can switch to the EL2/EL0 translation regime used by
174 * the host.
175 */
176 asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_1165522));
177
178 write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
179
180 if (!arm64_kernel_unmapped_at_el0())
181 host_vectors = __this_cpu_read(this_cpu_vector);
182 write_sysreg(host_vectors, vbar_el1);
183 }
184 NOKPROBE_SYMBOL(deactivate_traps_vhe);
185
__deactivate_traps_nvhe(void)186 static void __hyp_text __deactivate_traps_nvhe(void)
187 {
188 u64 mdcr_el2 = read_sysreg(mdcr_el2);
189
190 __deactivate_traps_common();
191
192 mdcr_el2 &= MDCR_EL2_HPMN_MASK;
193 mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
194
195 write_sysreg(mdcr_el2, mdcr_el2);
196 write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
197 write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
198 }
199
__deactivate_traps(struct kvm_vcpu * vcpu)200 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
201 {
202 /*
203 * If we pended a virtual abort, preserve it until it gets
204 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
205 * the crucial bit is "On taking a vSError interrupt,
206 * HCR_EL2.VSE is cleared to 0."
207 */
208 if (vcpu->arch.hcr_el2 & HCR_VSE) {
209 vcpu->arch.hcr_el2 &= ~HCR_VSE;
210 vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
211 }
212
213 if (has_vhe())
214 deactivate_traps_vhe();
215 else
216 __deactivate_traps_nvhe();
217 }
218
activate_traps_vhe_load(struct kvm_vcpu * vcpu)219 void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
220 {
221 __activate_traps_common(vcpu);
222 }
223
deactivate_traps_vhe_put(void)224 void deactivate_traps_vhe_put(void)
225 {
226 u64 mdcr_el2 = read_sysreg(mdcr_el2);
227
228 mdcr_el2 &= MDCR_EL2_HPMN_MASK |
229 MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
230 MDCR_EL2_TPMS;
231
232 write_sysreg(mdcr_el2, mdcr_el2);
233
234 __deactivate_traps_common();
235 }
236
__activate_vm(struct kvm * kvm)237 static void __hyp_text __activate_vm(struct kvm *kvm)
238 {
239 __load_guest_stage2(kvm);
240 }
241
__deactivate_vm(struct kvm_vcpu * vcpu)242 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
243 {
244 write_sysreg(0, vttbr_el2);
245 }
246
247 /* Save VGICv3 state on non-VHE systems */
__hyp_vgic_save_state(struct kvm_vcpu * vcpu)248 static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
249 {
250 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
251 __vgic_v3_save_state(vcpu);
252 __vgic_v3_deactivate_traps(vcpu);
253 }
254 }
255
256 /* Restore VGICv3 state on non_VEH systems */
__hyp_vgic_restore_state(struct kvm_vcpu * vcpu)257 static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
258 {
259 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
260 __vgic_v3_activate_traps(vcpu);
261 __vgic_v3_restore_state(vcpu);
262 }
263 }
264
__translate_far_to_hpfar(u64 far,u64 * hpfar)265 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
266 {
267 u64 par, tmp;
268
269 /*
270 * Resolve the IPA the hard way using the guest VA.
271 *
272 * Stage-1 translation already validated the memory access
273 * rights. As such, we can use the EL1 translation regime, and
274 * don't have to distinguish between EL0 and EL1 access.
275 *
276 * We do need to save/restore PAR_EL1 though, as we haven't
277 * saved the guest context yet, and we may return early...
278 */
279 par = read_sysreg(par_el1);
280 if (!__kvm_at("s1e1r", far))
281 tmp = read_sysreg(par_el1);
282 else
283 tmp = SYS_PAR_EL1_F; /* back to the guest */
284 write_sysreg(par, par_el1);
285
286 if (unlikely(tmp & SYS_PAR_EL1_F))
287 return false; /* Translation failed, back to guest */
288
289 /* Convert PAR to HPFAR format */
290 *hpfar = PAR_TO_HPFAR(tmp);
291 return true;
292 }
293
__populate_fault_info(struct kvm_vcpu * vcpu)294 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
295 {
296 u8 ec;
297 u64 esr;
298 u64 hpfar, far;
299
300 esr = vcpu->arch.fault.esr_el2;
301 ec = ESR_ELx_EC(esr);
302
303 if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
304 return true;
305
306 far = read_sysreg_el2(SYS_FAR);
307
308 /*
309 * The HPFAR can be invalid if the stage 2 fault did not
310 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
311 * bit is clear) and one of the two following cases are true:
312 * 1. The fault was due to a permission fault
313 * 2. The processor carries errata 834220
314 *
315 * Therefore, for all non S1PTW faults where we either have a
316 * permission fault or the errata workaround is enabled, we
317 * resolve the IPA using the AT instruction.
318 */
319 if (!(esr & ESR_ELx_S1PTW) &&
320 (cpus_have_const_cap(ARM64_WORKAROUND_834220) ||
321 (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
322 if (!__translate_far_to_hpfar(far, &hpfar))
323 return false;
324 } else {
325 hpfar = read_sysreg(hpfar_el2);
326 }
327
328 vcpu->arch.fault.far_el2 = far;
329 vcpu->arch.fault.hpfar_el2 = hpfar;
330 return true;
331 }
332
333 /* Check for an FPSIMD/SVE trap and handle as appropriate */
__hyp_handle_fpsimd(struct kvm_vcpu * vcpu)334 static bool __hyp_text __hyp_handle_fpsimd(struct kvm_vcpu *vcpu)
335 {
336 bool vhe, sve_guest, sve_host;
337 u8 hsr_ec;
338
339 if (!system_supports_fpsimd())
340 return false;
341
342 if (system_supports_sve()) {
343 sve_guest = vcpu_has_sve(vcpu);
344 sve_host = vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE;
345 vhe = true;
346 } else {
347 sve_guest = false;
348 sve_host = false;
349 vhe = has_vhe();
350 }
351
352 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
353 if (hsr_ec != ESR_ELx_EC_FP_ASIMD &&
354 hsr_ec != ESR_ELx_EC_SVE)
355 return false;
356
357 /* Don't handle SVE traps for non-SVE vcpus here: */
358 if (!sve_guest)
359 if (hsr_ec != ESR_ELx_EC_FP_ASIMD)
360 return false;
361
362 /* Valid trap. Switch the context: */
363
364 if (vhe) {
365 u64 reg = read_sysreg(cpacr_el1) | CPACR_EL1_FPEN;
366
367 if (sve_guest)
368 reg |= CPACR_EL1_ZEN;
369
370 write_sysreg(reg, cpacr_el1);
371 } else {
372 write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
373 cptr_el2);
374 }
375
376 isb();
377
378 if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
379 /*
380 * In the SVE case, VHE is assumed: it is enforced by
381 * Kconfig and kvm_arch_init().
382 */
383 if (sve_host) {
384 struct thread_struct *thread = container_of(
385 vcpu->arch.host_fpsimd_state,
386 struct thread_struct, uw.fpsimd_state);
387
388 sve_save_state(sve_pffr(thread),
389 &vcpu->arch.host_fpsimd_state->fpsr);
390 } else {
391 __fpsimd_save_state(vcpu->arch.host_fpsimd_state);
392 }
393
394 vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
395 }
396
397 if (sve_guest) {
398 sve_load_state(vcpu_sve_pffr(vcpu),
399 &vcpu->arch.ctxt.gp_regs.fp_regs.fpsr,
400 sve_vq_from_vl(vcpu->arch.sve_max_vl) - 1);
401 write_sysreg_s(vcpu->arch.ctxt.sys_regs[ZCR_EL1], SYS_ZCR_EL12);
402 } else {
403 __fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);
404 }
405
406 /* Skip restoring fpexc32 for AArch64 guests */
407 if (!(read_sysreg(hcr_el2) & HCR_RW))
408 write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
409 fpexc32_el2);
410
411 vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
412
413 return true;
414 }
415
handle_tx2_tvm(struct kvm_vcpu * vcpu)416 static bool __hyp_text handle_tx2_tvm(struct kvm_vcpu *vcpu)
417 {
418 u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_hsr(vcpu));
419 int rt = kvm_vcpu_sys_get_rt(vcpu);
420 u64 val = vcpu_get_reg(vcpu, rt);
421
422 /*
423 * The normal sysreg handling code expects to see the traps,
424 * let's not do anything here.
425 */
426 if (vcpu->arch.hcr_el2 & HCR_TVM)
427 return false;
428
429 switch (sysreg) {
430 case SYS_SCTLR_EL1:
431 write_sysreg_el1(val, SYS_SCTLR);
432 break;
433 case SYS_TTBR0_EL1:
434 write_sysreg_el1(val, SYS_TTBR0);
435 break;
436 case SYS_TTBR1_EL1:
437 write_sysreg_el1(val, SYS_TTBR1);
438 break;
439 case SYS_TCR_EL1:
440 write_sysreg_el1(val, SYS_TCR);
441 break;
442 case SYS_ESR_EL1:
443 write_sysreg_el1(val, SYS_ESR);
444 break;
445 case SYS_FAR_EL1:
446 write_sysreg_el1(val, SYS_FAR);
447 break;
448 case SYS_AFSR0_EL1:
449 write_sysreg_el1(val, SYS_AFSR0);
450 break;
451 case SYS_AFSR1_EL1:
452 write_sysreg_el1(val, SYS_AFSR1);
453 break;
454 case SYS_MAIR_EL1:
455 write_sysreg_el1(val, SYS_MAIR);
456 break;
457 case SYS_AMAIR_EL1:
458 write_sysreg_el1(val, SYS_AMAIR);
459 break;
460 case SYS_CONTEXTIDR_EL1:
461 write_sysreg_el1(val, SYS_CONTEXTIDR);
462 break;
463 default:
464 return false;
465 }
466
467 __kvm_skip_instr(vcpu);
468 return true;
469 }
470
471 /*
472 * Return true when we were able to fixup the guest exit and should return to
473 * the guest, false when we should restore the host state and return to the
474 * main run loop.
475 */
fixup_guest_exit(struct kvm_vcpu * vcpu,u64 * exit_code)476 static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
477 {
478 if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
479 vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
480
481 /*
482 * We're using the raw exception code in order to only process
483 * the trap if no SError is pending. We will come back to the
484 * same PC once the SError has been injected, and replay the
485 * trapping instruction.
486 */
487 if (*exit_code != ARM_EXCEPTION_TRAP)
488 goto exit;
489
490 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
491 kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 &&
492 handle_tx2_tvm(vcpu))
493 return true;
494
495 /*
496 * We trap the first access to the FP/SIMD to save the host context
497 * and restore the guest context lazily.
498 * If FP/SIMD is not implemented, handle the trap and inject an
499 * undefined instruction exception to the guest.
500 * Similarly for trapped SVE accesses.
501 */
502 if (__hyp_handle_fpsimd(vcpu))
503 return true;
504
505 if (!__populate_fault_info(vcpu))
506 return true;
507
508 if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
509 bool valid;
510
511 valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
512 kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
513 kvm_vcpu_dabt_isvalid(vcpu) &&
514 !kvm_vcpu_dabt_isextabt(vcpu) &&
515 !kvm_vcpu_abt_iss1tw(vcpu);
516
517 if (valid) {
518 int ret = __vgic_v2_perform_cpuif_access(vcpu);
519
520 if (ret == 1)
521 return true;
522
523 /* Promote an illegal access to an SError.*/
524 if (ret == -1)
525 *exit_code = ARM_EXCEPTION_EL1_SERROR;
526
527 goto exit;
528 }
529 }
530
531 if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
532 (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
533 kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
534 int ret = __vgic_v3_perform_cpuif_access(vcpu);
535
536 if (ret == 1)
537 return true;
538 }
539
540 exit:
541 /* Return to the host kernel and handle the exit */
542 return false;
543 }
544
__needs_ssbd_off(struct kvm_vcpu * vcpu)545 static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
546 {
547 if (!cpus_have_const_cap(ARM64_SSBD))
548 return false;
549
550 return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
551 }
552
__set_guest_arch_workaround_state(struct kvm_vcpu * vcpu)553 static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
554 {
555 #ifdef CONFIG_ARM64_SSBD
556 /*
557 * The host runs with the workaround always present. If the
558 * guest wants it disabled, so be it...
559 */
560 if (__needs_ssbd_off(vcpu) &&
561 __hyp_this_cpu_read(arm64_ssbd_callback_required))
562 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
563 #endif
564 }
565
__set_host_arch_workaround_state(struct kvm_vcpu * vcpu)566 static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
567 {
568 #ifdef CONFIG_ARM64_SSBD
569 /*
570 * If the guest has disabled the workaround, bring it back on.
571 */
572 if (__needs_ssbd_off(vcpu) &&
573 __hyp_this_cpu_read(arm64_ssbd_callback_required))
574 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
575 #endif
576 }
577
578 /**
579 * Disable host events, enable guest events
580 */
__pmu_switch_to_guest(struct kvm_cpu_context * host_ctxt)581 static bool __hyp_text __pmu_switch_to_guest(struct kvm_cpu_context *host_ctxt)
582 {
583 struct kvm_host_data *host;
584 struct kvm_pmu_events *pmu;
585
586 host = container_of(host_ctxt, struct kvm_host_data, host_ctxt);
587 pmu = &host->pmu_events;
588
589 if (pmu->events_host)
590 write_sysreg(pmu->events_host, pmcntenclr_el0);
591
592 if (pmu->events_guest)
593 write_sysreg(pmu->events_guest, pmcntenset_el0);
594
595 return (pmu->events_host || pmu->events_guest);
596 }
597
598 /**
599 * Disable guest events, enable host events
600 */
__pmu_switch_to_host(struct kvm_cpu_context * host_ctxt)601 static void __hyp_text __pmu_switch_to_host(struct kvm_cpu_context *host_ctxt)
602 {
603 struct kvm_host_data *host;
604 struct kvm_pmu_events *pmu;
605
606 host = container_of(host_ctxt, struct kvm_host_data, host_ctxt);
607 pmu = &host->pmu_events;
608
609 if (pmu->events_guest)
610 write_sysreg(pmu->events_guest, pmcntenclr_el0);
611
612 if (pmu->events_host)
613 write_sysreg(pmu->events_host, pmcntenset_el0);
614 }
615
616 /* Switch to the guest for VHE systems running in EL2 */
kvm_vcpu_run_vhe(struct kvm_vcpu * vcpu)617 int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
618 {
619 struct kvm_cpu_context *host_ctxt;
620 struct kvm_cpu_context *guest_ctxt;
621 u64 exit_code;
622
623 host_ctxt = vcpu->arch.host_cpu_context;
624 host_ctxt->__hyp_running_vcpu = vcpu;
625 guest_ctxt = &vcpu->arch.ctxt;
626
627 sysreg_save_host_state_vhe(host_ctxt);
628
629 /*
630 * ARM erratum 1165522 requires us to configure both stage 1 and
631 * stage 2 translation for the guest context before we clear
632 * HCR_EL2.TGE.
633 *
634 * We have already configured the guest's stage 1 translation in
635 * kvm_vcpu_load_sysregs above. We must now call __activate_vm
636 * before __activate_traps, because __activate_vm configures
637 * stage 2 translation, and __activate_traps clear HCR_EL2.TGE
638 * (among other things).
639 */
640 __activate_vm(vcpu->kvm);
641 __activate_traps(vcpu);
642
643 sysreg_restore_guest_state_vhe(guest_ctxt);
644 __debug_switch_to_guest(vcpu);
645
646 __set_guest_arch_workaround_state(vcpu);
647
648 do {
649 /* Jump in the fire! */
650 exit_code = __guest_enter(vcpu, host_ctxt);
651
652 /* And we're baaack! */
653 } while (fixup_guest_exit(vcpu, &exit_code));
654
655 __set_host_arch_workaround_state(vcpu);
656
657 sysreg_save_guest_state_vhe(guest_ctxt);
658
659 __deactivate_traps(vcpu);
660
661 sysreg_restore_host_state_vhe(host_ctxt);
662
663 if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
664 __fpsimd_save_fpexc32(vcpu);
665
666 __debug_switch_to_host(vcpu);
667
668 return exit_code;
669 }
670 NOKPROBE_SYMBOL(kvm_vcpu_run_vhe);
671
672 /* Switch to the guest for legacy non-VHE systems */
__kvm_vcpu_run_nvhe(struct kvm_vcpu * vcpu)673 int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
674 {
675 struct kvm_cpu_context *host_ctxt;
676 struct kvm_cpu_context *guest_ctxt;
677 bool pmu_switch_needed;
678 u64 exit_code;
679
680 /*
681 * Having IRQs masked via PMR when entering the guest means the GIC
682 * will not signal the CPU of interrupts of lower priority, and the
683 * only way to get out will be via guest exceptions.
684 * Naturally, we want to avoid this.
685 */
686 if (system_uses_irq_prio_masking()) {
687 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
688 dsb(sy);
689 }
690
691 vcpu = kern_hyp_va(vcpu);
692
693 host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
694 host_ctxt->__hyp_running_vcpu = vcpu;
695 guest_ctxt = &vcpu->arch.ctxt;
696
697 pmu_switch_needed = __pmu_switch_to_guest(host_ctxt);
698
699 __sysreg_save_state_nvhe(host_ctxt);
700
701 /*
702 * We must flush and disable the SPE buffer for nVHE, as
703 * the translation regime(EL1&0) is going to be loaded with
704 * that of the guest. And we must do this before we change the
705 * translation regime to EL2 (via MDCR_EL2_EPB == 0) and
706 * before we load guest Stage1.
707 */
708 __debug_save_host_buffers_nvhe(vcpu);
709
710 __activate_vm(kern_hyp_va(vcpu->kvm));
711 __activate_traps(vcpu);
712
713 __hyp_vgic_restore_state(vcpu);
714 __timer_enable_traps(vcpu);
715
716 /*
717 * We must restore the 32-bit state before the sysregs, thanks
718 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
719 */
720 __sysreg32_restore_state(vcpu);
721 __sysreg_restore_state_nvhe(guest_ctxt);
722 __debug_switch_to_guest(vcpu);
723
724 __set_guest_arch_workaround_state(vcpu);
725
726 do {
727 /* Jump in the fire! */
728 exit_code = __guest_enter(vcpu, host_ctxt);
729
730 /* And we're baaack! */
731 } while (fixup_guest_exit(vcpu, &exit_code));
732
733 __set_host_arch_workaround_state(vcpu);
734
735 __sysreg_save_state_nvhe(guest_ctxt);
736 __sysreg32_save_state(vcpu);
737 __timer_disable_traps(vcpu);
738 __hyp_vgic_save_state(vcpu);
739
740 __deactivate_traps(vcpu);
741 __deactivate_vm(vcpu);
742
743 __sysreg_restore_state_nvhe(host_ctxt);
744
745 if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
746 __fpsimd_save_fpexc32(vcpu);
747
748 __debug_switch_to_host(vcpu);
749
750 /*
751 * This must come after restoring the host sysregs, since a non-VHE
752 * system may enable SPE here and make use of the TTBRs.
753 */
754 __debug_restore_host_buffers_nvhe(vcpu);
755
756 if (pmu_switch_needed)
757 __pmu_switch_to_host(host_ctxt);
758
759 /* Returning to host will clear PSR.I, remask PMR if needed */
760 if (system_uses_irq_prio_masking())
761 gic_write_pmr(GIC_PRIO_IRQOFF);
762
763 return exit_code;
764 }
765
766 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
767
__hyp_call_panic_nvhe(u64 spsr,u64 elr,u64 par,struct kvm_cpu_context * __host_ctxt)768 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
769 struct kvm_cpu_context *__host_ctxt)
770 {
771 struct kvm_vcpu *vcpu;
772 unsigned long str_va;
773
774 vcpu = __host_ctxt->__hyp_running_vcpu;
775
776 if (read_sysreg(vttbr_el2)) {
777 __timer_disable_traps(vcpu);
778 __deactivate_traps(vcpu);
779 __deactivate_vm(vcpu);
780 __sysreg_restore_state_nvhe(__host_ctxt);
781 }
782
783 /*
784 * Force the panic string to be loaded from the literal pool,
785 * making sure it is a kernel address and not a PC-relative
786 * reference.
787 */
788 asm volatile("ldr %0, =%1" : "=r" (str_va) : "S" (__hyp_panic_string));
789
790 __hyp_do_panic(str_va,
791 spsr, elr,
792 read_sysreg(esr_el2), read_sysreg_el2(SYS_FAR),
793 read_sysreg(hpfar_el2), par, vcpu);
794 }
795
__hyp_call_panic_vhe(u64 spsr,u64 elr,u64 par,struct kvm_cpu_context * host_ctxt)796 static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
797 struct kvm_cpu_context *host_ctxt)
798 {
799 struct kvm_vcpu *vcpu;
800 vcpu = host_ctxt->__hyp_running_vcpu;
801
802 __deactivate_traps(vcpu);
803 sysreg_restore_host_state_vhe(host_ctxt);
804
805 panic(__hyp_panic_string,
806 spsr, elr,
807 read_sysreg_el2(SYS_ESR), read_sysreg_el2(SYS_FAR),
808 read_sysreg(hpfar_el2), par, vcpu);
809 }
810 NOKPROBE_SYMBOL(__hyp_call_panic_vhe);
811
hyp_panic(struct kvm_cpu_context * host_ctxt)812 void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
813 {
814 u64 spsr = read_sysreg_el2(SYS_SPSR);
815 u64 elr = read_sysreg_el2(SYS_ELR);
816 u64 par = read_sysreg(par_el1);
817
818 if (!has_vhe())
819 __hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
820 else
821 __hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
822
823 unreachable();
824 }
825
kvm_unexpected_el2_exception(void)826 asmlinkage void __hyp_text kvm_unexpected_el2_exception(void)
827 {
828 unsigned long addr, fixup;
829 struct kvm_cpu_context *host_ctxt;
830 struct exception_table_entry *entry, *end;
831 unsigned long elr_el2 = read_sysreg(elr_el2);
832
833 entry = hyp_symbol_addr(__start___kvm_ex_table);
834 end = hyp_symbol_addr(__stop___kvm_ex_table);
835 host_ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt;
836
837 while (entry < end) {
838 addr = (unsigned long)&entry->insn + entry->insn;
839 fixup = (unsigned long)&entry->fixup + entry->fixup;
840
841 if (addr != elr_el2) {
842 entry++;
843 continue;
844 }
845
846 write_sysreg(fixup, elr_el2);
847 return;
848 }
849
850 hyp_panic(host_ctxt);
851 }
852