1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/mm/init.c
4 *
5 * Copyright (C) 1995-2005 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/memblock.h>
20 #include <linux/sort.h>
21 #include <linux/of.h>
22 #include <linux/of_fdt.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dma-contiguous.h>
25 #include <linux/efi.h>
26 #include <linux/swiotlb.h>
27 #include <linux/vmalloc.h>
28 #include <linux/mm.h>
29 #include <linux/kexec.h>
30 #include <linux/crash_dump.h>
31
32 #include <asm/boot.h>
33 #include <asm/fixmap.h>
34 #include <asm/kasan.h>
35 #include <asm/kernel-pgtable.h>
36 #include <asm/memory.h>
37 #include <asm/numa.h>
38 #include <asm/sections.h>
39 #include <asm/setup.h>
40 #include <linux/sizes.h>
41 #include <asm/tlb.h>
42 #include <asm/alternative.h>
43
44 /*
45 * We need to be able to catch inadvertent references to memstart_addr
46 * that occur (potentially in generic code) before arm64_memblock_init()
47 * executes, which assigns it its actual value. So use a default value
48 * that cannot be mistaken for a real physical address.
49 */
50 s64 memstart_addr __ro_after_init = -1;
51 EXPORT_SYMBOL(memstart_addr);
52
53 s64 physvirt_offset __ro_after_init;
54 EXPORT_SYMBOL(physvirt_offset);
55
56 struct page *vmemmap __ro_after_init;
57 EXPORT_SYMBOL(vmemmap);
58
59 phys_addr_t arm64_dma_phys_limit __ro_after_init;
60
61 #ifdef CONFIG_KEXEC_CORE
62 /*
63 * reserve_crashkernel() - reserves memory for crash kernel
64 *
65 * This function reserves memory area given in "crashkernel=" kernel command
66 * line parameter. The memory reserved is used by dump capture kernel when
67 * primary kernel is crashing.
68 */
reserve_crashkernel(void)69 static void __init reserve_crashkernel(void)
70 {
71 unsigned long long crash_base, crash_size;
72 int ret;
73
74 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
75 &crash_size, &crash_base);
76 /* no crashkernel= or invalid value specified */
77 if (ret || !crash_size)
78 return;
79
80 crash_size = PAGE_ALIGN(crash_size);
81
82 if (crash_base == 0) {
83 /* Current arm64 boot protocol requires 2MB alignment */
84 crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT,
85 crash_size, SZ_2M);
86 if (crash_base == 0) {
87 pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
88 crash_size);
89 return;
90 }
91 } else {
92 /* User specifies base address explicitly. */
93 if (!memblock_is_region_memory(crash_base, crash_size)) {
94 pr_warn("cannot reserve crashkernel: region is not memory\n");
95 return;
96 }
97
98 if (memblock_is_region_reserved(crash_base, crash_size)) {
99 pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
100 return;
101 }
102
103 if (!IS_ALIGNED(crash_base, SZ_2M)) {
104 pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
105 return;
106 }
107 }
108 memblock_reserve(crash_base, crash_size);
109
110 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
111 crash_base, crash_base + crash_size, crash_size >> 20);
112
113 crashk_res.start = crash_base;
114 crashk_res.end = crash_base + crash_size - 1;
115 }
116 #else
reserve_crashkernel(void)117 static void __init reserve_crashkernel(void)
118 {
119 }
120 #endif /* CONFIG_KEXEC_CORE */
121
122 #ifdef CONFIG_CRASH_DUMP
early_init_dt_scan_elfcorehdr(unsigned long node,const char * uname,int depth,void * data)123 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
124 const char *uname, int depth, void *data)
125 {
126 const __be32 *reg;
127 int len;
128
129 if (depth != 1 || strcmp(uname, "chosen") != 0)
130 return 0;
131
132 reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
133 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
134 return 1;
135
136 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, ®);
137 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, ®);
138
139 return 1;
140 }
141
142 /*
143 * reserve_elfcorehdr() - reserves memory for elf core header
144 *
145 * This function reserves the memory occupied by an elf core header
146 * described in the device tree. This region contains all the
147 * information about primary kernel's core image and is used by a dump
148 * capture kernel to access the system memory on primary kernel.
149 */
reserve_elfcorehdr(void)150 static void __init reserve_elfcorehdr(void)
151 {
152 of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
153
154 if (!elfcorehdr_size)
155 return;
156
157 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
158 pr_warn("elfcorehdr is overlapped\n");
159 return;
160 }
161
162 memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
163
164 pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
165 elfcorehdr_size >> 10, elfcorehdr_addr);
166 }
167 #else
reserve_elfcorehdr(void)168 static void __init reserve_elfcorehdr(void)
169 {
170 }
171 #endif /* CONFIG_CRASH_DUMP */
172 /*
173 * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It
174 * currently assumes that for memory starting above 4G, 32-bit devices will
175 * use a DMA offset.
176 */
max_zone_dma_phys(void)177 static phys_addr_t __init max_zone_dma_phys(void)
178 {
179 phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
180 return min(offset + (1ULL << 32), memblock_end_of_DRAM());
181 }
182
183 #ifdef CONFIG_NUMA
184
zone_sizes_init(unsigned long min,unsigned long max)185 static void __init zone_sizes_init(unsigned long min, unsigned long max)
186 {
187 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0};
188
189 #ifdef CONFIG_ZONE_DMA32
190 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys());
191 #endif
192 max_zone_pfns[ZONE_NORMAL] = max;
193
194 free_area_init_nodes(max_zone_pfns);
195 }
196
197 #else
198
zone_sizes_init(unsigned long min,unsigned long max)199 static void __init zone_sizes_init(unsigned long min, unsigned long max)
200 {
201 struct memblock_region *reg;
202 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
203 unsigned long max_dma = min;
204
205 memset(zone_size, 0, sizeof(zone_size));
206
207 /* 4GB maximum for 32-bit only capable devices */
208 #ifdef CONFIG_ZONE_DMA32
209 max_dma = PFN_DOWN(arm64_dma_phys_limit);
210 zone_size[ZONE_DMA32] = max_dma - min;
211 #endif
212 zone_size[ZONE_NORMAL] = max - max_dma;
213
214 memcpy(zhole_size, zone_size, sizeof(zhole_size));
215
216 for_each_memblock(memory, reg) {
217 unsigned long start = memblock_region_memory_base_pfn(reg);
218 unsigned long end = memblock_region_memory_end_pfn(reg);
219
220 if (start >= max)
221 continue;
222
223 #ifdef CONFIG_ZONE_DMA32
224 if (start < max_dma) {
225 unsigned long dma_end = min(end, max_dma);
226 zhole_size[ZONE_DMA32] -= dma_end - start;
227 }
228 #endif
229 if (end > max_dma) {
230 unsigned long normal_end = min(end, max);
231 unsigned long normal_start = max(start, max_dma);
232 zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
233 }
234 }
235
236 free_area_init_node(0, zone_size, min, zhole_size);
237 }
238
239 #endif /* CONFIG_NUMA */
240
pfn_valid(unsigned long pfn)241 int pfn_valid(unsigned long pfn)
242 {
243 phys_addr_t addr = pfn << PAGE_SHIFT;
244
245 if ((addr >> PAGE_SHIFT) != pfn)
246 return 0;
247
248 #ifdef CONFIG_SPARSEMEM
249 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
250 return 0;
251
252 if (!valid_section(__nr_to_section(pfn_to_section_nr(pfn))))
253 return 0;
254
255 /*
256 * ZONE_DEVICE memory does not have the memblock entries.
257 * memblock_is_map_memory() check for ZONE_DEVICE based
258 * addresses will always fail. Even the normal hotplugged
259 * memory will never have MEMBLOCK_NOMAP flag set in their
260 * memblock entries. Skip memblock search for all non early
261 * memory sections covering all of hotplug memory including
262 * both normal and ZONE_DEVICE based.
263 */
264 if (!early_section(__pfn_to_section(pfn)))
265 return pfn_section_valid(__pfn_to_section(pfn), pfn);
266 #endif
267 return memblock_is_map_memory(addr);
268 }
269 EXPORT_SYMBOL(pfn_valid);
270
271 static phys_addr_t memory_limit = PHYS_ADDR_MAX;
272
273 /*
274 * Limit the memory size that was specified via FDT.
275 */
early_mem(char * p)276 static int __init early_mem(char *p)
277 {
278 if (!p)
279 return 1;
280
281 memory_limit = memparse(p, &p) & PAGE_MASK;
282 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
283
284 return 0;
285 }
286 early_param("mem", early_mem);
287
early_init_dt_scan_usablemem(unsigned long node,const char * uname,int depth,void * data)288 static int __init early_init_dt_scan_usablemem(unsigned long node,
289 const char *uname, int depth, void *data)
290 {
291 struct memblock_region *usablemem = data;
292 const __be32 *reg;
293 int len;
294
295 if (depth != 1 || strcmp(uname, "chosen") != 0)
296 return 0;
297
298 reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
299 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
300 return 1;
301
302 usablemem->base = dt_mem_next_cell(dt_root_addr_cells, ®);
303 usablemem->size = dt_mem_next_cell(dt_root_size_cells, ®);
304
305 return 1;
306 }
307
fdt_enforce_memory_region(void)308 static void __init fdt_enforce_memory_region(void)
309 {
310 struct memblock_region reg = {
311 .size = 0,
312 };
313
314 of_scan_flat_dt(early_init_dt_scan_usablemem, ®);
315
316 if (reg.size)
317 memblock_cap_memory_range(reg.base, reg.size);
318 }
319
arm64_memblock_init(void)320 void __init arm64_memblock_init(void)
321 {
322 const s64 linear_region_size = BIT(vabits_actual - 1);
323
324 /* Handle linux,usable-memory-range property */
325 fdt_enforce_memory_region();
326
327 /* Remove memory above our supported physical address size */
328 memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
329
330 /*
331 * Select a suitable value for the base of physical memory.
332 */
333 memstart_addr = round_down(memblock_start_of_DRAM(),
334 ARM64_MEMSTART_ALIGN);
335
336 /*
337 * Remove the memory that we will not be able to cover with the
338 * linear mapping. Take care not to clip the kernel which may be
339 * high in memory.
340 */
341 memblock_remove(max_t(u64, memstart_addr + linear_region_size,
342 __pa_symbol(_end)), ULLONG_MAX);
343 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
344 /* ensure that memstart_addr remains sufficiently aligned */
345 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
346 ARM64_MEMSTART_ALIGN);
347 memblock_remove(0, memstart_addr);
348 }
349
350 /*
351 * Apply the memory limit if it was set. Since the kernel may be loaded
352 * high up in memory, add back the kernel region that must be accessible
353 * via the linear mapping.
354 */
355 if (memory_limit != PHYS_ADDR_MAX) {
356 memblock_mem_limit_remove_map(memory_limit);
357 memblock_add(__pa_symbol(_text), (u64)(_end - _text));
358 }
359
360 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
361 /*
362 * Add back the memory we just removed if it results in the
363 * initrd to become inaccessible via the linear mapping.
364 * Otherwise, this is a no-op
365 */
366 u64 base = phys_initrd_start & PAGE_MASK;
367 u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
368
369 /*
370 * We can only add back the initrd memory if we don't end up
371 * with more memory than we can address via the linear mapping.
372 * It is up to the bootloader to position the kernel and the
373 * initrd reasonably close to each other (i.e., within 32 GB of
374 * each other) so that all granule/#levels combinations can
375 * always access both.
376 */
377 if (WARN(base < memblock_start_of_DRAM() ||
378 base + size > memblock_start_of_DRAM() +
379 linear_region_size,
380 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
381 phys_initrd_size = 0;
382 } else {
383 memblock_remove(base, size); /* clear MEMBLOCK_ flags */
384 memblock_add(base, size);
385 memblock_reserve(base, size);
386 }
387 }
388
389 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
390 extern u16 memstart_offset_seed;
391 u64 range = linear_region_size -
392 (memblock_end_of_DRAM() - memblock_start_of_DRAM());
393
394 /*
395 * If the size of the linear region exceeds, by a sufficient
396 * margin, the size of the region that the available physical
397 * memory spans, randomize the linear region as well.
398 */
399 if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
400 range /= ARM64_MEMSTART_ALIGN;
401 memstart_addr -= ARM64_MEMSTART_ALIGN *
402 ((range * memstart_offset_seed) >> 16);
403 }
404 }
405
406 physvirt_offset = PHYS_OFFSET - PAGE_OFFSET;
407
408 vmemmap = ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT));
409
410 /*
411 * If we are running with a 52-bit kernel VA config on a system that
412 * does not support it, we have to offset our vmemmap and physvirt_offset
413 * s.t. we avoid the 52-bit portion of the direct linear map
414 */
415 if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) {
416 vmemmap += (_PAGE_OFFSET(48) - _PAGE_OFFSET(52)) >> PAGE_SHIFT;
417 physvirt_offset = PHYS_OFFSET - _PAGE_OFFSET(48);
418 }
419
420 /*
421 * Register the kernel text, kernel data, initrd, and initial
422 * pagetables with memblock.
423 */
424 memblock_reserve(__pa_symbol(_text), _end - _text);
425 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
426 /* the generic initrd code expects virtual addresses */
427 initrd_start = __phys_to_virt(phys_initrd_start);
428 initrd_end = initrd_start + phys_initrd_size;
429 }
430
431 early_init_fdt_scan_reserved_mem();
432
433 /* 4GB maximum for 32-bit only capable devices */
434 if (IS_ENABLED(CONFIG_ZONE_DMA32))
435 arm64_dma_phys_limit = max_zone_dma_phys();
436 else
437 arm64_dma_phys_limit = PHYS_MASK + 1;
438
439 reserve_crashkernel();
440
441 reserve_elfcorehdr();
442
443 high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
444
445 dma_contiguous_reserve(arm64_dma_phys_limit);
446 }
447
bootmem_init(void)448 void __init bootmem_init(void)
449 {
450 unsigned long min, max;
451
452 min = PFN_UP(memblock_start_of_DRAM());
453 max = PFN_DOWN(memblock_end_of_DRAM());
454
455 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
456
457 max_pfn = max_low_pfn = max;
458 min_low_pfn = min;
459
460 arm64_numa_init();
461 /*
462 * Sparsemem tries to allocate bootmem in memory_present(), so must be
463 * done after the fixed reservations.
464 */
465 memblocks_present();
466
467 sparse_init();
468 zone_sizes_init(min, max);
469
470 memblock_dump_all();
471 }
472
473 #ifndef CONFIG_SPARSEMEM_VMEMMAP
free_memmap(unsigned long start_pfn,unsigned long end_pfn)474 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
475 {
476 struct page *start_pg, *end_pg;
477 unsigned long pg, pgend;
478
479 /*
480 * Convert start_pfn/end_pfn to a struct page pointer.
481 */
482 start_pg = pfn_to_page(start_pfn - 1) + 1;
483 end_pg = pfn_to_page(end_pfn - 1) + 1;
484
485 /*
486 * Convert to physical addresses, and round start upwards and end
487 * downwards.
488 */
489 pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
490 pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
491
492 /*
493 * If there are free pages between these, free the section of the
494 * memmap array.
495 */
496 if (pg < pgend)
497 memblock_free(pg, pgend - pg);
498 }
499
500 /*
501 * The mem_map array can get very big. Free the unused area of the memory map.
502 */
free_unused_memmap(void)503 static void __init free_unused_memmap(void)
504 {
505 unsigned long start, prev_end = 0;
506 struct memblock_region *reg;
507
508 for_each_memblock(memory, reg) {
509 start = __phys_to_pfn(reg->base);
510
511 #ifdef CONFIG_SPARSEMEM
512 /*
513 * Take care not to free memmap entries that don't exist due
514 * to SPARSEMEM sections which aren't present.
515 */
516 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
517 #endif
518 /*
519 * If we had a previous bank, and there is a space between the
520 * current bank and the previous, free it.
521 */
522 if (prev_end && prev_end < start)
523 free_memmap(prev_end, start);
524
525 /*
526 * Align up here since the VM subsystem insists that the
527 * memmap entries are valid from the bank end aligned to
528 * MAX_ORDER_NR_PAGES.
529 */
530 prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
531 MAX_ORDER_NR_PAGES);
532 }
533
534 #ifdef CONFIG_SPARSEMEM
535 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
536 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
537 #endif
538 }
539 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
540
541 /*
542 * mem_init() marks the free areas in the mem_map and tells us how much memory
543 * is free. This is done after various parts of the system have claimed their
544 * memory after the kernel image.
545 */
mem_init(void)546 void __init mem_init(void)
547 {
548 if (swiotlb_force == SWIOTLB_FORCE ||
549 max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
550 swiotlb_init(1);
551 else
552 swiotlb_force = SWIOTLB_NO_FORCE;
553
554 set_max_mapnr(max_pfn - PHYS_PFN_OFFSET);
555
556 #ifndef CONFIG_SPARSEMEM_VMEMMAP
557 free_unused_memmap();
558 #endif
559 /* this will put all unused low memory onto the freelists */
560 memblock_free_all();
561
562 mem_init_print_info(NULL);
563
564 /*
565 * Check boundaries twice: Some fundamental inconsistencies can be
566 * detected at build time already.
567 */
568 #ifdef CONFIG_COMPAT
569 BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
570 #endif
571
572 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
573 extern int sysctl_overcommit_memory;
574 /*
575 * On a machine this small we won't get anywhere without
576 * overcommit, so turn it on by default.
577 */
578 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
579 }
580 }
581
free_initmem(void)582 void free_initmem(void)
583 {
584 free_reserved_area(lm_alias(__init_begin),
585 lm_alias(__init_end),
586 0, "unused kernel");
587 /*
588 * Unmap the __init region but leave the VM area in place. This
589 * prevents the region from being reused for kernel modules, which
590 * is not supported by kallsyms.
591 */
592 unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
593 }
594
595 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)596 void __init free_initrd_mem(unsigned long start, unsigned long end)
597 {
598 unsigned long aligned_start, aligned_end;
599
600 aligned_start = __virt_to_phys(start) & PAGE_MASK;
601 aligned_end = PAGE_ALIGN(__virt_to_phys(end));
602 memblock_free(aligned_start, aligned_end - aligned_start);
603 free_reserved_area((void *)start, (void *)end, 0, "initrd");
604 }
605 #endif
606
607 /*
608 * Dump out memory limit information on panic.
609 */
dump_mem_limit(struct notifier_block * self,unsigned long v,void * p)610 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
611 {
612 if (memory_limit != PHYS_ADDR_MAX) {
613 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
614 } else {
615 pr_emerg("Memory Limit: none\n");
616 }
617 return 0;
618 }
619
620 static struct notifier_block mem_limit_notifier = {
621 .notifier_call = dump_mem_limit,
622 };
623
register_mem_limit_dumper(void)624 static int __init register_mem_limit_dumper(void)
625 {
626 atomic_notifier_chain_register(&panic_notifier_list,
627 &mem_limit_notifier);
628 return 0;
629 }
630 __initcall(register_mem_limit_dumper);
631