• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/init.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/memblock.h>
20 #include <linux/sort.h>
21 #include <linux/of.h>
22 #include <linux/of_fdt.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dma-contiguous.h>
25 #include <linux/efi.h>
26 #include <linux/swiotlb.h>
27 #include <linux/vmalloc.h>
28 #include <linux/mm.h>
29 #include <linux/kexec.h>
30 #include <linux/crash_dump.h>
31 
32 #include <asm/boot.h>
33 #include <asm/fixmap.h>
34 #include <asm/kasan.h>
35 #include <asm/kernel-pgtable.h>
36 #include <asm/memory.h>
37 #include <asm/numa.h>
38 #include <asm/sections.h>
39 #include <asm/setup.h>
40 #include <linux/sizes.h>
41 #include <asm/tlb.h>
42 #include <asm/alternative.h>
43 
44 /*
45  * We need to be able to catch inadvertent references to memstart_addr
46  * that occur (potentially in generic code) before arm64_memblock_init()
47  * executes, which assigns it its actual value. So use a default value
48  * that cannot be mistaken for a real physical address.
49  */
50 s64 memstart_addr __ro_after_init = -1;
51 EXPORT_SYMBOL(memstart_addr);
52 
53 s64 physvirt_offset __ro_after_init;
54 EXPORT_SYMBOL(physvirt_offset);
55 
56 struct page *vmemmap __ro_after_init;
57 EXPORT_SYMBOL(vmemmap);
58 
59 phys_addr_t arm64_dma_phys_limit __ro_after_init;
60 
61 #ifdef CONFIG_KEXEC_CORE
62 /*
63  * reserve_crashkernel() - reserves memory for crash kernel
64  *
65  * This function reserves memory area given in "crashkernel=" kernel command
66  * line parameter. The memory reserved is used by dump capture kernel when
67  * primary kernel is crashing.
68  */
reserve_crashkernel(void)69 static void __init reserve_crashkernel(void)
70 {
71 	unsigned long long crash_base, crash_size;
72 	int ret;
73 
74 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
75 				&crash_size, &crash_base);
76 	/* no crashkernel= or invalid value specified */
77 	if (ret || !crash_size)
78 		return;
79 
80 	crash_size = PAGE_ALIGN(crash_size);
81 
82 	if (crash_base == 0) {
83 		/* Current arm64 boot protocol requires 2MB alignment */
84 		crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT,
85 				crash_size, SZ_2M);
86 		if (crash_base == 0) {
87 			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
88 				crash_size);
89 			return;
90 		}
91 	} else {
92 		/* User specifies base address explicitly. */
93 		if (!memblock_is_region_memory(crash_base, crash_size)) {
94 			pr_warn("cannot reserve crashkernel: region is not memory\n");
95 			return;
96 		}
97 
98 		if (memblock_is_region_reserved(crash_base, crash_size)) {
99 			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
100 			return;
101 		}
102 
103 		if (!IS_ALIGNED(crash_base, SZ_2M)) {
104 			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
105 			return;
106 		}
107 	}
108 	memblock_reserve(crash_base, crash_size);
109 
110 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
111 		crash_base, crash_base + crash_size, crash_size >> 20);
112 
113 	crashk_res.start = crash_base;
114 	crashk_res.end = crash_base + crash_size - 1;
115 }
116 #else
reserve_crashkernel(void)117 static void __init reserve_crashkernel(void)
118 {
119 }
120 #endif /* CONFIG_KEXEC_CORE */
121 
122 #ifdef CONFIG_CRASH_DUMP
early_init_dt_scan_elfcorehdr(unsigned long node,const char * uname,int depth,void * data)123 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
124 		const char *uname, int depth, void *data)
125 {
126 	const __be32 *reg;
127 	int len;
128 
129 	if (depth != 1 || strcmp(uname, "chosen") != 0)
130 		return 0;
131 
132 	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
133 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
134 		return 1;
135 
136 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
137 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
138 
139 	return 1;
140 }
141 
142 /*
143  * reserve_elfcorehdr() - reserves memory for elf core header
144  *
145  * This function reserves the memory occupied by an elf core header
146  * described in the device tree. This region contains all the
147  * information about primary kernel's core image and is used by a dump
148  * capture kernel to access the system memory on primary kernel.
149  */
reserve_elfcorehdr(void)150 static void __init reserve_elfcorehdr(void)
151 {
152 	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
153 
154 	if (!elfcorehdr_size)
155 		return;
156 
157 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
158 		pr_warn("elfcorehdr is overlapped\n");
159 		return;
160 	}
161 
162 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
163 
164 	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
165 		elfcorehdr_size >> 10, elfcorehdr_addr);
166 }
167 #else
reserve_elfcorehdr(void)168 static void __init reserve_elfcorehdr(void)
169 {
170 }
171 #endif /* CONFIG_CRASH_DUMP */
172 /*
173  * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It
174  * currently assumes that for memory starting above 4G, 32-bit devices will
175  * use a DMA offset.
176  */
max_zone_dma_phys(void)177 static phys_addr_t __init max_zone_dma_phys(void)
178 {
179 	phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
180 	return min(offset + (1ULL << 32), memblock_end_of_DRAM());
181 }
182 
183 #ifdef CONFIG_NUMA
184 
zone_sizes_init(unsigned long min,unsigned long max)185 static void __init zone_sizes_init(unsigned long min, unsigned long max)
186 {
187 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
188 
189 #ifdef CONFIG_ZONE_DMA32
190 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys());
191 #endif
192 	max_zone_pfns[ZONE_NORMAL] = max;
193 
194 	free_area_init_nodes(max_zone_pfns);
195 }
196 
197 #else
198 
zone_sizes_init(unsigned long min,unsigned long max)199 static void __init zone_sizes_init(unsigned long min, unsigned long max)
200 {
201 	struct memblock_region *reg;
202 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
203 	unsigned long max_dma = min;
204 
205 	memset(zone_size, 0, sizeof(zone_size));
206 
207 	/* 4GB maximum for 32-bit only capable devices */
208 #ifdef CONFIG_ZONE_DMA32
209 	max_dma = PFN_DOWN(arm64_dma_phys_limit);
210 	zone_size[ZONE_DMA32] = max_dma - min;
211 #endif
212 	zone_size[ZONE_NORMAL] = max - max_dma;
213 
214 	memcpy(zhole_size, zone_size, sizeof(zhole_size));
215 
216 	for_each_memblock(memory, reg) {
217 		unsigned long start = memblock_region_memory_base_pfn(reg);
218 		unsigned long end = memblock_region_memory_end_pfn(reg);
219 
220 		if (start >= max)
221 			continue;
222 
223 #ifdef CONFIG_ZONE_DMA32
224 		if (start < max_dma) {
225 			unsigned long dma_end = min(end, max_dma);
226 			zhole_size[ZONE_DMA32] -= dma_end - start;
227 		}
228 #endif
229 		if (end > max_dma) {
230 			unsigned long normal_end = min(end, max);
231 			unsigned long normal_start = max(start, max_dma);
232 			zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
233 		}
234 	}
235 
236 	free_area_init_node(0, zone_size, min, zhole_size);
237 }
238 
239 #endif /* CONFIG_NUMA */
240 
pfn_valid(unsigned long pfn)241 int pfn_valid(unsigned long pfn)
242 {
243 	phys_addr_t addr = pfn << PAGE_SHIFT;
244 
245 	if ((addr >> PAGE_SHIFT) != pfn)
246 		return 0;
247 
248 #ifdef CONFIG_SPARSEMEM
249 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
250 		return 0;
251 
252 	if (!valid_section(__nr_to_section(pfn_to_section_nr(pfn))))
253 		return 0;
254 
255 	/*
256 	 * ZONE_DEVICE memory does not have the memblock entries.
257 	 * memblock_is_map_memory() check for ZONE_DEVICE based
258 	 * addresses will always fail. Even the normal hotplugged
259 	 * memory will never have MEMBLOCK_NOMAP flag set in their
260 	 * memblock entries. Skip memblock search for all non early
261 	 * memory sections covering all of hotplug memory including
262 	 * both normal and ZONE_DEVICE based.
263 	 */
264 	if (!early_section(__pfn_to_section(pfn)))
265 		return pfn_section_valid(__pfn_to_section(pfn), pfn);
266 #endif
267 	return memblock_is_map_memory(addr);
268 }
269 EXPORT_SYMBOL(pfn_valid);
270 
271 static phys_addr_t memory_limit = PHYS_ADDR_MAX;
272 
273 /*
274  * Limit the memory size that was specified via FDT.
275  */
early_mem(char * p)276 static int __init early_mem(char *p)
277 {
278 	if (!p)
279 		return 1;
280 
281 	memory_limit = memparse(p, &p) & PAGE_MASK;
282 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
283 
284 	return 0;
285 }
286 early_param("mem", early_mem);
287 
early_init_dt_scan_usablemem(unsigned long node,const char * uname,int depth,void * data)288 static int __init early_init_dt_scan_usablemem(unsigned long node,
289 		const char *uname, int depth, void *data)
290 {
291 	struct memblock_region *usablemem = data;
292 	const __be32 *reg;
293 	int len;
294 
295 	if (depth != 1 || strcmp(uname, "chosen") != 0)
296 		return 0;
297 
298 	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
299 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
300 		return 1;
301 
302 	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
303 	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
304 
305 	return 1;
306 }
307 
fdt_enforce_memory_region(void)308 static void __init fdt_enforce_memory_region(void)
309 {
310 	struct memblock_region reg = {
311 		.size = 0,
312 	};
313 
314 	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
315 
316 	if (reg.size)
317 		memblock_cap_memory_range(reg.base, reg.size);
318 }
319 
arm64_memblock_init(void)320 void __init arm64_memblock_init(void)
321 {
322 	const s64 linear_region_size = BIT(vabits_actual - 1);
323 
324 	/* Handle linux,usable-memory-range property */
325 	fdt_enforce_memory_region();
326 
327 	/* Remove memory above our supported physical address size */
328 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
329 
330 	/*
331 	 * Select a suitable value for the base of physical memory.
332 	 */
333 	memstart_addr = round_down(memblock_start_of_DRAM(),
334 				   ARM64_MEMSTART_ALIGN);
335 
336 	/*
337 	 * Remove the memory that we will not be able to cover with the
338 	 * linear mapping. Take care not to clip the kernel which may be
339 	 * high in memory.
340 	 */
341 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
342 			__pa_symbol(_end)), ULLONG_MAX);
343 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
344 		/* ensure that memstart_addr remains sufficiently aligned */
345 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
346 					 ARM64_MEMSTART_ALIGN);
347 		memblock_remove(0, memstart_addr);
348 	}
349 
350 	/*
351 	 * Apply the memory limit if it was set. Since the kernel may be loaded
352 	 * high up in memory, add back the kernel region that must be accessible
353 	 * via the linear mapping.
354 	 */
355 	if (memory_limit != PHYS_ADDR_MAX) {
356 		memblock_mem_limit_remove_map(memory_limit);
357 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
358 	}
359 
360 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
361 		/*
362 		 * Add back the memory we just removed if it results in the
363 		 * initrd to become inaccessible via the linear mapping.
364 		 * Otherwise, this is a no-op
365 		 */
366 		u64 base = phys_initrd_start & PAGE_MASK;
367 		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
368 
369 		/*
370 		 * We can only add back the initrd memory if we don't end up
371 		 * with more memory than we can address via the linear mapping.
372 		 * It is up to the bootloader to position the kernel and the
373 		 * initrd reasonably close to each other (i.e., within 32 GB of
374 		 * each other) so that all granule/#levels combinations can
375 		 * always access both.
376 		 */
377 		if (WARN(base < memblock_start_of_DRAM() ||
378 			 base + size > memblock_start_of_DRAM() +
379 				       linear_region_size,
380 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
381 			phys_initrd_size = 0;
382 		} else {
383 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
384 			memblock_add(base, size);
385 			memblock_reserve(base, size);
386 		}
387 	}
388 
389 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
390 		extern u16 memstart_offset_seed;
391 		u64 range = linear_region_size -
392 			    (memblock_end_of_DRAM() - memblock_start_of_DRAM());
393 
394 		/*
395 		 * If the size of the linear region exceeds, by a sufficient
396 		 * margin, the size of the region that the available physical
397 		 * memory spans, randomize the linear region as well.
398 		 */
399 		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
400 			range /= ARM64_MEMSTART_ALIGN;
401 			memstart_addr -= ARM64_MEMSTART_ALIGN *
402 					 ((range * memstart_offset_seed) >> 16);
403 		}
404 	}
405 
406 	physvirt_offset = PHYS_OFFSET - PAGE_OFFSET;
407 
408 	vmemmap = ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT));
409 
410 	/*
411 	 * If we are running with a 52-bit kernel VA config on a system that
412 	 * does not support it, we have to offset our vmemmap and physvirt_offset
413 	 * s.t. we avoid the 52-bit portion of the direct linear map
414 	 */
415 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) {
416 		vmemmap += (_PAGE_OFFSET(48) - _PAGE_OFFSET(52)) >> PAGE_SHIFT;
417 		physvirt_offset = PHYS_OFFSET - _PAGE_OFFSET(48);
418 	}
419 
420 	/*
421 	 * Register the kernel text, kernel data, initrd, and initial
422 	 * pagetables with memblock.
423 	 */
424 	memblock_reserve(__pa_symbol(_text), _end - _text);
425 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
426 		/* the generic initrd code expects virtual addresses */
427 		initrd_start = __phys_to_virt(phys_initrd_start);
428 		initrd_end = initrd_start + phys_initrd_size;
429 	}
430 
431 	early_init_fdt_scan_reserved_mem();
432 
433 	/* 4GB maximum for 32-bit only capable devices */
434 	if (IS_ENABLED(CONFIG_ZONE_DMA32))
435 		arm64_dma_phys_limit = max_zone_dma_phys();
436 	else
437 		arm64_dma_phys_limit = PHYS_MASK + 1;
438 
439 	reserve_crashkernel();
440 
441 	reserve_elfcorehdr();
442 
443 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
444 
445 	dma_contiguous_reserve(arm64_dma_phys_limit);
446 }
447 
bootmem_init(void)448 void __init bootmem_init(void)
449 {
450 	unsigned long min, max;
451 
452 	min = PFN_UP(memblock_start_of_DRAM());
453 	max = PFN_DOWN(memblock_end_of_DRAM());
454 
455 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
456 
457 	max_pfn = max_low_pfn = max;
458 	min_low_pfn = min;
459 
460 	arm64_numa_init();
461 	/*
462 	 * Sparsemem tries to allocate bootmem in memory_present(), so must be
463 	 * done after the fixed reservations.
464 	 */
465 	memblocks_present();
466 
467 	sparse_init();
468 	zone_sizes_init(min, max);
469 
470 	memblock_dump_all();
471 }
472 
473 #ifndef CONFIG_SPARSEMEM_VMEMMAP
free_memmap(unsigned long start_pfn,unsigned long end_pfn)474 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
475 {
476 	struct page *start_pg, *end_pg;
477 	unsigned long pg, pgend;
478 
479 	/*
480 	 * Convert start_pfn/end_pfn to a struct page pointer.
481 	 */
482 	start_pg = pfn_to_page(start_pfn - 1) + 1;
483 	end_pg = pfn_to_page(end_pfn - 1) + 1;
484 
485 	/*
486 	 * Convert to physical addresses, and round start upwards and end
487 	 * downwards.
488 	 */
489 	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
490 	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
491 
492 	/*
493 	 * If there are free pages between these, free the section of the
494 	 * memmap array.
495 	 */
496 	if (pg < pgend)
497 		memblock_free(pg, pgend - pg);
498 }
499 
500 /*
501  * The mem_map array can get very big. Free the unused area of the memory map.
502  */
free_unused_memmap(void)503 static void __init free_unused_memmap(void)
504 {
505 	unsigned long start, prev_end = 0;
506 	struct memblock_region *reg;
507 
508 	for_each_memblock(memory, reg) {
509 		start = __phys_to_pfn(reg->base);
510 
511 #ifdef CONFIG_SPARSEMEM
512 		/*
513 		 * Take care not to free memmap entries that don't exist due
514 		 * to SPARSEMEM sections which aren't present.
515 		 */
516 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
517 #endif
518 		/*
519 		 * If we had a previous bank, and there is a space between the
520 		 * current bank and the previous, free it.
521 		 */
522 		if (prev_end && prev_end < start)
523 			free_memmap(prev_end, start);
524 
525 		/*
526 		 * Align up here since the VM subsystem insists that the
527 		 * memmap entries are valid from the bank end aligned to
528 		 * MAX_ORDER_NR_PAGES.
529 		 */
530 		prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
531 				 MAX_ORDER_NR_PAGES);
532 	}
533 
534 #ifdef CONFIG_SPARSEMEM
535 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
536 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
537 #endif
538 }
539 #endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
540 
541 /*
542  * mem_init() marks the free areas in the mem_map and tells us how much memory
543  * is free.  This is done after various parts of the system have claimed their
544  * memory after the kernel image.
545  */
mem_init(void)546 void __init mem_init(void)
547 {
548 	if (swiotlb_force == SWIOTLB_FORCE ||
549 	    max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
550 		swiotlb_init(1);
551 	else
552 		swiotlb_force = SWIOTLB_NO_FORCE;
553 
554 	set_max_mapnr(max_pfn - PHYS_PFN_OFFSET);
555 
556 #ifndef CONFIG_SPARSEMEM_VMEMMAP
557 	free_unused_memmap();
558 #endif
559 	/* this will put all unused low memory onto the freelists */
560 	memblock_free_all();
561 
562 	mem_init_print_info(NULL);
563 
564 	/*
565 	 * Check boundaries twice: Some fundamental inconsistencies can be
566 	 * detected at build time already.
567 	 */
568 #ifdef CONFIG_COMPAT
569 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
570 #endif
571 
572 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
573 		extern int sysctl_overcommit_memory;
574 		/*
575 		 * On a machine this small we won't get anywhere without
576 		 * overcommit, so turn it on by default.
577 		 */
578 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
579 	}
580 }
581 
free_initmem(void)582 void free_initmem(void)
583 {
584 	free_reserved_area(lm_alias(__init_begin),
585 			   lm_alias(__init_end),
586 			   0, "unused kernel");
587 	/*
588 	 * Unmap the __init region but leave the VM area in place. This
589 	 * prevents the region from being reused for kernel modules, which
590 	 * is not supported by kallsyms.
591 	 */
592 	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
593 }
594 
595 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)596 void __init free_initrd_mem(unsigned long start, unsigned long end)
597 {
598 	unsigned long aligned_start, aligned_end;
599 
600 	aligned_start = __virt_to_phys(start) & PAGE_MASK;
601 	aligned_end = PAGE_ALIGN(__virt_to_phys(end));
602 	memblock_free(aligned_start, aligned_end - aligned_start);
603 	free_reserved_area((void *)start, (void *)end, 0, "initrd");
604 }
605 #endif
606 
607 /*
608  * Dump out memory limit information on panic.
609  */
dump_mem_limit(struct notifier_block * self,unsigned long v,void * p)610 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
611 {
612 	if (memory_limit != PHYS_ADDR_MAX) {
613 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
614 	} else {
615 		pr_emerg("Memory Limit: none\n");
616 	}
617 	return 0;
618 }
619 
620 static struct notifier_block mem_limit_notifier = {
621 	.notifier_call = dump_mem_limit,
622 };
623 
register_mem_limit_dumper(void)624 static int __init register_mem_limit_dumper(void)
625 {
626 	atomic_notifier_chain_register(&panic_notifier_list,
627 				       &mem_limit_notifier);
628 	return 0;
629 }
630 __initcall(register_mem_limit_dumper);
631