1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
4 * using the CPU's debug registers. Derived from
5 * "arch/x86/kernel/hw_breakpoint.c"
6 *
7 * Copyright 2010 IBM Corporation
8 * Author: K.Prasad <prasad@linux.vnet.ibm.com>
9 */
10
11 #include <linux/hw_breakpoint.h>
12 #include <linux/notifier.h>
13 #include <linux/kprobes.h>
14 #include <linux/percpu.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/smp.h>
18 #include <linux/debugfs.h>
19 #include <linux/init.h>
20
21 #include <asm/hw_breakpoint.h>
22 #include <asm/processor.h>
23 #include <asm/sstep.h>
24 #include <asm/debug.h>
25 #include <asm/debugfs.h>
26 #include <asm/hvcall.h>
27 #include <linux/uaccess.h>
28
29 /*
30 * Stores the breakpoints currently in use on each breakpoint address
31 * register for every cpu
32 */
33 static DEFINE_PER_CPU(struct perf_event *, bp_per_reg);
34
35 /*
36 * Returns total number of data or instruction breakpoints available.
37 */
hw_breakpoint_slots(int type)38 int hw_breakpoint_slots(int type)
39 {
40 if (type == TYPE_DATA)
41 return HBP_NUM;
42 return 0; /* no instruction breakpoints available */
43 }
44
45 /*
46 * Install a perf counter breakpoint.
47 *
48 * We seek a free debug address register and use it for this
49 * breakpoint.
50 *
51 * Atomic: we hold the counter->ctx->lock and we only handle variables
52 * and registers local to this cpu.
53 */
arch_install_hw_breakpoint(struct perf_event * bp)54 int arch_install_hw_breakpoint(struct perf_event *bp)
55 {
56 struct arch_hw_breakpoint *info = counter_arch_bp(bp);
57 struct perf_event **slot = this_cpu_ptr(&bp_per_reg);
58
59 *slot = bp;
60
61 /*
62 * Do not install DABR values if the instruction must be single-stepped.
63 * If so, DABR will be populated in single_step_dabr_instruction().
64 */
65 if (current->thread.last_hit_ubp != bp)
66 __set_breakpoint(info);
67
68 return 0;
69 }
70
71 /*
72 * Uninstall the breakpoint contained in the given counter.
73 *
74 * First we search the debug address register it uses and then we disable
75 * it.
76 *
77 * Atomic: we hold the counter->ctx->lock and we only handle variables
78 * and registers local to this cpu.
79 */
arch_uninstall_hw_breakpoint(struct perf_event * bp)80 void arch_uninstall_hw_breakpoint(struct perf_event *bp)
81 {
82 struct perf_event **slot = this_cpu_ptr(&bp_per_reg);
83
84 if (*slot != bp) {
85 WARN_ONCE(1, "Can't find the breakpoint");
86 return;
87 }
88
89 *slot = NULL;
90 hw_breakpoint_disable();
91 }
92
93 /*
94 * Perform cleanup of arch-specific counters during unregistration
95 * of the perf-event
96 */
arch_unregister_hw_breakpoint(struct perf_event * bp)97 void arch_unregister_hw_breakpoint(struct perf_event *bp)
98 {
99 /*
100 * If the breakpoint is unregistered between a hw_breakpoint_handler()
101 * and the single_step_dabr_instruction(), then cleanup the breakpoint
102 * restoration variables to prevent dangling pointers.
103 * FIXME, this should not be using bp->ctx at all! Sayeth peterz.
104 */
105 if (bp->ctx && bp->ctx->task && bp->ctx->task != ((void *)-1L))
106 bp->ctx->task->thread.last_hit_ubp = NULL;
107 }
108
109 /*
110 * Check for virtual address in kernel space.
111 */
arch_check_bp_in_kernelspace(struct arch_hw_breakpoint * hw)112 int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
113 {
114 return is_kernel_addr(hw->address);
115 }
116
arch_bp_generic_fields(int type,int * gen_bp_type)117 int arch_bp_generic_fields(int type, int *gen_bp_type)
118 {
119 *gen_bp_type = 0;
120 if (type & HW_BRK_TYPE_READ)
121 *gen_bp_type |= HW_BREAKPOINT_R;
122 if (type & HW_BRK_TYPE_WRITE)
123 *gen_bp_type |= HW_BREAKPOINT_W;
124 if (*gen_bp_type == 0)
125 return -EINVAL;
126 return 0;
127 }
128
129 /*
130 * Validate the arch-specific HW Breakpoint register settings
131 */
hw_breakpoint_arch_parse(struct perf_event * bp,const struct perf_event_attr * attr,struct arch_hw_breakpoint * hw)132 int hw_breakpoint_arch_parse(struct perf_event *bp,
133 const struct perf_event_attr *attr,
134 struct arch_hw_breakpoint *hw)
135 {
136 int ret = -EINVAL, length_max;
137
138 if (!bp)
139 return ret;
140
141 hw->type = HW_BRK_TYPE_TRANSLATE;
142 if (attr->bp_type & HW_BREAKPOINT_R)
143 hw->type |= HW_BRK_TYPE_READ;
144 if (attr->bp_type & HW_BREAKPOINT_W)
145 hw->type |= HW_BRK_TYPE_WRITE;
146 if (hw->type == HW_BRK_TYPE_TRANSLATE)
147 /* must set alteast read or write */
148 return ret;
149 if (!attr->exclude_user)
150 hw->type |= HW_BRK_TYPE_USER;
151 if (!attr->exclude_kernel)
152 hw->type |= HW_BRK_TYPE_KERNEL;
153 if (!attr->exclude_hv)
154 hw->type |= HW_BRK_TYPE_HYP;
155 hw->address = attr->bp_addr;
156 hw->len = attr->bp_len;
157
158 /*
159 * Since breakpoint length can be a maximum of HW_BREAKPOINT_LEN(8)
160 * and breakpoint addresses are aligned to nearest double-word
161 * HW_BREAKPOINT_ALIGN by rounding off to the lower address, the
162 * 'symbolsize' should satisfy the check below.
163 */
164 if (!ppc_breakpoint_available())
165 return -ENODEV;
166 length_max = 8; /* DABR */
167 if (dawr_enabled()) {
168 length_max = 512 ; /* 64 doublewords */
169 /* DAWR region can't cross 512 boundary */
170 if ((attr->bp_addr >> 9) !=
171 ((attr->bp_addr + attr->bp_len - 1) >> 9))
172 return -EINVAL;
173 }
174 if (hw->len >
175 (length_max - (hw->address & HW_BREAKPOINT_ALIGN)))
176 return -EINVAL;
177 return 0;
178 }
179
180 /*
181 * Restores the breakpoint on the debug registers.
182 * Invoke this function if it is known that the execution context is
183 * about to change to cause loss of MSR_SE settings.
184 */
thread_change_pc(struct task_struct * tsk,struct pt_regs * regs)185 void thread_change_pc(struct task_struct *tsk, struct pt_regs *regs)
186 {
187 struct arch_hw_breakpoint *info;
188
189 if (likely(!tsk->thread.last_hit_ubp))
190 return;
191
192 info = counter_arch_bp(tsk->thread.last_hit_ubp);
193 regs->msr &= ~MSR_SE;
194 __set_breakpoint(info);
195 tsk->thread.last_hit_ubp = NULL;
196 }
197
is_larx_stcx_instr(struct pt_regs * regs,unsigned int instr)198 static bool is_larx_stcx_instr(struct pt_regs *regs, unsigned int instr)
199 {
200 int ret, type;
201 struct instruction_op op;
202
203 ret = analyse_instr(&op, regs, instr);
204 type = GETTYPE(op.type);
205 return (!ret && (type == LARX || type == STCX));
206 }
207
208 /*
209 * Handle debug exception notifications.
210 */
stepping_handler(struct pt_regs * regs,struct perf_event * bp,unsigned long addr)211 static bool stepping_handler(struct pt_regs *regs, struct perf_event *bp,
212 unsigned long addr)
213 {
214 unsigned int instr = 0;
215
216 if (__get_user_inatomic(instr, (unsigned int *)regs->nip))
217 goto fail;
218
219 if (is_larx_stcx_instr(regs, instr)) {
220 printk_ratelimited("Breakpoint hit on instruction that can't be emulated."
221 " Breakpoint at 0x%lx will be disabled.\n", addr);
222 goto disable;
223 }
224
225 /* Do not emulate user-space instructions, instead single-step them */
226 if (user_mode(regs)) {
227 current->thread.last_hit_ubp = bp;
228 regs->msr |= MSR_SE;
229 return false;
230 }
231
232 if (!emulate_step(regs, instr))
233 goto fail;
234
235 return true;
236
237 fail:
238 /*
239 * We've failed in reliably handling the hw-breakpoint. Unregister
240 * it and throw a warning message to let the user know about it.
241 */
242 WARN(1, "Unable to handle hardware breakpoint. Breakpoint at "
243 "0x%lx will be disabled.", addr);
244
245 disable:
246 perf_event_disable_inatomic(bp);
247 return false;
248 }
249
250 /*
251 * Handle a DABR or DAWR exception.
252 *
253 * Called in atomic context.
254 */
hw_breakpoint_handler(struct die_args * args)255 int hw_breakpoint_handler(struct die_args *args)
256 {
257 int rc = NOTIFY_STOP;
258 struct perf_event *bp;
259 struct pt_regs *regs = args->regs;
260 struct arch_hw_breakpoint *info;
261 unsigned long dar = regs->dar;
262
263 /* Disable breakpoints during exception handling */
264 hw_breakpoint_disable();
265
266 /*
267 * The counter may be concurrently released but that can only
268 * occur from a call_rcu() path. We can then safely fetch
269 * the breakpoint, use its callback, touch its counter
270 * while we are in an rcu_read_lock() path.
271 */
272 rcu_read_lock();
273
274 bp = __this_cpu_read(bp_per_reg);
275 if (!bp) {
276 rc = NOTIFY_DONE;
277 goto out;
278 }
279 info = counter_arch_bp(bp);
280
281 /*
282 * Return early after invoking user-callback function without restoring
283 * DABR if the breakpoint is from ptrace which always operates in
284 * one-shot mode. The ptrace-ed process will receive the SIGTRAP signal
285 * generated in do_dabr().
286 */
287 if (bp->overflow_handler == ptrace_triggered) {
288 perf_bp_event(bp, regs);
289 rc = NOTIFY_DONE;
290 goto out;
291 }
292
293 /*
294 * Verify if dar lies within the address range occupied by the symbol
295 * being watched to filter extraneous exceptions. If it doesn't,
296 * we still need to single-step the instruction, but we don't
297 * generate an event.
298 */
299 info->type &= ~HW_BRK_TYPE_EXTRANEOUS_IRQ;
300 if (!((bp->attr.bp_addr <= dar) &&
301 (dar - bp->attr.bp_addr < bp->attr.bp_len)))
302 info->type |= HW_BRK_TYPE_EXTRANEOUS_IRQ;
303
304 if (!IS_ENABLED(CONFIG_PPC_8xx) && !stepping_handler(regs, bp, info->address))
305 goto out;
306
307 /*
308 * As a policy, the callback is invoked in a 'trigger-after-execute'
309 * fashion
310 */
311 if (!(info->type & HW_BRK_TYPE_EXTRANEOUS_IRQ))
312 perf_bp_event(bp, regs);
313
314 __set_breakpoint(info);
315 out:
316 rcu_read_unlock();
317 return rc;
318 }
319 NOKPROBE_SYMBOL(hw_breakpoint_handler);
320
321 /*
322 * Handle single-step exceptions following a DABR hit.
323 *
324 * Called in atomic context.
325 */
single_step_dabr_instruction(struct die_args * args)326 static int single_step_dabr_instruction(struct die_args *args)
327 {
328 struct pt_regs *regs = args->regs;
329 struct perf_event *bp = NULL;
330 struct arch_hw_breakpoint *info;
331
332 bp = current->thread.last_hit_ubp;
333 /*
334 * Check if we are single-stepping as a result of a
335 * previous HW Breakpoint exception
336 */
337 if (!bp)
338 return NOTIFY_DONE;
339
340 info = counter_arch_bp(bp);
341
342 /*
343 * We shall invoke the user-defined callback function in the single
344 * stepping handler to confirm to 'trigger-after-execute' semantics
345 */
346 if (!(info->type & HW_BRK_TYPE_EXTRANEOUS_IRQ))
347 perf_bp_event(bp, regs);
348
349 __set_breakpoint(info);
350 current->thread.last_hit_ubp = NULL;
351
352 /*
353 * If the process was being single-stepped by ptrace, let the
354 * other single-step actions occur (e.g. generate SIGTRAP).
355 */
356 if (test_thread_flag(TIF_SINGLESTEP))
357 return NOTIFY_DONE;
358
359 return NOTIFY_STOP;
360 }
361 NOKPROBE_SYMBOL(single_step_dabr_instruction);
362
363 /*
364 * Handle debug exception notifications.
365 *
366 * Called in atomic context.
367 */
hw_breakpoint_exceptions_notify(struct notifier_block * unused,unsigned long val,void * data)368 int hw_breakpoint_exceptions_notify(
369 struct notifier_block *unused, unsigned long val, void *data)
370 {
371 int ret = NOTIFY_DONE;
372
373 switch (val) {
374 case DIE_DABR_MATCH:
375 ret = hw_breakpoint_handler(data);
376 break;
377 case DIE_SSTEP:
378 ret = single_step_dabr_instruction(data);
379 break;
380 }
381
382 return ret;
383 }
384 NOKPROBE_SYMBOL(hw_breakpoint_exceptions_notify);
385
386 /*
387 * Release the user breakpoints used by ptrace
388 */
flush_ptrace_hw_breakpoint(struct task_struct * tsk)389 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
390 {
391 struct thread_struct *t = &tsk->thread;
392
393 unregister_hw_breakpoint(t->ptrace_bps[0]);
394 t->ptrace_bps[0] = NULL;
395 }
396
hw_breakpoint_pmu_read(struct perf_event * bp)397 void hw_breakpoint_pmu_read(struct perf_event *bp)
398 {
399 /* TODO */
400 }
401