• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  PowerPC version
4  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5  *
6  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
7  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
8  *    Copyright (C) 1996 Paul Mackerras
9  *
10  *  Derived from "arch/i386/mm/init.c"
11  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
12  *
13  *  Dave Engebretsen <engebret@us.ibm.com>
14  *      Rework for PPC64 port.
15  */
16 
17 #undef DEBUG
18 
19 #include <linux/signal.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/stddef.h>
29 #include <linux/vmalloc.h>
30 #include <linux/init.h>
31 #include <linux/delay.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/nodemask.h>
35 #include <linux/module.h>
36 #include <linux/poison.h>
37 #include <linux/memblock.h>
38 #include <linux/hugetlb.h>
39 #include <linux/slab.h>
40 #include <linux/of_fdt.h>
41 #include <linux/libfdt.h>
42 #include <linux/memremap.h>
43 
44 #include <asm/pgalloc.h>
45 #include <asm/page.h>
46 #include <asm/prom.h>
47 #include <asm/rtas.h>
48 #include <asm/io.h>
49 #include <asm/mmu_context.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu.h>
52 #include <linux/uaccess.h>
53 #include <asm/smp.h>
54 #include <asm/machdep.h>
55 #include <asm/tlb.h>
56 #include <asm/eeh.h>
57 #include <asm/processor.h>
58 #include <asm/mmzone.h>
59 #include <asm/cputable.h>
60 #include <asm/sections.h>
61 #include <asm/iommu.h>
62 #include <asm/vdso.h>
63 
64 #include <mm/mmu_decl.h>
65 
66 phys_addr_t memstart_addr = ~0;
67 EXPORT_SYMBOL_GPL(memstart_addr);
68 phys_addr_t kernstart_addr;
69 EXPORT_SYMBOL_GPL(kernstart_addr);
70 
71 #ifdef CONFIG_SPARSEMEM_VMEMMAP
72 /*
73  * Given an address within the vmemmap, determine the pfn of the page that
74  * represents the start of the section it is within.  Note that we have to
75  * do this by hand as the proffered address may not be correctly aligned.
76  * Subtraction of non-aligned pointers produces undefined results.
77  */
vmemmap_section_start(unsigned long page)78 static unsigned long __meminit vmemmap_section_start(unsigned long page)
79 {
80 	unsigned long offset = page - ((unsigned long)(vmemmap));
81 
82 	/* Return the pfn of the start of the section. */
83 	return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
84 }
85 
86 /*
87  * Check if this vmemmap page is already initialised.  If any section
88  * which overlaps this vmemmap page is initialised then this page is
89  * initialised already.
90  */
vmemmap_populated(unsigned long start,int page_size)91 static int __meminit vmemmap_populated(unsigned long start, int page_size)
92 {
93 	unsigned long end = start + page_size;
94 	start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
95 
96 	for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
97 		if (pfn_valid(page_to_pfn((struct page *)start)))
98 			return 1;
99 
100 	return 0;
101 }
102 
103 /*
104  * vmemmap virtual address space management does not have a traditonal page
105  * table to track which virtual struct pages are backed by physical mapping.
106  * The virtual to physical mappings are tracked in a simple linked list
107  * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
108  * all times where as the 'next' list maintains the available
109  * vmemmap_backing structures which have been deleted from the
110  * 'vmemmap_global' list during system runtime (memory hotplug remove
111  * operation). The freed 'vmemmap_backing' structures are reused later when
112  * new requests come in without allocating fresh memory. This pointer also
113  * tracks the allocated 'vmemmap_backing' structures as we allocate one
114  * full page memory at a time when we dont have any.
115  */
116 struct vmemmap_backing *vmemmap_list;
117 static struct vmemmap_backing *next;
118 
119 /*
120  * The same pointer 'next' tracks individual chunks inside the allocated
121  * full page during the boot time and again tracks the freeed nodes during
122  * runtime. It is racy but it does not happen as they are separated by the
123  * boot process. Will create problem if some how we have memory hotplug
124  * operation during boot !!
125  */
126 static int num_left;
127 static int num_freed;
128 
vmemmap_list_alloc(int node)129 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
130 {
131 	struct vmemmap_backing *vmem_back;
132 	/* get from freed entries first */
133 	if (num_freed) {
134 		num_freed--;
135 		vmem_back = next;
136 		next = next->list;
137 
138 		return vmem_back;
139 	}
140 
141 	/* allocate a page when required and hand out chunks */
142 	if (!num_left) {
143 		next = vmemmap_alloc_block(PAGE_SIZE, node);
144 		if (unlikely(!next)) {
145 			WARN_ON(1);
146 			return NULL;
147 		}
148 		num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
149 	}
150 
151 	num_left--;
152 
153 	return next++;
154 }
155 
vmemmap_list_populate(unsigned long phys,unsigned long start,int node)156 static __meminit void vmemmap_list_populate(unsigned long phys,
157 					    unsigned long start,
158 					    int node)
159 {
160 	struct vmemmap_backing *vmem_back;
161 
162 	vmem_back = vmemmap_list_alloc(node);
163 	if (unlikely(!vmem_back)) {
164 		WARN_ON(1);
165 		return;
166 	}
167 
168 	vmem_back->phys = phys;
169 	vmem_back->virt_addr = start;
170 	vmem_back->list = vmemmap_list;
171 
172 	vmemmap_list = vmem_back;
173 }
174 
altmap_cross_boundary(struct vmem_altmap * altmap,unsigned long start,unsigned long page_size)175 static bool altmap_cross_boundary(struct vmem_altmap *altmap, unsigned long start,
176 				unsigned long page_size)
177 {
178 	unsigned long nr_pfn = page_size / sizeof(struct page);
179 	unsigned long start_pfn = page_to_pfn((struct page *)start);
180 
181 	if ((start_pfn + nr_pfn - 1) > altmap->end_pfn)
182 		return true;
183 
184 	if (start_pfn < altmap->base_pfn)
185 		return true;
186 
187 	return false;
188 }
189 
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)190 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
191 		struct vmem_altmap *altmap)
192 {
193 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
194 
195 	/* Align to the page size of the linear mapping. */
196 	start = _ALIGN_DOWN(start, page_size);
197 
198 	pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
199 
200 	for (; start < end; start += page_size) {
201 		void *p = NULL;
202 		int rc;
203 
204 		if (vmemmap_populated(start, page_size))
205 			continue;
206 
207 		/*
208 		 * Allocate from the altmap first if we have one. This may
209 		 * fail due to alignment issues when using 16MB hugepages, so
210 		 * fall back to system memory if the altmap allocation fail.
211 		 */
212 		if (altmap && !altmap_cross_boundary(altmap, start, page_size)) {
213 			p = altmap_alloc_block_buf(page_size, altmap);
214 			if (!p)
215 				pr_debug("altmap block allocation failed, falling back to system memory");
216 		}
217 		if (!p)
218 			p = vmemmap_alloc_block_buf(page_size, node);
219 		if (!p)
220 			return -ENOMEM;
221 
222 		vmemmap_list_populate(__pa(p), start, node);
223 
224 		pr_debug("      * %016lx..%016lx allocated at %p\n",
225 			 start, start + page_size, p);
226 
227 		rc = vmemmap_create_mapping(start, page_size, __pa(p));
228 		if (rc < 0) {
229 			pr_warn("%s: Unable to create vmemmap mapping: %d\n",
230 				__func__, rc);
231 			return -EFAULT;
232 		}
233 	}
234 
235 	return 0;
236 }
237 
238 #ifdef CONFIG_MEMORY_HOTPLUG
vmemmap_list_free(unsigned long start)239 static unsigned long vmemmap_list_free(unsigned long start)
240 {
241 	struct vmemmap_backing *vmem_back, *vmem_back_prev;
242 
243 	vmem_back_prev = vmem_back = vmemmap_list;
244 
245 	/* look for it with prev pointer recorded */
246 	for (; vmem_back; vmem_back = vmem_back->list) {
247 		if (vmem_back->virt_addr == start)
248 			break;
249 		vmem_back_prev = vmem_back;
250 	}
251 
252 	if (unlikely(!vmem_back)) {
253 		WARN_ON(1);
254 		return 0;
255 	}
256 
257 	/* remove it from vmemmap_list */
258 	if (vmem_back == vmemmap_list) /* remove head */
259 		vmemmap_list = vmem_back->list;
260 	else
261 		vmem_back_prev->list = vmem_back->list;
262 
263 	/* next point to this freed entry */
264 	vmem_back->list = next;
265 	next = vmem_back;
266 	num_freed++;
267 
268 	return vmem_back->phys;
269 }
270 
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)271 void __ref vmemmap_free(unsigned long start, unsigned long end,
272 		struct vmem_altmap *altmap)
273 {
274 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
275 	unsigned long page_order = get_order(page_size);
276 	unsigned long alt_start = ~0, alt_end = ~0;
277 	unsigned long base_pfn;
278 
279 	start = _ALIGN_DOWN(start, page_size);
280 	if (altmap) {
281 		alt_start = altmap->base_pfn;
282 		alt_end = altmap->base_pfn + altmap->reserve + altmap->free;
283 	}
284 
285 	pr_debug("vmemmap_free %lx...%lx\n", start, end);
286 
287 	for (; start < end; start += page_size) {
288 		unsigned long nr_pages, addr;
289 		struct page *page;
290 
291 		/*
292 		 * the section has already be marked as invalid, so
293 		 * vmemmap_populated() true means some other sections still
294 		 * in this page, so skip it.
295 		 */
296 		if (vmemmap_populated(start, page_size))
297 			continue;
298 
299 		addr = vmemmap_list_free(start);
300 		if (!addr)
301 			continue;
302 
303 		page = pfn_to_page(addr >> PAGE_SHIFT);
304 		nr_pages = 1 << page_order;
305 		base_pfn = PHYS_PFN(addr);
306 
307 		if (base_pfn >= alt_start && base_pfn < alt_end) {
308 			vmem_altmap_free(altmap, nr_pages);
309 		} else if (PageReserved(page)) {
310 			/* allocated from bootmem */
311 			if (page_size < PAGE_SIZE) {
312 				/*
313 				 * this shouldn't happen, but if it is
314 				 * the case, leave the memory there
315 				 */
316 				WARN_ON_ONCE(1);
317 			} else {
318 				while (nr_pages--)
319 					free_reserved_page(page++);
320 			}
321 		} else {
322 			free_pages((unsigned long)(__va(addr)), page_order);
323 		}
324 
325 		vmemmap_remove_mapping(start, page_size);
326 	}
327 }
328 #endif
register_page_bootmem_memmap(unsigned long section_nr,struct page * start_page,unsigned long size)329 void register_page_bootmem_memmap(unsigned long section_nr,
330 				  struct page *start_page, unsigned long size)
331 {
332 }
333 
334 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
335 
336 #ifdef CONFIG_PPC_BOOK3S_64
337 static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
338 
parse_disable_radix(char * p)339 static int __init parse_disable_radix(char *p)
340 {
341 	bool val;
342 
343 	if (!p)
344 		val = true;
345 	else if (kstrtobool(p, &val))
346 		return -EINVAL;
347 
348 	disable_radix = val;
349 
350 	return 0;
351 }
352 early_param("disable_radix", parse_disable_radix);
353 
354 /*
355  * If we're running under a hypervisor, we need to check the contents of
356  * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
357  * radix.  If not, we clear the radix feature bit so we fall back to hash.
358  */
early_check_vec5(void)359 static void __init early_check_vec5(void)
360 {
361 	unsigned long root, chosen;
362 	int size;
363 	const u8 *vec5;
364 	u8 mmu_supported;
365 
366 	root = of_get_flat_dt_root();
367 	chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
368 	if (chosen == -FDT_ERR_NOTFOUND) {
369 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
370 		return;
371 	}
372 	vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
373 	if (!vec5) {
374 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
375 		return;
376 	}
377 	if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
378 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
379 		return;
380 	}
381 
382 	/* Check for supported configuration */
383 	mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
384 			OV5_FEAT(OV5_MMU_SUPPORT);
385 	if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
386 		/* Hypervisor only supports radix - check enabled && GTSE */
387 		if (!early_radix_enabled()) {
388 			pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
389 		}
390 		if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
391 						OV5_FEAT(OV5_RADIX_GTSE))) {
392 			pr_warn("WARNING: Hypervisor doesn't support RADIX with GTSE\n");
393 		}
394 		/* Do radix anyway - the hypervisor said we had to */
395 		cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
396 	} else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
397 		/* Hypervisor only supports hash - disable radix */
398 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
399 	}
400 }
401 
mmu_early_init_devtree(void)402 void __init mmu_early_init_devtree(void)
403 {
404 	/* Disable radix mode based on kernel command line. */
405 	if (disable_radix)
406 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
407 
408 	/*
409 	 * Check /chosen/ibm,architecture-vec-5 if running as a guest.
410 	 * When running bare-metal, we can use radix if we like
411 	 * even though the ibm,architecture-vec-5 property created by
412 	 * skiboot doesn't have the necessary bits set.
413 	 */
414 	if (!(mfmsr() & MSR_HV))
415 		early_check_vec5();
416 
417 	if (early_radix_enabled()) {
418 		radix__early_init_devtree();
419 		/*
420 		 * We have finalized the translation we are going to use by now.
421 		 * Radix mode is not limited by RMA / VRMA addressing.
422 		 * Hence don't limit memblock allocations.
423 		 */
424 		ppc64_rma_size = ULONG_MAX;
425 		memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
426 	} else
427 		hash__early_init_devtree();
428 }
429 #endif /* CONFIG_PPC_BOOK3S_64 */
430