• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * This file contains the routines for handling the MMU on those
4  * PowerPC implementations where the MMU is not using the hash
5  * table, such as 8xx, 4xx, BookE's etc...
6  *
7  * Copyright 2008 Ben Herrenschmidt <benh@kernel.crashing.org>
8  *                IBM Corp.
9  *
10  *  Derived from previous arch/powerpc/mm/mmu_context.c
11  *  and arch/powerpc/include/asm/mmu_context.h
12  *
13  * TODO:
14  *
15  *   - The global context lock will not scale very well
16  *   - The maps should be dynamically allocated to allow for processors
17  *     that support more PID bits at runtime
18  *   - Implement flush_tlb_mm() by making the context stale and picking
19  *     a new one
20  *   - More aggressively clear stale map bits and maybe find some way to
21  *     also clear mm->cpu_vm_mask bits when processes are migrated
22  */
23 
24 //#define DEBUG_MAP_CONSISTENCY
25 //#define DEBUG_CLAMP_LAST_CONTEXT   31
26 //#define DEBUG_HARDER
27 
28 /* We don't use DEBUG because it tends to be compiled in always nowadays
29  * and this would generate way too much output
30  */
31 #ifdef DEBUG_HARDER
32 #define pr_hard(args...)	printk(KERN_DEBUG args)
33 #define pr_hardcont(args...)	printk(KERN_CONT args)
34 #else
35 #define pr_hard(args...)	do { } while(0)
36 #define pr_hardcont(args...)	do { } while(0)
37 #endif
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/init.h>
42 #include <linux/spinlock.h>
43 #include <linux/memblock.h>
44 #include <linux/notifier.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 
48 #include <asm/mmu_context.h>
49 #include <asm/tlbflush.h>
50 
51 #include <mm/mmu_decl.h>
52 
53 /*
54  * The MPC8xx has only 16 contexts. We rotate through them on each task switch.
55  * A better way would be to keep track of tasks that own contexts, and implement
56  * an LRU usage. That way very active tasks don't always have to pay the TLB
57  * reload overhead. The kernel pages are mapped shared, so the kernel can run on
58  * behalf of any task that makes a kernel entry. Shared does not mean they are
59  * not protected, just that the ASID comparison is not performed. -- Dan
60  *
61  * The IBM4xx has 256 contexts, so we can just rotate through these as a way of
62  * "switching" contexts. If the TID of the TLB is zero, the PID/TID comparison
63  * is disabled, so we can use a TID of zero to represent all kernel pages as
64  * shared among all contexts. -- Dan
65  *
66  * The IBM 47x core supports 16-bit PIDs, thus 65535 contexts. We should
67  * normally never have to steal though the facility is present if needed.
68  * -- BenH
69  */
70 #define FIRST_CONTEXT 1
71 #ifdef DEBUG_CLAMP_LAST_CONTEXT
72 #define LAST_CONTEXT DEBUG_CLAMP_LAST_CONTEXT
73 #elif defined(CONFIG_PPC_8xx)
74 #define LAST_CONTEXT 16
75 #elif defined(CONFIG_PPC_47x)
76 #define LAST_CONTEXT 65535
77 #else
78 #define LAST_CONTEXT 255
79 #endif
80 
81 static unsigned int next_context, nr_free_contexts;
82 static unsigned long *context_map;
83 #ifdef CONFIG_SMP
84 static unsigned long *stale_map[NR_CPUS];
85 #endif
86 static struct mm_struct **context_mm;
87 static DEFINE_RAW_SPINLOCK(context_lock);
88 
89 #define CTX_MAP_SIZE	\
90 	(sizeof(unsigned long) * (LAST_CONTEXT / BITS_PER_LONG + 1))
91 
92 
93 /* Steal a context from a task that has one at the moment.
94  *
95  * This is used when we are running out of available PID numbers
96  * on the processors.
97  *
98  * This isn't an LRU system, it just frees up each context in
99  * turn (sort-of pseudo-random replacement :).  This would be the
100  * place to implement an LRU scheme if anyone was motivated to do it.
101  *  -- paulus
102  *
103  * For context stealing, we use a slightly different approach for
104  * SMP and UP. Basically, the UP one is simpler and doesn't use
105  * the stale map as we can just flush the local CPU
106  *  -- benh
107  */
108 #ifdef CONFIG_SMP
steal_context_smp(unsigned int id)109 static unsigned int steal_context_smp(unsigned int id)
110 {
111 	struct mm_struct *mm;
112 	unsigned int cpu, max, i;
113 
114 	max = LAST_CONTEXT - FIRST_CONTEXT;
115 
116 	/* Attempt to free next_context first and then loop until we manage */
117 	while (max--) {
118 		/* Pick up the victim mm */
119 		mm = context_mm[id];
120 
121 		/* We have a candidate victim, check if it's active, on SMP
122 		 * we cannot steal active contexts
123 		 */
124 		if (mm->context.active) {
125 			id++;
126 			if (id > LAST_CONTEXT)
127 				id = FIRST_CONTEXT;
128 			continue;
129 		}
130 		pr_hardcont(" | steal %d from 0x%p", id, mm);
131 
132 		/* Mark this mm has having no context anymore */
133 		mm->context.id = MMU_NO_CONTEXT;
134 
135 		/* Mark it stale on all CPUs that used this mm. For threaded
136 		 * implementations, we set it on all threads on each core
137 		 * represented in the mask. A future implementation will use
138 		 * a core map instead but this will do for now.
139 		 */
140 		for_each_cpu(cpu, mm_cpumask(mm)) {
141 			for (i = cpu_first_thread_sibling(cpu);
142 			     i <= cpu_last_thread_sibling(cpu); i++) {
143 				if (stale_map[i])
144 					__set_bit(id, stale_map[i]);
145 			}
146 			cpu = i - 1;
147 		}
148 		return id;
149 	}
150 
151 	/* This will happen if you have more CPUs than available contexts,
152 	 * all we can do here is wait a bit and try again
153 	 */
154 	raw_spin_unlock(&context_lock);
155 	cpu_relax();
156 	raw_spin_lock(&context_lock);
157 
158 	/* This will cause the caller to try again */
159 	return MMU_NO_CONTEXT;
160 }
161 #endif  /* CONFIG_SMP */
162 
steal_all_contexts(void)163 static unsigned int steal_all_contexts(void)
164 {
165 	struct mm_struct *mm;
166 #ifdef CONFIG_SMP
167 	int cpu = smp_processor_id();
168 #endif
169 	unsigned int id;
170 
171 	for (id = FIRST_CONTEXT; id <= LAST_CONTEXT; id++) {
172 		/* Pick up the victim mm */
173 		mm = context_mm[id];
174 
175 		pr_hardcont(" | steal %d from 0x%p", id, mm);
176 
177 		/* Mark this mm as having no context anymore */
178 		mm->context.id = MMU_NO_CONTEXT;
179 		if (id != FIRST_CONTEXT) {
180 			context_mm[id] = NULL;
181 			__clear_bit(id, context_map);
182 #ifdef DEBUG_MAP_CONSISTENCY
183 			mm->context.active = 0;
184 #endif
185 		}
186 #ifdef CONFIG_SMP
187 		__clear_bit(id, stale_map[cpu]);
188 #endif
189 	}
190 
191 	/* Flush the TLB for all contexts (not to be used on SMP) */
192 	_tlbil_all();
193 
194 	nr_free_contexts = LAST_CONTEXT - FIRST_CONTEXT;
195 
196 	return FIRST_CONTEXT;
197 }
198 
199 /* Note that this will also be called on SMP if all other CPUs are
200  * offlined, which means that it may be called for cpu != 0. For
201  * this to work, we somewhat assume that CPUs that are onlined
202  * come up with a fully clean TLB (or are cleaned when offlined)
203  */
steal_context_up(unsigned int id)204 static unsigned int steal_context_up(unsigned int id)
205 {
206 	struct mm_struct *mm;
207 #ifdef CONFIG_SMP
208 	int cpu = smp_processor_id();
209 #endif
210 
211 	/* Pick up the victim mm */
212 	mm = context_mm[id];
213 
214 	pr_hardcont(" | steal %d from 0x%p", id, mm);
215 
216 	/* Flush the TLB for that context */
217 	local_flush_tlb_mm(mm);
218 
219 	/* Mark this mm has having no context anymore */
220 	mm->context.id = MMU_NO_CONTEXT;
221 
222 	/* XXX This clear should ultimately be part of local_flush_tlb_mm */
223 #ifdef CONFIG_SMP
224 	__clear_bit(id, stale_map[cpu]);
225 #endif
226 
227 	return id;
228 }
229 
230 #ifdef DEBUG_MAP_CONSISTENCY
context_check_map(void)231 static void context_check_map(void)
232 {
233 	unsigned int id, nrf, nact;
234 
235 	nrf = nact = 0;
236 	for (id = FIRST_CONTEXT; id <= LAST_CONTEXT; id++) {
237 		int used = test_bit(id, context_map);
238 		if (!used)
239 			nrf++;
240 		if (used != (context_mm[id] != NULL))
241 			pr_err("MMU: Context %d is %s and MM is %p !\n",
242 			       id, used ? "used" : "free", context_mm[id]);
243 		if (context_mm[id] != NULL)
244 			nact += context_mm[id]->context.active;
245 	}
246 	if (nrf != nr_free_contexts) {
247 		pr_err("MMU: Free context count out of sync ! (%d vs %d)\n",
248 		       nr_free_contexts, nrf);
249 		nr_free_contexts = nrf;
250 	}
251 	if (nact > num_online_cpus())
252 		pr_err("MMU: More active contexts than CPUs ! (%d vs %d)\n",
253 		       nact, num_online_cpus());
254 	if (FIRST_CONTEXT > 0 && !test_bit(0, context_map))
255 		pr_err("MMU: Context 0 has been freed !!!\n");
256 }
257 #else
context_check_map(void)258 static void context_check_map(void) { }
259 #endif
260 
switch_mmu_context(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)261 void switch_mmu_context(struct mm_struct *prev, struct mm_struct *next,
262 			struct task_struct *tsk)
263 {
264 	unsigned int id;
265 #ifdef CONFIG_SMP
266 	unsigned int i, cpu = smp_processor_id();
267 #endif
268 	unsigned long *map;
269 
270 	/* No lockless fast path .. yet */
271 	raw_spin_lock(&context_lock);
272 
273 	pr_hard("[%d] activating context for mm @%p, active=%d, id=%d",
274 		cpu, next, next->context.active, next->context.id);
275 
276 #ifdef CONFIG_SMP
277 	/* Mark us active and the previous one not anymore */
278 	next->context.active++;
279 	if (prev) {
280 		pr_hardcont(" (old=0x%p a=%d)", prev, prev->context.active);
281 		WARN_ON(prev->context.active < 1);
282 		prev->context.active--;
283 	}
284 
285  again:
286 #endif /* CONFIG_SMP */
287 
288 	/* If we already have a valid assigned context, skip all that */
289 	id = next->context.id;
290 	if (likely(id != MMU_NO_CONTEXT)) {
291 #ifdef DEBUG_MAP_CONSISTENCY
292 		if (context_mm[id] != next)
293 			pr_err("MMU: mm 0x%p has id %d but context_mm[%d] says 0x%p\n",
294 			       next, id, id, context_mm[id]);
295 #endif
296 		goto ctxt_ok;
297 	}
298 
299 	/* We really don't have a context, let's try to acquire one */
300 	id = next_context;
301 	if (id > LAST_CONTEXT)
302 		id = FIRST_CONTEXT;
303 	map = context_map;
304 
305 	/* No more free contexts, let's try to steal one */
306 	if (nr_free_contexts == 0) {
307 #ifdef CONFIG_SMP
308 		if (num_online_cpus() > 1) {
309 			id = steal_context_smp(id);
310 			if (id == MMU_NO_CONTEXT)
311 				goto again;
312 			goto stolen;
313 		}
314 #endif /* CONFIG_SMP */
315 		if (IS_ENABLED(CONFIG_PPC_8xx))
316 			id = steal_all_contexts();
317 		else
318 			id = steal_context_up(id);
319 		goto stolen;
320 	}
321 	nr_free_contexts--;
322 
323 	/* We know there's at least one free context, try to find it */
324 	while (__test_and_set_bit(id, map)) {
325 		id = find_next_zero_bit(map, LAST_CONTEXT+1, id);
326 		if (id > LAST_CONTEXT)
327 			id = FIRST_CONTEXT;
328 	}
329  stolen:
330 	next_context = id + 1;
331 	context_mm[id] = next;
332 	next->context.id = id;
333 	pr_hardcont(" | new id=%d,nrf=%d", id, nr_free_contexts);
334 
335 	context_check_map();
336  ctxt_ok:
337 
338 	/* If that context got marked stale on this CPU, then flush the
339 	 * local TLB for it and unmark it before we use it
340 	 */
341 #ifdef CONFIG_SMP
342 	if (test_bit(id, stale_map[cpu])) {
343 		pr_hardcont(" | stale flush %d [%d..%d]",
344 			    id, cpu_first_thread_sibling(cpu),
345 			    cpu_last_thread_sibling(cpu));
346 
347 		local_flush_tlb_mm(next);
348 
349 		/* XXX This clear should ultimately be part of local_flush_tlb_mm */
350 		for (i = cpu_first_thread_sibling(cpu);
351 		     i <= cpu_last_thread_sibling(cpu); i++) {
352 			if (stale_map[i])
353 				__clear_bit(id, stale_map[i]);
354 		}
355 	}
356 #endif
357 
358 	/* Flick the MMU and release lock */
359 	pr_hardcont(" -> %d\n", id);
360 	set_context(id, next->pgd);
361 	raw_spin_unlock(&context_lock);
362 }
363 
364 /*
365  * Set up the context for a new address space.
366  */
init_new_context(struct task_struct * t,struct mm_struct * mm)367 int init_new_context(struct task_struct *t, struct mm_struct *mm)
368 {
369 	pr_hard("initing context for mm @%p\n", mm);
370 
371 	/*
372 	 * We have MMU_NO_CONTEXT set to be ~0. Hence check
373 	 * explicitly against context.id == 0. This ensures that we properly
374 	 * initialize context slice details for newly allocated mm's (which will
375 	 * have id == 0) and don't alter context slice inherited via fork (which
376 	 * will have id != 0).
377 	 */
378 	if (mm->context.id == 0)
379 		slice_init_new_context_exec(mm);
380 	mm->context.id = MMU_NO_CONTEXT;
381 	mm->context.active = 0;
382 	pte_frag_set(&mm->context, NULL);
383 	return 0;
384 }
385 
386 /*
387  * We're finished using the context for an address space.
388  */
destroy_context(struct mm_struct * mm)389 void destroy_context(struct mm_struct *mm)
390 {
391 	unsigned long flags;
392 	unsigned int id;
393 
394 	if (mm->context.id == MMU_NO_CONTEXT)
395 		return;
396 
397 	WARN_ON(mm->context.active != 0);
398 
399 	raw_spin_lock_irqsave(&context_lock, flags);
400 	id = mm->context.id;
401 	if (id != MMU_NO_CONTEXT) {
402 		__clear_bit(id, context_map);
403 		mm->context.id = MMU_NO_CONTEXT;
404 #ifdef DEBUG_MAP_CONSISTENCY
405 		mm->context.active = 0;
406 #endif
407 		context_mm[id] = NULL;
408 		nr_free_contexts++;
409 	}
410 	raw_spin_unlock_irqrestore(&context_lock, flags);
411 }
412 
413 #ifdef CONFIG_SMP
mmu_ctx_cpu_prepare(unsigned int cpu)414 static int mmu_ctx_cpu_prepare(unsigned int cpu)
415 {
416 	/* We don't touch CPU 0 map, it's allocated at aboot and kept
417 	 * around forever
418 	 */
419 	if (cpu == boot_cpuid)
420 		return 0;
421 
422 	pr_devel("MMU: Allocating stale context map for CPU %d\n", cpu);
423 	stale_map[cpu] = kzalloc(CTX_MAP_SIZE, GFP_KERNEL);
424 	return 0;
425 }
426 
mmu_ctx_cpu_dead(unsigned int cpu)427 static int mmu_ctx_cpu_dead(unsigned int cpu)
428 {
429 #ifdef CONFIG_HOTPLUG_CPU
430 	if (cpu == boot_cpuid)
431 		return 0;
432 
433 	pr_devel("MMU: Freeing stale context map for CPU %d\n", cpu);
434 	kfree(stale_map[cpu]);
435 	stale_map[cpu] = NULL;
436 
437 	/* We also clear the cpu_vm_mask bits of CPUs going away */
438 	clear_tasks_mm_cpumask(cpu);
439 #endif
440 	return 0;
441 }
442 
443 #endif /* CONFIG_SMP */
444 
445 /*
446  * Initialize the context management stuff.
447  */
mmu_context_init(void)448 void __init mmu_context_init(void)
449 {
450 	/* Mark init_mm as being active on all possible CPUs since
451 	 * we'll get called with prev == init_mm the first time
452 	 * we schedule on a given CPU
453 	 */
454 	init_mm.context.active = NR_CPUS;
455 
456 	/*
457 	 * Allocate the maps used by context management
458 	 */
459 	context_map = memblock_alloc(CTX_MAP_SIZE, SMP_CACHE_BYTES);
460 	if (!context_map)
461 		panic("%s: Failed to allocate %zu bytes\n", __func__,
462 		      CTX_MAP_SIZE);
463 	context_mm = memblock_alloc(sizeof(void *) * (LAST_CONTEXT + 1),
464 				    SMP_CACHE_BYTES);
465 	if (!context_mm)
466 		panic("%s: Failed to allocate %zu bytes\n", __func__,
467 		      sizeof(void *) * (LAST_CONTEXT + 1));
468 #ifdef CONFIG_SMP
469 	stale_map[boot_cpuid] = memblock_alloc(CTX_MAP_SIZE, SMP_CACHE_BYTES);
470 	if (!stale_map[boot_cpuid])
471 		panic("%s: Failed to allocate %zu bytes\n", __func__,
472 		      CTX_MAP_SIZE);
473 
474 	cpuhp_setup_state_nocalls(CPUHP_POWERPC_MMU_CTX_PREPARE,
475 				  "powerpc/mmu/ctx:prepare",
476 				  mmu_ctx_cpu_prepare, mmu_ctx_cpu_dead);
477 #endif
478 
479 	printk(KERN_INFO
480 	       "MMU: Allocated %zu bytes of context maps for %d contexts\n",
481 	       2 * CTX_MAP_SIZE + (sizeof(void *) * (LAST_CONTEXT + 1)),
482 	       LAST_CONTEXT - FIRST_CONTEXT + 1);
483 
484 	/*
485 	 * Some processors have too few contexts to reserve one for
486 	 * init_mm, and require using context 0 for a normal task.
487 	 * Other processors reserve the use of context zero for the kernel.
488 	 * This code assumes FIRST_CONTEXT < 32.
489 	 */
490 	context_map[0] = (1 << FIRST_CONTEXT) - 1;
491 	next_context = FIRST_CONTEXT;
492 	nr_free_contexts = LAST_CONTEXT - FIRST_CONTEXT + 1;
493 }
494