1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Cell Broadband Engine OProfile Support
4 *
5 * (C) Copyright IBM Corporation 2006
6 *
7 * Author: Maynard Johnson <maynardj@us.ibm.com>
8 */
9
10 /* The purpose of this file is to handle SPU event task switching
11 * and to record SPU context information into the OProfile
12 * event buffer.
13 *
14 * Additionally, the spu_sync_buffer function is provided as a helper
15 * for recoding actual SPU program counter samples to the event buffer.
16 */
17 #include <linux/dcookies.h>
18 #include <linux/kref.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/module.h>
23 #include <linux/notifier.h>
24 #include <linux/numa.h>
25 #include <linux/oprofile.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include "pr_util.h"
29
30 #define RELEASE_ALL 9999
31
32 static DEFINE_SPINLOCK(buffer_lock);
33 static DEFINE_SPINLOCK(cache_lock);
34 static int num_spu_nodes;
35 static int spu_prof_num_nodes;
36
37 struct spu_buffer spu_buff[MAX_NUMNODES * SPUS_PER_NODE];
38 struct delayed_work spu_work;
39 static unsigned max_spu_buff;
40
spu_buff_add(unsigned long int value,int spu)41 static void spu_buff_add(unsigned long int value, int spu)
42 {
43 /* spu buff is a circular buffer. Add entries to the
44 * head. Head is the index to store the next value.
45 * The buffer is full when there is one available entry
46 * in the queue, i.e. head and tail can't be equal.
47 * That way we can tell the difference between the
48 * buffer being full versus empty.
49 *
50 * ASSUMPTION: the buffer_lock is held when this function
51 * is called to lock the buffer, head and tail.
52 */
53 int full = 1;
54
55 if (spu_buff[spu].head >= spu_buff[spu].tail) {
56 if ((spu_buff[spu].head - spu_buff[spu].tail)
57 < (max_spu_buff - 1))
58 full = 0;
59
60 } else if (spu_buff[spu].tail > spu_buff[spu].head) {
61 if ((spu_buff[spu].tail - spu_buff[spu].head)
62 > 1)
63 full = 0;
64 }
65
66 if (!full) {
67 spu_buff[spu].buff[spu_buff[spu].head] = value;
68 spu_buff[spu].head++;
69
70 if (spu_buff[spu].head >= max_spu_buff)
71 spu_buff[spu].head = 0;
72 } else {
73 /* From the user's perspective make the SPU buffer
74 * size management/overflow look like we are using
75 * per cpu buffers. The user uses the same
76 * per cpu parameter to adjust the SPU buffer size.
77 * Increment the sample_lost_overflow to inform
78 * the user the buffer size needs to be increased.
79 */
80 oprofile_cpu_buffer_inc_smpl_lost();
81 }
82 }
83
84 /* This function copies the per SPU buffers to the
85 * OProfile kernel buffer.
86 */
sync_spu_buff(void)87 static void sync_spu_buff(void)
88 {
89 int spu;
90 unsigned long flags;
91 int curr_head;
92
93 for (spu = 0; spu < num_spu_nodes; spu++) {
94 /* In case there was an issue and the buffer didn't
95 * get created skip it.
96 */
97 if (spu_buff[spu].buff == NULL)
98 continue;
99
100 /* Hold the lock to make sure the head/tail
101 * doesn't change while spu_buff_add() is
102 * deciding if the buffer is full or not.
103 * Being a little paranoid.
104 */
105 spin_lock_irqsave(&buffer_lock, flags);
106 curr_head = spu_buff[spu].head;
107 spin_unlock_irqrestore(&buffer_lock, flags);
108
109 /* Transfer the current contents to the kernel buffer.
110 * data can still be added to the head of the buffer.
111 */
112 oprofile_put_buff(spu_buff[spu].buff,
113 spu_buff[spu].tail,
114 curr_head, max_spu_buff);
115
116 spin_lock_irqsave(&buffer_lock, flags);
117 spu_buff[spu].tail = curr_head;
118 spin_unlock_irqrestore(&buffer_lock, flags);
119 }
120
121 }
122
wq_sync_spu_buff(struct work_struct * work)123 static void wq_sync_spu_buff(struct work_struct *work)
124 {
125 /* move data from spu buffers to kernel buffer */
126 sync_spu_buff();
127
128 /* only reschedule if profiling is not done */
129 if (spu_prof_running)
130 schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
131 }
132
133 /* Container for caching information about an active SPU task. */
134 struct cached_info {
135 struct vma_to_fileoffset_map *map;
136 struct spu *the_spu; /* needed to access pointer to local_store */
137 struct kref cache_ref;
138 };
139
140 static struct cached_info *spu_info[MAX_NUMNODES * 8];
141
destroy_cached_info(struct kref * kref)142 static void destroy_cached_info(struct kref *kref)
143 {
144 struct cached_info *info;
145
146 info = container_of(kref, struct cached_info, cache_ref);
147 vma_map_free(info->map);
148 kfree(info);
149 module_put(THIS_MODULE);
150 }
151
152 /* Return the cached_info for the passed SPU number.
153 * ATTENTION: Callers are responsible for obtaining the
154 * cache_lock if needed prior to invoking this function.
155 */
get_cached_info(struct spu * the_spu,int spu_num)156 static struct cached_info *get_cached_info(struct spu *the_spu, int spu_num)
157 {
158 struct kref *ref;
159 struct cached_info *ret_info;
160
161 if (spu_num >= num_spu_nodes) {
162 printk(KERN_ERR "SPU_PROF: "
163 "%s, line %d: Invalid index %d into spu info cache\n",
164 __func__, __LINE__, spu_num);
165 ret_info = NULL;
166 goto out;
167 }
168 if (!spu_info[spu_num] && the_spu) {
169 ref = spu_get_profile_private_kref(the_spu->ctx);
170 if (ref) {
171 spu_info[spu_num] = container_of(ref, struct cached_info, cache_ref);
172 kref_get(&spu_info[spu_num]->cache_ref);
173 }
174 }
175
176 ret_info = spu_info[spu_num];
177 out:
178 return ret_info;
179 }
180
181
182 /* Looks for cached info for the passed spu. If not found, the
183 * cached info is created for the passed spu.
184 * Returns 0 for success; otherwise, -1 for error.
185 */
186 static int
prepare_cached_spu_info(struct spu * spu,unsigned long objectId)187 prepare_cached_spu_info(struct spu *spu, unsigned long objectId)
188 {
189 unsigned long flags;
190 struct vma_to_fileoffset_map *new_map;
191 int retval = 0;
192 struct cached_info *info;
193
194 /* We won't bother getting cache_lock here since
195 * don't do anything with the cached_info that's returned.
196 */
197 info = get_cached_info(spu, spu->number);
198
199 if (info) {
200 pr_debug("Found cached SPU info.\n");
201 goto out;
202 }
203
204 /* Create cached_info and set spu_info[spu->number] to point to it.
205 * spu->number is a system-wide value, not a per-node value.
206 */
207 info = kzalloc(sizeof(*info), GFP_KERNEL);
208 if (!info) {
209 printk(KERN_ERR "SPU_PROF: "
210 "%s, line %d: create vma_map failed\n",
211 __func__, __LINE__);
212 retval = -ENOMEM;
213 goto err_alloc;
214 }
215 new_map = create_vma_map(spu, objectId);
216 if (!new_map) {
217 printk(KERN_ERR "SPU_PROF: "
218 "%s, line %d: create vma_map failed\n",
219 __func__, __LINE__);
220 retval = -ENOMEM;
221 goto err_alloc;
222 }
223
224 pr_debug("Created vma_map\n");
225 info->map = new_map;
226 info->the_spu = spu;
227 kref_init(&info->cache_ref);
228 spin_lock_irqsave(&cache_lock, flags);
229 spu_info[spu->number] = info;
230 /* Increment count before passing off ref to SPUFS. */
231 kref_get(&info->cache_ref);
232
233 /* We increment the module refcount here since SPUFS is
234 * responsible for the final destruction of the cached_info,
235 * and it must be able to access the destroy_cached_info()
236 * function defined in the OProfile module. We decrement
237 * the module refcount in destroy_cached_info.
238 */
239 try_module_get(THIS_MODULE);
240 spu_set_profile_private_kref(spu->ctx, &info->cache_ref,
241 destroy_cached_info);
242 spin_unlock_irqrestore(&cache_lock, flags);
243 goto out;
244
245 err_alloc:
246 kfree(info);
247 out:
248 return retval;
249 }
250
251 /*
252 * NOTE: The caller is responsible for locking the
253 * cache_lock prior to calling this function.
254 */
release_cached_info(int spu_index)255 static int release_cached_info(int spu_index)
256 {
257 int index, end;
258
259 if (spu_index == RELEASE_ALL) {
260 end = num_spu_nodes;
261 index = 0;
262 } else {
263 if (spu_index >= num_spu_nodes) {
264 printk(KERN_ERR "SPU_PROF: "
265 "%s, line %d: "
266 "Invalid index %d into spu info cache\n",
267 __func__, __LINE__, spu_index);
268 goto out;
269 }
270 end = spu_index + 1;
271 index = spu_index;
272 }
273 for (; index < end; index++) {
274 if (spu_info[index]) {
275 kref_put(&spu_info[index]->cache_ref,
276 destroy_cached_info);
277 spu_info[index] = NULL;
278 }
279 }
280
281 out:
282 return 0;
283 }
284
285 /* The source code for fast_get_dcookie was "borrowed"
286 * from drivers/oprofile/buffer_sync.c.
287 */
288
289 /* Optimisation. We can manage without taking the dcookie sem
290 * because we cannot reach this code without at least one
291 * dcookie user still being registered (namely, the reader
292 * of the event buffer).
293 */
fast_get_dcookie(const struct path * path)294 static inline unsigned long fast_get_dcookie(const struct path *path)
295 {
296 unsigned long cookie;
297
298 if (path->dentry->d_flags & DCACHE_COOKIE)
299 return (unsigned long)path->dentry;
300 get_dcookie(path, &cookie);
301 return cookie;
302 }
303
304 /* Look up the dcookie for the task's mm->exe_file,
305 * which corresponds loosely to "application name". Also, determine
306 * the offset for the SPU ELF object. If computed offset is
307 * non-zero, it implies an embedded SPU object; otherwise, it's a
308 * separate SPU binary, in which case we retrieve it's dcookie.
309 * For the embedded case, we must determine if SPU ELF is embedded
310 * in the executable application or another file (i.e., shared lib).
311 * If embedded in a shared lib, we must get the dcookie and return
312 * that to the caller.
313 */
314 static unsigned long
get_exec_dcookie_and_offset(struct spu * spu,unsigned int * offsetp,unsigned long * spu_bin_dcookie,unsigned long spu_ref)315 get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp,
316 unsigned long *spu_bin_dcookie,
317 unsigned long spu_ref)
318 {
319 unsigned long app_cookie = 0;
320 unsigned int my_offset = 0;
321 struct vm_area_struct *vma;
322 struct file *exe_file;
323 struct mm_struct *mm = spu->mm;
324
325 if (!mm)
326 goto out;
327
328 exe_file = get_mm_exe_file(mm);
329 if (exe_file) {
330 app_cookie = fast_get_dcookie(&exe_file->f_path);
331 pr_debug("got dcookie for %pD\n", exe_file);
332 fput(exe_file);
333 }
334
335 down_read(&mm->mmap_sem);
336 for (vma = mm->mmap; vma; vma = vma->vm_next) {
337 if (vma->vm_start > spu_ref || vma->vm_end <= spu_ref)
338 continue;
339 my_offset = spu_ref - vma->vm_start;
340 if (!vma->vm_file)
341 goto fail_no_image_cookie;
342
343 pr_debug("Found spu ELF at %X(object-id:%lx) for file %pD\n",
344 my_offset, spu_ref, vma->vm_file);
345 *offsetp = my_offset;
346 break;
347 }
348
349 *spu_bin_dcookie = fast_get_dcookie(&vma->vm_file->f_path);
350 pr_debug("got dcookie for %pD\n", vma->vm_file);
351
352 up_read(&mm->mmap_sem);
353
354 out:
355 return app_cookie;
356
357 fail_no_image_cookie:
358 up_read(&mm->mmap_sem);
359
360 printk(KERN_ERR "SPU_PROF: "
361 "%s, line %d: Cannot find dcookie for SPU binary\n",
362 __func__, __LINE__);
363 goto out;
364 }
365
366
367
368 /* This function finds or creates cached context information for the
369 * passed SPU and records SPU context information into the OProfile
370 * event buffer.
371 */
process_context_switch(struct spu * spu,unsigned long objectId)372 static int process_context_switch(struct spu *spu, unsigned long objectId)
373 {
374 unsigned long flags;
375 int retval;
376 unsigned int offset = 0;
377 unsigned long spu_cookie = 0, app_dcookie;
378
379 retval = prepare_cached_spu_info(spu, objectId);
380 if (retval)
381 goto out;
382
383 /* Get dcookie first because a mutex_lock is taken in that
384 * code path, so interrupts must not be disabled.
385 */
386 app_dcookie = get_exec_dcookie_and_offset(spu, &offset, &spu_cookie, objectId);
387 if (!app_dcookie || !spu_cookie) {
388 retval = -ENOENT;
389 goto out;
390 }
391
392 /* Record context info in event buffer */
393 spin_lock_irqsave(&buffer_lock, flags);
394 spu_buff_add(ESCAPE_CODE, spu->number);
395 spu_buff_add(SPU_CTX_SWITCH_CODE, spu->number);
396 spu_buff_add(spu->number, spu->number);
397 spu_buff_add(spu->pid, spu->number);
398 spu_buff_add(spu->tgid, spu->number);
399 spu_buff_add(app_dcookie, spu->number);
400 spu_buff_add(spu_cookie, spu->number);
401 spu_buff_add(offset, spu->number);
402
403 /* Set flag to indicate SPU PC data can now be written out. If
404 * the SPU program counter data is seen before an SPU context
405 * record is seen, the postprocessing will fail.
406 */
407 spu_buff[spu->number].ctx_sw_seen = 1;
408
409 spin_unlock_irqrestore(&buffer_lock, flags);
410 smp_wmb(); /* insure spu event buffer updates are written */
411 /* don't want entries intermingled... */
412 out:
413 return retval;
414 }
415
416 /*
417 * This function is invoked on either a bind_context or unbind_context.
418 * If called for an unbind_context, the val arg is 0; otherwise,
419 * it is the object-id value for the spu context.
420 * The data arg is of type 'struct spu *'.
421 */
spu_active_notify(struct notifier_block * self,unsigned long val,void * data)422 static int spu_active_notify(struct notifier_block *self, unsigned long val,
423 void *data)
424 {
425 int retval;
426 unsigned long flags;
427 struct spu *the_spu = data;
428
429 pr_debug("SPU event notification arrived\n");
430 if (!val) {
431 spin_lock_irqsave(&cache_lock, flags);
432 retval = release_cached_info(the_spu->number);
433 spin_unlock_irqrestore(&cache_lock, flags);
434 } else {
435 retval = process_context_switch(the_spu, val);
436 }
437 return retval;
438 }
439
440 static struct notifier_block spu_active = {
441 .notifier_call = spu_active_notify,
442 };
443
number_of_online_nodes(void)444 static int number_of_online_nodes(void)
445 {
446 u32 cpu; u32 tmp;
447 int nodes = 0;
448 for_each_online_cpu(cpu) {
449 tmp = cbe_cpu_to_node(cpu) + 1;
450 if (tmp > nodes)
451 nodes++;
452 }
453 return nodes;
454 }
455
oprofile_spu_buff_create(void)456 static int oprofile_spu_buff_create(void)
457 {
458 int spu;
459
460 max_spu_buff = oprofile_get_cpu_buffer_size();
461
462 for (spu = 0; spu < num_spu_nodes; spu++) {
463 /* create circular buffers to store the data in.
464 * use locks to manage accessing the buffers
465 */
466 spu_buff[spu].head = 0;
467 spu_buff[spu].tail = 0;
468
469 /*
470 * Create a buffer for each SPU. Can't reliably
471 * create a single buffer for all spus due to not
472 * enough contiguous kernel memory.
473 */
474
475 spu_buff[spu].buff = kzalloc((max_spu_buff
476 * sizeof(unsigned long)),
477 GFP_KERNEL);
478
479 if (!spu_buff[spu].buff) {
480 printk(KERN_ERR "SPU_PROF: "
481 "%s, line %d: oprofile_spu_buff_create "
482 "failed to allocate spu buffer %d.\n",
483 __func__, __LINE__, spu);
484
485 /* release the spu buffers that have been allocated */
486 while (spu >= 0) {
487 kfree(spu_buff[spu].buff);
488 spu_buff[spu].buff = 0;
489 spu--;
490 }
491 return -ENOMEM;
492 }
493 }
494 return 0;
495 }
496
497 /* The main purpose of this function is to synchronize
498 * OProfile with SPUFS by registering to be notified of
499 * SPU task switches.
500 *
501 * NOTE: When profiling SPUs, we must ensure that only
502 * spu_sync_start is invoked and not the generic sync_start
503 * in drivers/oprofile/oprof.c. A return value of
504 * SKIP_GENERIC_SYNC or SYNC_START_ERROR will
505 * accomplish this.
506 */
spu_sync_start(void)507 int spu_sync_start(void)
508 {
509 int spu;
510 int ret = SKIP_GENERIC_SYNC;
511 int register_ret;
512 unsigned long flags = 0;
513
514 spu_prof_num_nodes = number_of_online_nodes();
515 num_spu_nodes = spu_prof_num_nodes * 8;
516 INIT_DELAYED_WORK(&spu_work, wq_sync_spu_buff);
517
518 /* create buffer for storing the SPU data to put in
519 * the kernel buffer.
520 */
521 ret = oprofile_spu_buff_create();
522 if (ret)
523 goto out;
524
525 spin_lock_irqsave(&buffer_lock, flags);
526 for (spu = 0; spu < num_spu_nodes; spu++) {
527 spu_buff_add(ESCAPE_CODE, spu);
528 spu_buff_add(SPU_PROFILING_CODE, spu);
529 spu_buff_add(num_spu_nodes, spu);
530 }
531 spin_unlock_irqrestore(&buffer_lock, flags);
532
533 for (spu = 0; spu < num_spu_nodes; spu++) {
534 spu_buff[spu].ctx_sw_seen = 0;
535 spu_buff[spu].last_guard_val = 0;
536 }
537
538 /* Register for SPU events */
539 register_ret = spu_switch_event_register(&spu_active);
540 if (register_ret) {
541 ret = SYNC_START_ERROR;
542 goto out;
543 }
544
545 pr_debug("spu_sync_start -- running.\n");
546 out:
547 return ret;
548 }
549
550 /* Record SPU program counter samples to the oprofile event buffer. */
spu_sync_buffer(int spu_num,unsigned int * samples,int num_samples)551 void spu_sync_buffer(int spu_num, unsigned int *samples,
552 int num_samples)
553 {
554 unsigned long long file_offset;
555 unsigned long flags;
556 int i;
557 struct vma_to_fileoffset_map *map;
558 struct spu *the_spu;
559 unsigned long long spu_num_ll = spu_num;
560 unsigned long long spu_num_shifted = spu_num_ll << 32;
561 struct cached_info *c_info;
562
563 /* We need to obtain the cache_lock here because it's
564 * possible that after getting the cached_info, the SPU job
565 * corresponding to this cached_info may end, thus resulting
566 * in the destruction of the cached_info.
567 */
568 spin_lock_irqsave(&cache_lock, flags);
569 c_info = get_cached_info(NULL, spu_num);
570 if (!c_info) {
571 /* This legitimately happens when the SPU task ends before all
572 * samples are recorded.
573 * No big deal -- so we just drop a few samples.
574 */
575 pr_debug("SPU_PROF: No cached SPU contex "
576 "for SPU #%d. Dropping samples.\n", spu_num);
577 goto out;
578 }
579
580 map = c_info->map;
581 the_spu = c_info->the_spu;
582 spin_lock(&buffer_lock);
583 for (i = 0; i < num_samples; i++) {
584 unsigned int sample = *(samples+i);
585 int grd_val = 0;
586 file_offset = 0;
587 if (sample == 0)
588 continue;
589 file_offset = vma_map_lookup( map, sample, the_spu, &grd_val);
590
591 /* If overlays are used by this SPU application, the guard
592 * value is non-zero, indicating which overlay section is in
593 * use. We need to discard samples taken during the time
594 * period which an overlay occurs (i.e., guard value changes).
595 */
596 if (grd_val && grd_val != spu_buff[spu_num].last_guard_val) {
597 spu_buff[spu_num].last_guard_val = grd_val;
598 /* Drop the rest of the samples. */
599 break;
600 }
601
602 /* We must ensure that the SPU context switch has been written
603 * out before samples for the SPU. Otherwise, the SPU context
604 * information is not available and the postprocessing of the
605 * SPU PC will fail with no available anonymous map information.
606 */
607 if (spu_buff[spu_num].ctx_sw_seen)
608 spu_buff_add((file_offset | spu_num_shifted),
609 spu_num);
610 }
611 spin_unlock(&buffer_lock);
612 out:
613 spin_unlock_irqrestore(&cache_lock, flags);
614 }
615
616
spu_sync_stop(void)617 int spu_sync_stop(void)
618 {
619 unsigned long flags = 0;
620 int ret;
621 int k;
622
623 ret = spu_switch_event_unregister(&spu_active);
624
625 if (ret)
626 printk(KERN_ERR "SPU_PROF: "
627 "%s, line %d: spu_switch_event_unregister " \
628 "returned %d\n",
629 __func__, __LINE__, ret);
630
631 /* flush any remaining data in the per SPU buffers */
632 sync_spu_buff();
633
634 spin_lock_irqsave(&cache_lock, flags);
635 ret = release_cached_info(RELEASE_ALL);
636 spin_unlock_irqrestore(&cache_lock, flags);
637
638 /* remove scheduled work queue item rather then waiting
639 * for every queued entry to execute. Then flush pending
640 * system wide buffer to event buffer.
641 */
642 cancel_delayed_work(&spu_work);
643
644 for (k = 0; k < num_spu_nodes; k++) {
645 spu_buff[k].ctx_sw_seen = 0;
646
647 /*
648 * spu_sys_buff will be null if there was a problem
649 * allocating the buffer. Only delete if it exists.
650 */
651 kfree(spu_buff[k].buff);
652 spu_buff[k].buff = 0;
653 }
654 pr_debug("spu_sync_stop -- done.\n");
655 return ret;
656 }
657
658