• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Performance counter callchain support - powerpc architecture code
4  *
5  * Copyright © 2009 Paul Mackerras, IBM Corporation.
6  */
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/perf_event.h>
10 #include <linux/percpu.h>
11 #include <linux/uaccess.h>
12 #include <linux/mm.h>
13 #include <asm/ptrace.h>
14 #include <asm/pgtable.h>
15 #include <asm/sigcontext.h>
16 #include <asm/ucontext.h>
17 #include <asm/vdso.h>
18 #ifdef CONFIG_PPC64
19 #include "../kernel/ppc32.h"
20 #endif
21 #include <asm/pte-walk.h>
22 
23 
24 /*
25  * Is sp valid as the address of the next kernel stack frame after prev_sp?
26  * The next frame may be in a different stack area but should not go
27  * back down in the same stack area.
28  */
valid_next_sp(unsigned long sp,unsigned long prev_sp)29 static int valid_next_sp(unsigned long sp, unsigned long prev_sp)
30 {
31 	if (sp & 0xf)
32 		return 0;		/* must be 16-byte aligned */
33 	if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
34 		return 0;
35 	if (sp >= prev_sp + STACK_FRAME_MIN_SIZE)
36 		return 1;
37 	/*
38 	 * sp could decrease when we jump off an interrupt stack
39 	 * back to the regular process stack.
40 	 */
41 	if ((sp & ~(THREAD_SIZE - 1)) != (prev_sp & ~(THREAD_SIZE - 1)))
42 		return 1;
43 	return 0;
44 }
45 
46 void
perf_callchain_kernel(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)47 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
48 {
49 	unsigned long sp, next_sp;
50 	unsigned long next_ip;
51 	unsigned long lr;
52 	long level = 0;
53 	unsigned long *fp;
54 
55 	lr = regs->link;
56 	sp = regs->gpr[1];
57 	perf_callchain_store(entry, perf_instruction_pointer(regs));
58 
59 	if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
60 		return;
61 
62 	for (;;) {
63 		fp = (unsigned long *) sp;
64 		next_sp = fp[0];
65 
66 		if (next_sp == sp + STACK_INT_FRAME_SIZE &&
67 		    validate_sp(sp, current, STACK_INT_FRAME_SIZE) &&
68 		    fp[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
69 			/*
70 			 * This looks like an interrupt frame for an
71 			 * interrupt that occurred in the kernel
72 			 */
73 			regs = (struct pt_regs *)(sp + STACK_FRAME_OVERHEAD);
74 			next_ip = regs->nip;
75 			lr = regs->link;
76 			level = 0;
77 			perf_callchain_store_context(entry, PERF_CONTEXT_KERNEL);
78 
79 		} else {
80 			if (level == 0)
81 				next_ip = lr;
82 			else
83 				next_ip = fp[STACK_FRAME_LR_SAVE];
84 
85 			/*
86 			 * We can't tell which of the first two addresses
87 			 * we get are valid, but we can filter out the
88 			 * obviously bogus ones here.  We replace them
89 			 * with 0 rather than removing them entirely so
90 			 * that userspace can tell which is which.
91 			 */
92 			if ((level == 1 && next_ip == lr) ||
93 			    (level <= 1 && !kernel_text_address(next_ip)))
94 				next_ip = 0;
95 
96 			++level;
97 		}
98 
99 		perf_callchain_store(entry, next_ip);
100 		if (!valid_next_sp(next_sp, sp))
101 			return;
102 		sp = next_sp;
103 	}
104 }
105 
106 #ifdef CONFIG_PPC64
107 /*
108  * On 64-bit we don't want to invoke hash_page on user addresses from
109  * interrupt context, so if the access faults, we read the page tables
110  * to find which page (if any) is mapped and access it directly.
111  */
read_user_stack_slow(void __user * ptr,void * buf,int nb)112 static int read_user_stack_slow(void __user *ptr, void *buf, int nb)
113 {
114 	int ret = -EFAULT;
115 	pgd_t *pgdir;
116 	pte_t *ptep, pte;
117 	unsigned shift;
118 	unsigned long addr = (unsigned long) ptr;
119 	unsigned long offset;
120 	unsigned long pfn, flags;
121 	void *kaddr;
122 
123 	pgdir = current->mm->pgd;
124 	if (!pgdir)
125 		return -EFAULT;
126 
127 	local_irq_save(flags);
128 	ptep = find_current_mm_pte(pgdir, addr, NULL, &shift);
129 	if (!ptep)
130 		goto err_out;
131 	if (!shift)
132 		shift = PAGE_SHIFT;
133 
134 	/* align address to page boundary */
135 	offset = addr & ((1UL << shift) - 1);
136 
137 	pte = READ_ONCE(*ptep);
138 	if (!pte_present(pte) || !pte_user(pte))
139 		goto err_out;
140 	pfn = pte_pfn(pte);
141 	if (!page_is_ram(pfn))
142 		goto err_out;
143 
144 	/* no highmem to worry about here */
145 	kaddr = pfn_to_kaddr(pfn);
146 	memcpy(buf, kaddr + offset, nb);
147 	ret = 0;
148 err_out:
149 	local_irq_restore(flags);
150 	return ret;
151 }
152 
read_user_stack_64(unsigned long __user * ptr,unsigned long * ret)153 static int read_user_stack_64(unsigned long __user *ptr, unsigned long *ret)
154 {
155 	if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned long) ||
156 	    ((unsigned long)ptr & 7))
157 		return -EFAULT;
158 
159 	pagefault_disable();
160 	if (!__get_user_inatomic(*ret, ptr)) {
161 		pagefault_enable();
162 		return 0;
163 	}
164 	pagefault_enable();
165 
166 	return read_user_stack_slow(ptr, ret, 8);
167 }
168 
read_user_stack_32(unsigned int __user * ptr,unsigned int * ret)169 static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
170 {
171 	if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
172 	    ((unsigned long)ptr & 3))
173 		return -EFAULT;
174 
175 	pagefault_disable();
176 	if (!__get_user_inatomic(*ret, ptr)) {
177 		pagefault_enable();
178 		return 0;
179 	}
180 	pagefault_enable();
181 
182 	return read_user_stack_slow(ptr, ret, 4);
183 }
184 
valid_user_sp(unsigned long sp,int is_64)185 static inline int valid_user_sp(unsigned long sp, int is_64)
186 {
187 	if (!sp || (sp & 7) || sp > (is_64 ? TASK_SIZE : 0x100000000UL) - 32)
188 		return 0;
189 	return 1;
190 }
191 
192 /*
193  * 64-bit user processes use the same stack frame for RT and non-RT signals.
194  */
195 struct signal_frame_64 {
196 	char		dummy[__SIGNAL_FRAMESIZE];
197 	struct ucontext	uc;
198 	unsigned long	unused[2];
199 	unsigned int	tramp[6];
200 	struct siginfo	*pinfo;
201 	void		*puc;
202 	struct siginfo	info;
203 	char		abigap[288];
204 };
205 
is_sigreturn_64_address(unsigned long nip,unsigned long fp)206 static int is_sigreturn_64_address(unsigned long nip, unsigned long fp)
207 {
208 	if (nip == fp + offsetof(struct signal_frame_64, tramp))
209 		return 1;
210 	if (vdso64_rt_sigtramp && current->mm->context.vdso_base &&
211 	    nip == current->mm->context.vdso_base + vdso64_rt_sigtramp)
212 		return 1;
213 	return 0;
214 }
215 
216 /*
217  * Do some sanity checking on the signal frame pointed to by sp.
218  * We check the pinfo and puc pointers in the frame.
219  */
sane_signal_64_frame(unsigned long sp)220 static int sane_signal_64_frame(unsigned long sp)
221 {
222 	struct signal_frame_64 __user *sf;
223 	unsigned long pinfo, puc;
224 
225 	sf = (struct signal_frame_64 __user *) sp;
226 	if (read_user_stack_64((unsigned long __user *) &sf->pinfo, &pinfo) ||
227 	    read_user_stack_64((unsigned long __user *) &sf->puc, &puc))
228 		return 0;
229 	return pinfo == (unsigned long) &sf->info &&
230 		puc == (unsigned long) &sf->uc;
231 }
232 
perf_callchain_user_64(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)233 static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
234 				   struct pt_regs *regs)
235 {
236 	unsigned long sp, next_sp;
237 	unsigned long next_ip;
238 	unsigned long lr;
239 	long level = 0;
240 	struct signal_frame_64 __user *sigframe;
241 	unsigned long __user *fp, *uregs;
242 
243 	next_ip = perf_instruction_pointer(regs);
244 	lr = regs->link;
245 	sp = regs->gpr[1];
246 	perf_callchain_store(entry, next_ip);
247 
248 	while (entry->nr < entry->max_stack) {
249 		fp = (unsigned long __user *) sp;
250 		if (!valid_user_sp(sp, 1) || read_user_stack_64(fp, &next_sp))
251 			return;
252 		if (level > 0 && read_user_stack_64(&fp[2], &next_ip))
253 			return;
254 
255 		/*
256 		 * Note: the next_sp - sp >= signal frame size check
257 		 * is true when next_sp < sp, which can happen when
258 		 * transitioning from an alternate signal stack to the
259 		 * normal stack.
260 		 */
261 		if (next_sp - sp >= sizeof(struct signal_frame_64) &&
262 		    (is_sigreturn_64_address(next_ip, sp) ||
263 		     (level <= 1 && is_sigreturn_64_address(lr, sp))) &&
264 		    sane_signal_64_frame(sp)) {
265 			/*
266 			 * This looks like an signal frame
267 			 */
268 			sigframe = (struct signal_frame_64 __user *) sp;
269 			uregs = sigframe->uc.uc_mcontext.gp_regs;
270 			if (read_user_stack_64(&uregs[PT_NIP], &next_ip) ||
271 			    read_user_stack_64(&uregs[PT_LNK], &lr) ||
272 			    read_user_stack_64(&uregs[PT_R1], &sp))
273 				return;
274 			level = 0;
275 			perf_callchain_store_context(entry, PERF_CONTEXT_USER);
276 			perf_callchain_store(entry, next_ip);
277 			continue;
278 		}
279 
280 		if (level == 0)
281 			next_ip = lr;
282 		perf_callchain_store(entry, next_ip);
283 		++level;
284 		sp = next_sp;
285 	}
286 }
287 
current_is_64bit(void)288 static inline int current_is_64bit(void)
289 {
290 	/*
291 	 * We can't use test_thread_flag() here because we may be on an
292 	 * interrupt stack, and the thread flags don't get copied over
293 	 * from the thread_info on the main stack to the interrupt stack.
294 	 */
295 	return !test_ti_thread_flag(task_thread_info(current), TIF_32BIT);
296 }
297 
298 #else  /* CONFIG_PPC64 */
299 /*
300  * On 32-bit we just access the address and let hash_page create a
301  * HPTE if necessary, so there is no need to fall back to reading
302  * the page tables.  Since this is called at interrupt level,
303  * do_page_fault() won't treat a DSI as a page fault.
304  */
read_user_stack_32(unsigned int __user * ptr,unsigned int * ret)305 static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
306 {
307 	int rc;
308 
309 	if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
310 	    ((unsigned long)ptr & 3))
311 		return -EFAULT;
312 
313 	pagefault_disable();
314 	rc = __get_user_inatomic(*ret, ptr);
315 	pagefault_enable();
316 
317 	return rc;
318 }
319 
perf_callchain_user_64(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)320 static inline void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
321 					  struct pt_regs *regs)
322 {
323 }
324 
current_is_64bit(void)325 static inline int current_is_64bit(void)
326 {
327 	return 0;
328 }
329 
valid_user_sp(unsigned long sp,int is_64)330 static inline int valid_user_sp(unsigned long sp, int is_64)
331 {
332 	if (!sp || (sp & 7) || sp > TASK_SIZE - 32)
333 		return 0;
334 	return 1;
335 }
336 
337 #define __SIGNAL_FRAMESIZE32	__SIGNAL_FRAMESIZE
338 #define sigcontext32		sigcontext
339 #define mcontext32		mcontext
340 #define ucontext32		ucontext
341 #define compat_siginfo_t	struct siginfo
342 
343 #endif /* CONFIG_PPC64 */
344 
345 /*
346  * Layout for non-RT signal frames
347  */
348 struct signal_frame_32 {
349 	char			dummy[__SIGNAL_FRAMESIZE32];
350 	struct sigcontext32	sctx;
351 	struct mcontext32	mctx;
352 	int			abigap[56];
353 };
354 
355 /*
356  * Layout for RT signal frames
357  */
358 struct rt_signal_frame_32 {
359 	char			dummy[__SIGNAL_FRAMESIZE32 + 16];
360 	compat_siginfo_t	info;
361 	struct ucontext32	uc;
362 	int			abigap[56];
363 };
364 
is_sigreturn_32_address(unsigned int nip,unsigned int fp)365 static int is_sigreturn_32_address(unsigned int nip, unsigned int fp)
366 {
367 	if (nip == fp + offsetof(struct signal_frame_32, mctx.mc_pad))
368 		return 1;
369 	if (vdso32_sigtramp && current->mm->context.vdso_base &&
370 	    nip == current->mm->context.vdso_base + vdso32_sigtramp)
371 		return 1;
372 	return 0;
373 }
374 
is_rt_sigreturn_32_address(unsigned int nip,unsigned int fp)375 static int is_rt_sigreturn_32_address(unsigned int nip, unsigned int fp)
376 {
377 	if (nip == fp + offsetof(struct rt_signal_frame_32,
378 				 uc.uc_mcontext.mc_pad))
379 		return 1;
380 	if (vdso32_rt_sigtramp && current->mm->context.vdso_base &&
381 	    nip == current->mm->context.vdso_base + vdso32_rt_sigtramp)
382 		return 1;
383 	return 0;
384 }
385 
sane_signal_32_frame(unsigned int sp)386 static int sane_signal_32_frame(unsigned int sp)
387 {
388 	struct signal_frame_32 __user *sf;
389 	unsigned int regs;
390 
391 	sf = (struct signal_frame_32 __user *) (unsigned long) sp;
392 	if (read_user_stack_32((unsigned int __user *) &sf->sctx.regs, &regs))
393 		return 0;
394 	return regs == (unsigned long) &sf->mctx;
395 }
396 
sane_rt_signal_32_frame(unsigned int sp)397 static int sane_rt_signal_32_frame(unsigned int sp)
398 {
399 	struct rt_signal_frame_32 __user *sf;
400 	unsigned int regs;
401 
402 	sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
403 	if (read_user_stack_32((unsigned int __user *) &sf->uc.uc_regs, &regs))
404 		return 0;
405 	return regs == (unsigned long) &sf->uc.uc_mcontext;
406 }
407 
signal_frame_32_regs(unsigned int sp,unsigned int next_sp,unsigned int next_ip)408 static unsigned int __user *signal_frame_32_regs(unsigned int sp,
409 				unsigned int next_sp, unsigned int next_ip)
410 {
411 	struct mcontext32 __user *mctx = NULL;
412 	struct signal_frame_32 __user *sf;
413 	struct rt_signal_frame_32 __user *rt_sf;
414 
415 	/*
416 	 * Note: the next_sp - sp >= signal frame size check
417 	 * is true when next_sp < sp, for example, when
418 	 * transitioning from an alternate signal stack to the
419 	 * normal stack.
420 	 */
421 	if (next_sp - sp >= sizeof(struct signal_frame_32) &&
422 	    is_sigreturn_32_address(next_ip, sp) &&
423 	    sane_signal_32_frame(sp)) {
424 		sf = (struct signal_frame_32 __user *) (unsigned long) sp;
425 		mctx = &sf->mctx;
426 	}
427 
428 	if (!mctx && next_sp - sp >= sizeof(struct rt_signal_frame_32) &&
429 	    is_rt_sigreturn_32_address(next_ip, sp) &&
430 	    sane_rt_signal_32_frame(sp)) {
431 		rt_sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
432 		mctx = &rt_sf->uc.uc_mcontext;
433 	}
434 
435 	if (!mctx)
436 		return NULL;
437 	return mctx->mc_gregs;
438 }
439 
perf_callchain_user_32(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)440 static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry,
441 				   struct pt_regs *regs)
442 {
443 	unsigned int sp, next_sp;
444 	unsigned int next_ip;
445 	unsigned int lr;
446 	long level = 0;
447 	unsigned int __user *fp, *uregs;
448 
449 	next_ip = perf_instruction_pointer(regs);
450 	lr = regs->link;
451 	sp = regs->gpr[1];
452 	perf_callchain_store(entry, next_ip);
453 
454 	while (entry->nr < entry->max_stack) {
455 		fp = (unsigned int __user *) (unsigned long) sp;
456 		if (!valid_user_sp(sp, 0) || read_user_stack_32(fp, &next_sp))
457 			return;
458 		if (level > 0 && read_user_stack_32(&fp[1], &next_ip))
459 			return;
460 
461 		uregs = signal_frame_32_regs(sp, next_sp, next_ip);
462 		if (!uregs && level <= 1)
463 			uregs = signal_frame_32_regs(sp, next_sp, lr);
464 		if (uregs) {
465 			/*
466 			 * This looks like an signal frame, so restart
467 			 * the stack trace with the values in it.
468 			 */
469 			if (read_user_stack_32(&uregs[PT_NIP], &next_ip) ||
470 			    read_user_stack_32(&uregs[PT_LNK], &lr) ||
471 			    read_user_stack_32(&uregs[PT_R1], &sp))
472 				return;
473 			level = 0;
474 			perf_callchain_store_context(entry, PERF_CONTEXT_USER);
475 			perf_callchain_store(entry, next_ip);
476 			continue;
477 		}
478 
479 		if (level == 0)
480 			next_ip = lr;
481 		perf_callchain_store(entry, next_ip);
482 		++level;
483 		sp = next_sp;
484 	}
485 }
486 
487 void
perf_callchain_user(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)488 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
489 {
490 	if (current_is_64bit())
491 		perf_callchain_user_64(entry, regs);
492 	else
493 		perf_callchain_user_32(entry, regs);
494 }
495