• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * General Purpose functions for the global management of the
4  * Communication Processor Module.
5  * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
6  *
7  * In addition to the individual control of the communication
8  * channels, there are a few functions that globally affect the
9  * communication processor.
10  *
11  * Buffer descriptors must be allocated from the dual ported memory
12  * space.  The allocator for that is here.  When the communication
13  * process is reset, we reclaim the memory available.  There is
14  * currently no deallocator for this memory.
15  * The amount of space available is platform dependent.  On the
16  * MBX, the EPPC software loads additional microcode into the
17  * communication processor, and uses some of the DP ram for this
18  * purpose.  Current, the first 512 bytes and the last 256 bytes of
19  * memory are used.  Right now I am conservative and only use the
20  * memory that can never be used for microcode.  If there are
21  * applications that require more DP ram, we can expand the boundaries
22  * but then we have to be careful of any downloaded microcode.
23  */
24 #include <linux/errno.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/param.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/interrupt.h>
32 #include <linux/irq.h>
33 #include <linux/module.h>
34 #include <linux/spinlock.h>
35 #include <linux/slab.h>
36 #include <asm/page.h>
37 #include <asm/pgtable.h>
38 #include <asm/8xx_immap.h>
39 #include <asm/cpm1.h>
40 #include <asm/io.h>
41 #include <asm/rheap.h>
42 #include <asm/prom.h>
43 #include <asm/cpm.h>
44 
45 #include <asm/fs_pd.h>
46 
47 #ifdef CONFIG_8xx_GPIO
48 #include <linux/of_gpio.h>
49 #endif
50 
51 #define CPM_MAP_SIZE    (0x4000)
52 
53 cpm8xx_t __iomem *cpmp;  /* Pointer to comm processor space */
54 immap_t __iomem *mpc8xx_immr;
55 static cpic8xx_t __iomem *cpic_reg;
56 
57 static struct irq_domain *cpm_pic_host;
58 
cpm_mask_irq(struct irq_data * d)59 static void cpm_mask_irq(struct irq_data *d)
60 {
61 	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
62 
63 	clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
64 }
65 
cpm_unmask_irq(struct irq_data * d)66 static void cpm_unmask_irq(struct irq_data *d)
67 {
68 	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
69 
70 	setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
71 }
72 
cpm_end_irq(struct irq_data * d)73 static void cpm_end_irq(struct irq_data *d)
74 {
75 	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
76 
77 	out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
78 }
79 
80 static struct irq_chip cpm_pic = {
81 	.name = "CPM PIC",
82 	.irq_mask = cpm_mask_irq,
83 	.irq_unmask = cpm_unmask_irq,
84 	.irq_eoi = cpm_end_irq,
85 };
86 
cpm_get_irq(void)87 int cpm_get_irq(void)
88 {
89 	int cpm_vec;
90 
91 	/*
92 	 * Get the vector by setting the ACK bit and then reading
93 	 * the register.
94 	 */
95 	out_be16(&cpic_reg->cpic_civr, 1);
96 	cpm_vec = in_be16(&cpic_reg->cpic_civr);
97 	cpm_vec >>= 11;
98 
99 	return irq_linear_revmap(cpm_pic_host, cpm_vec);
100 }
101 
cpm_pic_host_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)102 static int cpm_pic_host_map(struct irq_domain *h, unsigned int virq,
103 			  irq_hw_number_t hw)
104 {
105 	pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
106 
107 	irq_set_status_flags(virq, IRQ_LEVEL);
108 	irq_set_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
109 	return 0;
110 }
111 
112 /*
113  * The CPM can generate the error interrupt when there is a race condition
114  * between generating and masking interrupts.  All we have to do is ACK it
115  * and return.  This is a no-op function so we don't need any special
116  * tests in the interrupt handler.
117  */
cpm_error_interrupt(int irq,void * dev)118 static irqreturn_t cpm_error_interrupt(int irq, void *dev)
119 {
120 	return IRQ_HANDLED;
121 }
122 
123 static struct irqaction cpm_error_irqaction = {
124 	.handler = cpm_error_interrupt,
125 	.flags = IRQF_NO_THREAD,
126 	.name = "error",
127 };
128 
129 static const struct irq_domain_ops cpm_pic_host_ops = {
130 	.map = cpm_pic_host_map,
131 };
132 
cpm_pic_init(void)133 unsigned int cpm_pic_init(void)
134 {
135 	struct device_node *np = NULL;
136 	struct resource res;
137 	unsigned int sirq = 0, hwirq, eirq;
138 	int ret;
139 
140 	pr_debug("cpm_pic_init\n");
141 
142 	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
143 	if (np == NULL)
144 		np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
145 	if (np == NULL) {
146 		printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
147 		return sirq;
148 	}
149 
150 	ret = of_address_to_resource(np, 0, &res);
151 	if (ret)
152 		goto end;
153 
154 	cpic_reg = ioremap(res.start, resource_size(&res));
155 	if (cpic_reg == NULL)
156 		goto end;
157 
158 	sirq = irq_of_parse_and_map(np, 0);
159 	if (!sirq)
160 		goto end;
161 
162 	/* Initialize the CPM interrupt controller. */
163 	hwirq = (unsigned int)virq_to_hw(sirq);
164 	out_be32(&cpic_reg->cpic_cicr,
165 	    (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
166 		((hwirq/2) << 13) | CICR_HP_MASK);
167 
168 	out_be32(&cpic_reg->cpic_cimr, 0);
169 
170 	cpm_pic_host = irq_domain_add_linear(np, 64, &cpm_pic_host_ops, NULL);
171 	if (cpm_pic_host == NULL) {
172 		printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
173 		sirq = 0;
174 		goto end;
175 	}
176 
177 	/* Install our own error handler. */
178 	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
179 	if (np == NULL)
180 		np = of_find_node_by_type(NULL, "cpm");
181 	if (np == NULL) {
182 		printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
183 		goto end;
184 	}
185 
186 	eirq = irq_of_parse_and_map(np, 0);
187 	if (!eirq)
188 		goto end;
189 
190 	if (setup_irq(eirq, &cpm_error_irqaction))
191 		printk(KERN_ERR "Could not allocate CPM error IRQ!");
192 
193 	setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
194 
195 end:
196 	of_node_put(np);
197 	return sirq;
198 }
199 
cpm_reset(void)200 void __init cpm_reset(void)
201 {
202 	sysconf8xx_t __iomem *siu_conf;
203 
204 	mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
205 	if (!mpc8xx_immr) {
206 		printk(KERN_CRIT "Could not map IMMR\n");
207 		return;
208 	}
209 
210 	cpmp = &mpc8xx_immr->im_cpm;
211 
212 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
213 	/* Perform a reset. */
214 	out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
215 
216 	/* Wait for it. */
217 	while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
218 #endif
219 
220 #ifdef CONFIG_UCODE_PATCH
221 	cpm_load_patch(cpmp);
222 #endif
223 
224 	/*
225 	 * Set SDMA Bus Request priority 5.
226 	 * On 860T, this also enables FEC priority 6.  I am not sure
227 	 * this is what we really want for some applications, but the
228 	 * manual recommends it.
229 	 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
230 	 */
231 	siu_conf = immr_map(im_siu_conf);
232 	if ((mfspr(SPRN_IMMR) & 0xffff) == 0x0900) /* MPC885 */
233 		out_be32(&siu_conf->sc_sdcr, 0x40);
234 	else
235 		out_be32(&siu_conf->sc_sdcr, 1);
236 	immr_unmap(siu_conf);
237 }
238 
239 static DEFINE_SPINLOCK(cmd_lock);
240 
241 #define MAX_CR_CMD_LOOPS        10000
242 
cpm_command(u32 command,u8 opcode)243 int cpm_command(u32 command, u8 opcode)
244 {
245 	int i, ret;
246 	unsigned long flags;
247 
248 	if (command & 0xffffff0f)
249 		return -EINVAL;
250 
251 	spin_lock_irqsave(&cmd_lock, flags);
252 
253 	ret = 0;
254 	out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
255 	for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
256 		if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
257 			goto out;
258 
259 	printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
260 	ret = -EIO;
261 out:
262 	spin_unlock_irqrestore(&cmd_lock, flags);
263 	return ret;
264 }
265 EXPORT_SYMBOL(cpm_command);
266 
267 /*
268  * Set a baud rate generator.  This needs lots of work.  There are
269  * four BRGs, any of which can be wired to any channel.
270  * The internal baud rate clock is the system clock divided by 16.
271  * This assumes the baudrate is 16x oversampled by the uart.
272  */
273 #define BRG_INT_CLK		(get_brgfreq())
274 #define BRG_UART_CLK		(BRG_INT_CLK/16)
275 #define BRG_UART_CLK_DIV16	(BRG_UART_CLK/16)
276 
277 void
cpm_setbrg(uint brg,uint rate)278 cpm_setbrg(uint brg, uint rate)
279 {
280 	u32 __iomem *bp;
281 
282 	/* This is good enough to get SMCs running..... */
283 	bp = &cpmp->cp_brgc1;
284 	bp += brg;
285 	/*
286 	 * The BRG has a 12-bit counter.  For really slow baud rates (or
287 	 * really fast processors), we may have to further divide by 16.
288 	 */
289 	if (((BRG_UART_CLK / rate) - 1) < 4096)
290 		out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
291 	else
292 		out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
293 			      CPM_BRG_EN | CPM_BRG_DIV16);
294 }
295 EXPORT_SYMBOL(cpm_setbrg);
296 
297 struct cpm_ioport16 {
298 	__be16 dir, par, odr_sor, dat, intr;
299 	__be16 res[3];
300 };
301 
302 struct cpm_ioport32b {
303 	__be32 dir, par, odr, dat;
304 };
305 
306 struct cpm_ioport32e {
307 	__be32 dir, par, sor, odr, dat;
308 };
309 
cpm1_set_pin32(int port,int pin,int flags)310 static void cpm1_set_pin32(int port, int pin, int flags)
311 {
312 	struct cpm_ioport32e __iomem *iop;
313 	pin = 1 << (31 - pin);
314 
315 	if (port == CPM_PORTB)
316 		iop = (struct cpm_ioport32e __iomem *)
317 		      &mpc8xx_immr->im_cpm.cp_pbdir;
318 	else
319 		iop = (struct cpm_ioport32e __iomem *)
320 		      &mpc8xx_immr->im_cpm.cp_pedir;
321 
322 	if (flags & CPM_PIN_OUTPUT)
323 		setbits32(&iop->dir, pin);
324 	else
325 		clrbits32(&iop->dir, pin);
326 
327 	if (!(flags & CPM_PIN_GPIO))
328 		setbits32(&iop->par, pin);
329 	else
330 		clrbits32(&iop->par, pin);
331 
332 	if (port == CPM_PORTB) {
333 		if (flags & CPM_PIN_OPENDRAIN)
334 			setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
335 		else
336 			clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
337 	}
338 
339 	if (port == CPM_PORTE) {
340 		if (flags & CPM_PIN_SECONDARY)
341 			setbits32(&iop->sor, pin);
342 		else
343 			clrbits32(&iop->sor, pin);
344 
345 		if (flags & CPM_PIN_OPENDRAIN)
346 			setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
347 		else
348 			clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
349 	}
350 }
351 
cpm1_set_pin16(int port,int pin,int flags)352 static void cpm1_set_pin16(int port, int pin, int flags)
353 {
354 	struct cpm_ioport16 __iomem *iop =
355 		(struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
356 
357 	pin = 1 << (15 - pin);
358 
359 	if (port != 0)
360 		iop += port - 1;
361 
362 	if (flags & CPM_PIN_OUTPUT)
363 		setbits16(&iop->dir, pin);
364 	else
365 		clrbits16(&iop->dir, pin);
366 
367 	if (!(flags & CPM_PIN_GPIO))
368 		setbits16(&iop->par, pin);
369 	else
370 		clrbits16(&iop->par, pin);
371 
372 	if (port == CPM_PORTA) {
373 		if (flags & CPM_PIN_OPENDRAIN)
374 			setbits16(&iop->odr_sor, pin);
375 		else
376 			clrbits16(&iop->odr_sor, pin);
377 	}
378 	if (port == CPM_PORTC) {
379 		if (flags & CPM_PIN_SECONDARY)
380 			setbits16(&iop->odr_sor, pin);
381 		else
382 			clrbits16(&iop->odr_sor, pin);
383 		if (flags & CPM_PIN_FALLEDGE)
384 			setbits16(&iop->intr, pin);
385 		else
386 			clrbits16(&iop->intr, pin);
387 	}
388 }
389 
cpm1_set_pin(enum cpm_port port,int pin,int flags)390 void cpm1_set_pin(enum cpm_port port, int pin, int flags)
391 {
392 	if (port == CPM_PORTB || port == CPM_PORTE)
393 		cpm1_set_pin32(port, pin, flags);
394 	else
395 		cpm1_set_pin16(port, pin, flags);
396 }
397 
cpm1_clk_setup(enum cpm_clk_target target,int clock,int mode)398 int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
399 {
400 	int shift;
401 	int i, bits = 0;
402 	u32 __iomem *reg;
403 	u32 mask = 7;
404 
405 	u8 clk_map[][3] = {
406 		{CPM_CLK_SCC1, CPM_BRG1, 0},
407 		{CPM_CLK_SCC1, CPM_BRG2, 1},
408 		{CPM_CLK_SCC1, CPM_BRG3, 2},
409 		{CPM_CLK_SCC1, CPM_BRG4, 3},
410 		{CPM_CLK_SCC1, CPM_CLK1, 4},
411 		{CPM_CLK_SCC1, CPM_CLK2, 5},
412 		{CPM_CLK_SCC1, CPM_CLK3, 6},
413 		{CPM_CLK_SCC1, CPM_CLK4, 7},
414 
415 		{CPM_CLK_SCC2, CPM_BRG1, 0},
416 		{CPM_CLK_SCC2, CPM_BRG2, 1},
417 		{CPM_CLK_SCC2, CPM_BRG3, 2},
418 		{CPM_CLK_SCC2, CPM_BRG4, 3},
419 		{CPM_CLK_SCC2, CPM_CLK1, 4},
420 		{CPM_CLK_SCC2, CPM_CLK2, 5},
421 		{CPM_CLK_SCC2, CPM_CLK3, 6},
422 		{CPM_CLK_SCC2, CPM_CLK4, 7},
423 
424 		{CPM_CLK_SCC3, CPM_BRG1, 0},
425 		{CPM_CLK_SCC3, CPM_BRG2, 1},
426 		{CPM_CLK_SCC3, CPM_BRG3, 2},
427 		{CPM_CLK_SCC3, CPM_BRG4, 3},
428 		{CPM_CLK_SCC3, CPM_CLK5, 4},
429 		{CPM_CLK_SCC3, CPM_CLK6, 5},
430 		{CPM_CLK_SCC3, CPM_CLK7, 6},
431 		{CPM_CLK_SCC3, CPM_CLK8, 7},
432 
433 		{CPM_CLK_SCC4, CPM_BRG1, 0},
434 		{CPM_CLK_SCC4, CPM_BRG2, 1},
435 		{CPM_CLK_SCC4, CPM_BRG3, 2},
436 		{CPM_CLK_SCC4, CPM_BRG4, 3},
437 		{CPM_CLK_SCC4, CPM_CLK5, 4},
438 		{CPM_CLK_SCC4, CPM_CLK6, 5},
439 		{CPM_CLK_SCC4, CPM_CLK7, 6},
440 		{CPM_CLK_SCC4, CPM_CLK8, 7},
441 
442 		{CPM_CLK_SMC1, CPM_BRG1, 0},
443 		{CPM_CLK_SMC1, CPM_BRG2, 1},
444 		{CPM_CLK_SMC1, CPM_BRG3, 2},
445 		{CPM_CLK_SMC1, CPM_BRG4, 3},
446 		{CPM_CLK_SMC1, CPM_CLK1, 4},
447 		{CPM_CLK_SMC1, CPM_CLK2, 5},
448 		{CPM_CLK_SMC1, CPM_CLK3, 6},
449 		{CPM_CLK_SMC1, CPM_CLK4, 7},
450 
451 		{CPM_CLK_SMC2, CPM_BRG1, 0},
452 		{CPM_CLK_SMC2, CPM_BRG2, 1},
453 		{CPM_CLK_SMC2, CPM_BRG3, 2},
454 		{CPM_CLK_SMC2, CPM_BRG4, 3},
455 		{CPM_CLK_SMC2, CPM_CLK5, 4},
456 		{CPM_CLK_SMC2, CPM_CLK6, 5},
457 		{CPM_CLK_SMC2, CPM_CLK7, 6},
458 		{CPM_CLK_SMC2, CPM_CLK8, 7},
459 	};
460 
461 	switch (target) {
462 	case CPM_CLK_SCC1:
463 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
464 		shift = 0;
465 		break;
466 
467 	case CPM_CLK_SCC2:
468 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
469 		shift = 8;
470 		break;
471 
472 	case CPM_CLK_SCC3:
473 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
474 		shift = 16;
475 		break;
476 
477 	case CPM_CLK_SCC4:
478 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
479 		shift = 24;
480 		break;
481 
482 	case CPM_CLK_SMC1:
483 		reg = &mpc8xx_immr->im_cpm.cp_simode;
484 		shift = 12;
485 		break;
486 
487 	case CPM_CLK_SMC2:
488 		reg = &mpc8xx_immr->im_cpm.cp_simode;
489 		shift = 28;
490 		break;
491 
492 	default:
493 		printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
494 		return -EINVAL;
495 	}
496 
497 	for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
498 		if (clk_map[i][0] == target && clk_map[i][1] == clock) {
499 			bits = clk_map[i][2];
500 			break;
501 		}
502 	}
503 
504 	if (i == ARRAY_SIZE(clk_map)) {
505 		printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
506 		return -EINVAL;
507 	}
508 
509 	bits <<= shift;
510 	mask <<= shift;
511 
512 	if (reg == &mpc8xx_immr->im_cpm.cp_sicr) {
513 		if (mode == CPM_CLK_RTX) {
514 			bits |= bits << 3;
515 			mask |= mask << 3;
516 		} else if (mode == CPM_CLK_RX) {
517 			bits <<= 3;
518 			mask <<= 3;
519 		}
520 	}
521 
522 	out_be32(reg, (in_be32(reg) & ~mask) | bits);
523 
524 	return 0;
525 }
526 
527 /*
528  * GPIO LIB API implementation
529  */
530 #ifdef CONFIG_8xx_GPIO
531 
532 struct cpm1_gpio16_chip {
533 	struct of_mm_gpio_chip mm_gc;
534 	spinlock_t lock;
535 
536 	/* shadowed data register to clear/set bits safely */
537 	u16 cpdata;
538 
539 	/* IRQ associated with Pins when relevant */
540 	int irq[16];
541 };
542 
cpm1_gpio16_save_regs(struct of_mm_gpio_chip * mm_gc)543 static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc)
544 {
545 	struct cpm1_gpio16_chip *cpm1_gc =
546 		container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc);
547 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
548 
549 	cpm1_gc->cpdata = in_be16(&iop->dat);
550 }
551 
cpm1_gpio16_get(struct gpio_chip * gc,unsigned int gpio)552 static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio)
553 {
554 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
555 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
556 	u16 pin_mask;
557 
558 	pin_mask = 1 << (15 - gpio);
559 
560 	return !!(in_be16(&iop->dat) & pin_mask);
561 }
562 
__cpm1_gpio16_set(struct of_mm_gpio_chip * mm_gc,u16 pin_mask,int value)563 static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask,
564 	int value)
565 {
566 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
567 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
568 
569 	if (value)
570 		cpm1_gc->cpdata |= pin_mask;
571 	else
572 		cpm1_gc->cpdata &= ~pin_mask;
573 
574 	out_be16(&iop->dat, cpm1_gc->cpdata);
575 }
576 
cpm1_gpio16_set(struct gpio_chip * gc,unsigned int gpio,int value)577 static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value)
578 {
579 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
580 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
581 	unsigned long flags;
582 	u16 pin_mask = 1 << (15 - gpio);
583 
584 	spin_lock_irqsave(&cpm1_gc->lock, flags);
585 
586 	__cpm1_gpio16_set(mm_gc, pin_mask, value);
587 
588 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
589 }
590 
cpm1_gpio16_to_irq(struct gpio_chip * gc,unsigned int gpio)591 static int cpm1_gpio16_to_irq(struct gpio_chip *gc, unsigned int gpio)
592 {
593 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
594 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
595 
596 	return cpm1_gc->irq[gpio] ? : -ENXIO;
597 }
598 
cpm1_gpio16_dir_out(struct gpio_chip * gc,unsigned int gpio,int val)599 static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
600 {
601 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
602 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
603 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
604 	unsigned long flags;
605 	u16 pin_mask = 1 << (15 - gpio);
606 
607 	spin_lock_irqsave(&cpm1_gc->lock, flags);
608 
609 	setbits16(&iop->dir, pin_mask);
610 	__cpm1_gpio16_set(mm_gc, pin_mask, val);
611 
612 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
613 
614 	return 0;
615 }
616 
cpm1_gpio16_dir_in(struct gpio_chip * gc,unsigned int gpio)617 static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio)
618 {
619 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
620 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
621 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
622 	unsigned long flags;
623 	u16 pin_mask = 1 << (15 - gpio);
624 
625 	spin_lock_irqsave(&cpm1_gc->lock, flags);
626 
627 	clrbits16(&iop->dir, pin_mask);
628 
629 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
630 
631 	return 0;
632 }
633 
cpm1_gpiochip_add16(struct device * dev)634 int cpm1_gpiochip_add16(struct device *dev)
635 {
636 	struct device_node *np = dev->of_node;
637 	struct cpm1_gpio16_chip *cpm1_gc;
638 	struct of_mm_gpio_chip *mm_gc;
639 	struct gpio_chip *gc;
640 	u16 mask;
641 
642 	cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
643 	if (!cpm1_gc)
644 		return -ENOMEM;
645 
646 	spin_lock_init(&cpm1_gc->lock);
647 
648 	if (!of_property_read_u16(np, "fsl,cpm1-gpio-irq-mask", &mask)) {
649 		int i, j;
650 
651 		for (i = 0, j = 0; i < 16; i++)
652 			if (mask & (1 << (15 - i)))
653 				cpm1_gc->irq[i] = irq_of_parse_and_map(np, j++);
654 	}
655 
656 	mm_gc = &cpm1_gc->mm_gc;
657 	gc = &mm_gc->gc;
658 
659 	mm_gc->save_regs = cpm1_gpio16_save_regs;
660 	gc->ngpio = 16;
661 	gc->direction_input = cpm1_gpio16_dir_in;
662 	gc->direction_output = cpm1_gpio16_dir_out;
663 	gc->get = cpm1_gpio16_get;
664 	gc->set = cpm1_gpio16_set;
665 	gc->to_irq = cpm1_gpio16_to_irq;
666 	gc->parent = dev;
667 	gc->owner = THIS_MODULE;
668 
669 	return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
670 }
671 
672 struct cpm1_gpio32_chip {
673 	struct of_mm_gpio_chip mm_gc;
674 	spinlock_t lock;
675 
676 	/* shadowed data register to clear/set bits safely */
677 	u32 cpdata;
678 };
679 
cpm1_gpio32_save_regs(struct of_mm_gpio_chip * mm_gc)680 static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
681 {
682 	struct cpm1_gpio32_chip *cpm1_gc =
683 		container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc);
684 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
685 
686 	cpm1_gc->cpdata = in_be32(&iop->dat);
687 }
688 
cpm1_gpio32_get(struct gpio_chip * gc,unsigned int gpio)689 static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
690 {
691 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
692 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
693 	u32 pin_mask;
694 
695 	pin_mask = 1 << (31 - gpio);
696 
697 	return !!(in_be32(&iop->dat) & pin_mask);
698 }
699 
__cpm1_gpio32_set(struct of_mm_gpio_chip * mm_gc,u32 pin_mask,int value)700 static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
701 	int value)
702 {
703 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
704 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
705 
706 	if (value)
707 		cpm1_gc->cpdata |= pin_mask;
708 	else
709 		cpm1_gc->cpdata &= ~pin_mask;
710 
711 	out_be32(&iop->dat, cpm1_gc->cpdata);
712 }
713 
cpm1_gpio32_set(struct gpio_chip * gc,unsigned int gpio,int value)714 static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
715 {
716 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
717 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
718 	unsigned long flags;
719 	u32 pin_mask = 1 << (31 - gpio);
720 
721 	spin_lock_irqsave(&cpm1_gc->lock, flags);
722 
723 	__cpm1_gpio32_set(mm_gc, pin_mask, value);
724 
725 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
726 }
727 
cpm1_gpio32_dir_out(struct gpio_chip * gc,unsigned int gpio,int val)728 static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
729 {
730 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
731 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
732 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
733 	unsigned long flags;
734 	u32 pin_mask = 1 << (31 - gpio);
735 
736 	spin_lock_irqsave(&cpm1_gc->lock, flags);
737 
738 	setbits32(&iop->dir, pin_mask);
739 	__cpm1_gpio32_set(mm_gc, pin_mask, val);
740 
741 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
742 
743 	return 0;
744 }
745 
cpm1_gpio32_dir_in(struct gpio_chip * gc,unsigned int gpio)746 static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
747 {
748 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
749 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
750 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
751 	unsigned long flags;
752 	u32 pin_mask = 1 << (31 - gpio);
753 
754 	spin_lock_irqsave(&cpm1_gc->lock, flags);
755 
756 	clrbits32(&iop->dir, pin_mask);
757 
758 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
759 
760 	return 0;
761 }
762 
cpm1_gpiochip_add32(struct device * dev)763 int cpm1_gpiochip_add32(struct device *dev)
764 {
765 	struct device_node *np = dev->of_node;
766 	struct cpm1_gpio32_chip *cpm1_gc;
767 	struct of_mm_gpio_chip *mm_gc;
768 	struct gpio_chip *gc;
769 
770 	cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
771 	if (!cpm1_gc)
772 		return -ENOMEM;
773 
774 	spin_lock_init(&cpm1_gc->lock);
775 
776 	mm_gc = &cpm1_gc->mm_gc;
777 	gc = &mm_gc->gc;
778 
779 	mm_gc->save_regs = cpm1_gpio32_save_regs;
780 	gc->ngpio = 32;
781 	gc->direction_input = cpm1_gpio32_dir_in;
782 	gc->direction_output = cpm1_gpio32_dir_out;
783 	gc->get = cpm1_gpio32_get;
784 	gc->set = cpm1_gpio32_set;
785 	gc->parent = dev;
786 	gc->owner = THIS_MODULE;
787 
788 	return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
789 }
790 
791 #endif /* CONFIG_8xx_GPIO */
792