1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * pSeries_lpar.c
4 * Copyright (C) 2001 Todd Inglett, IBM Corporation
5 *
6 * pSeries LPAR support.
7 */
8
9 /* Enables debugging of low-level hash table routines - careful! */
10 #undef DEBUG
11 #define pr_fmt(fmt) "lpar: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/console.h>
16 #include <linux/export.h>
17 #include <linux/jump_label.h>
18 #include <linux/delay.h>
19 #include <linux/stop_machine.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/workqueue.h>
23 #include <linux/proc_fs.h>
24 #include <asm/processor.h>
25 #include <asm/mmu.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/machdep.h>
29 #include <asm/mmu_context.h>
30 #include <asm/iommu.h>
31 #include <asm/tlb.h>
32 #include <asm/prom.h>
33 #include <asm/cputable.h>
34 #include <asm/udbg.h>
35 #include <asm/smp.h>
36 #include <asm/trace.h>
37 #include <asm/firmware.h>
38 #include <asm/plpar_wrappers.h>
39 #include <asm/kexec.h>
40 #include <asm/fadump.h>
41 #include <asm/asm-prototypes.h>
42 #include <asm/debugfs.h>
43
44 #include "pseries.h"
45
46 /* Flag bits for H_BULK_REMOVE */
47 #define HBR_REQUEST 0x4000000000000000UL
48 #define HBR_RESPONSE 0x8000000000000000UL
49 #define HBR_END 0xc000000000000000UL
50 #define HBR_AVPN 0x0200000000000000UL
51 #define HBR_ANDCOND 0x0100000000000000UL
52
53
54 /* in hvCall.S */
55 EXPORT_SYMBOL(plpar_hcall);
56 EXPORT_SYMBOL(plpar_hcall9);
57 EXPORT_SYMBOL(plpar_hcall_norets);
58
59 /*
60 * H_BLOCK_REMOVE supported block size for this page size in segment who's base
61 * page size is that page size.
62 *
63 * The first index is the segment base page size, the second one is the actual
64 * page size.
65 */
66 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init;
67
68 /*
69 * Due to the involved complexity, and that the current hypervisor is only
70 * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE
71 * buffer size to 8 size block.
72 */
73 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8
74
75 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
76 static u8 dtl_mask = DTL_LOG_PREEMPT;
77 #else
78 static u8 dtl_mask;
79 #endif
80
alloc_dtl_buffers(unsigned long * time_limit)81 void alloc_dtl_buffers(unsigned long *time_limit)
82 {
83 int cpu;
84 struct paca_struct *pp;
85 struct dtl_entry *dtl;
86
87 for_each_possible_cpu(cpu) {
88 pp = paca_ptrs[cpu];
89 if (pp->dispatch_log)
90 continue;
91 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL);
92 if (!dtl) {
93 pr_warn("Failed to allocate dispatch trace log for cpu %d\n",
94 cpu);
95 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
96 pr_warn("Stolen time statistics will be unreliable\n");
97 #endif
98 break;
99 }
100
101 pp->dtl_ridx = 0;
102 pp->dispatch_log = dtl;
103 pp->dispatch_log_end = dtl + N_DISPATCH_LOG;
104 pp->dtl_curr = dtl;
105
106 if (time_limit && time_after(jiffies, *time_limit)) {
107 cond_resched();
108 *time_limit = jiffies + HZ;
109 }
110 }
111 }
112
register_dtl_buffer(int cpu)113 void register_dtl_buffer(int cpu)
114 {
115 long ret;
116 struct paca_struct *pp;
117 struct dtl_entry *dtl;
118 int hwcpu = get_hard_smp_processor_id(cpu);
119
120 pp = paca_ptrs[cpu];
121 dtl = pp->dispatch_log;
122 if (dtl && dtl_mask) {
123 pp->dtl_ridx = 0;
124 pp->dtl_curr = dtl;
125 lppaca_of(cpu).dtl_idx = 0;
126
127 /* hypervisor reads buffer length from this field */
128 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES);
129 ret = register_dtl(hwcpu, __pa(dtl));
130 if (ret)
131 pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n",
132 cpu, hwcpu, ret);
133
134 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
135 }
136 }
137
138 #ifdef CONFIG_PPC_SPLPAR
139 struct dtl_worker {
140 struct delayed_work work;
141 int cpu;
142 };
143
144 struct vcpu_dispatch_data {
145 int last_disp_cpu;
146
147 int total_disp;
148
149 int same_cpu_disp;
150 int same_chip_disp;
151 int diff_chip_disp;
152 int far_chip_disp;
153
154 int numa_home_disp;
155 int numa_remote_disp;
156 int numa_far_disp;
157 };
158
159 /*
160 * This represents the number of cpus in the hypervisor. Since there is no
161 * architected way to discover the number of processors in the host, we
162 * provision for dealing with NR_CPUS. This is currently 2048 by default, and
163 * is sufficient for our purposes. This will need to be tweaked if
164 * CONFIG_NR_CPUS is changed.
165 */
166 #define NR_CPUS_H NR_CPUS
167
168 DEFINE_RWLOCK(dtl_access_lock);
169 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data);
170 static DEFINE_PER_CPU(u64, dtl_entry_ridx);
171 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers);
172 static enum cpuhp_state dtl_worker_state;
173 static DEFINE_MUTEX(dtl_enable_mutex);
174 static int vcpudispatch_stats_on __read_mostly;
175 static int vcpudispatch_stats_freq = 50;
176 static __be32 *vcpu_associativity, *pcpu_associativity;
177
178
free_dtl_buffers(unsigned long * time_limit)179 static void free_dtl_buffers(unsigned long *time_limit)
180 {
181 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
182 int cpu;
183 struct paca_struct *pp;
184
185 for_each_possible_cpu(cpu) {
186 pp = paca_ptrs[cpu];
187 if (!pp->dispatch_log)
188 continue;
189 kmem_cache_free(dtl_cache, pp->dispatch_log);
190 pp->dtl_ridx = 0;
191 pp->dispatch_log = 0;
192 pp->dispatch_log_end = 0;
193 pp->dtl_curr = 0;
194
195 if (time_limit && time_after(jiffies, *time_limit)) {
196 cond_resched();
197 *time_limit = jiffies + HZ;
198 }
199 }
200 #endif
201 }
202
init_cpu_associativity(void)203 static int init_cpu_associativity(void)
204 {
205 vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core,
206 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
207 pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core,
208 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
209
210 if (!vcpu_associativity || !pcpu_associativity) {
211 pr_err("error allocating memory for associativity information\n");
212 return -ENOMEM;
213 }
214
215 return 0;
216 }
217
destroy_cpu_associativity(void)218 static void destroy_cpu_associativity(void)
219 {
220 kfree(vcpu_associativity);
221 kfree(pcpu_associativity);
222 vcpu_associativity = pcpu_associativity = 0;
223 }
224
__get_cpu_associativity(int cpu,__be32 * cpu_assoc,int flag)225 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag)
226 {
227 __be32 *assoc;
228 int rc = 0;
229
230 assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE];
231 if (!assoc[0]) {
232 rc = hcall_vphn(cpu, flag, &assoc[0]);
233 if (rc)
234 return NULL;
235 }
236
237 return assoc;
238 }
239
get_pcpu_associativity(int cpu)240 static __be32 *get_pcpu_associativity(int cpu)
241 {
242 return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU);
243 }
244
get_vcpu_associativity(int cpu)245 static __be32 *get_vcpu_associativity(int cpu)
246 {
247 return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU);
248 }
249
cpu_relative_dispatch_distance(int last_disp_cpu,int cur_disp_cpu)250 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu)
251 {
252 __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc;
253
254 if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H)
255 return -EINVAL;
256
257 last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu);
258 cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu);
259
260 if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc)
261 return -EIO;
262
263 return cpu_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc);
264 }
265
cpu_home_node_dispatch_distance(int disp_cpu)266 static int cpu_home_node_dispatch_distance(int disp_cpu)
267 {
268 __be32 *disp_cpu_assoc, *vcpu_assoc;
269 int vcpu_id = smp_processor_id();
270
271 if (disp_cpu >= NR_CPUS_H) {
272 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n",
273 disp_cpu, NR_CPUS_H);
274 return -EINVAL;
275 }
276
277 disp_cpu_assoc = get_pcpu_associativity(disp_cpu);
278 vcpu_assoc = get_vcpu_associativity(vcpu_id);
279
280 if (!disp_cpu_assoc || !vcpu_assoc)
281 return -EIO;
282
283 return cpu_distance(disp_cpu_assoc, vcpu_assoc);
284 }
285
update_vcpu_disp_stat(int disp_cpu)286 static void update_vcpu_disp_stat(int disp_cpu)
287 {
288 struct vcpu_dispatch_data *disp;
289 int distance;
290
291 disp = this_cpu_ptr(&vcpu_disp_data);
292 if (disp->last_disp_cpu == -1) {
293 disp->last_disp_cpu = disp_cpu;
294 return;
295 }
296
297 disp->total_disp++;
298
299 if (disp->last_disp_cpu == disp_cpu ||
300 (cpu_first_thread_sibling(disp->last_disp_cpu) ==
301 cpu_first_thread_sibling(disp_cpu)))
302 disp->same_cpu_disp++;
303 else {
304 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu,
305 disp_cpu);
306 if (distance < 0)
307 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
308 smp_processor_id());
309 else {
310 switch (distance) {
311 case 0:
312 disp->same_chip_disp++;
313 break;
314 case 1:
315 disp->diff_chip_disp++;
316 break;
317 case 2:
318 disp->far_chip_disp++;
319 break;
320 default:
321 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n",
322 smp_processor_id(),
323 disp->last_disp_cpu,
324 disp_cpu,
325 distance);
326 }
327 }
328 }
329
330 distance = cpu_home_node_dispatch_distance(disp_cpu);
331 if (distance < 0)
332 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
333 smp_processor_id());
334 else {
335 switch (distance) {
336 case 0:
337 disp->numa_home_disp++;
338 break;
339 case 1:
340 disp->numa_remote_disp++;
341 break;
342 case 2:
343 disp->numa_far_disp++;
344 break;
345 default:
346 pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n",
347 smp_processor_id(),
348 disp_cpu,
349 distance);
350 }
351 }
352
353 disp->last_disp_cpu = disp_cpu;
354 }
355
process_dtl_buffer(struct work_struct * work)356 static void process_dtl_buffer(struct work_struct *work)
357 {
358 struct dtl_entry dtle;
359 u64 i = __this_cpu_read(dtl_entry_ridx);
360 struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
361 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
362 struct lppaca *vpa = local_paca->lppaca_ptr;
363 struct dtl_worker *d = container_of(work, struct dtl_worker, work.work);
364
365 if (!local_paca->dispatch_log)
366 return;
367
368 /* if we have been migrated away, we cancel ourself */
369 if (d->cpu != smp_processor_id()) {
370 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n",
371 smp_processor_id());
372 return;
373 }
374
375 if (i == be64_to_cpu(vpa->dtl_idx))
376 goto out;
377
378 while (i < be64_to_cpu(vpa->dtl_idx)) {
379 dtle = *dtl;
380 barrier();
381 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
382 /* buffer has overflowed */
383 pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n",
384 d->cpu,
385 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i);
386 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
387 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
388 continue;
389 }
390 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id));
391 ++i;
392 ++dtl;
393 if (dtl == dtl_end)
394 dtl = local_paca->dispatch_log;
395 }
396
397 __this_cpu_write(dtl_entry_ridx, i);
398
399 out:
400 schedule_delayed_work_on(d->cpu, to_delayed_work(work),
401 HZ / vcpudispatch_stats_freq);
402 }
403
dtl_worker_online(unsigned int cpu)404 static int dtl_worker_online(unsigned int cpu)
405 {
406 struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
407
408 memset(d, 0, sizeof(*d));
409 INIT_DELAYED_WORK(&d->work, process_dtl_buffer);
410 d->cpu = cpu;
411
412 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
413 per_cpu(dtl_entry_ridx, cpu) = 0;
414 register_dtl_buffer(cpu);
415 #else
416 per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx);
417 #endif
418
419 schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq);
420 return 0;
421 }
422
dtl_worker_offline(unsigned int cpu)423 static int dtl_worker_offline(unsigned int cpu)
424 {
425 struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
426
427 cancel_delayed_work_sync(&d->work);
428
429 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
430 unregister_dtl(get_hard_smp_processor_id(cpu));
431 #endif
432
433 return 0;
434 }
435
set_global_dtl_mask(u8 mask)436 static void set_global_dtl_mask(u8 mask)
437 {
438 int cpu;
439
440 dtl_mask = mask;
441 for_each_present_cpu(cpu)
442 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
443 }
444
reset_global_dtl_mask(void)445 static void reset_global_dtl_mask(void)
446 {
447 int cpu;
448
449 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
450 dtl_mask = DTL_LOG_PREEMPT;
451 #else
452 dtl_mask = 0;
453 #endif
454 for_each_present_cpu(cpu)
455 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
456 }
457
dtl_worker_enable(unsigned long * time_limit)458 static int dtl_worker_enable(unsigned long *time_limit)
459 {
460 int rc = 0, state;
461
462 if (!write_trylock(&dtl_access_lock)) {
463 rc = -EBUSY;
464 goto out;
465 }
466
467 set_global_dtl_mask(DTL_LOG_ALL);
468
469 /* Setup dtl buffers and register those */
470 alloc_dtl_buffers(time_limit);
471
472 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online",
473 dtl_worker_online, dtl_worker_offline);
474 if (state < 0) {
475 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n");
476 free_dtl_buffers(time_limit);
477 reset_global_dtl_mask();
478 write_unlock(&dtl_access_lock);
479 rc = -EINVAL;
480 goto out;
481 }
482 dtl_worker_state = state;
483
484 out:
485 return rc;
486 }
487
dtl_worker_disable(unsigned long * time_limit)488 static void dtl_worker_disable(unsigned long *time_limit)
489 {
490 cpuhp_remove_state(dtl_worker_state);
491 free_dtl_buffers(time_limit);
492 reset_global_dtl_mask();
493 write_unlock(&dtl_access_lock);
494 }
495
vcpudispatch_stats_write(struct file * file,const char __user * p,size_t count,loff_t * ppos)496 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p,
497 size_t count, loff_t *ppos)
498 {
499 unsigned long time_limit = jiffies + HZ;
500 struct vcpu_dispatch_data *disp;
501 int rc, cmd, cpu;
502 char buf[16];
503
504 if (count > 15)
505 return -EINVAL;
506
507 if (copy_from_user(buf, p, count))
508 return -EFAULT;
509
510 buf[count] = 0;
511 rc = kstrtoint(buf, 0, &cmd);
512 if (rc || cmd < 0 || cmd > 1) {
513 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n");
514 return rc ? rc : -EINVAL;
515 }
516
517 mutex_lock(&dtl_enable_mutex);
518
519 if ((cmd == 0 && !vcpudispatch_stats_on) ||
520 (cmd == 1 && vcpudispatch_stats_on))
521 goto out;
522
523 if (cmd) {
524 rc = init_cpu_associativity();
525 if (rc) {
526 destroy_cpu_associativity();
527 goto out;
528 }
529
530 for_each_possible_cpu(cpu) {
531 disp = per_cpu_ptr(&vcpu_disp_data, cpu);
532 memset(disp, 0, sizeof(*disp));
533 disp->last_disp_cpu = -1;
534 }
535
536 rc = dtl_worker_enable(&time_limit);
537 if (rc) {
538 destroy_cpu_associativity();
539 goto out;
540 }
541 } else {
542 dtl_worker_disable(&time_limit);
543 destroy_cpu_associativity();
544 }
545
546 vcpudispatch_stats_on = cmd;
547
548 out:
549 mutex_unlock(&dtl_enable_mutex);
550 if (rc)
551 return rc;
552 return count;
553 }
554
vcpudispatch_stats_display(struct seq_file * p,void * v)555 static int vcpudispatch_stats_display(struct seq_file *p, void *v)
556 {
557 int cpu;
558 struct vcpu_dispatch_data *disp;
559
560 if (!vcpudispatch_stats_on) {
561 seq_puts(p, "off\n");
562 return 0;
563 }
564
565 for_each_online_cpu(cpu) {
566 disp = per_cpu_ptr(&vcpu_disp_data, cpu);
567 seq_printf(p, "cpu%d", cpu);
568 seq_put_decimal_ull(p, " ", disp->total_disp);
569 seq_put_decimal_ull(p, " ", disp->same_cpu_disp);
570 seq_put_decimal_ull(p, " ", disp->same_chip_disp);
571 seq_put_decimal_ull(p, " ", disp->diff_chip_disp);
572 seq_put_decimal_ull(p, " ", disp->far_chip_disp);
573 seq_put_decimal_ull(p, " ", disp->numa_home_disp);
574 seq_put_decimal_ull(p, " ", disp->numa_remote_disp);
575 seq_put_decimal_ull(p, " ", disp->numa_far_disp);
576 seq_puts(p, "\n");
577 }
578
579 return 0;
580 }
581
vcpudispatch_stats_open(struct inode * inode,struct file * file)582 static int vcpudispatch_stats_open(struct inode *inode, struct file *file)
583 {
584 return single_open(file, vcpudispatch_stats_display, NULL);
585 }
586
587 static const struct file_operations vcpudispatch_stats_proc_ops = {
588 .open = vcpudispatch_stats_open,
589 .read = seq_read,
590 .write = vcpudispatch_stats_write,
591 .llseek = seq_lseek,
592 .release = single_release,
593 };
594
vcpudispatch_stats_freq_write(struct file * file,const char __user * p,size_t count,loff_t * ppos)595 static ssize_t vcpudispatch_stats_freq_write(struct file *file,
596 const char __user *p, size_t count, loff_t *ppos)
597 {
598 int rc, freq;
599 char buf[16];
600
601 if (count > 15)
602 return -EINVAL;
603
604 if (copy_from_user(buf, p, count))
605 return -EFAULT;
606
607 buf[count] = 0;
608 rc = kstrtoint(buf, 0, &freq);
609 if (rc || freq < 1 || freq > HZ) {
610 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n",
611 HZ);
612 return rc ? rc : -EINVAL;
613 }
614
615 vcpudispatch_stats_freq = freq;
616
617 return count;
618 }
619
vcpudispatch_stats_freq_display(struct seq_file * p,void * v)620 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v)
621 {
622 seq_printf(p, "%d\n", vcpudispatch_stats_freq);
623 return 0;
624 }
625
vcpudispatch_stats_freq_open(struct inode * inode,struct file * file)626 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file)
627 {
628 return single_open(file, vcpudispatch_stats_freq_display, NULL);
629 }
630
631 static const struct file_operations vcpudispatch_stats_freq_proc_ops = {
632 .open = vcpudispatch_stats_freq_open,
633 .read = seq_read,
634 .write = vcpudispatch_stats_freq_write,
635 .llseek = seq_lseek,
636 .release = single_release,
637 };
638
vcpudispatch_stats_procfs_init(void)639 static int __init vcpudispatch_stats_procfs_init(void)
640 {
641 if (!lppaca_shared_proc(get_lppaca()))
642 return 0;
643
644 if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL,
645 &vcpudispatch_stats_proc_ops))
646 pr_err("vcpudispatch_stats: error creating procfs file\n");
647 else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL,
648 &vcpudispatch_stats_freq_proc_ops))
649 pr_err("vcpudispatch_stats_freq: error creating procfs file\n");
650
651 return 0;
652 }
653
654 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init);
655 #endif /* CONFIG_PPC_SPLPAR */
656
vpa_init(int cpu)657 void vpa_init(int cpu)
658 {
659 int hwcpu = get_hard_smp_processor_id(cpu);
660 unsigned long addr;
661 long ret;
662
663 /*
664 * The spec says it "may be problematic" if CPU x registers the VPA of
665 * CPU y. We should never do that, but wail if we ever do.
666 */
667 WARN_ON(cpu != smp_processor_id());
668
669 if (cpu_has_feature(CPU_FTR_ALTIVEC))
670 lppaca_of(cpu).vmxregs_in_use = 1;
671
672 if (cpu_has_feature(CPU_FTR_ARCH_207S))
673 lppaca_of(cpu).ebb_regs_in_use = 1;
674
675 addr = __pa(&lppaca_of(cpu));
676 ret = register_vpa(hwcpu, addr);
677
678 if (ret) {
679 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area "
680 "%lx failed with %ld\n", cpu, hwcpu, addr, ret);
681 return;
682 }
683
684 #ifdef CONFIG_PPC_BOOK3S_64
685 /*
686 * PAPR says this feature is SLB-Buffer but firmware never
687 * reports that. All SPLPAR support SLB shadow buffer.
688 */
689 if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) {
690 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr);
691 ret = register_slb_shadow(hwcpu, addr);
692 if (ret)
693 pr_err("WARNING: SLB shadow buffer registration for "
694 "cpu %d (hw %d) of area %lx failed with %ld\n",
695 cpu, hwcpu, addr, ret);
696 }
697 #endif /* CONFIG_PPC_BOOK3S_64 */
698
699 /*
700 * Register dispatch trace log, if one has been allocated.
701 */
702 register_dtl_buffer(cpu);
703 }
704
705 #ifdef CONFIG_PPC_BOOK3S_64
706
pSeries_lpar_hpte_insert(unsigned long hpte_group,unsigned long vpn,unsigned long pa,unsigned long rflags,unsigned long vflags,int psize,int apsize,int ssize)707 static long pSeries_lpar_hpte_insert(unsigned long hpte_group,
708 unsigned long vpn, unsigned long pa,
709 unsigned long rflags, unsigned long vflags,
710 int psize, int apsize, int ssize)
711 {
712 unsigned long lpar_rc;
713 unsigned long flags;
714 unsigned long slot;
715 unsigned long hpte_v, hpte_r;
716
717 if (!(vflags & HPTE_V_BOLTED))
718 pr_devel("hpte_insert(group=%lx, vpn=%016lx, "
719 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n",
720 hpte_group, vpn, pa, rflags, vflags, psize);
721
722 hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
723 hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
724
725 if (!(vflags & HPTE_V_BOLTED))
726 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r);
727
728 /* Now fill in the actual HPTE */
729 /* Set CEC cookie to 0 */
730 /* Zero page = 0 */
731 /* I-cache Invalidate = 0 */
732 /* I-cache synchronize = 0 */
733 /* Exact = 0 */
734 flags = 0;
735
736 if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N))
737 flags |= H_COALESCE_CAND;
738
739 lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot);
740 if (unlikely(lpar_rc == H_PTEG_FULL)) {
741 pr_devel("Hash table group is full\n");
742 return -1;
743 }
744
745 /*
746 * Since we try and ioremap PHBs we don't own, the pte insert
747 * will fail. However we must catch the failure in hash_page
748 * or we will loop forever, so return -2 in this case.
749 */
750 if (unlikely(lpar_rc != H_SUCCESS)) {
751 pr_err("Failed hash pte insert with error %ld\n", lpar_rc);
752 return -2;
753 }
754 if (!(vflags & HPTE_V_BOLTED))
755 pr_devel(" -> slot: %lu\n", slot & 7);
756
757 /* Because of iSeries, we have to pass down the secondary
758 * bucket bit here as well
759 */
760 return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3);
761 }
762
763 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock);
764
pSeries_lpar_hpte_remove(unsigned long hpte_group)765 static long pSeries_lpar_hpte_remove(unsigned long hpte_group)
766 {
767 unsigned long slot_offset;
768 unsigned long lpar_rc;
769 int i;
770 unsigned long dummy1, dummy2;
771
772 /* pick a random slot to start at */
773 slot_offset = mftb() & 0x7;
774
775 for (i = 0; i < HPTES_PER_GROUP; i++) {
776
777 /* don't remove a bolted entry */
778 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset,
779 (0x1UL << 4), &dummy1, &dummy2);
780 if (lpar_rc == H_SUCCESS)
781 return i;
782
783 /*
784 * The test for adjunct partition is performed before the
785 * ANDCOND test. H_RESOURCE may be returned, so we need to
786 * check for that as well.
787 */
788 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE);
789
790 slot_offset++;
791 slot_offset &= 0x7;
792 }
793
794 return -1;
795 }
796
manual_hpte_clear_all(void)797 static void manual_hpte_clear_all(void)
798 {
799 unsigned long size_bytes = 1UL << ppc64_pft_size;
800 unsigned long hpte_count = size_bytes >> 4;
801 struct {
802 unsigned long pteh;
803 unsigned long ptel;
804 } ptes[4];
805 long lpar_rc;
806 unsigned long i, j;
807
808 /* Read in batches of 4,
809 * invalidate only valid entries not in the VRMA
810 * hpte_count will be a multiple of 4
811 */
812 for (i = 0; i < hpte_count; i += 4) {
813 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes);
814 if (lpar_rc != H_SUCCESS) {
815 pr_info("Failed to read hash page table at %ld err %ld\n",
816 i, lpar_rc);
817 continue;
818 }
819 for (j = 0; j < 4; j++){
820 if ((ptes[j].pteh & HPTE_V_VRMA_MASK) ==
821 HPTE_V_VRMA_MASK)
822 continue;
823 if (ptes[j].pteh & HPTE_V_VALID)
824 plpar_pte_remove_raw(0, i + j, 0,
825 &(ptes[j].pteh), &(ptes[j].ptel));
826 }
827 }
828 }
829
hcall_hpte_clear_all(void)830 static int hcall_hpte_clear_all(void)
831 {
832 int rc;
833
834 do {
835 rc = plpar_hcall_norets(H_CLEAR_HPT);
836 } while (rc == H_CONTINUE);
837
838 return rc;
839 }
840
pseries_hpte_clear_all(void)841 static void pseries_hpte_clear_all(void)
842 {
843 int rc;
844
845 rc = hcall_hpte_clear_all();
846 if (rc != H_SUCCESS)
847 manual_hpte_clear_all();
848
849 #ifdef __LITTLE_ENDIAN__
850 /*
851 * Reset exceptions to big endian.
852 *
853 * FIXME this is a hack for kexec, we need to reset the exception
854 * endian before starting the new kernel and this is a convenient place
855 * to do it.
856 *
857 * This is also called on boot when a fadump happens. In that case we
858 * must not change the exception endian mode.
859 */
860 if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active())
861 pseries_big_endian_exceptions();
862 #endif
863 }
864
865 /*
866 * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and
867 * the low 3 bits of flags happen to line up. So no transform is needed.
868 * We can probably optimize here and assume the high bits of newpp are
869 * already zero. For now I am paranoid.
870 */
pSeries_lpar_hpte_updatepp(unsigned long slot,unsigned long newpp,unsigned long vpn,int psize,int apsize,int ssize,unsigned long inv_flags)871 static long pSeries_lpar_hpte_updatepp(unsigned long slot,
872 unsigned long newpp,
873 unsigned long vpn,
874 int psize, int apsize,
875 int ssize, unsigned long inv_flags)
876 {
877 unsigned long lpar_rc;
878 unsigned long flags;
879 unsigned long want_v;
880
881 want_v = hpte_encode_avpn(vpn, psize, ssize);
882
883 flags = (newpp & 7) | H_AVPN;
884 if (mmu_has_feature(MMU_FTR_KERNEL_RO))
885 /* Move pp0 into bit 8 (IBM 55) */
886 flags |= (newpp & HPTE_R_PP0) >> 55;
887
888 pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...",
889 want_v, slot, flags, psize);
890
891 lpar_rc = plpar_pte_protect(flags, slot, want_v);
892
893 if (lpar_rc == H_NOT_FOUND) {
894 pr_devel("not found !\n");
895 return -1;
896 }
897
898 pr_devel("ok\n");
899
900 BUG_ON(lpar_rc != H_SUCCESS);
901
902 return 0;
903 }
904
__pSeries_lpar_hpte_find(unsigned long want_v,unsigned long hpte_group)905 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group)
906 {
907 long lpar_rc;
908 unsigned long i, j;
909 struct {
910 unsigned long pteh;
911 unsigned long ptel;
912 } ptes[4];
913
914 for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) {
915
916 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes);
917 if (lpar_rc != H_SUCCESS) {
918 pr_info("Failed to read hash page table at %ld err %ld\n",
919 hpte_group, lpar_rc);
920 continue;
921 }
922
923 for (j = 0; j < 4; j++) {
924 if (HPTE_V_COMPARE(ptes[j].pteh, want_v) &&
925 (ptes[j].pteh & HPTE_V_VALID))
926 return i + j;
927 }
928 }
929
930 return -1;
931 }
932
pSeries_lpar_hpte_find(unsigned long vpn,int psize,int ssize)933 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize)
934 {
935 long slot;
936 unsigned long hash;
937 unsigned long want_v;
938 unsigned long hpte_group;
939
940 hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize);
941 want_v = hpte_encode_avpn(vpn, psize, ssize);
942
943 /* Bolted entries are always in the primary group */
944 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
945 slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
946 if (slot < 0)
947 return -1;
948 return hpte_group + slot;
949 }
950
pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,unsigned long ea,int psize,int ssize)951 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,
952 unsigned long ea,
953 int psize, int ssize)
954 {
955 unsigned long vpn;
956 unsigned long lpar_rc, slot, vsid, flags;
957
958 vsid = get_kernel_vsid(ea, ssize);
959 vpn = hpt_vpn(ea, vsid, ssize);
960
961 slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
962 BUG_ON(slot == -1);
963
964 flags = newpp & 7;
965 if (mmu_has_feature(MMU_FTR_KERNEL_RO))
966 /* Move pp0 into bit 8 (IBM 55) */
967 flags |= (newpp & HPTE_R_PP0) >> 55;
968
969 lpar_rc = plpar_pte_protect(flags, slot, 0);
970
971 BUG_ON(lpar_rc != H_SUCCESS);
972 }
973
pSeries_lpar_hpte_invalidate(unsigned long slot,unsigned long vpn,int psize,int apsize,int ssize,int local)974 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn,
975 int psize, int apsize,
976 int ssize, int local)
977 {
978 unsigned long want_v;
979 unsigned long lpar_rc;
980 unsigned long dummy1, dummy2;
981
982 pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n",
983 slot, vpn, psize, local);
984
985 want_v = hpte_encode_avpn(vpn, psize, ssize);
986 lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2);
987 if (lpar_rc == H_NOT_FOUND)
988 return;
989
990 BUG_ON(lpar_rc != H_SUCCESS);
991 }
992
993
994 /*
995 * As defined in the PAPR's section 14.5.4.1.8
996 * The control mask doesn't include the returned reference and change bit from
997 * the processed PTE.
998 */
999 #define HBLKR_AVPN 0x0100000000000000UL
1000 #define HBLKR_CTRL_MASK 0xf800000000000000UL
1001 #define HBLKR_CTRL_SUCCESS 0x8000000000000000UL
1002 #define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL
1003 #define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL
1004
1005 /*
1006 * Returned true if we are supporting this block size for the specified segment
1007 * base page size and actual page size.
1008 *
1009 * Currently, we only support 8 size block.
1010 */
is_supported_hlbkrm(int bpsize,int psize)1011 static inline bool is_supported_hlbkrm(int bpsize, int psize)
1012 {
1013 return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE);
1014 }
1015
1016 /**
1017 * H_BLOCK_REMOVE caller.
1018 * @idx should point to the latest @param entry set with a PTEX.
1019 * If PTE cannot be processed because another CPUs has already locked that
1020 * group, those entries are put back in @param starting at index 1.
1021 * If entries has to be retried and @retry_busy is set to true, these entries
1022 * are retried until success. If @retry_busy is set to false, the returned
1023 * is the number of entries yet to process.
1024 */
call_block_remove(unsigned long idx,unsigned long * param,bool retry_busy)1025 static unsigned long call_block_remove(unsigned long idx, unsigned long *param,
1026 bool retry_busy)
1027 {
1028 unsigned long i, rc, new_idx;
1029 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1030
1031 if (idx < 2) {
1032 pr_warn("Unexpected empty call to H_BLOCK_REMOVE");
1033 return 0;
1034 }
1035 again:
1036 new_idx = 0;
1037 if (idx > PLPAR_HCALL9_BUFSIZE) {
1038 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx);
1039 idx = PLPAR_HCALL9_BUFSIZE;
1040 } else if (idx < PLPAR_HCALL9_BUFSIZE)
1041 param[idx] = HBR_END;
1042
1043 rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf,
1044 param[0], /* AVA */
1045 param[1], param[2], param[3], param[4], /* TS0-7 */
1046 param[5], param[6], param[7], param[8]);
1047 if (rc == H_SUCCESS)
1048 return 0;
1049
1050 BUG_ON(rc != H_PARTIAL);
1051
1052 /* Check that the unprocessed entries were 'not found' or 'busy' */
1053 for (i = 0; i < idx-1; i++) {
1054 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK;
1055
1056 if (ctrl == HBLKR_CTRL_ERRBUSY) {
1057 param[++new_idx] = param[i+1];
1058 continue;
1059 }
1060
1061 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS
1062 && ctrl != HBLKR_CTRL_ERRNOTFOUND);
1063 }
1064
1065 /*
1066 * If there were entries found busy, retry these entries if requested,
1067 * of if all the entries have to be retried.
1068 */
1069 if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) {
1070 idx = new_idx + 1;
1071 goto again;
1072 }
1073
1074 return new_idx;
1075 }
1076
1077 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1078 /*
1079 * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need
1080 * to make sure that we avoid bouncing the hypervisor tlbie lock.
1081 */
1082 #define PPC64_HUGE_HPTE_BATCH 12
1083
hugepage_block_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1084 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn,
1085 int count, int psize, int ssize)
1086 {
1087 unsigned long param[PLPAR_HCALL9_BUFSIZE];
1088 unsigned long shift, current_vpgb, vpgb;
1089 int i, pix = 0;
1090
1091 shift = mmu_psize_defs[psize].shift;
1092
1093 for (i = 0; i < count; i++) {
1094 /*
1095 * Shifting 3 bits more on the right to get a
1096 * 8 pages aligned virtual addresse.
1097 */
1098 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3));
1099 if (!pix || vpgb != current_vpgb) {
1100 /*
1101 * Need to start a new 8 pages block, flush
1102 * the current one if needed.
1103 */
1104 if (pix)
1105 (void)call_block_remove(pix, param, true);
1106 current_vpgb = vpgb;
1107 param[0] = hpte_encode_avpn(vpn[i], psize, ssize);
1108 pix = 1;
1109 }
1110
1111 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i];
1112 if (pix == PLPAR_HCALL9_BUFSIZE) {
1113 pix = call_block_remove(pix, param, false);
1114 /*
1115 * pix = 0 means that all the entries were
1116 * removed, we can start a new block.
1117 * Otherwise, this means that there are entries
1118 * to retry, and pix points to latest one, so
1119 * we should increment it and try to continue
1120 * the same block.
1121 */
1122 if (pix)
1123 pix++;
1124 }
1125 }
1126 if (pix)
1127 (void)call_block_remove(pix, param, true);
1128 }
1129
hugepage_bulk_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1130 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn,
1131 int count, int psize, int ssize)
1132 {
1133 unsigned long param[PLPAR_HCALL9_BUFSIZE];
1134 int i = 0, pix = 0, rc;
1135
1136 for (i = 0; i < count; i++) {
1137
1138 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1139 pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0,
1140 ssize, 0);
1141 } else {
1142 param[pix] = HBR_REQUEST | HBR_AVPN | slot[i];
1143 param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize);
1144 pix += 2;
1145 if (pix == 8) {
1146 rc = plpar_hcall9(H_BULK_REMOVE, param,
1147 param[0], param[1], param[2],
1148 param[3], param[4], param[5],
1149 param[6], param[7]);
1150 BUG_ON(rc != H_SUCCESS);
1151 pix = 0;
1152 }
1153 }
1154 }
1155 if (pix) {
1156 param[pix] = HBR_END;
1157 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1158 param[2], param[3], param[4], param[5],
1159 param[6], param[7]);
1160 BUG_ON(rc != H_SUCCESS);
1161 }
1162 }
1163
__pSeries_lpar_hugepage_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1164 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot,
1165 unsigned long *vpn,
1166 int count, int psize,
1167 int ssize)
1168 {
1169 unsigned long flags = 0;
1170 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1171
1172 if (lock_tlbie)
1173 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1174
1175 /* Assuming THP size is 16M */
1176 if (is_supported_hlbkrm(psize, MMU_PAGE_16M))
1177 hugepage_block_invalidate(slot, vpn, count, psize, ssize);
1178 else
1179 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize);
1180
1181 if (lock_tlbie)
1182 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1183 }
1184
pSeries_lpar_hugepage_invalidate(unsigned long vsid,unsigned long addr,unsigned char * hpte_slot_array,int psize,int ssize,int local)1185 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1186 unsigned long addr,
1187 unsigned char *hpte_slot_array,
1188 int psize, int ssize, int local)
1189 {
1190 int i, index = 0;
1191 unsigned long s_addr = addr;
1192 unsigned int max_hpte_count, valid;
1193 unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH];
1194 unsigned long slot_array[PPC64_HUGE_HPTE_BATCH];
1195 unsigned long shift, hidx, vpn = 0, hash, slot;
1196
1197 shift = mmu_psize_defs[psize].shift;
1198 max_hpte_count = 1U << (PMD_SHIFT - shift);
1199
1200 for (i = 0; i < max_hpte_count; i++) {
1201 valid = hpte_valid(hpte_slot_array, i);
1202 if (!valid)
1203 continue;
1204 hidx = hpte_hash_index(hpte_slot_array, i);
1205
1206 /* get the vpn */
1207 addr = s_addr + (i * (1ul << shift));
1208 vpn = hpt_vpn(addr, vsid, ssize);
1209 hash = hpt_hash(vpn, shift, ssize);
1210 if (hidx & _PTEIDX_SECONDARY)
1211 hash = ~hash;
1212
1213 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1214 slot += hidx & _PTEIDX_GROUP_IX;
1215
1216 slot_array[index] = slot;
1217 vpn_array[index] = vpn;
1218 if (index == PPC64_HUGE_HPTE_BATCH - 1) {
1219 /*
1220 * Now do a bluk invalidate
1221 */
1222 __pSeries_lpar_hugepage_invalidate(slot_array,
1223 vpn_array,
1224 PPC64_HUGE_HPTE_BATCH,
1225 psize, ssize);
1226 index = 0;
1227 } else
1228 index++;
1229 }
1230 if (index)
1231 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array,
1232 index, psize, ssize);
1233 }
1234 #else
pSeries_lpar_hugepage_invalidate(unsigned long vsid,unsigned long addr,unsigned char * hpte_slot_array,int psize,int ssize,int local)1235 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1236 unsigned long addr,
1237 unsigned char *hpte_slot_array,
1238 int psize, int ssize, int local)
1239 {
1240 WARN(1, "%s called without THP support\n", __func__);
1241 }
1242 #endif
1243
pSeries_lpar_hpte_removebolted(unsigned long ea,int psize,int ssize)1244 static int pSeries_lpar_hpte_removebolted(unsigned long ea,
1245 int psize, int ssize)
1246 {
1247 unsigned long vpn;
1248 unsigned long slot, vsid;
1249
1250 vsid = get_kernel_vsid(ea, ssize);
1251 vpn = hpt_vpn(ea, vsid, ssize);
1252
1253 slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1254 if (slot == -1)
1255 return -ENOENT;
1256
1257 /*
1258 * lpar doesn't use the passed actual page size
1259 */
1260 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0);
1261 return 0;
1262 }
1263
1264
compute_slot(real_pte_t pte,unsigned long vpn,unsigned long index,unsigned long shift,int ssize)1265 static inline unsigned long compute_slot(real_pte_t pte,
1266 unsigned long vpn,
1267 unsigned long index,
1268 unsigned long shift,
1269 int ssize)
1270 {
1271 unsigned long slot, hash, hidx;
1272
1273 hash = hpt_hash(vpn, shift, ssize);
1274 hidx = __rpte_to_hidx(pte, index);
1275 if (hidx & _PTEIDX_SECONDARY)
1276 hash = ~hash;
1277 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1278 slot += hidx & _PTEIDX_GROUP_IX;
1279 return slot;
1280 }
1281
1282 /**
1283 * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are
1284 * "all within the same naturally aligned 8 page virtual address block".
1285 */
do_block_remove(unsigned long number,struct ppc64_tlb_batch * batch,unsigned long * param)1286 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch,
1287 unsigned long *param)
1288 {
1289 unsigned long vpn;
1290 unsigned long i, pix = 0;
1291 unsigned long index, shift, slot, current_vpgb, vpgb;
1292 real_pte_t pte;
1293 int psize, ssize;
1294
1295 psize = batch->psize;
1296 ssize = batch->ssize;
1297
1298 for (i = 0; i < number; i++) {
1299 vpn = batch->vpn[i];
1300 pte = batch->pte[i];
1301 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1302 /*
1303 * Shifting 3 bits more on the right to get a
1304 * 8 pages aligned virtual addresse.
1305 */
1306 vpgb = (vpn >> (shift - VPN_SHIFT + 3));
1307 if (!pix || vpgb != current_vpgb) {
1308 /*
1309 * Need to start a new 8 pages block, flush
1310 * the current one if needed.
1311 */
1312 if (pix)
1313 (void)call_block_remove(pix, param,
1314 true);
1315 current_vpgb = vpgb;
1316 param[0] = hpte_encode_avpn(vpn, psize,
1317 ssize);
1318 pix = 1;
1319 }
1320
1321 slot = compute_slot(pte, vpn, index, shift, ssize);
1322 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot;
1323
1324 if (pix == PLPAR_HCALL9_BUFSIZE) {
1325 pix = call_block_remove(pix, param, false);
1326 /*
1327 * pix = 0 means that all the entries were
1328 * removed, we can start a new block.
1329 * Otherwise, this means that there are entries
1330 * to retry, and pix points to latest one, so
1331 * we should increment it and try to continue
1332 * the same block.
1333 */
1334 if (pix)
1335 pix++;
1336 }
1337 } pte_iterate_hashed_end();
1338 }
1339
1340 if (pix)
1341 (void)call_block_remove(pix, param, true);
1342 }
1343
1344 /*
1345 * TLB Block Invalidate Characteristics
1346 *
1347 * These characteristics define the size of the block the hcall H_BLOCK_REMOVE
1348 * is able to process for each couple segment base page size, actual page size.
1349 *
1350 * The ibm,get-system-parameter properties is returning a buffer with the
1351 * following layout:
1352 *
1353 * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ]
1354 * -----------------
1355 * TLB Block Invalidate Specifiers:
1356 * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ]
1357 * [ 1 byte Number of page sizes (N) that are supported for the specified
1358 * TLB invalidate block size ]
1359 * [ 1 byte Encoded segment base page size and actual page size
1360 * MSB=0 means 4k segment base page size and actual page size
1361 * MSB=1 the penc value in mmu_psize_def ]
1362 * ...
1363 * -----------------
1364 * Next TLB Block Invalidate Specifiers...
1365 * -----------------
1366 * [ 0 ]
1367 */
set_hblkrm_bloc_size(int bpsize,int psize,unsigned int block_size)1368 static inline void set_hblkrm_bloc_size(int bpsize, int psize,
1369 unsigned int block_size)
1370 {
1371 if (block_size > hblkrm_size[bpsize][psize])
1372 hblkrm_size[bpsize][psize] = block_size;
1373 }
1374
1375 /*
1376 * Decode the Encoded segment base page size and actual page size.
1377 * PAPR specifies:
1378 * - bit 7 is the L bit
1379 * - bits 0-5 are the penc value
1380 * If the L bit is 0, this means 4K segment base page size and actual page size
1381 * otherwise the penc value should be read.
1382 */
1383 #define HBLKRM_L_MASK 0x80
1384 #define HBLKRM_PENC_MASK 0x3f
check_lp_set_hblkrm(unsigned int lp,unsigned int block_size)1385 static inline void __init check_lp_set_hblkrm(unsigned int lp,
1386 unsigned int block_size)
1387 {
1388 unsigned int bpsize, psize;
1389
1390 /* First, check the L bit, if not set, this means 4K */
1391 if ((lp & HBLKRM_L_MASK) == 0) {
1392 set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size);
1393 return;
1394 }
1395
1396 lp &= HBLKRM_PENC_MASK;
1397 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) {
1398 struct mmu_psize_def *def = &mmu_psize_defs[bpsize];
1399
1400 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1401 if (def->penc[psize] == lp) {
1402 set_hblkrm_bloc_size(bpsize, psize, block_size);
1403 return;
1404 }
1405 }
1406 }
1407 }
1408
1409 #define SPLPAR_TLB_BIC_TOKEN 50
1410
1411 /*
1412 * The size of the TLB Block Invalidate Characteristics is variable. But at the
1413 * maximum it will be the number of possible page sizes *2 + 10 bytes.
1414 * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size
1415 * (128 bytes) for the buffer to get plenty of space.
1416 */
1417 #define SPLPAR_TLB_BIC_MAXLENGTH 128
1418
pseries_lpar_read_hblkrm_characteristics(void)1419 void __init pseries_lpar_read_hblkrm_characteristics(void)
1420 {
1421 const s32 token = rtas_token("ibm,get-system-parameter");
1422 unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH];
1423 int call_status, len, idx, bpsize;
1424
1425 if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE))
1426 return;
1427
1428 do {
1429 spin_lock(&rtas_data_buf_lock);
1430 memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE);
1431 call_status = rtas_call(token, 3, 1, NULL, SPLPAR_TLB_BIC_TOKEN,
1432 __pa(rtas_data_buf), RTAS_DATA_BUF_SIZE);
1433 memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH);
1434 local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0';
1435 spin_unlock(&rtas_data_buf_lock);
1436 } while (rtas_busy_delay(call_status));
1437
1438 if (call_status != 0) {
1439 pr_warn("%s %s Error calling get-system-parameter (0x%x)\n",
1440 __FILE__, __func__, call_status);
1441 return;
1442 }
1443
1444 /*
1445 * The first two (2) bytes of the data in the buffer are the length of
1446 * the returned data, not counting these first two (2) bytes.
1447 */
1448 len = be16_to_cpu(*((u16 *)local_buffer)) + 2;
1449 if (len > SPLPAR_TLB_BIC_MAXLENGTH) {
1450 pr_warn("%s too large returned buffer %d", __func__, len);
1451 return;
1452 }
1453
1454 idx = 2;
1455 while (idx < len) {
1456 u8 block_shift = local_buffer[idx++];
1457 u32 block_size;
1458 unsigned int npsize;
1459
1460 if (!block_shift)
1461 break;
1462
1463 block_size = 1 << block_shift;
1464
1465 for (npsize = local_buffer[idx++];
1466 npsize > 0 && idx < len; npsize--)
1467 check_lp_set_hblkrm((unsigned int) local_buffer[idx++],
1468 block_size);
1469 }
1470
1471 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
1472 for (idx = 0; idx < MMU_PAGE_COUNT; idx++)
1473 if (hblkrm_size[bpsize][idx])
1474 pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d",
1475 bpsize, idx, hblkrm_size[bpsize][idx]);
1476 }
1477
1478 /*
1479 * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie
1480 * lock.
1481 */
pSeries_lpar_flush_hash_range(unsigned long number,int local)1482 static void pSeries_lpar_flush_hash_range(unsigned long number, int local)
1483 {
1484 unsigned long vpn;
1485 unsigned long i, pix, rc;
1486 unsigned long flags = 0;
1487 struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch);
1488 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1489 unsigned long param[PLPAR_HCALL9_BUFSIZE];
1490 unsigned long index, shift, slot;
1491 real_pte_t pte;
1492 int psize, ssize;
1493
1494 if (lock_tlbie)
1495 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1496
1497 if (is_supported_hlbkrm(batch->psize, batch->psize)) {
1498 do_block_remove(number, batch, param);
1499 goto out;
1500 }
1501
1502 psize = batch->psize;
1503 ssize = batch->ssize;
1504 pix = 0;
1505 for (i = 0; i < number; i++) {
1506 vpn = batch->vpn[i];
1507 pte = batch->pte[i];
1508 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1509 slot = compute_slot(pte, vpn, index, shift, ssize);
1510 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1511 /*
1512 * lpar doesn't use the passed actual page size
1513 */
1514 pSeries_lpar_hpte_invalidate(slot, vpn, psize,
1515 0, ssize, local);
1516 } else {
1517 param[pix] = HBR_REQUEST | HBR_AVPN | slot;
1518 param[pix+1] = hpte_encode_avpn(vpn, psize,
1519 ssize);
1520 pix += 2;
1521 if (pix == 8) {
1522 rc = plpar_hcall9(H_BULK_REMOVE, param,
1523 param[0], param[1], param[2],
1524 param[3], param[4], param[5],
1525 param[6], param[7]);
1526 BUG_ON(rc != H_SUCCESS);
1527 pix = 0;
1528 }
1529 }
1530 } pte_iterate_hashed_end();
1531 }
1532 if (pix) {
1533 param[pix] = HBR_END;
1534 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1535 param[2], param[3], param[4], param[5],
1536 param[6], param[7]);
1537 BUG_ON(rc != H_SUCCESS);
1538 }
1539
1540 out:
1541 if (lock_tlbie)
1542 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1543 }
1544
disable_bulk_remove(char * str)1545 static int __init disable_bulk_remove(char *str)
1546 {
1547 if (strcmp(str, "off") == 0 &&
1548 firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1549 pr_info("Disabling BULK_REMOVE firmware feature");
1550 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE;
1551 }
1552 return 1;
1553 }
1554
1555 __setup("bulk_remove=", disable_bulk_remove);
1556
1557 #define HPT_RESIZE_TIMEOUT 10000 /* ms */
1558
1559 struct hpt_resize_state {
1560 unsigned long shift;
1561 int commit_rc;
1562 };
1563
pseries_lpar_resize_hpt_commit(void * data)1564 static int pseries_lpar_resize_hpt_commit(void *data)
1565 {
1566 struct hpt_resize_state *state = data;
1567
1568 state->commit_rc = plpar_resize_hpt_commit(0, state->shift);
1569 if (state->commit_rc != H_SUCCESS)
1570 return -EIO;
1571
1572 /* Hypervisor has transitioned the HTAB, update our globals */
1573 ppc64_pft_size = state->shift;
1574 htab_size_bytes = 1UL << ppc64_pft_size;
1575 htab_hash_mask = (htab_size_bytes >> 7) - 1;
1576
1577 return 0;
1578 }
1579
1580 /*
1581 * Must be called in process context. The caller must hold the
1582 * cpus_lock.
1583 */
pseries_lpar_resize_hpt(unsigned long shift)1584 static int pseries_lpar_resize_hpt(unsigned long shift)
1585 {
1586 struct hpt_resize_state state = {
1587 .shift = shift,
1588 .commit_rc = H_FUNCTION,
1589 };
1590 unsigned int delay, total_delay = 0;
1591 int rc;
1592 ktime_t t0, t1, t2;
1593
1594 might_sleep();
1595
1596 if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1597 return -ENODEV;
1598
1599 pr_info("Attempting to resize HPT to shift %lu\n", shift);
1600
1601 t0 = ktime_get();
1602
1603 rc = plpar_resize_hpt_prepare(0, shift);
1604 while (H_IS_LONG_BUSY(rc)) {
1605 delay = get_longbusy_msecs(rc);
1606 total_delay += delay;
1607 if (total_delay > HPT_RESIZE_TIMEOUT) {
1608 /* prepare with shift==0 cancels an in-progress resize */
1609 rc = plpar_resize_hpt_prepare(0, 0);
1610 if (rc != H_SUCCESS)
1611 pr_warn("Unexpected error %d cancelling timed out HPT resize\n",
1612 rc);
1613 return -ETIMEDOUT;
1614 }
1615 msleep(delay);
1616 rc = plpar_resize_hpt_prepare(0, shift);
1617 };
1618
1619 switch (rc) {
1620 case H_SUCCESS:
1621 /* Continue on */
1622 break;
1623
1624 case H_PARAMETER:
1625 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n");
1626 return -EINVAL;
1627 case H_RESOURCE:
1628 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n");
1629 return -EPERM;
1630 default:
1631 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc);
1632 return -EIO;
1633 }
1634
1635 t1 = ktime_get();
1636
1637 rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit,
1638 &state, NULL);
1639
1640 t2 = ktime_get();
1641
1642 if (rc != 0) {
1643 switch (state.commit_rc) {
1644 case H_PTEG_FULL:
1645 return -ENOSPC;
1646
1647 default:
1648 pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n",
1649 state.commit_rc);
1650 return -EIO;
1651 };
1652 }
1653
1654 pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n",
1655 shift, (long long) ktime_ms_delta(t1, t0),
1656 (long long) ktime_ms_delta(t2, t1));
1657
1658 return 0;
1659 }
1660
pseries_lpar_register_process_table(unsigned long base,unsigned long page_size,unsigned long table_size)1661 static int pseries_lpar_register_process_table(unsigned long base,
1662 unsigned long page_size, unsigned long table_size)
1663 {
1664 long rc;
1665 unsigned long flags = 0;
1666
1667 if (table_size)
1668 flags |= PROC_TABLE_NEW;
1669 if (radix_enabled())
1670 flags |= PROC_TABLE_RADIX | PROC_TABLE_GTSE;
1671 else
1672 flags |= PROC_TABLE_HPT_SLB;
1673 for (;;) {
1674 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base,
1675 page_size, table_size);
1676 if (!H_IS_LONG_BUSY(rc))
1677 break;
1678 mdelay(get_longbusy_msecs(rc));
1679 }
1680 if (rc != H_SUCCESS) {
1681 pr_err("Failed to register process table (rc=%ld)\n", rc);
1682 BUG();
1683 }
1684 return rc;
1685 }
1686
hpte_init_pseries(void)1687 void __init hpte_init_pseries(void)
1688 {
1689 mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate;
1690 mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp;
1691 mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp;
1692 mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert;
1693 mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove;
1694 mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted;
1695 mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range;
1696 mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all;
1697 mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate;
1698
1699 if (firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1700 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt;
1701
1702 /*
1703 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
1704 * to inform the hypervisor that we wish to use the HPT.
1705 */
1706 if (cpu_has_feature(CPU_FTR_ARCH_300))
1707 pseries_lpar_register_process_table(0, 0, 0);
1708 }
1709
radix_init_pseries(void)1710 void radix_init_pseries(void)
1711 {
1712 pr_info("Using radix MMU under hypervisor\n");
1713
1714 pseries_lpar_register_process_table(__pa(process_tb),
1715 0, PRTB_SIZE_SHIFT - 12);
1716 }
1717
1718 #ifdef CONFIG_PPC_SMLPAR
1719 #define CMO_FREE_HINT_DEFAULT 1
1720 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT;
1721
cmo_free_hint(char * str)1722 static int __init cmo_free_hint(char *str)
1723 {
1724 char *parm;
1725 parm = strstrip(str);
1726
1727 if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) {
1728 pr_info("%s: CMO free page hinting is not active.\n", __func__);
1729 cmo_free_hint_flag = 0;
1730 return 1;
1731 }
1732
1733 cmo_free_hint_flag = 1;
1734 pr_info("%s: CMO free page hinting is active.\n", __func__);
1735
1736 if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0)
1737 return 1;
1738
1739 return 0;
1740 }
1741
1742 __setup("cmo_free_hint=", cmo_free_hint);
1743
pSeries_set_page_state(struct page * page,int order,unsigned long state)1744 static void pSeries_set_page_state(struct page *page, int order,
1745 unsigned long state)
1746 {
1747 int i, j;
1748 unsigned long cmo_page_sz, addr;
1749
1750 cmo_page_sz = cmo_get_page_size();
1751 addr = __pa((unsigned long)page_address(page));
1752
1753 for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) {
1754 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz)
1755 plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0);
1756 }
1757 }
1758
arch_free_page(struct page * page,int order)1759 void arch_free_page(struct page *page, int order)
1760 {
1761 if (radix_enabled())
1762 return;
1763 if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO))
1764 return;
1765
1766 pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED);
1767 }
1768 EXPORT_SYMBOL(arch_free_page);
1769
1770 #endif /* CONFIG_PPC_SMLPAR */
1771 #endif /* CONFIG_PPC_BOOK3S_64 */
1772
1773 #ifdef CONFIG_TRACEPOINTS
1774 #ifdef CONFIG_JUMP_LABEL
1775 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT;
1776
hcall_tracepoint_regfunc(void)1777 int hcall_tracepoint_regfunc(void)
1778 {
1779 static_key_slow_inc(&hcall_tracepoint_key);
1780 return 0;
1781 }
1782
hcall_tracepoint_unregfunc(void)1783 void hcall_tracepoint_unregfunc(void)
1784 {
1785 static_key_slow_dec(&hcall_tracepoint_key);
1786 }
1787 #else
1788 /*
1789 * We optimise our hcall path by placing hcall_tracepoint_refcount
1790 * directly in the TOC so we can check if the hcall tracepoints are
1791 * enabled via a single load.
1792 */
1793
1794 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */
1795 extern long hcall_tracepoint_refcount;
1796
hcall_tracepoint_regfunc(void)1797 int hcall_tracepoint_regfunc(void)
1798 {
1799 hcall_tracepoint_refcount++;
1800 return 0;
1801 }
1802
hcall_tracepoint_unregfunc(void)1803 void hcall_tracepoint_unregfunc(void)
1804 {
1805 hcall_tracepoint_refcount--;
1806 }
1807 #endif
1808
1809 /*
1810 * Since the tracing code might execute hcalls we need to guard against
1811 * recursion. One example of this are spinlocks calling H_YIELD on
1812 * shared processor partitions.
1813 */
1814 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth);
1815
1816
__trace_hcall_entry(unsigned long opcode,unsigned long * args)1817 void __trace_hcall_entry(unsigned long opcode, unsigned long *args)
1818 {
1819 unsigned long flags;
1820 unsigned int *depth;
1821
1822 /*
1823 * We cannot call tracepoints inside RCU idle regions which
1824 * means we must not trace H_CEDE.
1825 */
1826 if (opcode == H_CEDE)
1827 return;
1828
1829 local_irq_save(flags);
1830
1831 depth = this_cpu_ptr(&hcall_trace_depth);
1832
1833 if (*depth)
1834 goto out;
1835
1836 (*depth)++;
1837 preempt_disable();
1838 trace_hcall_entry(opcode, args);
1839 (*depth)--;
1840
1841 out:
1842 local_irq_restore(flags);
1843 }
1844
__trace_hcall_exit(long opcode,long retval,unsigned long * retbuf)1845 void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf)
1846 {
1847 unsigned long flags;
1848 unsigned int *depth;
1849
1850 if (opcode == H_CEDE)
1851 return;
1852
1853 local_irq_save(flags);
1854
1855 depth = this_cpu_ptr(&hcall_trace_depth);
1856
1857 if (*depth)
1858 goto out;
1859
1860 (*depth)++;
1861 trace_hcall_exit(opcode, retval, retbuf);
1862 preempt_enable();
1863 (*depth)--;
1864
1865 out:
1866 local_irq_restore(flags);
1867 }
1868 #endif
1869
1870 /**
1871 * h_get_mpp
1872 * H_GET_MPP hcall returns info in 7 parms
1873 */
h_get_mpp(struct hvcall_mpp_data * mpp_data)1874 int h_get_mpp(struct hvcall_mpp_data *mpp_data)
1875 {
1876 int rc;
1877 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1878
1879 rc = plpar_hcall9(H_GET_MPP, retbuf);
1880
1881 mpp_data->entitled_mem = retbuf[0];
1882 mpp_data->mapped_mem = retbuf[1];
1883
1884 mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
1885 mpp_data->pool_num = retbuf[2] & 0xffff;
1886
1887 mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
1888 mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
1889 mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL;
1890
1891 mpp_data->pool_size = retbuf[4];
1892 mpp_data->loan_request = retbuf[5];
1893 mpp_data->backing_mem = retbuf[6];
1894
1895 return rc;
1896 }
1897 EXPORT_SYMBOL(h_get_mpp);
1898
h_get_mpp_x(struct hvcall_mpp_x_data * mpp_x_data)1899 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data)
1900 {
1901 int rc;
1902 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 };
1903
1904 rc = plpar_hcall9(H_GET_MPP_X, retbuf);
1905
1906 mpp_x_data->coalesced_bytes = retbuf[0];
1907 mpp_x_data->pool_coalesced_bytes = retbuf[1];
1908 mpp_x_data->pool_purr_cycles = retbuf[2];
1909 mpp_x_data->pool_spurr_cycles = retbuf[3];
1910
1911 return rc;
1912 }
1913
vsid_unscramble(unsigned long vsid,int ssize)1914 static unsigned long vsid_unscramble(unsigned long vsid, int ssize)
1915 {
1916 unsigned long protovsid;
1917 unsigned long va_bits = VA_BITS;
1918 unsigned long modinv, vsid_modulus;
1919 unsigned long max_mod_inv, tmp_modinv;
1920
1921 if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
1922 va_bits = 65;
1923
1924 if (ssize == MMU_SEGSIZE_256M) {
1925 modinv = VSID_MULINV_256M;
1926 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1);
1927 } else {
1928 modinv = VSID_MULINV_1T;
1929 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1);
1930 }
1931
1932 /*
1933 * vsid outside our range.
1934 */
1935 if (vsid >= vsid_modulus)
1936 return 0;
1937
1938 /*
1939 * If modinv is the modular multiplicate inverse of (x % vsid_modulus)
1940 * and vsid = (protovsid * x) % vsid_modulus, then we say:
1941 * protovsid = (vsid * modinv) % vsid_modulus
1942 */
1943
1944 /* Check if (vsid * modinv) overflow (63 bits) */
1945 max_mod_inv = 0x7fffffffffffffffull / vsid;
1946 if (modinv < max_mod_inv)
1947 return (vsid * modinv) % vsid_modulus;
1948
1949 tmp_modinv = modinv/max_mod_inv;
1950 modinv %= max_mod_inv;
1951
1952 protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus;
1953 protovsid = (protovsid + vsid * modinv) % vsid_modulus;
1954
1955 return protovsid;
1956 }
1957
reserve_vrma_context_id(void)1958 static int __init reserve_vrma_context_id(void)
1959 {
1960 unsigned long protovsid;
1961
1962 /*
1963 * Reserve context ids which map to reserved virtual addresses. For now
1964 * we only reserve the context id which maps to the VRMA VSID. We ignore
1965 * the addresses in "ibm,adjunct-virtual-addresses" because we don't
1966 * enable adjunct support via the "ibm,client-architecture-support"
1967 * interface.
1968 */
1969 protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T);
1970 hash__reserve_context_id(protovsid >> ESID_BITS_1T);
1971 return 0;
1972 }
1973 machine_device_initcall(pseries, reserve_vrma_context_id);
1974
1975 #ifdef CONFIG_DEBUG_FS
1976 /* debugfs file interface for vpa data */
vpa_file_read(struct file * filp,char __user * buf,size_t len,loff_t * pos)1977 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len,
1978 loff_t *pos)
1979 {
1980 int cpu = (long)filp->private_data;
1981 struct lppaca *lppaca = &lppaca_of(cpu);
1982
1983 return simple_read_from_buffer(buf, len, pos, lppaca,
1984 sizeof(struct lppaca));
1985 }
1986
1987 static const struct file_operations vpa_fops = {
1988 .open = simple_open,
1989 .read = vpa_file_read,
1990 .llseek = default_llseek,
1991 };
1992
vpa_debugfs_init(void)1993 static int __init vpa_debugfs_init(void)
1994 {
1995 char name[16];
1996 long i;
1997 struct dentry *vpa_dir;
1998
1999 if (!firmware_has_feature(FW_FEATURE_SPLPAR))
2000 return 0;
2001
2002 vpa_dir = debugfs_create_dir("vpa", powerpc_debugfs_root);
2003 if (!vpa_dir) {
2004 pr_warn("%s: can't create vpa root dir\n", __func__);
2005 return -ENOMEM;
2006 }
2007
2008 /* set up the per-cpu vpa file*/
2009 for_each_possible_cpu(i) {
2010 struct dentry *d;
2011
2012 sprintf(name, "cpu-%ld", i);
2013
2014 d = debugfs_create_file(name, 0400, vpa_dir, (void *)i,
2015 &vpa_fops);
2016 if (!d) {
2017 pr_warn("%s: can't create per-cpu vpa file\n",
2018 __func__);
2019 return -ENOMEM;
2020 }
2021 }
2022
2023 return 0;
2024 }
2025 machine_arch_initcall(pseries, vpa_debugfs_init);
2026 #endif /* CONFIG_DEBUG_FS */
2027