1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright IBM Corp. 2019
4 */
5 #include <asm/mem_detect.h>
6 #include <asm/pgtable.h>
7 #include <asm/cpacf.h>
8 #include <asm/timex.h>
9 #include <asm/sclp.h>
10 #include "compressed/decompressor.h"
11 #include "boot.h"
12
13 #define PRNG_MODE_TDES 1
14 #define PRNG_MODE_SHA512 2
15 #define PRNG_MODE_TRNG 3
16
17 struct prno_parm {
18 u32 res;
19 u32 reseed_counter;
20 u64 stream_bytes;
21 u8 V[112];
22 u8 C[112];
23 };
24
25 struct prng_parm {
26 u8 parm_block[32];
27 u32 reseed_counter;
28 u64 byte_counter;
29 };
30
check_prng(void)31 static int check_prng(void)
32 {
33 if (!cpacf_query_func(CPACF_KMC, CPACF_KMC_PRNG)) {
34 sclp_early_printk("KASLR disabled: CPU has no PRNG\n");
35 return 0;
36 }
37 if (cpacf_query_func(CPACF_PRNO, CPACF_PRNO_TRNG))
38 return PRNG_MODE_TRNG;
39 if (cpacf_query_func(CPACF_PRNO, CPACF_PRNO_SHA512_DRNG_GEN))
40 return PRNG_MODE_SHA512;
41 else
42 return PRNG_MODE_TDES;
43 }
44
get_random(unsigned long limit)45 static unsigned long get_random(unsigned long limit)
46 {
47 struct prng_parm prng = {
48 /* initial parameter block for tdes mode, copied from libica */
49 .parm_block = {
50 0x0F, 0x2B, 0x8E, 0x63, 0x8C, 0x8E, 0xD2, 0x52,
51 0x64, 0xB7, 0xA0, 0x7B, 0x75, 0x28, 0xB8, 0xF4,
52 0x75, 0x5F, 0xD2, 0xA6, 0x8D, 0x97, 0x11, 0xFF,
53 0x49, 0xD8, 0x23, 0xF3, 0x7E, 0x21, 0xEC, 0xA0
54 },
55 };
56 unsigned long seed, random;
57 struct prno_parm prno;
58 __u64 entropy[4];
59 int mode, i;
60
61 mode = check_prng();
62 seed = get_tod_clock_fast();
63 switch (mode) {
64 case PRNG_MODE_TRNG:
65 cpacf_trng(NULL, 0, (u8 *) &random, sizeof(random));
66 break;
67 case PRNG_MODE_SHA512:
68 cpacf_prno(CPACF_PRNO_SHA512_DRNG_SEED, &prno, NULL, 0,
69 (u8 *) &seed, sizeof(seed));
70 cpacf_prno(CPACF_PRNO_SHA512_DRNG_GEN, &prno, (u8 *) &random,
71 sizeof(random), NULL, 0);
72 break;
73 case PRNG_MODE_TDES:
74 /* add entropy */
75 *(unsigned long *) prng.parm_block ^= seed;
76 for (i = 0; i < 16; i++) {
77 cpacf_kmc(CPACF_KMC_PRNG, prng.parm_block,
78 (u8 *) entropy, (u8 *) entropy,
79 sizeof(entropy));
80 memcpy(prng.parm_block, entropy, sizeof(entropy));
81 }
82 random = seed;
83 cpacf_kmc(CPACF_KMC_PRNG, prng.parm_block, (u8 *) &random,
84 (u8 *) &random, sizeof(random));
85 break;
86 default:
87 random = 0;
88 }
89 return random % limit;
90 }
91
get_random_base(unsigned long safe_addr)92 unsigned long get_random_base(unsigned long safe_addr)
93 {
94 unsigned long memory_limit = memory_end_set ? memory_end : 0;
95 unsigned long base, start, end, kernel_size;
96 unsigned long block_sum, offset;
97 unsigned long kasan_needs;
98 int i;
99
100 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && INITRD_START && INITRD_SIZE) {
101 if (safe_addr < INITRD_START + INITRD_SIZE)
102 safe_addr = INITRD_START + INITRD_SIZE;
103 }
104 safe_addr = ALIGN(safe_addr, THREAD_SIZE);
105
106 if ((IS_ENABLED(CONFIG_KASAN))) {
107 /*
108 * Estimate kasan memory requirements, which it will reserve
109 * at the very end of available physical memory. To estimate
110 * that, we take into account that kasan would require
111 * 1/8 of available physical memory (for shadow memory) +
112 * creating page tables for the whole memory + shadow memory
113 * region (1 + 1/8). To keep page tables estimates simple take
114 * the double of combined ptes size.
115 */
116 memory_limit = get_mem_detect_end();
117 if (memory_end_set && memory_limit > memory_end)
118 memory_limit = memory_end;
119
120 /* for shadow memory */
121 kasan_needs = memory_limit / 8;
122 /* for paging structures */
123 kasan_needs += (memory_limit + kasan_needs) / PAGE_SIZE /
124 _PAGE_ENTRIES * _PAGE_TABLE_SIZE * 2;
125 memory_limit -= kasan_needs;
126 }
127
128 kernel_size = vmlinux.image_size + vmlinux.bss_size;
129 block_sum = 0;
130 for_each_mem_detect_block(i, &start, &end) {
131 if (memory_limit) {
132 if (start >= memory_limit)
133 break;
134 if (end > memory_limit)
135 end = memory_limit;
136 }
137 if (end - start < kernel_size)
138 continue;
139 block_sum += end - start - kernel_size;
140 }
141 if (!block_sum) {
142 sclp_early_printk("KASLR disabled: not enough memory\n");
143 return 0;
144 }
145
146 base = get_random(block_sum);
147 if (base == 0)
148 return 0;
149 if (base < safe_addr)
150 base = safe_addr;
151 block_sum = offset = 0;
152 for_each_mem_detect_block(i, &start, &end) {
153 if (memory_limit) {
154 if (start >= memory_limit)
155 break;
156 if (end > memory_limit)
157 end = memory_limit;
158 }
159 if (end - start < kernel_size)
160 continue;
161 block_sum += end - start - kernel_size;
162 if (base <= block_sum) {
163 base = start + base - offset;
164 base = ALIGN_DOWN(base, THREAD_SIZE);
165 break;
166 }
167 offset = block_sum;
168 }
169 return base;
170 }
171