1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Time of day based timer functions.
4 *
5 * S390 version
6 * Copyright IBM Corp. 1999, 2008
7 * Author(s): Hartmut Penner (hp@de.ibm.com),
8 * Martin Schwidefsky (schwidefsky@de.ibm.com),
9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10 *
11 * Derived from "arch/i386/kernel/time.c"
12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
13 */
14
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/kernel_stat.h>
19 #include <linux/errno.h>
20 #include <linux/export.h>
21 #include <linux/sched.h>
22 #include <linux/sched/clock.h>
23 #include <linux/kernel.h>
24 #include <linux/param.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/cpu.h>
29 #include <linux/stop_machine.h>
30 #include <linux/time.h>
31 #include <linux/device.h>
32 #include <linux/delay.h>
33 #include <linux/init.h>
34 #include <linux/smp.h>
35 #include <linux/types.h>
36 #include <linux/profile.h>
37 #include <linux/timex.h>
38 #include <linux/notifier.h>
39 #include <linux/timekeeper_internal.h>
40 #include <linux/clockchips.h>
41 #include <linux/gfp.h>
42 #include <linux/kprobes.h>
43 #include <linux/uaccess.h>
44 #include <asm/facility.h>
45 #include <asm/delay.h>
46 #include <asm/div64.h>
47 #include <asm/vdso.h>
48 #include <asm/irq.h>
49 #include <asm/irq_regs.h>
50 #include <asm/vtimer.h>
51 #include <asm/stp.h>
52 #include <asm/cio.h>
53 #include "entry.h"
54
55 unsigned char tod_clock_base[16] __aligned(8) = {
56 /* Force to data section. */
57 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
58 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
59 };
60 EXPORT_SYMBOL_GPL(tod_clock_base);
61
62 u64 clock_comparator_max = -1ULL;
63 EXPORT_SYMBOL_GPL(clock_comparator_max);
64
65 static DEFINE_PER_CPU(struct clock_event_device, comparators);
66
67 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
68 EXPORT_SYMBOL(s390_epoch_delta_notifier);
69
70 unsigned char ptff_function_mask[16];
71
72 static unsigned long long lpar_offset;
73 static unsigned long long initial_leap_seconds;
74 static unsigned long long tod_steering_end;
75 static long long tod_steering_delta;
76
77 /*
78 * Get time offsets with PTFF
79 */
time_early_init(void)80 void __init time_early_init(void)
81 {
82 struct ptff_qto qto;
83 struct ptff_qui qui;
84
85 /* Initialize TOD steering parameters */
86 tod_steering_end = *(unsigned long long *) &tod_clock_base[1];
87 vdso_data->ts_end = tod_steering_end;
88
89 if (!test_facility(28))
90 return;
91
92 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
93
94 /* get LPAR offset */
95 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
96 lpar_offset = qto.tod_epoch_difference;
97
98 /* get initial leap seconds */
99 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
100 initial_leap_seconds = (unsigned long long)
101 ((long) qui.old_leap * 4096000000L);
102 }
103
104 /*
105 * Scheduler clock - returns current time in nanosec units.
106 */
sched_clock(void)107 unsigned long long notrace sched_clock(void)
108 {
109 return tod_to_ns(get_tod_clock_monotonic());
110 }
111 NOKPROBE_SYMBOL(sched_clock);
112
113 /*
114 * Monotonic_clock - returns # of nanoseconds passed since time_init()
115 */
monotonic_clock(void)116 unsigned long long monotonic_clock(void)
117 {
118 return sched_clock();
119 }
120 EXPORT_SYMBOL(monotonic_clock);
121
ext_to_timespec64(unsigned char * clk,struct timespec64 * xt)122 static void ext_to_timespec64(unsigned char *clk, struct timespec64 *xt)
123 {
124 unsigned long long high, low, rem, sec, nsec;
125
126 /* Split extendnd TOD clock to micro-seconds and sub-micro-seconds */
127 high = (*(unsigned long long *) clk) >> 4;
128 low = (*(unsigned long long *)&clk[7]) << 4;
129 /* Calculate seconds and nano-seconds */
130 sec = high;
131 rem = do_div(sec, 1000000);
132 nsec = (((low >> 32) + (rem << 32)) * 1000) >> 32;
133
134 xt->tv_sec = sec;
135 xt->tv_nsec = nsec;
136 }
137
clock_comparator_work(void)138 void clock_comparator_work(void)
139 {
140 struct clock_event_device *cd;
141
142 S390_lowcore.clock_comparator = clock_comparator_max;
143 cd = this_cpu_ptr(&comparators);
144 cd->event_handler(cd);
145 }
146
s390_next_event(unsigned long delta,struct clock_event_device * evt)147 static int s390_next_event(unsigned long delta,
148 struct clock_event_device *evt)
149 {
150 S390_lowcore.clock_comparator = get_tod_clock() + delta;
151 set_clock_comparator(S390_lowcore.clock_comparator);
152 return 0;
153 }
154
155 /*
156 * Set up lowcore and control register of the current cpu to
157 * enable TOD clock and clock comparator interrupts.
158 */
init_cpu_timer(void)159 void init_cpu_timer(void)
160 {
161 struct clock_event_device *cd;
162 int cpu;
163
164 S390_lowcore.clock_comparator = clock_comparator_max;
165 set_clock_comparator(S390_lowcore.clock_comparator);
166
167 cpu = smp_processor_id();
168 cd = &per_cpu(comparators, cpu);
169 cd->name = "comparator";
170 cd->features = CLOCK_EVT_FEAT_ONESHOT;
171 cd->mult = 16777;
172 cd->shift = 12;
173 cd->min_delta_ns = 1;
174 cd->min_delta_ticks = 1;
175 cd->max_delta_ns = LONG_MAX;
176 cd->max_delta_ticks = ULONG_MAX;
177 cd->rating = 400;
178 cd->cpumask = cpumask_of(cpu);
179 cd->set_next_event = s390_next_event;
180
181 clockevents_register_device(cd);
182
183 /* Enable clock comparator timer interrupt. */
184 __ctl_set_bit(0,11);
185
186 /* Always allow the timing alert external interrupt. */
187 __ctl_set_bit(0, 4);
188 }
189
clock_comparator_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)190 static void clock_comparator_interrupt(struct ext_code ext_code,
191 unsigned int param32,
192 unsigned long param64)
193 {
194 inc_irq_stat(IRQEXT_CLK);
195 if (S390_lowcore.clock_comparator == clock_comparator_max)
196 set_clock_comparator(S390_lowcore.clock_comparator);
197 }
198
199 static void stp_timing_alert(struct stp_irq_parm *);
200
timing_alert_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)201 static void timing_alert_interrupt(struct ext_code ext_code,
202 unsigned int param32, unsigned long param64)
203 {
204 inc_irq_stat(IRQEXT_TLA);
205 if (param32 & 0x00038000)
206 stp_timing_alert((struct stp_irq_parm *) ¶m32);
207 }
208
209 static void stp_reset(void);
210
read_persistent_clock64(struct timespec64 * ts)211 void read_persistent_clock64(struct timespec64 *ts)
212 {
213 unsigned char clk[STORE_CLOCK_EXT_SIZE];
214 __u64 delta;
215
216 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
217 get_tod_clock_ext(clk);
218 *(__u64 *) &clk[1] -= delta;
219 if (*(__u64 *) &clk[1] > delta)
220 clk[0]--;
221 ext_to_timespec64(clk, ts);
222 }
223
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)224 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
225 struct timespec64 *boot_offset)
226 {
227 unsigned char clk[STORE_CLOCK_EXT_SIZE];
228 struct timespec64 boot_time;
229 __u64 delta;
230
231 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
232 memcpy(clk, tod_clock_base, STORE_CLOCK_EXT_SIZE);
233 *(__u64 *)&clk[1] -= delta;
234 if (*(__u64 *)&clk[1] > delta)
235 clk[0]--;
236 ext_to_timespec64(clk, &boot_time);
237
238 read_persistent_clock64(wall_time);
239 *boot_offset = timespec64_sub(*wall_time, boot_time);
240 }
241
read_tod_clock(struct clocksource * cs)242 static u64 read_tod_clock(struct clocksource *cs)
243 {
244 unsigned long long now, adj;
245
246 preempt_disable(); /* protect from changes to steering parameters */
247 now = get_tod_clock();
248 adj = tod_steering_end - now;
249 if (unlikely((s64) adj >= 0))
250 /*
251 * manually steer by 1 cycle every 2^16 cycles. This
252 * corresponds to shifting the tod delta by 15. 1s is
253 * therefore steered in ~9h. The adjust will decrease
254 * over time, until it finally reaches 0.
255 */
256 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
257 preempt_enable();
258 return now;
259 }
260
261 static struct clocksource clocksource_tod = {
262 .name = "tod",
263 .rating = 400,
264 .read = read_tod_clock,
265 .mask = -1ULL,
266 .mult = 1000,
267 .shift = 12,
268 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
269 };
270
clocksource_default_clock(void)271 struct clocksource * __init clocksource_default_clock(void)
272 {
273 return &clocksource_tod;
274 }
275
update_vsyscall(struct timekeeper * tk)276 void update_vsyscall(struct timekeeper *tk)
277 {
278 u64 nsecps;
279
280 if (tk->tkr_mono.clock != &clocksource_tod)
281 return;
282
283 /* Make userspace gettimeofday spin until we're done. */
284 ++vdso_data->tb_update_count;
285 smp_wmb();
286 vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
287 vdso_data->xtime_clock_sec = tk->xtime_sec;
288 vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
289 vdso_data->wtom_clock_sec =
290 tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
291 vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
292 + ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
293 nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
294 while (vdso_data->wtom_clock_nsec >= nsecps) {
295 vdso_data->wtom_clock_nsec -= nsecps;
296 vdso_data->wtom_clock_sec++;
297 }
298
299 vdso_data->xtime_coarse_sec = tk->xtime_sec;
300 vdso_data->xtime_coarse_nsec =
301 (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
302 vdso_data->wtom_coarse_sec =
303 vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
304 vdso_data->wtom_coarse_nsec =
305 vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
306 while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
307 vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
308 vdso_data->wtom_coarse_sec++;
309 }
310
311 vdso_data->tk_mult = tk->tkr_mono.mult;
312 vdso_data->tk_shift = tk->tkr_mono.shift;
313 vdso_data->hrtimer_res = hrtimer_resolution;
314 smp_wmb();
315 ++vdso_data->tb_update_count;
316 }
317
318 extern struct timezone sys_tz;
319
update_vsyscall_tz(void)320 void update_vsyscall_tz(void)
321 {
322 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
323 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
324 }
325
326 /*
327 * Initialize the TOD clock and the CPU timer of
328 * the boot cpu.
329 */
time_init(void)330 void __init time_init(void)
331 {
332 /* Reset time synchronization interfaces. */
333 stp_reset();
334
335 /* request the clock comparator external interrupt */
336 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
337 panic("Couldn't request external interrupt 0x1004");
338
339 /* request the timing alert external interrupt */
340 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
341 panic("Couldn't request external interrupt 0x1406");
342
343 if (__clocksource_register(&clocksource_tod) != 0)
344 panic("Could not register TOD clock source");
345
346 /* Enable TOD clock interrupts on the boot cpu. */
347 init_cpu_timer();
348
349 /* Enable cpu timer interrupts on the boot cpu. */
350 vtime_init();
351 }
352
353 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
354 static DEFINE_MUTEX(clock_sync_mutex);
355 static unsigned long clock_sync_flags;
356
357 #define CLOCK_SYNC_HAS_STP 0
358 #define CLOCK_SYNC_STP 1
359 #define CLOCK_SYNC_STPINFO_VALID 2
360
361 /*
362 * The get_clock function for the physical clock. It will get the current
363 * TOD clock, subtract the LPAR offset and write the result to *clock.
364 * The function returns 0 if the clock is in sync with the external time
365 * source. If the clock mode is local it will return -EOPNOTSUPP and
366 * -EAGAIN if the clock is not in sync with the external reference.
367 */
get_phys_clock(unsigned long * clock)368 int get_phys_clock(unsigned long *clock)
369 {
370 atomic_t *sw_ptr;
371 unsigned int sw0, sw1;
372
373 sw_ptr = &get_cpu_var(clock_sync_word);
374 sw0 = atomic_read(sw_ptr);
375 *clock = get_tod_clock() - lpar_offset;
376 sw1 = atomic_read(sw_ptr);
377 put_cpu_var(clock_sync_word);
378 if (sw0 == sw1 && (sw0 & 0x80000000U))
379 /* Success: time is in sync. */
380 return 0;
381 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
382 return -EOPNOTSUPP;
383 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
384 return -EACCES;
385 return -EAGAIN;
386 }
387 EXPORT_SYMBOL(get_phys_clock);
388
389 /*
390 * Make get_phys_clock() return -EAGAIN.
391 */
disable_sync_clock(void * dummy)392 static void disable_sync_clock(void *dummy)
393 {
394 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
395 /*
396 * Clear the in-sync bit 2^31. All get_phys_clock calls will
397 * fail until the sync bit is turned back on. In addition
398 * increase the "sequence" counter to avoid the race of an
399 * stp event and the complete recovery against get_phys_clock.
400 */
401 atomic_andnot(0x80000000, sw_ptr);
402 atomic_inc(sw_ptr);
403 }
404
405 /*
406 * Make get_phys_clock() return 0 again.
407 * Needs to be called from a context disabled for preemption.
408 */
enable_sync_clock(void)409 static void enable_sync_clock(void)
410 {
411 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
412 atomic_or(0x80000000, sw_ptr);
413 }
414
415 /*
416 * Function to check if the clock is in sync.
417 */
check_sync_clock(void)418 static inline int check_sync_clock(void)
419 {
420 atomic_t *sw_ptr;
421 int rc;
422
423 sw_ptr = &get_cpu_var(clock_sync_word);
424 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
425 put_cpu_var(clock_sync_word);
426 return rc;
427 }
428
429 /*
430 * Apply clock delta to the global data structures.
431 * This is called once on the CPU that performed the clock sync.
432 */
clock_sync_global(unsigned long long delta)433 static void clock_sync_global(unsigned long long delta)
434 {
435 unsigned long now, adj;
436 struct ptff_qto qto;
437
438 /* Fixup the monotonic sched clock. */
439 *(unsigned long long *) &tod_clock_base[1] += delta;
440 if (*(unsigned long long *) &tod_clock_base[1] < delta)
441 /* Epoch overflow */
442 tod_clock_base[0]++;
443 /* Adjust TOD steering parameters. */
444 vdso_data->tb_update_count++;
445 now = get_tod_clock();
446 adj = tod_steering_end - now;
447 if (unlikely((s64) adj >= 0))
448 /* Calculate how much of the old adjustment is left. */
449 tod_steering_delta = (tod_steering_delta < 0) ?
450 -(adj >> 15) : (adj >> 15);
451 tod_steering_delta += delta;
452 if ((abs(tod_steering_delta) >> 48) != 0)
453 panic("TOD clock sync offset %lli is too large to drift\n",
454 tod_steering_delta);
455 tod_steering_end = now + (abs(tod_steering_delta) << 15);
456 vdso_data->ts_dir = (tod_steering_delta < 0) ? 0 : 1;
457 vdso_data->ts_end = tod_steering_end;
458 vdso_data->tb_update_count++;
459 /* Update LPAR offset. */
460 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
461 lpar_offset = qto.tod_epoch_difference;
462 /* Call the TOD clock change notifier. */
463 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
464 }
465
466 /*
467 * Apply clock delta to the per-CPU data structures of this CPU.
468 * This is called for each online CPU after the call to clock_sync_global.
469 */
clock_sync_local(unsigned long long delta)470 static void clock_sync_local(unsigned long long delta)
471 {
472 /* Add the delta to the clock comparator. */
473 if (S390_lowcore.clock_comparator != clock_comparator_max) {
474 S390_lowcore.clock_comparator += delta;
475 set_clock_comparator(S390_lowcore.clock_comparator);
476 }
477 /* Adjust the last_update_clock time-stamp. */
478 S390_lowcore.last_update_clock += delta;
479 }
480
481 /* Single threaded workqueue used for stp sync events */
482 static struct workqueue_struct *time_sync_wq;
483
time_init_wq(void)484 static void __init time_init_wq(void)
485 {
486 if (time_sync_wq)
487 return;
488 time_sync_wq = create_singlethread_workqueue("timesync");
489 }
490
491 struct clock_sync_data {
492 atomic_t cpus;
493 int in_sync;
494 unsigned long long clock_delta;
495 };
496
497 /*
498 * Server Time Protocol (STP) code.
499 */
500 static bool stp_online;
501 static struct stp_sstpi stp_info;
502 static void *stp_page;
503
504 static void stp_work_fn(struct work_struct *work);
505 static DEFINE_MUTEX(stp_work_mutex);
506 static DECLARE_WORK(stp_work, stp_work_fn);
507 static struct timer_list stp_timer;
508
early_parse_stp(char * p)509 static int __init early_parse_stp(char *p)
510 {
511 return kstrtobool(p, &stp_online);
512 }
513 early_param("stp", early_parse_stp);
514
515 /*
516 * Reset STP attachment.
517 */
stp_reset(void)518 static void __init stp_reset(void)
519 {
520 int rc;
521
522 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
523 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
524 if (rc == 0)
525 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
526 else if (stp_online) {
527 pr_warn("The real or virtual hardware system does not provide an STP interface\n");
528 free_page((unsigned long) stp_page);
529 stp_page = NULL;
530 stp_online = false;
531 }
532 }
533
stp_timeout(struct timer_list * unused)534 static void stp_timeout(struct timer_list *unused)
535 {
536 queue_work(time_sync_wq, &stp_work);
537 }
538
stp_init(void)539 static int __init stp_init(void)
540 {
541 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
542 return 0;
543 timer_setup(&stp_timer, stp_timeout, 0);
544 time_init_wq();
545 if (!stp_online)
546 return 0;
547 queue_work(time_sync_wq, &stp_work);
548 return 0;
549 }
550
551 arch_initcall(stp_init);
552
553 /*
554 * STP timing alert. There are three causes:
555 * 1) timing status change
556 * 2) link availability change
557 * 3) time control parameter change
558 * In all three cases we are only interested in the clock source state.
559 * If a STP clock source is now available use it.
560 */
stp_timing_alert(struct stp_irq_parm * intparm)561 static void stp_timing_alert(struct stp_irq_parm *intparm)
562 {
563 if (intparm->tsc || intparm->lac || intparm->tcpc)
564 queue_work(time_sync_wq, &stp_work);
565 }
566
567 /*
568 * STP sync check machine check. This is called when the timing state
569 * changes from the synchronized state to the unsynchronized state.
570 * After a STP sync check the clock is not in sync. The machine check
571 * is broadcasted to all cpus at the same time.
572 */
stp_sync_check(void)573 int stp_sync_check(void)
574 {
575 disable_sync_clock(NULL);
576 return 1;
577 }
578
579 /*
580 * STP island condition machine check. This is called when an attached
581 * server attempts to communicate over an STP link and the servers
582 * have matching CTN ids and have a valid stratum-1 configuration
583 * but the configurations do not match.
584 */
stp_island_check(void)585 int stp_island_check(void)
586 {
587 disable_sync_clock(NULL);
588 return 1;
589 }
590
stp_queue_work(void)591 void stp_queue_work(void)
592 {
593 queue_work(time_sync_wq, &stp_work);
594 }
595
__store_stpinfo(void)596 static int __store_stpinfo(void)
597 {
598 int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
599
600 if (rc)
601 clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
602 else
603 set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
604 return rc;
605 }
606
stpinfo_valid(void)607 static int stpinfo_valid(void)
608 {
609 return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
610 }
611
stp_sync_clock(void * data)612 static int stp_sync_clock(void *data)
613 {
614 struct clock_sync_data *sync = data;
615 unsigned long long clock_delta;
616 static int first;
617 int rc;
618
619 enable_sync_clock();
620 if (xchg(&first, 1) == 0) {
621 /* Wait until all other cpus entered the sync function. */
622 while (atomic_read(&sync->cpus) != 0)
623 cpu_relax();
624 rc = 0;
625 if (stp_info.todoff[0] || stp_info.todoff[1] ||
626 stp_info.todoff[2] || stp_info.todoff[3] ||
627 stp_info.tmd != 2) {
628 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
629 &clock_delta);
630 if (rc == 0) {
631 sync->clock_delta = clock_delta;
632 clock_sync_global(clock_delta);
633 rc = __store_stpinfo();
634 if (rc == 0 && stp_info.tmd != 2)
635 rc = -EAGAIN;
636 }
637 }
638 sync->in_sync = rc ? -EAGAIN : 1;
639 xchg(&first, 0);
640 } else {
641 /* Slave */
642 atomic_dec(&sync->cpus);
643 /* Wait for in_sync to be set. */
644 while (READ_ONCE(sync->in_sync) == 0)
645 __udelay(1);
646 }
647 if (sync->in_sync != 1)
648 /* Didn't work. Clear per-cpu in sync bit again. */
649 disable_sync_clock(NULL);
650 /* Apply clock delta to per-CPU fields of this CPU. */
651 clock_sync_local(sync->clock_delta);
652
653 return 0;
654 }
655
656 /*
657 * STP work. Check for the STP state and take over the clock
658 * synchronization if the STP clock source is usable.
659 */
stp_work_fn(struct work_struct * work)660 static void stp_work_fn(struct work_struct *work)
661 {
662 struct clock_sync_data stp_sync;
663 int rc;
664
665 /* prevent multiple execution. */
666 mutex_lock(&stp_work_mutex);
667
668 if (!stp_online) {
669 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
670 del_timer_sync(&stp_timer);
671 goto out_unlock;
672 }
673
674 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL);
675 if (rc)
676 goto out_unlock;
677
678 rc = __store_stpinfo();
679 if (rc || stp_info.c == 0)
680 goto out_unlock;
681
682 /* Skip synchronization if the clock is already in sync. */
683 if (check_sync_clock())
684 goto out_unlock;
685
686 memset(&stp_sync, 0, sizeof(stp_sync));
687 cpus_read_lock();
688 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
689 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
690 cpus_read_unlock();
691
692 if (!check_sync_clock())
693 /*
694 * There is a usable clock but the synchonization failed.
695 * Retry after a second.
696 */
697 mod_timer(&stp_timer, jiffies + HZ);
698
699 out_unlock:
700 mutex_unlock(&stp_work_mutex);
701 }
702
703 /*
704 * STP subsys sysfs interface functions
705 */
706 static struct bus_type stp_subsys = {
707 .name = "stp",
708 .dev_name = "stp",
709 };
710
stp_ctn_id_show(struct device * dev,struct device_attribute * attr,char * buf)711 static ssize_t stp_ctn_id_show(struct device *dev,
712 struct device_attribute *attr,
713 char *buf)
714 {
715 ssize_t ret = -ENODATA;
716
717 mutex_lock(&stp_work_mutex);
718 if (stpinfo_valid())
719 ret = sprintf(buf, "%016llx\n",
720 *(unsigned long long *) stp_info.ctnid);
721 mutex_unlock(&stp_work_mutex);
722 return ret;
723 }
724
725 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
726
stp_ctn_type_show(struct device * dev,struct device_attribute * attr,char * buf)727 static ssize_t stp_ctn_type_show(struct device *dev,
728 struct device_attribute *attr,
729 char *buf)
730 {
731 ssize_t ret = -ENODATA;
732
733 mutex_lock(&stp_work_mutex);
734 if (stpinfo_valid())
735 ret = sprintf(buf, "%i\n", stp_info.ctn);
736 mutex_unlock(&stp_work_mutex);
737 return ret;
738 }
739
740 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
741
stp_dst_offset_show(struct device * dev,struct device_attribute * attr,char * buf)742 static ssize_t stp_dst_offset_show(struct device *dev,
743 struct device_attribute *attr,
744 char *buf)
745 {
746 ssize_t ret = -ENODATA;
747
748 mutex_lock(&stp_work_mutex);
749 if (stpinfo_valid() && (stp_info.vbits & 0x2000))
750 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
751 mutex_unlock(&stp_work_mutex);
752 return ret;
753 }
754
755 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
756
stp_leap_seconds_show(struct device * dev,struct device_attribute * attr,char * buf)757 static ssize_t stp_leap_seconds_show(struct device *dev,
758 struct device_attribute *attr,
759 char *buf)
760 {
761 ssize_t ret = -ENODATA;
762
763 mutex_lock(&stp_work_mutex);
764 if (stpinfo_valid() && (stp_info.vbits & 0x8000))
765 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
766 mutex_unlock(&stp_work_mutex);
767 return ret;
768 }
769
770 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
771
stp_stratum_show(struct device * dev,struct device_attribute * attr,char * buf)772 static ssize_t stp_stratum_show(struct device *dev,
773 struct device_attribute *attr,
774 char *buf)
775 {
776 ssize_t ret = -ENODATA;
777
778 mutex_lock(&stp_work_mutex);
779 if (stpinfo_valid())
780 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
781 mutex_unlock(&stp_work_mutex);
782 return ret;
783 }
784
785 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
786
stp_time_offset_show(struct device * dev,struct device_attribute * attr,char * buf)787 static ssize_t stp_time_offset_show(struct device *dev,
788 struct device_attribute *attr,
789 char *buf)
790 {
791 ssize_t ret = -ENODATA;
792
793 mutex_lock(&stp_work_mutex);
794 if (stpinfo_valid() && (stp_info.vbits & 0x0800))
795 ret = sprintf(buf, "%i\n", (int) stp_info.tto);
796 mutex_unlock(&stp_work_mutex);
797 return ret;
798 }
799
800 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
801
stp_time_zone_offset_show(struct device * dev,struct device_attribute * attr,char * buf)802 static ssize_t stp_time_zone_offset_show(struct device *dev,
803 struct device_attribute *attr,
804 char *buf)
805 {
806 ssize_t ret = -ENODATA;
807
808 mutex_lock(&stp_work_mutex);
809 if (stpinfo_valid() && (stp_info.vbits & 0x4000))
810 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
811 mutex_unlock(&stp_work_mutex);
812 return ret;
813 }
814
815 static DEVICE_ATTR(time_zone_offset, 0400,
816 stp_time_zone_offset_show, NULL);
817
stp_timing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)818 static ssize_t stp_timing_mode_show(struct device *dev,
819 struct device_attribute *attr,
820 char *buf)
821 {
822 ssize_t ret = -ENODATA;
823
824 mutex_lock(&stp_work_mutex);
825 if (stpinfo_valid())
826 ret = sprintf(buf, "%i\n", stp_info.tmd);
827 mutex_unlock(&stp_work_mutex);
828 return ret;
829 }
830
831 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
832
stp_timing_state_show(struct device * dev,struct device_attribute * attr,char * buf)833 static ssize_t stp_timing_state_show(struct device *dev,
834 struct device_attribute *attr,
835 char *buf)
836 {
837 ssize_t ret = -ENODATA;
838
839 mutex_lock(&stp_work_mutex);
840 if (stpinfo_valid())
841 ret = sprintf(buf, "%i\n", stp_info.tst);
842 mutex_unlock(&stp_work_mutex);
843 return ret;
844 }
845
846 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
847
stp_online_show(struct device * dev,struct device_attribute * attr,char * buf)848 static ssize_t stp_online_show(struct device *dev,
849 struct device_attribute *attr,
850 char *buf)
851 {
852 return sprintf(buf, "%i\n", stp_online);
853 }
854
stp_online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)855 static ssize_t stp_online_store(struct device *dev,
856 struct device_attribute *attr,
857 const char *buf, size_t count)
858 {
859 unsigned int value;
860
861 value = simple_strtoul(buf, NULL, 0);
862 if (value != 0 && value != 1)
863 return -EINVAL;
864 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
865 return -EOPNOTSUPP;
866 mutex_lock(&clock_sync_mutex);
867 stp_online = value;
868 if (stp_online)
869 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
870 else
871 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
872 queue_work(time_sync_wq, &stp_work);
873 mutex_unlock(&clock_sync_mutex);
874 return count;
875 }
876
877 /*
878 * Can't use DEVICE_ATTR because the attribute should be named
879 * stp/online but dev_attr_online already exists in this file ..
880 */
881 static struct device_attribute dev_attr_stp_online = {
882 .attr = { .name = "online", .mode = 0600 },
883 .show = stp_online_show,
884 .store = stp_online_store,
885 };
886
887 static struct device_attribute *stp_attributes[] = {
888 &dev_attr_ctn_id,
889 &dev_attr_ctn_type,
890 &dev_attr_dst_offset,
891 &dev_attr_leap_seconds,
892 &dev_attr_stp_online,
893 &dev_attr_stratum,
894 &dev_attr_time_offset,
895 &dev_attr_time_zone_offset,
896 &dev_attr_timing_mode,
897 &dev_attr_timing_state,
898 NULL
899 };
900
stp_init_sysfs(void)901 static int __init stp_init_sysfs(void)
902 {
903 struct device_attribute **attr;
904 int rc;
905
906 rc = subsys_system_register(&stp_subsys, NULL);
907 if (rc)
908 goto out;
909 for (attr = stp_attributes; *attr; attr++) {
910 rc = device_create_file(stp_subsys.dev_root, *attr);
911 if (rc)
912 goto out_unreg;
913 }
914 return 0;
915 out_unreg:
916 for (; attr >= stp_attributes; attr--)
917 device_remove_file(stp_subsys.dev_root, *attr);
918 bus_unregister(&stp_subsys);
919 out:
920 return rc;
921 }
922
923 device_initcall(stp_init_sysfs);
924