• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *    Time of day based timer functions.
4  *
5  *  S390 version
6  *    Copyright IBM Corp. 1999, 2008
7  *    Author(s): Hartmut Penner (hp@de.ibm.com),
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
9  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10  *
11  *  Derived from "arch/i386/kernel/time.c"
12  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
13  */
14 
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/kernel_stat.h>
19 #include <linux/errno.h>
20 #include <linux/export.h>
21 #include <linux/sched.h>
22 #include <linux/sched/clock.h>
23 #include <linux/kernel.h>
24 #include <linux/param.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/cpu.h>
29 #include <linux/stop_machine.h>
30 #include <linux/time.h>
31 #include <linux/device.h>
32 #include <linux/delay.h>
33 #include <linux/init.h>
34 #include <linux/smp.h>
35 #include <linux/types.h>
36 #include <linux/profile.h>
37 #include <linux/timex.h>
38 #include <linux/notifier.h>
39 #include <linux/timekeeper_internal.h>
40 #include <linux/clockchips.h>
41 #include <linux/gfp.h>
42 #include <linux/kprobes.h>
43 #include <linux/uaccess.h>
44 #include <asm/facility.h>
45 #include <asm/delay.h>
46 #include <asm/div64.h>
47 #include <asm/vdso.h>
48 #include <asm/irq.h>
49 #include <asm/irq_regs.h>
50 #include <asm/vtimer.h>
51 #include <asm/stp.h>
52 #include <asm/cio.h>
53 #include "entry.h"
54 
55 unsigned char tod_clock_base[16] __aligned(8) = {
56 	/* Force to data section. */
57 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
58 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
59 };
60 EXPORT_SYMBOL_GPL(tod_clock_base);
61 
62 u64 clock_comparator_max = -1ULL;
63 EXPORT_SYMBOL_GPL(clock_comparator_max);
64 
65 static DEFINE_PER_CPU(struct clock_event_device, comparators);
66 
67 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
68 EXPORT_SYMBOL(s390_epoch_delta_notifier);
69 
70 unsigned char ptff_function_mask[16];
71 
72 static unsigned long long lpar_offset;
73 static unsigned long long initial_leap_seconds;
74 static unsigned long long tod_steering_end;
75 static long long tod_steering_delta;
76 
77 /*
78  * Get time offsets with PTFF
79  */
time_early_init(void)80 void __init time_early_init(void)
81 {
82 	struct ptff_qto qto;
83 	struct ptff_qui qui;
84 
85 	/* Initialize TOD steering parameters */
86 	tod_steering_end = *(unsigned long long *) &tod_clock_base[1];
87 	vdso_data->ts_end = tod_steering_end;
88 
89 	if (!test_facility(28))
90 		return;
91 
92 	ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
93 
94 	/* get LPAR offset */
95 	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
96 		lpar_offset = qto.tod_epoch_difference;
97 
98 	/* get initial leap seconds */
99 	if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
100 		initial_leap_seconds = (unsigned long long)
101 			((long) qui.old_leap * 4096000000L);
102 }
103 
104 /*
105  * Scheduler clock - returns current time in nanosec units.
106  */
sched_clock(void)107 unsigned long long notrace sched_clock(void)
108 {
109 	return tod_to_ns(get_tod_clock_monotonic());
110 }
111 NOKPROBE_SYMBOL(sched_clock);
112 
113 /*
114  * Monotonic_clock - returns # of nanoseconds passed since time_init()
115  */
monotonic_clock(void)116 unsigned long long monotonic_clock(void)
117 {
118 	return sched_clock();
119 }
120 EXPORT_SYMBOL(monotonic_clock);
121 
ext_to_timespec64(unsigned char * clk,struct timespec64 * xt)122 static void ext_to_timespec64(unsigned char *clk, struct timespec64 *xt)
123 {
124 	unsigned long long high, low, rem, sec, nsec;
125 
126 	/* Split extendnd TOD clock to micro-seconds and sub-micro-seconds */
127 	high = (*(unsigned long long *) clk) >> 4;
128 	low = (*(unsigned long long *)&clk[7]) << 4;
129 	/* Calculate seconds and nano-seconds */
130 	sec = high;
131 	rem = do_div(sec, 1000000);
132 	nsec = (((low >> 32) + (rem << 32)) * 1000) >> 32;
133 
134 	xt->tv_sec = sec;
135 	xt->tv_nsec = nsec;
136 }
137 
clock_comparator_work(void)138 void clock_comparator_work(void)
139 {
140 	struct clock_event_device *cd;
141 
142 	S390_lowcore.clock_comparator = clock_comparator_max;
143 	cd = this_cpu_ptr(&comparators);
144 	cd->event_handler(cd);
145 }
146 
s390_next_event(unsigned long delta,struct clock_event_device * evt)147 static int s390_next_event(unsigned long delta,
148 			   struct clock_event_device *evt)
149 {
150 	S390_lowcore.clock_comparator = get_tod_clock() + delta;
151 	set_clock_comparator(S390_lowcore.clock_comparator);
152 	return 0;
153 }
154 
155 /*
156  * Set up lowcore and control register of the current cpu to
157  * enable TOD clock and clock comparator interrupts.
158  */
init_cpu_timer(void)159 void init_cpu_timer(void)
160 {
161 	struct clock_event_device *cd;
162 	int cpu;
163 
164 	S390_lowcore.clock_comparator = clock_comparator_max;
165 	set_clock_comparator(S390_lowcore.clock_comparator);
166 
167 	cpu = smp_processor_id();
168 	cd = &per_cpu(comparators, cpu);
169 	cd->name		= "comparator";
170 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
171 	cd->mult		= 16777;
172 	cd->shift		= 12;
173 	cd->min_delta_ns	= 1;
174 	cd->min_delta_ticks	= 1;
175 	cd->max_delta_ns	= LONG_MAX;
176 	cd->max_delta_ticks	= ULONG_MAX;
177 	cd->rating		= 400;
178 	cd->cpumask		= cpumask_of(cpu);
179 	cd->set_next_event	= s390_next_event;
180 
181 	clockevents_register_device(cd);
182 
183 	/* Enable clock comparator timer interrupt. */
184 	__ctl_set_bit(0,11);
185 
186 	/* Always allow the timing alert external interrupt. */
187 	__ctl_set_bit(0, 4);
188 }
189 
clock_comparator_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)190 static void clock_comparator_interrupt(struct ext_code ext_code,
191 				       unsigned int param32,
192 				       unsigned long param64)
193 {
194 	inc_irq_stat(IRQEXT_CLK);
195 	if (S390_lowcore.clock_comparator == clock_comparator_max)
196 		set_clock_comparator(S390_lowcore.clock_comparator);
197 }
198 
199 static void stp_timing_alert(struct stp_irq_parm *);
200 
timing_alert_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)201 static void timing_alert_interrupt(struct ext_code ext_code,
202 				   unsigned int param32, unsigned long param64)
203 {
204 	inc_irq_stat(IRQEXT_TLA);
205 	if (param32 & 0x00038000)
206 		stp_timing_alert((struct stp_irq_parm *) &param32);
207 }
208 
209 static void stp_reset(void);
210 
read_persistent_clock64(struct timespec64 * ts)211 void read_persistent_clock64(struct timespec64 *ts)
212 {
213 	unsigned char clk[STORE_CLOCK_EXT_SIZE];
214 	__u64 delta;
215 
216 	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
217 	get_tod_clock_ext(clk);
218 	*(__u64 *) &clk[1] -= delta;
219 	if (*(__u64 *) &clk[1] > delta)
220 		clk[0]--;
221 	ext_to_timespec64(clk, ts);
222 }
223 
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)224 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
225 						 struct timespec64 *boot_offset)
226 {
227 	unsigned char clk[STORE_CLOCK_EXT_SIZE];
228 	struct timespec64 boot_time;
229 	__u64 delta;
230 
231 	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
232 	memcpy(clk, tod_clock_base, STORE_CLOCK_EXT_SIZE);
233 	*(__u64 *)&clk[1] -= delta;
234 	if (*(__u64 *)&clk[1] > delta)
235 		clk[0]--;
236 	ext_to_timespec64(clk, &boot_time);
237 
238 	read_persistent_clock64(wall_time);
239 	*boot_offset = timespec64_sub(*wall_time, boot_time);
240 }
241 
read_tod_clock(struct clocksource * cs)242 static u64 read_tod_clock(struct clocksource *cs)
243 {
244 	unsigned long long now, adj;
245 
246 	preempt_disable(); /* protect from changes to steering parameters */
247 	now = get_tod_clock();
248 	adj = tod_steering_end - now;
249 	if (unlikely((s64) adj >= 0))
250 		/*
251 		 * manually steer by 1 cycle every 2^16 cycles. This
252 		 * corresponds to shifting the tod delta by 15. 1s is
253 		 * therefore steered in ~9h. The adjust will decrease
254 		 * over time, until it finally reaches 0.
255 		 */
256 		now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
257 	preempt_enable();
258 	return now;
259 }
260 
261 static struct clocksource clocksource_tod = {
262 	.name		= "tod",
263 	.rating		= 400,
264 	.read		= read_tod_clock,
265 	.mask		= -1ULL,
266 	.mult		= 1000,
267 	.shift		= 12,
268 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
269 };
270 
clocksource_default_clock(void)271 struct clocksource * __init clocksource_default_clock(void)
272 {
273 	return &clocksource_tod;
274 }
275 
update_vsyscall(struct timekeeper * tk)276 void update_vsyscall(struct timekeeper *tk)
277 {
278 	u64 nsecps;
279 
280 	if (tk->tkr_mono.clock != &clocksource_tod)
281 		return;
282 
283 	/* Make userspace gettimeofday spin until we're done. */
284 	++vdso_data->tb_update_count;
285 	smp_wmb();
286 	vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
287 	vdso_data->xtime_clock_sec = tk->xtime_sec;
288 	vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
289 	vdso_data->wtom_clock_sec =
290 		tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
291 	vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
292 		+ ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
293 	nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
294 	while (vdso_data->wtom_clock_nsec >= nsecps) {
295 		vdso_data->wtom_clock_nsec -= nsecps;
296 		vdso_data->wtom_clock_sec++;
297 	}
298 
299 	vdso_data->xtime_coarse_sec = tk->xtime_sec;
300 	vdso_data->xtime_coarse_nsec =
301 		(long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
302 	vdso_data->wtom_coarse_sec =
303 		vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
304 	vdso_data->wtom_coarse_nsec =
305 		vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
306 	while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
307 		vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
308 		vdso_data->wtom_coarse_sec++;
309 	}
310 
311 	vdso_data->tk_mult = tk->tkr_mono.mult;
312 	vdso_data->tk_shift = tk->tkr_mono.shift;
313 	vdso_data->hrtimer_res = hrtimer_resolution;
314 	smp_wmb();
315 	++vdso_data->tb_update_count;
316 }
317 
318 extern struct timezone sys_tz;
319 
update_vsyscall_tz(void)320 void update_vsyscall_tz(void)
321 {
322 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
323 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
324 }
325 
326 /*
327  * Initialize the TOD clock and the CPU timer of
328  * the boot cpu.
329  */
time_init(void)330 void __init time_init(void)
331 {
332 	/* Reset time synchronization interfaces. */
333 	stp_reset();
334 
335 	/* request the clock comparator external interrupt */
336 	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
337 		panic("Couldn't request external interrupt 0x1004");
338 
339 	/* request the timing alert external interrupt */
340 	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
341 		panic("Couldn't request external interrupt 0x1406");
342 
343 	if (__clocksource_register(&clocksource_tod) != 0)
344 		panic("Could not register TOD clock source");
345 
346 	/* Enable TOD clock interrupts on the boot cpu. */
347 	init_cpu_timer();
348 
349 	/* Enable cpu timer interrupts on the boot cpu. */
350 	vtime_init();
351 }
352 
353 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
354 static DEFINE_MUTEX(clock_sync_mutex);
355 static unsigned long clock_sync_flags;
356 
357 #define CLOCK_SYNC_HAS_STP		0
358 #define CLOCK_SYNC_STP			1
359 #define CLOCK_SYNC_STPINFO_VALID	2
360 
361 /*
362  * The get_clock function for the physical clock. It will get the current
363  * TOD clock, subtract the LPAR offset and write the result to *clock.
364  * The function returns 0 if the clock is in sync with the external time
365  * source. If the clock mode is local it will return -EOPNOTSUPP and
366  * -EAGAIN if the clock is not in sync with the external reference.
367  */
get_phys_clock(unsigned long * clock)368 int get_phys_clock(unsigned long *clock)
369 {
370 	atomic_t *sw_ptr;
371 	unsigned int sw0, sw1;
372 
373 	sw_ptr = &get_cpu_var(clock_sync_word);
374 	sw0 = atomic_read(sw_ptr);
375 	*clock = get_tod_clock() - lpar_offset;
376 	sw1 = atomic_read(sw_ptr);
377 	put_cpu_var(clock_sync_word);
378 	if (sw0 == sw1 && (sw0 & 0x80000000U))
379 		/* Success: time is in sync. */
380 		return 0;
381 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
382 		return -EOPNOTSUPP;
383 	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
384 		return -EACCES;
385 	return -EAGAIN;
386 }
387 EXPORT_SYMBOL(get_phys_clock);
388 
389 /*
390  * Make get_phys_clock() return -EAGAIN.
391  */
disable_sync_clock(void * dummy)392 static void disable_sync_clock(void *dummy)
393 {
394 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
395 	/*
396 	 * Clear the in-sync bit 2^31. All get_phys_clock calls will
397 	 * fail until the sync bit is turned back on. In addition
398 	 * increase the "sequence" counter to avoid the race of an
399 	 * stp event and the complete recovery against get_phys_clock.
400 	 */
401 	atomic_andnot(0x80000000, sw_ptr);
402 	atomic_inc(sw_ptr);
403 }
404 
405 /*
406  * Make get_phys_clock() return 0 again.
407  * Needs to be called from a context disabled for preemption.
408  */
enable_sync_clock(void)409 static void enable_sync_clock(void)
410 {
411 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
412 	atomic_or(0x80000000, sw_ptr);
413 }
414 
415 /*
416  * Function to check if the clock is in sync.
417  */
check_sync_clock(void)418 static inline int check_sync_clock(void)
419 {
420 	atomic_t *sw_ptr;
421 	int rc;
422 
423 	sw_ptr = &get_cpu_var(clock_sync_word);
424 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
425 	put_cpu_var(clock_sync_word);
426 	return rc;
427 }
428 
429 /*
430  * Apply clock delta to the global data structures.
431  * This is called once on the CPU that performed the clock sync.
432  */
clock_sync_global(unsigned long long delta)433 static void clock_sync_global(unsigned long long delta)
434 {
435 	unsigned long now, adj;
436 	struct ptff_qto qto;
437 
438 	/* Fixup the monotonic sched clock. */
439 	*(unsigned long long *) &tod_clock_base[1] += delta;
440 	if (*(unsigned long long *) &tod_clock_base[1] < delta)
441 		/* Epoch overflow */
442 		tod_clock_base[0]++;
443 	/* Adjust TOD steering parameters. */
444 	vdso_data->tb_update_count++;
445 	now = get_tod_clock();
446 	adj = tod_steering_end - now;
447 	if (unlikely((s64) adj >= 0))
448 		/* Calculate how much of the old adjustment is left. */
449 		tod_steering_delta = (tod_steering_delta < 0) ?
450 			-(adj >> 15) : (adj >> 15);
451 	tod_steering_delta += delta;
452 	if ((abs(tod_steering_delta) >> 48) != 0)
453 		panic("TOD clock sync offset %lli is too large to drift\n",
454 		      tod_steering_delta);
455 	tod_steering_end = now + (abs(tod_steering_delta) << 15);
456 	vdso_data->ts_dir = (tod_steering_delta < 0) ? 0 : 1;
457 	vdso_data->ts_end = tod_steering_end;
458 	vdso_data->tb_update_count++;
459 	/* Update LPAR offset. */
460 	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
461 		lpar_offset = qto.tod_epoch_difference;
462 	/* Call the TOD clock change notifier. */
463 	atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
464 }
465 
466 /*
467  * Apply clock delta to the per-CPU data structures of this CPU.
468  * This is called for each online CPU after the call to clock_sync_global.
469  */
clock_sync_local(unsigned long long delta)470 static void clock_sync_local(unsigned long long delta)
471 {
472 	/* Add the delta to the clock comparator. */
473 	if (S390_lowcore.clock_comparator != clock_comparator_max) {
474 		S390_lowcore.clock_comparator += delta;
475 		set_clock_comparator(S390_lowcore.clock_comparator);
476 	}
477 	/* Adjust the last_update_clock time-stamp. */
478 	S390_lowcore.last_update_clock += delta;
479 }
480 
481 /* Single threaded workqueue used for stp sync events */
482 static struct workqueue_struct *time_sync_wq;
483 
time_init_wq(void)484 static void __init time_init_wq(void)
485 {
486 	if (time_sync_wq)
487 		return;
488 	time_sync_wq = create_singlethread_workqueue("timesync");
489 }
490 
491 struct clock_sync_data {
492 	atomic_t cpus;
493 	int in_sync;
494 	unsigned long long clock_delta;
495 };
496 
497 /*
498  * Server Time Protocol (STP) code.
499  */
500 static bool stp_online;
501 static struct stp_sstpi stp_info;
502 static void *stp_page;
503 
504 static void stp_work_fn(struct work_struct *work);
505 static DEFINE_MUTEX(stp_work_mutex);
506 static DECLARE_WORK(stp_work, stp_work_fn);
507 static struct timer_list stp_timer;
508 
early_parse_stp(char * p)509 static int __init early_parse_stp(char *p)
510 {
511 	return kstrtobool(p, &stp_online);
512 }
513 early_param("stp", early_parse_stp);
514 
515 /*
516  * Reset STP attachment.
517  */
stp_reset(void)518 static void __init stp_reset(void)
519 {
520 	int rc;
521 
522 	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
523 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
524 	if (rc == 0)
525 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
526 	else if (stp_online) {
527 		pr_warn("The real or virtual hardware system does not provide an STP interface\n");
528 		free_page((unsigned long) stp_page);
529 		stp_page = NULL;
530 		stp_online = false;
531 	}
532 }
533 
stp_timeout(struct timer_list * unused)534 static void stp_timeout(struct timer_list *unused)
535 {
536 	queue_work(time_sync_wq, &stp_work);
537 }
538 
stp_init(void)539 static int __init stp_init(void)
540 {
541 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
542 		return 0;
543 	timer_setup(&stp_timer, stp_timeout, 0);
544 	time_init_wq();
545 	if (!stp_online)
546 		return 0;
547 	queue_work(time_sync_wq, &stp_work);
548 	return 0;
549 }
550 
551 arch_initcall(stp_init);
552 
553 /*
554  * STP timing alert. There are three causes:
555  * 1) timing status change
556  * 2) link availability change
557  * 3) time control parameter change
558  * In all three cases we are only interested in the clock source state.
559  * If a STP clock source is now available use it.
560  */
stp_timing_alert(struct stp_irq_parm * intparm)561 static void stp_timing_alert(struct stp_irq_parm *intparm)
562 {
563 	if (intparm->tsc || intparm->lac || intparm->tcpc)
564 		queue_work(time_sync_wq, &stp_work);
565 }
566 
567 /*
568  * STP sync check machine check. This is called when the timing state
569  * changes from the synchronized state to the unsynchronized state.
570  * After a STP sync check the clock is not in sync. The machine check
571  * is broadcasted to all cpus at the same time.
572  */
stp_sync_check(void)573 int stp_sync_check(void)
574 {
575 	disable_sync_clock(NULL);
576 	return 1;
577 }
578 
579 /*
580  * STP island condition machine check. This is called when an attached
581  * server  attempts to communicate over an STP link and the servers
582  * have matching CTN ids and have a valid stratum-1 configuration
583  * but the configurations do not match.
584  */
stp_island_check(void)585 int stp_island_check(void)
586 {
587 	disable_sync_clock(NULL);
588 	return 1;
589 }
590 
stp_queue_work(void)591 void stp_queue_work(void)
592 {
593 	queue_work(time_sync_wq, &stp_work);
594 }
595 
__store_stpinfo(void)596 static int __store_stpinfo(void)
597 {
598 	int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
599 
600 	if (rc)
601 		clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
602 	else
603 		set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
604 	return rc;
605 }
606 
stpinfo_valid(void)607 static int stpinfo_valid(void)
608 {
609 	return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
610 }
611 
stp_sync_clock(void * data)612 static int stp_sync_clock(void *data)
613 {
614 	struct clock_sync_data *sync = data;
615 	unsigned long long clock_delta;
616 	static int first;
617 	int rc;
618 
619 	enable_sync_clock();
620 	if (xchg(&first, 1) == 0) {
621 		/* Wait until all other cpus entered the sync function. */
622 		while (atomic_read(&sync->cpus) != 0)
623 			cpu_relax();
624 		rc = 0;
625 		if (stp_info.todoff[0] || stp_info.todoff[1] ||
626 		    stp_info.todoff[2] || stp_info.todoff[3] ||
627 		    stp_info.tmd != 2) {
628 			rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
629 					&clock_delta);
630 			if (rc == 0) {
631 				sync->clock_delta = clock_delta;
632 				clock_sync_global(clock_delta);
633 				rc = __store_stpinfo();
634 				if (rc == 0 && stp_info.tmd != 2)
635 					rc = -EAGAIN;
636 			}
637 		}
638 		sync->in_sync = rc ? -EAGAIN : 1;
639 		xchg(&first, 0);
640 	} else {
641 		/* Slave */
642 		atomic_dec(&sync->cpus);
643 		/* Wait for in_sync to be set. */
644 		while (READ_ONCE(sync->in_sync) == 0)
645 			__udelay(1);
646 	}
647 	if (sync->in_sync != 1)
648 		/* Didn't work. Clear per-cpu in sync bit again. */
649 		disable_sync_clock(NULL);
650 	/* Apply clock delta to per-CPU fields of this CPU. */
651 	clock_sync_local(sync->clock_delta);
652 
653 	return 0;
654 }
655 
656 /*
657  * STP work. Check for the STP state and take over the clock
658  * synchronization if the STP clock source is usable.
659  */
stp_work_fn(struct work_struct * work)660 static void stp_work_fn(struct work_struct *work)
661 {
662 	struct clock_sync_data stp_sync;
663 	int rc;
664 
665 	/* prevent multiple execution. */
666 	mutex_lock(&stp_work_mutex);
667 
668 	if (!stp_online) {
669 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
670 		del_timer_sync(&stp_timer);
671 		goto out_unlock;
672 	}
673 
674 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL);
675 	if (rc)
676 		goto out_unlock;
677 
678 	rc = __store_stpinfo();
679 	if (rc || stp_info.c == 0)
680 		goto out_unlock;
681 
682 	/* Skip synchronization if the clock is already in sync. */
683 	if (check_sync_clock())
684 		goto out_unlock;
685 
686 	memset(&stp_sync, 0, sizeof(stp_sync));
687 	cpus_read_lock();
688 	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
689 	stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
690 	cpus_read_unlock();
691 
692 	if (!check_sync_clock())
693 		/*
694 		 * There is a usable clock but the synchonization failed.
695 		 * Retry after a second.
696 		 */
697 		mod_timer(&stp_timer, jiffies + HZ);
698 
699 out_unlock:
700 	mutex_unlock(&stp_work_mutex);
701 }
702 
703 /*
704  * STP subsys sysfs interface functions
705  */
706 static struct bus_type stp_subsys = {
707 	.name		= "stp",
708 	.dev_name	= "stp",
709 };
710 
stp_ctn_id_show(struct device * dev,struct device_attribute * attr,char * buf)711 static ssize_t stp_ctn_id_show(struct device *dev,
712 				struct device_attribute *attr,
713 				char *buf)
714 {
715 	ssize_t ret = -ENODATA;
716 
717 	mutex_lock(&stp_work_mutex);
718 	if (stpinfo_valid())
719 		ret = sprintf(buf, "%016llx\n",
720 			      *(unsigned long long *) stp_info.ctnid);
721 	mutex_unlock(&stp_work_mutex);
722 	return ret;
723 }
724 
725 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
726 
stp_ctn_type_show(struct device * dev,struct device_attribute * attr,char * buf)727 static ssize_t stp_ctn_type_show(struct device *dev,
728 				struct device_attribute *attr,
729 				char *buf)
730 {
731 	ssize_t ret = -ENODATA;
732 
733 	mutex_lock(&stp_work_mutex);
734 	if (stpinfo_valid())
735 		ret = sprintf(buf, "%i\n", stp_info.ctn);
736 	mutex_unlock(&stp_work_mutex);
737 	return ret;
738 }
739 
740 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
741 
stp_dst_offset_show(struct device * dev,struct device_attribute * attr,char * buf)742 static ssize_t stp_dst_offset_show(struct device *dev,
743 				   struct device_attribute *attr,
744 				   char *buf)
745 {
746 	ssize_t ret = -ENODATA;
747 
748 	mutex_lock(&stp_work_mutex);
749 	if (stpinfo_valid() && (stp_info.vbits & 0x2000))
750 		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
751 	mutex_unlock(&stp_work_mutex);
752 	return ret;
753 }
754 
755 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
756 
stp_leap_seconds_show(struct device * dev,struct device_attribute * attr,char * buf)757 static ssize_t stp_leap_seconds_show(struct device *dev,
758 					struct device_attribute *attr,
759 					char *buf)
760 {
761 	ssize_t ret = -ENODATA;
762 
763 	mutex_lock(&stp_work_mutex);
764 	if (stpinfo_valid() && (stp_info.vbits & 0x8000))
765 		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
766 	mutex_unlock(&stp_work_mutex);
767 	return ret;
768 }
769 
770 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
771 
stp_stratum_show(struct device * dev,struct device_attribute * attr,char * buf)772 static ssize_t stp_stratum_show(struct device *dev,
773 				struct device_attribute *attr,
774 				char *buf)
775 {
776 	ssize_t ret = -ENODATA;
777 
778 	mutex_lock(&stp_work_mutex);
779 	if (stpinfo_valid())
780 		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
781 	mutex_unlock(&stp_work_mutex);
782 	return ret;
783 }
784 
785 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
786 
stp_time_offset_show(struct device * dev,struct device_attribute * attr,char * buf)787 static ssize_t stp_time_offset_show(struct device *dev,
788 				struct device_attribute *attr,
789 				char *buf)
790 {
791 	ssize_t ret = -ENODATA;
792 
793 	mutex_lock(&stp_work_mutex);
794 	if (stpinfo_valid() && (stp_info.vbits & 0x0800))
795 		ret = sprintf(buf, "%i\n", (int) stp_info.tto);
796 	mutex_unlock(&stp_work_mutex);
797 	return ret;
798 }
799 
800 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
801 
stp_time_zone_offset_show(struct device * dev,struct device_attribute * attr,char * buf)802 static ssize_t stp_time_zone_offset_show(struct device *dev,
803 				struct device_attribute *attr,
804 				char *buf)
805 {
806 	ssize_t ret = -ENODATA;
807 
808 	mutex_lock(&stp_work_mutex);
809 	if (stpinfo_valid() && (stp_info.vbits & 0x4000))
810 		ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
811 	mutex_unlock(&stp_work_mutex);
812 	return ret;
813 }
814 
815 static DEVICE_ATTR(time_zone_offset, 0400,
816 			 stp_time_zone_offset_show, NULL);
817 
stp_timing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)818 static ssize_t stp_timing_mode_show(struct device *dev,
819 				struct device_attribute *attr,
820 				char *buf)
821 {
822 	ssize_t ret = -ENODATA;
823 
824 	mutex_lock(&stp_work_mutex);
825 	if (stpinfo_valid())
826 		ret = sprintf(buf, "%i\n", stp_info.tmd);
827 	mutex_unlock(&stp_work_mutex);
828 	return ret;
829 }
830 
831 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
832 
stp_timing_state_show(struct device * dev,struct device_attribute * attr,char * buf)833 static ssize_t stp_timing_state_show(struct device *dev,
834 				struct device_attribute *attr,
835 				char *buf)
836 {
837 	ssize_t ret = -ENODATA;
838 
839 	mutex_lock(&stp_work_mutex);
840 	if (stpinfo_valid())
841 		ret = sprintf(buf, "%i\n", stp_info.tst);
842 	mutex_unlock(&stp_work_mutex);
843 	return ret;
844 }
845 
846 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
847 
stp_online_show(struct device * dev,struct device_attribute * attr,char * buf)848 static ssize_t stp_online_show(struct device *dev,
849 				struct device_attribute *attr,
850 				char *buf)
851 {
852 	return sprintf(buf, "%i\n", stp_online);
853 }
854 
stp_online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)855 static ssize_t stp_online_store(struct device *dev,
856 				struct device_attribute *attr,
857 				const char *buf, size_t count)
858 {
859 	unsigned int value;
860 
861 	value = simple_strtoul(buf, NULL, 0);
862 	if (value != 0 && value != 1)
863 		return -EINVAL;
864 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
865 		return -EOPNOTSUPP;
866 	mutex_lock(&clock_sync_mutex);
867 	stp_online = value;
868 	if (stp_online)
869 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
870 	else
871 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
872 	queue_work(time_sync_wq, &stp_work);
873 	mutex_unlock(&clock_sync_mutex);
874 	return count;
875 }
876 
877 /*
878  * Can't use DEVICE_ATTR because the attribute should be named
879  * stp/online but dev_attr_online already exists in this file ..
880  */
881 static struct device_attribute dev_attr_stp_online = {
882 	.attr = { .name = "online", .mode = 0600 },
883 	.show	= stp_online_show,
884 	.store	= stp_online_store,
885 };
886 
887 static struct device_attribute *stp_attributes[] = {
888 	&dev_attr_ctn_id,
889 	&dev_attr_ctn_type,
890 	&dev_attr_dst_offset,
891 	&dev_attr_leap_seconds,
892 	&dev_attr_stp_online,
893 	&dev_attr_stratum,
894 	&dev_attr_time_offset,
895 	&dev_attr_time_zone_offset,
896 	&dev_attr_timing_mode,
897 	&dev_attr_timing_state,
898 	NULL
899 };
900 
stp_init_sysfs(void)901 static int __init stp_init_sysfs(void)
902 {
903 	struct device_attribute **attr;
904 	int rc;
905 
906 	rc = subsys_system_register(&stp_subsys, NULL);
907 	if (rc)
908 		goto out;
909 	for (attr = stp_attributes; *attr; attr++) {
910 		rc = device_create_file(stp_subsys.dev_root, *attr);
911 		if (rc)
912 			goto out_unreg;
913 	}
914 	return 0;
915 out_unreg:
916 	for (; attr >= stp_attributes; attr--)
917 		device_remove_file(stp_subsys.dev_root, *attr);
918 	bus_unregister(&stp_subsys);
919 out:
920 	return rc;
921 }
922 
923 device_initcall(stp_init_sysfs);
924