• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BPF Jit compiler for s390.
4  *
5  * Minimum build requirements:
6  *
7  *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
8  *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9  *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10  *  - PACK_STACK
11  *  - 64BIT
12  *
13  * Copyright IBM Corp. 2012,2015
14  *
15  * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
16  *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
17  */
18 
19 #define KMSG_COMPONENT "bpf_jit"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 
22 #include <linux/netdevice.h>
23 #include <linux/filter.h>
24 #include <linux/init.h>
25 #include <linux/bpf.h>
26 #include <linux/mm.h>
27 #include <asm/cacheflush.h>
28 #include <asm/dis.h>
29 #include <asm/facility.h>
30 #include <asm/nospec-branch.h>
31 #include <asm/set_memory.h>
32 #include "bpf_jit.h"
33 
34 struct bpf_jit {
35 	u32 seen;		/* Flags to remember seen eBPF instructions */
36 	u32 seen_reg[16];	/* Array to remember which registers are used */
37 	u32 *addrs;		/* Array with relative instruction addresses */
38 	u8 *prg_buf;		/* Start of program */
39 	int size;		/* Size of program and literal pool */
40 	int size_prg;		/* Size of program */
41 	int prg;		/* Current position in program */
42 	int lit_start;		/* Start of literal pool */
43 	int lit;		/* Current position in literal pool */
44 	int base_ip;		/* Base address for literal pool */
45 	int ret0_ip;		/* Address of return 0 */
46 	int exit_ip;		/* Address of exit */
47 	int r1_thunk_ip;	/* Address of expoline thunk for 'br %r1' */
48 	int r14_thunk_ip;	/* Address of expoline thunk for 'br %r14' */
49 	int tail_call_start;	/* Tail call start offset */
50 	int labels[1];		/* Labels for local jumps */
51 };
52 
53 #define BPF_SIZE_MAX	0xffff	/* Max size for program (16 bit branches) */
54 
55 #define SEEN_MEM	(1 << 0)	/* use mem[] for temporary storage */
56 #define SEEN_RET0	(1 << 1)	/* ret0_ip points to a valid return 0 */
57 #define SEEN_LITERAL	(1 << 2)	/* code uses literals */
58 #define SEEN_FUNC	(1 << 3)	/* calls C functions */
59 #define SEEN_TAIL_CALL	(1 << 4)	/* code uses tail calls */
60 #define SEEN_REG_AX	(1 << 5)	/* code uses constant blinding */
61 #define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
62 
63 /*
64  * s390 registers
65  */
66 #define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
67 #define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
68 #define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
69 #define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
70 #define REG_0		REG_W0			/* Register 0 */
71 #define REG_1		REG_W1			/* Register 1 */
72 #define REG_2		BPF_REG_1		/* Register 2 */
73 #define REG_14		BPF_REG_0		/* Register 14 */
74 
75 /*
76  * Mapping of BPF registers to s390 registers
77  */
78 static const int reg2hex[] = {
79 	/* Return code */
80 	[BPF_REG_0]	= 14,
81 	/* Function parameters */
82 	[BPF_REG_1]	= 2,
83 	[BPF_REG_2]	= 3,
84 	[BPF_REG_3]	= 4,
85 	[BPF_REG_4]	= 5,
86 	[BPF_REG_5]	= 6,
87 	/* Call saved registers */
88 	[BPF_REG_6]	= 7,
89 	[BPF_REG_7]	= 8,
90 	[BPF_REG_8]	= 9,
91 	[BPF_REG_9]	= 10,
92 	/* BPF stack pointer */
93 	[BPF_REG_FP]	= 13,
94 	/* Register for blinding */
95 	[BPF_REG_AX]	= 12,
96 	/* Work registers for s390x backend */
97 	[REG_W0]	= 0,
98 	[REG_W1]	= 1,
99 	[REG_L]		= 11,
100 	[REG_15]	= 15,
101 };
102 
reg(u32 dst_reg,u32 src_reg)103 static inline u32 reg(u32 dst_reg, u32 src_reg)
104 {
105 	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
106 }
107 
reg_high(u32 reg)108 static inline u32 reg_high(u32 reg)
109 {
110 	return reg2hex[reg] << 4;
111 }
112 
reg_set_seen(struct bpf_jit * jit,u32 b1)113 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
114 {
115 	u32 r1 = reg2hex[b1];
116 
117 	if (r1 >= 6 && r1 <= 15 && !jit->seen_reg[r1])
118 		jit->seen_reg[r1] = 1;
119 }
120 
121 #define REG_SET_SEEN(b1)					\
122 ({								\
123 	reg_set_seen(jit, b1);					\
124 })
125 
126 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
127 
128 /*
129  * EMIT macros for code generation
130  */
131 
132 #define _EMIT2(op)						\
133 ({								\
134 	if (jit->prg_buf)					\
135 		*(u16 *) (jit->prg_buf + jit->prg) = op;	\
136 	jit->prg += 2;						\
137 })
138 
139 #define EMIT2(op, b1, b2)					\
140 ({								\
141 	_EMIT2(op | reg(b1, b2));				\
142 	REG_SET_SEEN(b1);					\
143 	REG_SET_SEEN(b2);					\
144 })
145 
146 #define _EMIT4(op)						\
147 ({								\
148 	if (jit->prg_buf)					\
149 		*(u32 *) (jit->prg_buf + jit->prg) = op;	\
150 	jit->prg += 4;						\
151 })
152 
153 #define EMIT4(op, b1, b2)					\
154 ({								\
155 	_EMIT4(op | reg(b1, b2));				\
156 	REG_SET_SEEN(b1);					\
157 	REG_SET_SEEN(b2);					\
158 })
159 
160 #define EMIT4_RRF(op, b1, b2, b3)				\
161 ({								\
162 	_EMIT4(op | reg_high(b3) << 8 | reg(b1, b2));		\
163 	REG_SET_SEEN(b1);					\
164 	REG_SET_SEEN(b2);					\
165 	REG_SET_SEEN(b3);					\
166 })
167 
168 #define _EMIT4_DISP(op, disp)					\
169 ({								\
170 	unsigned int __disp = (disp) & 0xfff;			\
171 	_EMIT4(op | __disp);					\
172 })
173 
174 #define EMIT4_DISP(op, b1, b2, disp)				\
175 ({								\
176 	_EMIT4_DISP(op | reg_high(b1) << 16 |			\
177 		    reg_high(b2) << 8, disp);			\
178 	REG_SET_SEEN(b1);					\
179 	REG_SET_SEEN(b2);					\
180 })
181 
182 #define EMIT4_IMM(op, b1, imm)					\
183 ({								\
184 	unsigned int __imm = (imm) & 0xffff;			\
185 	_EMIT4(op | reg_high(b1) << 16 | __imm);		\
186 	REG_SET_SEEN(b1);					\
187 })
188 
189 #define EMIT4_PCREL(op, pcrel)					\
190 ({								\
191 	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
192 	_EMIT4(op | __pcrel);					\
193 })
194 
195 #define _EMIT6(op1, op2)					\
196 ({								\
197 	if (jit->prg_buf) {					\
198 		*(u32 *) (jit->prg_buf + jit->prg) = op1;	\
199 		*(u16 *) (jit->prg_buf + jit->prg + 4) = op2;	\
200 	}							\
201 	jit->prg += 6;						\
202 })
203 
204 #define _EMIT6_DISP(op1, op2, disp)				\
205 ({								\
206 	unsigned int __disp = (disp) & 0xfff;			\
207 	_EMIT6(op1 | __disp, op2);				\
208 })
209 
210 #define _EMIT6_DISP_LH(op1, op2, disp)				\
211 ({								\
212 	u32 _disp = (u32) disp;					\
213 	unsigned int __disp_h = _disp & 0xff000;		\
214 	unsigned int __disp_l = _disp & 0x00fff;		\
215 	_EMIT6(op1 | __disp_l, op2 | __disp_h >> 4);		\
216 })
217 
218 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
219 ({								\
220 	_EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 |		\
221 		       reg_high(b3) << 8, op2, disp);		\
222 	REG_SET_SEEN(b1);					\
223 	REG_SET_SEEN(b2);					\
224 	REG_SET_SEEN(b3);					\
225 })
226 
227 #define EMIT6_PCREL_LABEL(op1, op2, b1, b2, label, mask)	\
228 ({								\
229 	int rel = (jit->labels[label] - jit->prg) >> 1;		\
230 	_EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff),	\
231 	       op2 | mask << 12);				\
232 	REG_SET_SEEN(b1);					\
233 	REG_SET_SEEN(b2);					\
234 })
235 
236 #define EMIT6_PCREL_IMM_LABEL(op1, op2, b1, imm, label, mask)	\
237 ({								\
238 	int rel = (jit->labels[label] - jit->prg) >> 1;		\
239 	_EMIT6(op1 | (reg_high(b1) | mask) << 16 |		\
240 		(rel & 0xffff), op2 | (imm & 0xff) << 8);	\
241 	REG_SET_SEEN(b1);					\
242 	BUILD_BUG_ON(((unsigned long) imm) > 0xff);		\
243 })
244 
245 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
246 ({								\
247 	/* Branch instruction needs 6 bytes */			\
248 	int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
249 	_EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), op2 | mask);	\
250 	REG_SET_SEEN(b1);					\
251 	REG_SET_SEEN(b2);					\
252 })
253 
254 #define EMIT6_PCREL_RILB(op, b, target)				\
255 ({								\
256 	int rel = (target - jit->prg) / 2;			\
257 	_EMIT6(op | reg_high(b) << 16 | rel >> 16, rel & 0xffff);	\
258 	REG_SET_SEEN(b);					\
259 })
260 
261 #define EMIT6_PCREL_RIL(op, target)				\
262 ({								\
263 	int rel = (target - jit->prg) / 2;			\
264 	_EMIT6(op | rel >> 16, rel & 0xffff);			\
265 })
266 
267 #define _EMIT6_IMM(op, imm)					\
268 ({								\
269 	unsigned int __imm = (imm);				\
270 	_EMIT6(op | (__imm >> 16), __imm & 0xffff);		\
271 })
272 
273 #define EMIT6_IMM(op, b1, imm)					\
274 ({								\
275 	_EMIT6_IMM(op | reg_high(b1) << 16, imm);		\
276 	REG_SET_SEEN(b1);					\
277 })
278 
279 #define EMIT_CONST_U32(val)					\
280 ({								\
281 	unsigned int ret;					\
282 	ret = jit->lit - jit->base_ip;				\
283 	jit->seen |= SEEN_LITERAL;				\
284 	if (jit->prg_buf)					\
285 		*(u32 *) (jit->prg_buf + jit->lit) = (u32) val;	\
286 	jit->lit += 4;						\
287 	ret;							\
288 })
289 
290 #define EMIT_CONST_U64(val)					\
291 ({								\
292 	unsigned int ret;					\
293 	ret = jit->lit - jit->base_ip;				\
294 	jit->seen |= SEEN_LITERAL;				\
295 	if (jit->prg_buf)					\
296 		*(u64 *) (jit->prg_buf + jit->lit) = (u64) val;	\
297 	jit->lit += 8;						\
298 	ret;							\
299 })
300 
301 #define EMIT_ZERO(b1)						\
302 ({								\
303 	if (!fp->aux->verifier_zext) {				\
304 		/* llgfr %dst,%dst (zero extend to 64 bit) */	\
305 		EMIT4(0xb9160000, b1, b1);			\
306 		REG_SET_SEEN(b1);				\
307 	}							\
308 })
309 
310 /*
311  * Fill whole space with illegal instructions
312  */
jit_fill_hole(void * area,unsigned int size)313 static void jit_fill_hole(void *area, unsigned int size)
314 {
315 	memset(area, 0, size);
316 }
317 
318 /*
319  * Save registers from "rs" (register start) to "re" (register end) on stack
320  */
save_regs(struct bpf_jit * jit,u32 rs,u32 re)321 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
322 {
323 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
324 
325 	if (rs == re)
326 		/* stg %rs,off(%r15) */
327 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
328 	else
329 		/* stmg %rs,%re,off(%r15) */
330 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
331 }
332 
333 /*
334  * Restore registers from "rs" (register start) to "re" (register end) on stack
335  */
restore_regs(struct bpf_jit * jit,u32 rs,u32 re,u32 stack_depth)336 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
337 {
338 	u32 off = STK_OFF_R6 + (rs - 6) * 8;
339 
340 	if (jit->seen & SEEN_STACK)
341 		off += STK_OFF + stack_depth;
342 
343 	if (rs == re)
344 		/* lg %rs,off(%r15) */
345 		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
346 	else
347 		/* lmg %rs,%re,off(%r15) */
348 		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
349 }
350 
351 /*
352  * Return first seen register (from start)
353  */
get_start(struct bpf_jit * jit,int start)354 static int get_start(struct bpf_jit *jit, int start)
355 {
356 	int i;
357 
358 	for (i = start; i <= 15; i++) {
359 		if (jit->seen_reg[i])
360 			return i;
361 	}
362 	return 0;
363 }
364 
365 /*
366  * Return last seen register (from start) (gap >= 2)
367  */
get_end(struct bpf_jit * jit,int start)368 static int get_end(struct bpf_jit *jit, int start)
369 {
370 	int i;
371 
372 	for (i = start; i < 15; i++) {
373 		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
374 			return i - 1;
375 	}
376 	return jit->seen_reg[15] ? 15 : 14;
377 }
378 
379 #define REGS_SAVE	1
380 #define REGS_RESTORE	0
381 /*
382  * Save and restore clobbered registers (6-15) on stack.
383  * We save/restore registers in chunks with gap >= 2 registers.
384  */
save_restore_regs(struct bpf_jit * jit,int op,u32 stack_depth)385 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
386 {
387 
388 	int re = 6, rs;
389 
390 	do {
391 		rs = get_start(jit, re);
392 		if (!rs)
393 			break;
394 		re = get_end(jit, rs + 1);
395 		if (op == REGS_SAVE)
396 			save_regs(jit, rs, re);
397 		else
398 			restore_regs(jit, rs, re, stack_depth);
399 		re++;
400 	} while (re <= 15);
401 }
402 
403 /*
404  * Emit function prologue
405  *
406  * Save registers and create stack frame if necessary.
407  * See stack frame layout desription in "bpf_jit.h"!
408  */
bpf_jit_prologue(struct bpf_jit * jit,u32 stack_depth)409 static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
410 {
411 	if (jit->seen & SEEN_TAIL_CALL) {
412 		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
413 		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
414 	} else {
415 		/* j tail_call_start: NOP if no tail calls are used */
416 		EMIT4_PCREL(0xa7f40000, 6);
417 		_EMIT2(0);
418 	}
419 	/* Tail calls have to skip above initialization */
420 	jit->tail_call_start = jit->prg;
421 	/* Save registers */
422 	save_restore_regs(jit, REGS_SAVE, stack_depth);
423 	/* Setup literal pool */
424 	if (jit->seen & SEEN_LITERAL) {
425 		/* basr %r13,0 */
426 		EMIT2(0x0d00, REG_L, REG_0);
427 		jit->base_ip = jit->prg;
428 	}
429 	/* Setup stack and backchain */
430 	if (jit->seen & SEEN_STACK) {
431 		if (jit->seen & SEEN_FUNC)
432 			/* lgr %w1,%r15 (backchain) */
433 			EMIT4(0xb9040000, REG_W1, REG_15);
434 		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
435 		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
436 		/* aghi %r15,-STK_OFF */
437 		EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
438 		if (jit->seen & SEEN_FUNC)
439 			/* stg %w1,152(%r15) (backchain) */
440 			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
441 				      REG_15, 152);
442 	}
443 }
444 
445 /*
446  * Function epilogue
447  */
bpf_jit_epilogue(struct bpf_jit * jit,u32 stack_depth)448 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
449 {
450 	/* Return 0 */
451 	if (jit->seen & SEEN_RET0) {
452 		jit->ret0_ip = jit->prg;
453 		/* lghi %b0,0 */
454 		EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
455 	}
456 	jit->exit_ip = jit->prg;
457 	/* Load exit code: lgr %r2,%b0 */
458 	EMIT4(0xb9040000, REG_2, BPF_REG_0);
459 	/* Restore registers */
460 	save_restore_regs(jit, REGS_RESTORE, stack_depth);
461 	if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
462 		jit->r14_thunk_ip = jit->prg;
463 		/* Generate __s390_indirect_jump_r14 thunk */
464 		if (test_facility(35)) {
465 			/* exrl %r0,.+10 */
466 			EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
467 		} else {
468 			/* larl %r1,.+14 */
469 			EMIT6_PCREL_RILB(0xc0000000, REG_1, jit->prg + 14);
470 			/* ex 0,0(%r1) */
471 			EMIT4_DISP(0x44000000, REG_0, REG_1, 0);
472 		}
473 		/* j . */
474 		EMIT4_PCREL(0xa7f40000, 0);
475 	}
476 	/* br %r14 */
477 	_EMIT2(0x07fe);
478 
479 	if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable &&
480 	    (jit->seen & SEEN_FUNC)) {
481 		jit->r1_thunk_ip = jit->prg;
482 		/* Generate __s390_indirect_jump_r1 thunk */
483 		if (test_facility(35)) {
484 			/* exrl %r0,.+10 */
485 			EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
486 			/* j . */
487 			EMIT4_PCREL(0xa7f40000, 0);
488 			/* br %r1 */
489 			_EMIT2(0x07f1);
490 		} else {
491 			/* ex 0,S390_lowcore.br_r1_tampoline */
492 			EMIT4_DISP(0x44000000, REG_0, REG_0,
493 				   offsetof(struct lowcore, br_r1_trampoline));
494 			/* j . */
495 			EMIT4_PCREL(0xa7f40000, 0);
496 		}
497 	}
498 }
499 
500 /*
501  * Compile one eBPF instruction into s390x code
502  *
503  * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
504  * stack space for the large switch statement.
505  */
bpf_jit_insn(struct bpf_jit * jit,struct bpf_prog * fp,int i,bool extra_pass)506 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
507 				 int i, bool extra_pass)
508 {
509 	struct bpf_insn *insn = &fp->insnsi[i];
510 	int jmp_off, last, insn_count = 1;
511 	u32 dst_reg = insn->dst_reg;
512 	u32 src_reg = insn->src_reg;
513 	u32 *addrs = jit->addrs;
514 	s32 imm = insn->imm;
515 	s16 off = insn->off;
516 	unsigned int mask;
517 
518 	if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
519 		jit->seen |= SEEN_REG_AX;
520 	switch (insn->code) {
521 	/*
522 	 * BPF_MOV
523 	 */
524 	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
525 		/* llgfr %dst,%src */
526 		EMIT4(0xb9160000, dst_reg, src_reg);
527 		if (insn_is_zext(&insn[1]))
528 			insn_count = 2;
529 		break;
530 	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
531 		/* lgr %dst,%src */
532 		EMIT4(0xb9040000, dst_reg, src_reg);
533 		break;
534 	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
535 		/* llilf %dst,imm */
536 		EMIT6_IMM(0xc00f0000, dst_reg, imm);
537 		if (insn_is_zext(&insn[1]))
538 			insn_count = 2;
539 		break;
540 	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
541 		/* lgfi %dst,imm */
542 		EMIT6_IMM(0xc0010000, dst_reg, imm);
543 		break;
544 	/*
545 	 * BPF_LD 64
546 	 */
547 	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
548 	{
549 		/* 16 byte instruction that uses two 'struct bpf_insn' */
550 		u64 imm64;
551 
552 		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
553 		/* lg %dst,<d(imm)>(%l) */
554 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
555 			      EMIT_CONST_U64(imm64));
556 		insn_count = 2;
557 		break;
558 	}
559 	/*
560 	 * BPF_ADD
561 	 */
562 	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
563 		/* ar %dst,%src */
564 		EMIT2(0x1a00, dst_reg, src_reg);
565 		EMIT_ZERO(dst_reg);
566 		break;
567 	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
568 		/* agr %dst,%src */
569 		EMIT4(0xb9080000, dst_reg, src_reg);
570 		break;
571 	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
572 		if (imm != 0) {
573 			/* alfi %dst,imm */
574 			EMIT6_IMM(0xc20b0000, dst_reg, imm);
575 		}
576 		EMIT_ZERO(dst_reg);
577 		break;
578 	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
579 		if (!imm)
580 			break;
581 		/* agfi %dst,imm */
582 		EMIT6_IMM(0xc2080000, dst_reg, imm);
583 		break;
584 	/*
585 	 * BPF_SUB
586 	 */
587 	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
588 		/* sr %dst,%src */
589 		EMIT2(0x1b00, dst_reg, src_reg);
590 		EMIT_ZERO(dst_reg);
591 		break;
592 	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
593 		/* sgr %dst,%src */
594 		EMIT4(0xb9090000, dst_reg, src_reg);
595 		break;
596 	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
597 		if (imm != 0) {
598 			/* alfi %dst,-imm */
599 			EMIT6_IMM(0xc20b0000, dst_reg, -imm);
600 		}
601 		EMIT_ZERO(dst_reg);
602 		break;
603 	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
604 		if (!imm)
605 			break;
606 		if (imm == -0x80000000) {
607 			/* algfi %dst,0x80000000 */
608 			EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
609 		} else {
610 			/* agfi %dst,-imm */
611 			EMIT6_IMM(0xc2080000, dst_reg, -imm);
612 		}
613 		break;
614 	/*
615 	 * BPF_MUL
616 	 */
617 	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
618 		/* msr %dst,%src */
619 		EMIT4(0xb2520000, dst_reg, src_reg);
620 		EMIT_ZERO(dst_reg);
621 		break;
622 	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
623 		/* msgr %dst,%src */
624 		EMIT4(0xb90c0000, dst_reg, src_reg);
625 		break;
626 	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
627 		if (imm != 1) {
628 			/* msfi %r5,imm */
629 			EMIT6_IMM(0xc2010000, dst_reg, imm);
630 		}
631 		EMIT_ZERO(dst_reg);
632 		break;
633 	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
634 		if (imm == 1)
635 			break;
636 		/* msgfi %dst,imm */
637 		EMIT6_IMM(0xc2000000, dst_reg, imm);
638 		break;
639 	/*
640 	 * BPF_DIV / BPF_MOD
641 	 */
642 	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
643 	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
644 	{
645 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
646 
647 		/* lhi %w0,0 */
648 		EMIT4_IMM(0xa7080000, REG_W0, 0);
649 		/* lr %w1,%dst */
650 		EMIT2(0x1800, REG_W1, dst_reg);
651 		/* dlr %w0,%src */
652 		EMIT4(0xb9970000, REG_W0, src_reg);
653 		/* llgfr %dst,%rc */
654 		EMIT4(0xb9160000, dst_reg, rc_reg);
655 		if (insn_is_zext(&insn[1]))
656 			insn_count = 2;
657 		break;
658 	}
659 	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
660 	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
661 	{
662 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
663 
664 		/* lghi %w0,0 */
665 		EMIT4_IMM(0xa7090000, REG_W0, 0);
666 		/* lgr %w1,%dst */
667 		EMIT4(0xb9040000, REG_W1, dst_reg);
668 		/* dlgr %w0,%dst */
669 		EMIT4(0xb9870000, REG_W0, src_reg);
670 		/* lgr %dst,%rc */
671 		EMIT4(0xb9040000, dst_reg, rc_reg);
672 		break;
673 	}
674 	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
675 	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
676 	{
677 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
678 
679 		if (imm == 1) {
680 			if (BPF_OP(insn->code) == BPF_MOD)
681 				/* lhgi %dst,0 */
682 				EMIT4_IMM(0xa7090000, dst_reg, 0);
683 			else
684 				EMIT_ZERO(dst_reg);
685 			break;
686 		}
687 		/* lhi %w0,0 */
688 		EMIT4_IMM(0xa7080000, REG_W0, 0);
689 		/* lr %w1,%dst */
690 		EMIT2(0x1800, REG_W1, dst_reg);
691 		/* dl %w0,<d(imm)>(%l) */
692 		EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
693 			      EMIT_CONST_U32(imm));
694 		/* llgfr %dst,%rc */
695 		EMIT4(0xb9160000, dst_reg, rc_reg);
696 		if (insn_is_zext(&insn[1]))
697 			insn_count = 2;
698 		break;
699 	}
700 	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
701 	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
702 	{
703 		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
704 
705 		if (imm == 1) {
706 			if (BPF_OP(insn->code) == BPF_MOD)
707 				/* lhgi %dst,0 */
708 				EMIT4_IMM(0xa7090000, dst_reg, 0);
709 			break;
710 		}
711 		/* lghi %w0,0 */
712 		EMIT4_IMM(0xa7090000, REG_W0, 0);
713 		/* lgr %w1,%dst */
714 		EMIT4(0xb9040000, REG_W1, dst_reg);
715 		/* dlg %w0,<d(imm)>(%l) */
716 		EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
717 			      EMIT_CONST_U64(imm));
718 		/* lgr %dst,%rc */
719 		EMIT4(0xb9040000, dst_reg, rc_reg);
720 		break;
721 	}
722 	/*
723 	 * BPF_AND
724 	 */
725 	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
726 		/* nr %dst,%src */
727 		EMIT2(0x1400, dst_reg, src_reg);
728 		EMIT_ZERO(dst_reg);
729 		break;
730 	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
731 		/* ngr %dst,%src */
732 		EMIT4(0xb9800000, dst_reg, src_reg);
733 		break;
734 	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
735 		/* nilf %dst,imm */
736 		EMIT6_IMM(0xc00b0000, dst_reg, imm);
737 		EMIT_ZERO(dst_reg);
738 		break;
739 	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
740 		/* ng %dst,<d(imm)>(%l) */
741 		EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
742 			      EMIT_CONST_U64(imm));
743 		break;
744 	/*
745 	 * BPF_OR
746 	 */
747 	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
748 		/* or %dst,%src */
749 		EMIT2(0x1600, dst_reg, src_reg);
750 		EMIT_ZERO(dst_reg);
751 		break;
752 	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
753 		/* ogr %dst,%src */
754 		EMIT4(0xb9810000, dst_reg, src_reg);
755 		break;
756 	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
757 		/* oilf %dst,imm */
758 		EMIT6_IMM(0xc00d0000, dst_reg, imm);
759 		EMIT_ZERO(dst_reg);
760 		break;
761 	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
762 		/* og %dst,<d(imm)>(%l) */
763 		EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
764 			      EMIT_CONST_U64(imm));
765 		break;
766 	/*
767 	 * BPF_XOR
768 	 */
769 	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
770 		/* xr %dst,%src */
771 		EMIT2(0x1700, dst_reg, src_reg);
772 		EMIT_ZERO(dst_reg);
773 		break;
774 	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
775 		/* xgr %dst,%src */
776 		EMIT4(0xb9820000, dst_reg, src_reg);
777 		break;
778 	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
779 		if (imm != 0) {
780 			/* xilf %dst,imm */
781 			EMIT6_IMM(0xc0070000, dst_reg, imm);
782 		}
783 		EMIT_ZERO(dst_reg);
784 		break;
785 	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
786 		/* xg %dst,<d(imm)>(%l) */
787 		EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
788 			      EMIT_CONST_U64(imm));
789 		break;
790 	/*
791 	 * BPF_LSH
792 	 */
793 	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
794 		/* sll %dst,0(%src) */
795 		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
796 		EMIT_ZERO(dst_reg);
797 		break;
798 	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
799 		/* sllg %dst,%dst,0(%src) */
800 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
801 		break;
802 	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
803 		if (imm != 0) {
804 			/* sll %dst,imm(%r0) */
805 			EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
806 		}
807 		EMIT_ZERO(dst_reg);
808 		break;
809 	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
810 		if (imm == 0)
811 			break;
812 		/* sllg %dst,%dst,imm(%r0) */
813 		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
814 		break;
815 	/*
816 	 * BPF_RSH
817 	 */
818 	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
819 		/* srl %dst,0(%src) */
820 		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
821 		EMIT_ZERO(dst_reg);
822 		break;
823 	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
824 		/* srlg %dst,%dst,0(%src) */
825 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
826 		break;
827 	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
828 		if (imm != 0) {
829 			/* srl %dst,imm(%r0) */
830 			EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
831 		}
832 		EMIT_ZERO(dst_reg);
833 		break;
834 	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
835 		if (imm == 0)
836 			break;
837 		/* srlg %dst,%dst,imm(%r0) */
838 		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
839 		break;
840 	/*
841 	 * BPF_ARSH
842 	 */
843 	case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
844 		/* sra %dst,%dst,0(%src) */
845 		EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
846 		EMIT_ZERO(dst_reg);
847 		break;
848 	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
849 		/* srag %dst,%dst,0(%src) */
850 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
851 		break;
852 	case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
853 		if (imm != 0) {
854 			/* sra %dst,imm(%r0) */
855 			EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
856 		}
857 		EMIT_ZERO(dst_reg);
858 		break;
859 	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
860 		if (imm == 0)
861 			break;
862 		/* srag %dst,%dst,imm(%r0) */
863 		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
864 		break;
865 	/*
866 	 * BPF_NEG
867 	 */
868 	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
869 		/* lcr %dst,%dst */
870 		EMIT2(0x1300, dst_reg, dst_reg);
871 		EMIT_ZERO(dst_reg);
872 		break;
873 	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
874 		/* lcgr %dst,%dst */
875 		EMIT4(0xb9030000, dst_reg, dst_reg);
876 		break;
877 	/*
878 	 * BPF_FROM_BE/LE
879 	 */
880 	case BPF_ALU | BPF_END | BPF_FROM_BE:
881 		/* s390 is big endian, therefore only clear high order bytes */
882 		switch (imm) {
883 		case 16: /* dst = (u16) cpu_to_be16(dst) */
884 			/* llghr %dst,%dst */
885 			EMIT4(0xb9850000, dst_reg, dst_reg);
886 			if (insn_is_zext(&insn[1]))
887 				insn_count = 2;
888 			break;
889 		case 32: /* dst = (u32) cpu_to_be32(dst) */
890 			if (!fp->aux->verifier_zext)
891 				/* llgfr %dst,%dst */
892 				EMIT4(0xb9160000, dst_reg, dst_reg);
893 			break;
894 		case 64: /* dst = (u64) cpu_to_be64(dst) */
895 			break;
896 		}
897 		break;
898 	case BPF_ALU | BPF_END | BPF_FROM_LE:
899 		switch (imm) {
900 		case 16: /* dst = (u16) cpu_to_le16(dst) */
901 			/* lrvr %dst,%dst */
902 			EMIT4(0xb91f0000, dst_reg, dst_reg);
903 			/* srl %dst,16(%r0) */
904 			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
905 			/* llghr %dst,%dst */
906 			EMIT4(0xb9850000, dst_reg, dst_reg);
907 			if (insn_is_zext(&insn[1]))
908 				insn_count = 2;
909 			break;
910 		case 32: /* dst = (u32) cpu_to_le32(dst) */
911 			/* lrvr %dst,%dst */
912 			EMIT4(0xb91f0000, dst_reg, dst_reg);
913 			if (!fp->aux->verifier_zext)
914 				/* llgfr %dst,%dst */
915 				EMIT4(0xb9160000, dst_reg, dst_reg);
916 			break;
917 		case 64: /* dst = (u64) cpu_to_le64(dst) */
918 			/* lrvgr %dst,%dst */
919 			EMIT4(0xb90f0000, dst_reg, dst_reg);
920 			break;
921 		}
922 		break;
923 	/*
924 	 * BPF_NOSPEC (speculation barrier)
925 	 */
926 	case BPF_ST | BPF_NOSPEC:
927 		break;
928 	/*
929 	 * BPF_ST(X)
930 	 */
931 	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
932 		/* stcy %src,off(%dst) */
933 		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
934 		jit->seen |= SEEN_MEM;
935 		break;
936 	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
937 		/* sthy %src,off(%dst) */
938 		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
939 		jit->seen |= SEEN_MEM;
940 		break;
941 	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
942 		/* sty %src,off(%dst) */
943 		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
944 		jit->seen |= SEEN_MEM;
945 		break;
946 	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
947 		/* stg %src,off(%dst) */
948 		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
949 		jit->seen |= SEEN_MEM;
950 		break;
951 	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
952 		/* lhi %w0,imm */
953 		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
954 		/* stcy %w0,off(dst) */
955 		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
956 		jit->seen |= SEEN_MEM;
957 		break;
958 	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
959 		/* lhi %w0,imm */
960 		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
961 		/* sthy %w0,off(dst) */
962 		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
963 		jit->seen |= SEEN_MEM;
964 		break;
965 	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
966 		/* llilf %w0,imm  */
967 		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
968 		/* sty %w0,off(%dst) */
969 		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
970 		jit->seen |= SEEN_MEM;
971 		break;
972 	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
973 		/* lgfi %w0,imm */
974 		EMIT6_IMM(0xc0010000, REG_W0, imm);
975 		/* stg %w0,off(%dst) */
976 		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
977 		jit->seen |= SEEN_MEM;
978 		break;
979 	/*
980 	 * BPF_STX XADD (atomic_add)
981 	 */
982 	case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
983 		/* laal %w0,%src,off(%dst) */
984 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
985 			      dst_reg, off);
986 		jit->seen |= SEEN_MEM;
987 		break;
988 	case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
989 		/* laalg %w0,%src,off(%dst) */
990 		EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
991 			      dst_reg, off);
992 		jit->seen |= SEEN_MEM;
993 		break;
994 	/*
995 	 * BPF_LDX
996 	 */
997 	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
998 		/* llgc %dst,0(off,%src) */
999 		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1000 		jit->seen |= SEEN_MEM;
1001 		if (insn_is_zext(&insn[1]))
1002 			insn_count = 2;
1003 		break;
1004 	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1005 		/* llgh %dst,0(off,%src) */
1006 		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1007 		jit->seen |= SEEN_MEM;
1008 		if (insn_is_zext(&insn[1]))
1009 			insn_count = 2;
1010 		break;
1011 	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1012 		/* llgf %dst,off(%src) */
1013 		jit->seen |= SEEN_MEM;
1014 		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1015 		if (insn_is_zext(&insn[1]))
1016 			insn_count = 2;
1017 		break;
1018 	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1019 		/* lg %dst,0(off,%src) */
1020 		jit->seen |= SEEN_MEM;
1021 		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1022 		break;
1023 	/*
1024 	 * BPF_JMP / CALL
1025 	 */
1026 	case BPF_JMP | BPF_CALL:
1027 	{
1028 		u64 func;
1029 		bool func_addr_fixed;
1030 		int ret;
1031 
1032 		ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1033 					    &func, &func_addr_fixed);
1034 		if (ret < 0)
1035 			return -1;
1036 
1037 		REG_SET_SEEN(BPF_REG_5);
1038 		jit->seen |= SEEN_FUNC;
1039 		/* lg %w1,<d(imm)>(%l) */
1040 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
1041 			      EMIT_CONST_U64(func));
1042 		if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
1043 			/* brasl %r14,__s390_indirect_jump_r1 */
1044 			EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
1045 		} else {
1046 			/* basr %r14,%w1 */
1047 			EMIT2(0x0d00, REG_14, REG_W1);
1048 		}
1049 		/* lgr %b0,%r2: load return value into %b0 */
1050 		EMIT4(0xb9040000, BPF_REG_0, REG_2);
1051 		break;
1052 	}
1053 	case BPF_JMP | BPF_TAIL_CALL:
1054 		/*
1055 		 * Implicit input:
1056 		 *  B1: pointer to ctx
1057 		 *  B2: pointer to bpf_array
1058 		 *  B3: index in bpf_array
1059 		 */
1060 		jit->seen |= SEEN_TAIL_CALL;
1061 
1062 		/*
1063 		 * if (index >= array->map.max_entries)
1064 		 *         goto out;
1065 		 */
1066 
1067 		/* llgf %w1,map.max_entries(%b2) */
1068 		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1069 			      offsetof(struct bpf_array, map.max_entries));
1070 		/* clrj %b3,%w1,0xa,label0: if (u32)%b3 >= (u32)%w1 goto out */
1071 		EMIT6_PCREL_LABEL(0xec000000, 0x0077, BPF_REG_3,
1072 				  REG_W1, 0, 0xa);
1073 
1074 		/*
1075 		 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1076 		 *         goto out;
1077 		 */
1078 
1079 		if (jit->seen & SEEN_STACK)
1080 			off = STK_OFF_TCCNT + STK_OFF + fp->aux->stack_depth;
1081 		else
1082 			off = STK_OFF_TCCNT;
1083 		/* lhi %w0,1 */
1084 		EMIT4_IMM(0xa7080000, REG_W0, 1);
1085 		/* laal %w1,%w0,off(%r15) */
1086 		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1087 		/* clij %w1,MAX_TAIL_CALL_CNT,0x2,label0 */
1088 		EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007f, REG_W1,
1089 				      MAX_TAIL_CALL_CNT, 0, 0x2);
1090 
1091 		/*
1092 		 * prog = array->ptrs[index];
1093 		 * if (prog == NULL)
1094 		 *         goto out;
1095 		 */
1096 
1097 		/* llgfr %r1,%b3: %r1 = (u32) index */
1098 		EMIT4(0xb9160000, REG_1, BPF_REG_3);
1099 		/* sllg %r1,%r1,3: %r1 *= 8 */
1100 		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1101 		/* lg %r1,prog(%b2,%r1) */
1102 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, BPF_REG_2,
1103 			      REG_1, offsetof(struct bpf_array, ptrs));
1104 		/* clgij %r1,0,0x8,label0 */
1105 		EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007d, REG_1, 0, 0, 0x8);
1106 
1107 		/*
1108 		 * Restore registers before calling function
1109 		 */
1110 		save_restore_regs(jit, REGS_RESTORE, fp->aux->stack_depth);
1111 
1112 		/*
1113 		 * goto *(prog->bpf_func + tail_call_start);
1114 		 */
1115 
1116 		/* lg %r1,bpf_func(%r1) */
1117 		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1118 			      offsetof(struct bpf_prog, bpf_func));
1119 		/* bc 0xf,tail_call_start(%r1) */
1120 		_EMIT4(0x47f01000 + jit->tail_call_start);
1121 		/* out: */
1122 		jit->labels[0] = jit->prg;
1123 		break;
1124 	case BPF_JMP | BPF_EXIT: /* return b0 */
1125 		last = (i == fp->len - 1) ? 1 : 0;
1126 		if (last && !(jit->seen & SEEN_RET0))
1127 			break;
1128 		/* j <exit> */
1129 		EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
1130 		break;
1131 	/*
1132 	 * Branch relative (number of skipped instructions) to offset on
1133 	 * condition.
1134 	 *
1135 	 * Condition code to mask mapping:
1136 	 *
1137 	 * CC | Description	   | Mask
1138 	 * ------------------------------
1139 	 * 0  | Operands equal	   |	8
1140 	 * 1  | First operand low  |	4
1141 	 * 2  | First operand high |	2
1142 	 * 3  | Unused		   |	1
1143 	 *
1144 	 * For s390x relative branches: ip = ip + off_bytes
1145 	 * For BPF relative branches:	insn = insn + off_insns + 1
1146 	 *
1147 	 * For example for s390x with offset 0 we jump to the branch
1148 	 * instruction itself (loop) and for BPF with offset 0 we
1149 	 * branch to the instruction behind the branch.
1150 	 */
1151 	case BPF_JMP | BPF_JA: /* if (true) */
1152 		mask = 0xf000; /* j */
1153 		goto branch_oc;
1154 	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1155 	case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1156 		mask = 0x2000; /* jh */
1157 		goto branch_ks;
1158 	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1159 	case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1160 		mask = 0x4000; /* jl */
1161 		goto branch_ks;
1162 	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1163 	case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1164 		mask = 0xa000; /* jhe */
1165 		goto branch_ks;
1166 	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1167 	case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1168 		mask = 0xc000; /* jle */
1169 		goto branch_ks;
1170 	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1171 	case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1172 		mask = 0x2000; /* jh */
1173 		goto branch_ku;
1174 	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1175 	case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1176 		mask = 0x4000; /* jl */
1177 		goto branch_ku;
1178 	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1179 	case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1180 		mask = 0xa000; /* jhe */
1181 		goto branch_ku;
1182 	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1183 	case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1184 		mask = 0xc000; /* jle */
1185 		goto branch_ku;
1186 	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1187 	case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1188 		mask = 0x7000; /* jne */
1189 		goto branch_ku;
1190 	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1191 	case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1192 		mask = 0x8000; /* je */
1193 		goto branch_ku;
1194 	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1195 	case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1196 		mask = 0x7000; /* jnz */
1197 		if (BPF_CLASS(insn->code) == BPF_JMP32) {
1198 			/* llilf %w1,imm (load zero extend imm) */
1199 			EMIT6_IMM(0xc00f0000, REG_W1, imm);
1200 			/* nr %w1,%dst */
1201 			EMIT2(0x1400, REG_W1, dst_reg);
1202 		} else {
1203 			/* lgfi %w1,imm (load sign extend imm) */
1204 			EMIT6_IMM(0xc0010000, REG_W1, imm);
1205 			/* ngr %w1,%dst */
1206 			EMIT4(0xb9800000, REG_W1, dst_reg);
1207 		}
1208 		goto branch_oc;
1209 
1210 	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1211 	case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1212 		mask = 0x2000; /* jh */
1213 		goto branch_xs;
1214 	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1215 	case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1216 		mask = 0x4000; /* jl */
1217 		goto branch_xs;
1218 	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1219 	case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1220 		mask = 0xa000; /* jhe */
1221 		goto branch_xs;
1222 	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1223 	case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1224 		mask = 0xc000; /* jle */
1225 		goto branch_xs;
1226 	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1227 	case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1228 		mask = 0x2000; /* jh */
1229 		goto branch_xu;
1230 	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1231 	case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1232 		mask = 0x4000; /* jl */
1233 		goto branch_xu;
1234 	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1235 	case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1236 		mask = 0xa000; /* jhe */
1237 		goto branch_xu;
1238 	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1239 	case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1240 		mask = 0xc000; /* jle */
1241 		goto branch_xu;
1242 	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1243 	case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1244 		mask = 0x7000; /* jne */
1245 		goto branch_xu;
1246 	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1247 	case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1248 		mask = 0x8000; /* je */
1249 		goto branch_xu;
1250 	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1251 	case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1252 	{
1253 		bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1254 
1255 		mask = 0x7000; /* jnz */
1256 		/* nrk or ngrk %w1,%dst,%src */
1257 		EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1258 			  REG_W1, dst_reg, src_reg);
1259 		goto branch_oc;
1260 branch_ks:
1261 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1262 		/* lgfi %w1,imm (load sign extend imm) */
1263 		EMIT6_IMM(0xc0010000, REG_W1, imm);
1264 		/* crj or cgrj %dst,%w1,mask,off */
1265 		EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1266 			    dst_reg, REG_W1, i, off, mask);
1267 		break;
1268 branch_ku:
1269 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1270 		/* lgfi %w1,imm (load sign extend imm) */
1271 		EMIT6_IMM(0xc0010000, REG_W1, imm);
1272 		/* clrj or clgrj %dst,%w1,mask,off */
1273 		EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1274 			    dst_reg, REG_W1, i, off, mask);
1275 		break;
1276 branch_xs:
1277 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1278 		/* crj or cgrj %dst,%src,mask,off */
1279 		EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1280 			    dst_reg, src_reg, i, off, mask);
1281 		break;
1282 branch_xu:
1283 		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1284 		/* clrj or clgrj %dst,%src,mask,off */
1285 		EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1286 			    dst_reg, src_reg, i, off, mask);
1287 		break;
1288 branch_oc:
1289 		/* brc mask,jmp_off (branch instruction needs 4 bytes) */
1290 		jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
1291 		EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
1292 		break;
1293 	}
1294 	default: /* too complex, give up */
1295 		pr_err("Unknown opcode %02x\n", insn->code);
1296 		return -1;
1297 	}
1298 	return insn_count;
1299 }
1300 
1301 /*
1302  * Compile eBPF program into s390x code
1303  */
bpf_jit_prog(struct bpf_jit * jit,struct bpf_prog * fp,bool extra_pass)1304 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1305 			bool extra_pass)
1306 {
1307 	int i, insn_count;
1308 
1309 	jit->lit = jit->lit_start;
1310 	jit->prg = 0;
1311 
1312 	bpf_jit_prologue(jit, fp->aux->stack_depth);
1313 	for (i = 0; i < fp->len; i += insn_count) {
1314 		insn_count = bpf_jit_insn(jit, fp, i, extra_pass);
1315 		if (insn_count < 0)
1316 			return -1;
1317 		/* Next instruction address */
1318 		jit->addrs[i + insn_count] = jit->prg;
1319 	}
1320 	bpf_jit_epilogue(jit, fp->aux->stack_depth);
1321 
1322 	jit->lit_start = jit->prg;
1323 	jit->size = jit->lit;
1324 	jit->size_prg = jit->prg;
1325 	return 0;
1326 }
1327 
bpf_jit_needs_zext(void)1328 bool bpf_jit_needs_zext(void)
1329 {
1330 	return true;
1331 }
1332 
1333 struct s390_jit_data {
1334 	struct bpf_binary_header *header;
1335 	struct bpf_jit ctx;
1336 	int pass;
1337 };
1338 
1339 /*
1340  * Compile eBPF program "fp"
1341  */
bpf_int_jit_compile(struct bpf_prog * fp)1342 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1343 {
1344 	struct bpf_prog *tmp, *orig_fp = fp;
1345 	struct bpf_binary_header *header;
1346 	struct s390_jit_data *jit_data;
1347 	bool tmp_blinded = false;
1348 	bool extra_pass = false;
1349 	struct bpf_jit jit;
1350 	int pass;
1351 
1352 	if (!fp->jit_requested)
1353 		return orig_fp;
1354 
1355 	tmp = bpf_jit_blind_constants(fp);
1356 	/*
1357 	 * If blinding was requested and we failed during blinding,
1358 	 * we must fall back to the interpreter.
1359 	 */
1360 	if (IS_ERR(tmp))
1361 		return orig_fp;
1362 	if (tmp != fp) {
1363 		tmp_blinded = true;
1364 		fp = tmp;
1365 	}
1366 
1367 	jit_data = fp->aux->jit_data;
1368 	if (!jit_data) {
1369 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1370 		if (!jit_data) {
1371 			fp = orig_fp;
1372 			goto out;
1373 		}
1374 		fp->aux->jit_data = jit_data;
1375 	}
1376 	if (jit_data->ctx.addrs) {
1377 		jit = jit_data->ctx;
1378 		header = jit_data->header;
1379 		extra_pass = true;
1380 		pass = jit_data->pass + 1;
1381 		goto skip_init_ctx;
1382 	}
1383 
1384 	memset(&jit, 0, sizeof(jit));
1385 	jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1386 	if (jit.addrs == NULL) {
1387 		fp = orig_fp;
1388 		goto free_addrs;
1389 	}
1390 	/*
1391 	 * Three initial passes:
1392 	 *   - 1/2: Determine clobbered registers
1393 	 *   - 3:   Calculate program size and addrs arrray
1394 	 */
1395 	for (pass = 1; pass <= 3; pass++) {
1396 		if (bpf_jit_prog(&jit, fp, extra_pass)) {
1397 			fp = orig_fp;
1398 			goto free_addrs;
1399 		}
1400 	}
1401 	/*
1402 	 * Final pass: Allocate and generate program
1403 	 */
1404 	if (jit.size >= BPF_SIZE_MAX) {
1405 		fp = orig_fp;
1406 		goto free_addrs;
1407 	}
1408 
1409 	header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
1410 	if (!header) {
1411 		fp = orig_fp;
1412 		goto free_addrs;
1413 	}
1414 skip_init_ctx:
1415 	if (bpf_jit_prog(&jit, fp, extra_pass)) {
1416 		bpf_jit_binary_free(header);
1417 		fp = orig_fp;
1418 		goto free_addrs;
1419 	}
1420 	if (bpf_jit_enable > 1) {
1421 		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1422 		print_fn_code(jit.prg_buf, jit.size_prg);
1423 	}
1424 	if (!fp->is_func || extra_pass) {
1425 		bpf_jit_binary_lock_ro(header);
1426 	} else {
1427 		jit_data->header = header;
1428 		jit_data->ctx = jit;
1429 		jit_data->pass = pass;
1430 	}
1431 	fp->bpf_func = (void *) jit.prg_buf;
1432 	fp->jited = 1;
1433 	fp->jited_len = jit.size;
1434 
1435 	if (!fp->is_func || extra_pass) {
1436 		bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1437 free_addrs:
1438 		kvfree(jit.addrs);
1439 		kfree(jit_data);
1440 		fp->aux->jit_data = NULL;
1441 	}
1442 out:
1443 	if (tmp_blinded)
1444 		bpf_jit_prog_release_other(fp, fp == orig_fp ?
1445 					   tmp : orig_fp);
1446 	return fp;
1447 }
1448