• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * arch/sh/mm/cache-sh5.c
3  *
4  * Copyright (C) 2000, 2001  Paolo Alberelli
5  * Copyright (C) 2002  Benedict Gaster
6  * Copyright (C) 2003  Richard Curnow
7  * Copyright (C) 2003 - 2008  Paul Mundt
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/mm.h>
16 #include <asm/tlb.h>
17 #include <asm/processor.h>
18 #include <asm/cache.h>
19 #include <asm/pgalloc.h>
20 #include <linux/uaccess.h>
21 #include <asm/mmu_context.h>
22 
23 extern void __weak sh4__flush_region_init(void);
24 
25 /* Wired TLB entry for the D-cache */
26 static unsigned long long dtlb_cache_slot;
27 
28 /*
29  * The following group of functions deal with mapping and unmapping a
30  * temporary page into a DTLB slot that has been set aside for exclusive
31  * use.
32  */
33 static inline void
sh64_setup_dtlb_cache_slot(unsigned long eaddr,unsigned long asid,unsigned long paddr)34 sh64_setup_dtlb_cache_slot(unsigned long eaddr, unsigned long asid,
35 			   unsigned long paddr)
36 {
37 	local_irq_disable();
38 	sh64_setup_tlb_slot(dtlb_cache_slot, eaddr, asid, paddr);
39 }
40 
sh64_teardown_dtlb_cache_slot(void)41 static inline void sh64_teardown_dtlb_cache_slot(void)
42 {
43 	sh64_teardown_tlb_slot(dtlb_cache_slot);
44 	local_irq_enable();
45 }
46 
sh64_icache_inv_all(void)47 static inline void sh64_icache_inv_all(void)
48 {
49 	unsigned long long addr, flag, data;
50 	unsigned long flags;
51 
52 	addr = ICCR0;
53 	flag = ICCR0_ICI;
54 	data = 0;
55 
56 	/* Make this a critical section for safety (probably not strictly necessary.) */
57 	local_irq_save(flags);
58 
59 	/* Without %1 it gets unexplicably wrong */
60 	__asm__ __volatile__ (
61 		"getcfg	%3, 0, %0\n\t"
62 		"or	%0, %2, %0\n\t"
63 		"putcfg	%3, 0, %0\n\t"
64 		"synci"
65 		: "=&r" (data)
66 		: "0" (data), "r" (flag), "r" (addr));
67 
68 	local_irq_restore(flags);
69 }
70 
sh64_icache_inv_kernel_range(unsigned long start,unsigned long end)71 static void sh64_icache_inv_kernel_range(unsigned long start, unsigned long end)
72 {
73 	/* Invalidate range of addresses [start,end] from the I-cache, where
74 	 * the addresses lie in the kernel superpage. */
75 
76 	unsigned long long ullend, addr, aligned_start;
77 	aligned_start = (unsigned long long)(signed long long)(signed long) start;
78 	addr = L1_CACHE_ALIGN(aligned_start);
79 	ullend = (unsigned long long) (signed long long) (signed long) end;
80 
81 	while (addr <= ullend) {
82 		__asm__ __volatile__ ("icbi %0, 0" : : "r" (addr));
83 		addr += L1_CACHE_BYTES;
84 	}
85 }
86 
sh64_icache_inv_user_page(struct vm_area_struct * vma,unsigned long eaddr)87 static void sh64_icache_inv_user_page(struct vm_area_struct *vma, unsigned long eaddr)
88 {
89 	/* If we get called, we know that vma->vm_flags contains VM_EXEC.
90 	   Also, eaddr is page-aligned. */
91 	unsigned int cpu = smp_processor_id();
92 	unsigned long long addr, end_addr;
93 	unsigned long flags = 0;
94 	unsigned long running_asid, vma_asid;
95 	addr = eaddr;
96 	end_addr = addr + PAGE_SIZE;
97 
98 	/* Check whether we can use the current ASID for the I-cache
99 	   invalidation.  For example, if we're called via
100 	   access_process_vm->flush_cache_page->here, (e.g. when reading from
101 	   /proc), 'running_asid' will be that of the reader, not of the
102 	   victim.
103 
104 	   Also, note the risk that we might get pre-empted between the ASID
105 	   compare and blocking IRQs, and before we regain control, the
106 	   pid->ASID mapping changes.  However, the whole cache will get
107 	   invalidated when the mapping is renewed, so the worst that can
108 	   happen is that the loop below ends up invalidating somebody else's
109 	   cache entries.
110 	*/
111 
112 	running_asid = get_asid();
113 	vma_asid = cpu_asid(cpu, vma->vm_mm);
114 	if (running_asid != vma_asid) {
115 		local_irq_save(flags);
116 		switch_and_save_asid(vma_asid);
117 	}
118 	while (addr < end_addr) {
119 		/* Worth unrolling a little */
120 		__asm__ __volatile__("icbi %0,  0" : : "r" (addr));
121 		__asm__ __volatile__("icbi %0, 32" : : "r" (addr));
122 		__asm__ __volatile__("icbi %0, 64" : : "r" (addr));
123 		__asm__ __volatile__("icbi %0, 96" : : "r" (addr));
124 		addr += 128;
125 	}
126 	if (running_asid != vma_asid) {
127 		switch_and_save_asid(running_asid);
128 		local_irq_restore(flags);
129 	}
130 }
131 
sh64_icache_inv_user_page_range(struct mm_struct * mm,unsigned long start,unsigned long end)132 static void sh64_icache_inv_user_page_range(struct mm_struct *mm,
133 			  unsigned long start, unsigned long end)
134 {
135 	/* Used for invalidating big chunks of I-cache, i.e. assume the range
136 	   is whole pages.  If 'start' or 'end' is not page aligned, the code
137 	   is conservative and invalidates to the ends of the enclosing pages.
138 	   This is functionally OK, just a performance loss. */
139 
140 	/* See the comments below in sh64_dcache_purge_user_range() regarding
141 	   the choice of algorithm.  However, for the I-cache option (2) isn't
142 	   available because there are no physical tags so aliases can't be
143 	   resolved.  The icbi instruction has to be used through the user
144 	   mapping.   Because icbi is cheaper than ocbp on a cache hit, it
145 	   would be cheaper to use the selective code for a large range than is
146 	   possible with the D-cache.  Just assume 64 for now as a working
147 	   figure.
148 	   */
149 	int n_pages;
150 
151 	if (!mm)
152 		return;
153 
154 	n_pages = ((end - start) >> PAGE_SHIFT);
155 	if (n_pages >= 64) {
156 		sh64_icache_inv_all();
157 	} else {
158 		unsigned long aligned_start;
159 		unsigned long eaddr;
160 		unsigned long after_last_page_start;
161 		unsigned long mm_asid, current_asid;
162 		unsigned long flags = 0;
163 
164 		mm_asid = cpu_asid(smp_processor_id(), mm);
165 		current_asid = get_asid();
166 
167 		if (mm_asid != current_asid) {
168 			/* Switch ASID and run the invalidate loop under cli */
169 			local_irq_save(flags);
170 			switch_and_save_asid(mm_asid);
171 		}
172 
173 		aligned_start = start & PAGE_MASK;
174 		after_last_page_start = PAGE_SIZE + ((end - 1) & PAGE_MASK);
175 
176 		while (aligned_start < after_last_page_start) {
177 			struct vm_area_struct *vma;
178 			unsigned long vma_end;
179 			vma = find_vma(mm, aligned_start);
180 			if (!vma || (aligned_start <= vma->vm_end)) {
181 				/* Avoid getting stuck in an error condition */
182 				aligned_start += PAGE_SIZE;
183 				continue;
184 			}
185 			vma_end = vma->vm_end;
186 			if (vma->vm_flags & VM_EXEC) {
187 				/* Executable */
188 				eaddr = aligned_start;
189 				while (eaddr < vma_end) {
190 					sh64_icache_inv_user_page(vma, eaddr);
191 					eaddr += PAGE_SIZE;
192 				}
193 			}
194 			aligned_start = vma->vm_end; /* Skip to start of next region */
195 		}
196 
197 		if (mm_asid != current_asid) {
198 			switch_and_save_asid(current_asid);
199 			local_irq_restore(flags);
200 		}
201 	}
202 }
203 
sh64_icache_inv_current_user_range(unsigned long start,unsigned long end)204 static void sh64_icache_inv_current_user_range(unsigned long start, unsigned long end)
205 {
206 	/* The icbi instruction never raises ITLBMISS.  i.e. if there's not a
207 	   cache hit on the virtual tag the instruction ends there, without a
208 	   TLB lookup. */
209 
210 	unsigned long long aligned_start;
211 	unsigned long long ull_end;
212 	unsigned long long addr;
213 
214 	ull_end = end;
215 
216 	/* Just invalidate over the range using the natural addresses.  TLB
217 	   miss handling will be OK (TBC).  Since it's for the current process,
218 	   either we're already in the right ASID context, or the ASIDs have
219 	   been recycled since we were last active in which case we might just
220 	   invalidate another processes I-cache entries : no worries, just a
221 	   performance drop for him. */
222 	aligned_start = L1_CACHE_ALIGN(start);
223 	addr = aligned_start;
224 	while (addr < ull_end) {
225 		__asm__ __volatile__ ("icbi %0, 0" : : "r" (addr));
226 		__asm__ __volatile__ ("nop");
227 		__asm__ __volatile__ ("nop");
228 		addr += L1_CACHE_BYTES;
229 	}
230 }
231 
232 /* Buffer used as the target of alloco instructions to purge data from cache
233    sets by natural eviction. -- RPC */
234 #define DUMMY_ALLOCO_AREA_SIZE ((L1_CACHE_BYTES << 10) + (1024 * 4))
235 static unsigned char dummy_alloco_area[DUMMY_ALLOCO_AREA_SIZE] __cacheline_aligned = { 0, };
236 
sh64_dcache_purge_sets(int sets_to_purge_base,int n_sets)237 static inline void sh64_dcache_purge_sets(int sets_to_purge_base, int n_sets)
238 {
239 	/* Purge all ways in a particular block of sets, specified by the base
240 	   set number and number of sets.  Can handle wrap-around, if that's
241 	   needed.  */
242 
243 	int dummy_buffer_base_set;
244 	unsigned long long eaddr, eaddr0, eaddr1;
245 	int j;
246 	int set_offset;
247 
248 	dummy_buffer_base_set = ((int)&dummy_alloco_area &
249 				 cpu_data->dcache.entry_mask) >>
250 				 cpu_data->dcache.entry_shift;
251 	set_offset = sets_to_purge_base - dummy_buffer_base_set;
252 
253 	for (j = 0; j < n_sets; j++, set_offset++) {
254 		set_offset &= (cpu_data->dcache.sets - 1);
255 		eaddr0 = (unsigned long long)dummy_alloco_area +
256 			(set_offset << cpu_data->dcache.entry_shift);
257 
258 		/*
259 		 * Do one alloco which hits the required set per cache
260 		 * way.  For write-back mode, this will purge the #ways
261 		 * resident lines.  There's little point unrolling this
262 		 * loop because the allocos stall more if they're too
263 		 * close together.
264 		 */
265 		eaddr1 = eaddr0 + cpu_data->dcache.way_size *
266 				  cpu_data->dcache.ways;
267 
268 		for (eaddr = eaddr0; eaddr < eaddr1;
269 		     eaddr += cpu_data->dcache.way_size) {
270 			__asm__ __volatile__ ("alloco %0, 0" : : "r" (eaddr));
271 			__asm__ __volatile__ ("synco"); /* TAKum03020 */
272 		}
273 
274 		eaddr1 = eaddr0 + cpu_data->dcache.way_size *
275 				  cpu_data->dcache.ways;
276 
277 		for (eaddr = eaddr0; eaddr < eaddr1;
278 		     eaddr += cpu_data->dcache.way_size) {
279 			/*
280 			 * Load from each address.  Required because
281 			 * alloco is a NOP if the cache is write-through.
282 			 */
283 			if (test_bit(SH_CACHE_MODE_WT, &(cpu_data->dcache.flags)))
284 				__raw_readb((unsigned long)eaddr);
285 		}
286 	}
287 
288 	/*
289 	 * Don't use OCBI to invalidate the lines.  That costs cycles
290 	 * directly.  If the dummy block is just left resident, it will
291 	 * naturally get evicted as required.
292 	 */
293 }
294 
295 /*
296  * Purge the entire contents of the dcache.  The most efficient way to
297  * achieve this is to use alloco instructions on a region of unused
298  * memory equal in size to the cache, thereby causing the current
299  * contents to be discarded by natural eviction.  The alternative, namely
300  * reading every tag, setting up a mapping for the corresponding page and
301  * doing an OCBP for the line, would be much more expensive.
302  */
sh64_dcache_purge_all(void)303 static void sh64_dcache_purge_all(void)
304 {
305 
306 	sh64_dcache_purge_sets(0, cpu_data->dcache.sets);
307 }
308 
309 
310 /* Assumes this address (+ (2**n_synbits) pages up from it) aren't used for
311    anything else in the kernel */
312 #define MAGIC_PAGE0_START 0xffffffffec000000ULL
313 
314 /* Purge the physical page 'paddr' from the cache.  It's known that any
315  * cache lines requiring attention have the same page colour as the the
316  * address 'eaddr'.
317  *
318  * This relies on the fact that the D-cache matches on physical tags when
319  * no virtual tag matches.  So we create an alias for the original page
320  * and purge through that.  (Alternatively, we could have done this by
321  * switching ASID to match the original mapping and purged through that,
322  * but that involves ASID switching cost + probably a TLBMISS + refill
323  * anyway.)
324  */
sh64_dcache_purge_coloured_phy_page(unsigned long paddr,unsigned long eaddr)325 static void sh64_dcache_purge_coloured_phy_page(unsigned long paddr,
326 					        unsigned long eaddr)
327 {
328 	unsigned long long magic_page_start;
329 	unsigned long long magic_eaddr, magic_eaddr_end;
330 
331 	magic_page_start = MAGIC_PAGE0_START + (eaddr & CACHE_OC_SYN_MASK);
332 
333 	/* As long as the kernel is not pre-emptible, this doesn't need to be
334 	   under cli/sti. */
335 	sh64_setup_dtlb_cache_slot(magic_page_start, get_asid(), paddr);
336 
337 	magic_eaddr = magic_page_start;
338 	magic_eaddr_end = magic_eaddr + PAGE_SIZE;
339 
340 	while (magic_eaddr < magic_eaddr_end) {
341 		/* Little point in unrolling this loop - the OCBPs are blocking
342 		   and won't go any quicker (i.e. the loop overhead is parallel
343 		   to part of the OCBP execution.) */
344 		__asm__ __volatile__ ("ocbp %0, 0" : : "r" (magic_eaddr));
345 		magic_eaddr += L1_CACHE_BYTES;
346 	}
347 
348 	sh64_teardown_dtlb_cache_slot();
349 }
350 
351 /*
352  * Purge a page given its physical start address, by creating a temporary
353  * 1 page mapping and purging across that.  Even if we know the virtual
354  * address (& vma or mm) of the page, the method here is more elegant
355  * because it avoids issues of coping with page faults on the purge
356  * instructions (i.e. no special-case code required in the critical path
357  * in the TLB miss handling).
358  */
sh64_dcache_purge_phy_page(unsigned long paddr)359 static void sh64_dcache_purge_phy_page(unsigned long paddr)
360 {
361 	unsigned long long eaddr_start, eaddr, eaddr_end;
362 	int i;
363 
364 	/* As long as the kernel is not pre-emptible, this doesn't need to be
365 	   under cli/sti. */
366 	eaddr_start = MAGIC_PAGE0_START;
367 	for (i = 0; i < (1 << CACHE_OC_N_SYNBITS); i++) {
368 		sh64_setup_dtlb_cache_slot(eaddr_start, get_asid(), paddr);
369 
370 		eaddr = eaddr_start;
371 		eaddr_end = eaddr + PAGE_SIZE;
372 		while (eaddr < eaddr_end) {
373 			__asm__ __volatile__ ("ocbp %0, 0" : : "r" (eaddr));
374 			eaddr += L1_CACHE_BYTES;
375 		}
376 
377 		sh64_teardown_dtlb_cache_slot();
378 		eaddr_start += PAGE_SIZE;
379 	}
380 }
381 
sh64_dcache_purge_user_pages(struct mm_struct * mm,unsigned long addr,unsigned long end)382 static void sh64_dcache_purge_user_pages(struct mm_struct *mm,
383 				unsigned long addr, unsigned long end)
384 {
385 	pgd_t *pgd;
386 	pud_t *pud;
387 	pmd_t *pmd;
388 	pte_t *pte;
389 	pte_t entry;
390 	spinlock_t *ptl;
391 	unsigned long paddr;
392 
393 	if (!mm)
394 		return; /* No way to find physical address of page */
395 
396 	pgd = pgd_offset(mm, addr);
397 	if (pgd_bad(*pgd))
398 		return;
399 
400 	pud = pud_offset(pgd, addr);
401 	if (pud_none(*pud) || pud_bad(*pud))
402 		return;
403 
404 	pmd = pmd_offset(pud, addr);
405 	if (pmd_none(*pmd) || pmd_bad(*pmd))
406 		return;
407 
408 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
409 	do {
410 		entry = *pte;
411 		if (pte_none(entry) || !pte_present(entry))
412 			continue;
413 		paddr = pte_val(entry) & PAGE_MASK;
414 		sh64_dcache_purge_coloured_phy_page(paddr, addr);
415 	} while (pte++, addr += PAGE_SIZE, addr != end);
416 	pte_unmap_unlock(pte - 1, ptl);
417 }
418 
419 /*
420  * There are at least 5 choices for the implementation of this, with
421  * pros (+), cons(-), comments(*):
422  *
423  * 1. ocbp each line in the range through the original user's ASID
424  *    + no lines spuriously evicted
425  *    - tlbmiss handling (must either handle faults on demand => extra
426  *	special-case code in tlbmiss critical path), or map the page in
427  *	advance (=> flush_tlb_range in advance to avoid multiple hits)
428  *    - ASID switching
429  *    - expensive for large ranges
430  *
431  * 2. temporarily map each page in the range to a special effective
432  *    address and ocbp through the temporary mapping; relies on the
433  *    fact that SH-5 OCB* always do TLB lookup and match on ptags (they
434  *    never look at the etags)
435  *    + no spurious evictions
436  *    - expensive for large ranges
437  *    * surely cheaper than (1)
438  *
439  * 3. walk all the lines in the cache, check the tags, if a match
440  *    occurs create a page mapping to ocbp the line through
441  *    + no spurious evictions
442  *    - tag inspection overhead
443  *    - (especially for small ranges)
444  *    - potential cost of setting up/tearing down page mapping for
445  *	every line that matches the range
446  *    * cost partly independent of range size
447  *
448  * 4. walk all the lines in the cache, check the tags, if a match
449  *    occurs use 4 * alloco to purge the line (+3 other probably
450  *    innocent victims) by natural eviction
451  *    + no tlb mapping overheads
452  *    - spurious evictions
453  *    - tag inspection overhead
454  *
455  * 5. implement like flush_cache_all
456  *    + no tag inspection overhead
457  *    - spurious evictions
458  *    - bad for small ranges
459  *
460  * (1) can be ruled out as more expensive than (2).  (2) appears best
461  * for small ranges.  The choice between (3), (4) and (5) for large
462  * ranges and the range size for the large/small boundary need
463  * benchmarking to determine.
464  *
465  * For now use approach (2) for small ranges and (5) for large ones.
466  */
sh64_dcache_purge_user_range(struct mm_struct * mm,unsigned long start,unsigned long end)467 static void sh64_dcache_purge_user_range(struct mm_struct *mm,
468 			  unsigned long start, unsigned long end)
469 {
470 	int n_pages = ((end - start) >> PAGE_SHIFT);
471 
472 	if (n_pages >= 64 || ((start ^ (end - 1)) & PMD_MASK)) {
473 		sh64_dcache_purge_all();
474 	} else {
475 		/* Small range, covered by a single page table page */
476 		start &= PAGE_MASK;	/* should already be so */
477 		end = PAGE_ALIGN(end);	/* should already be so */
478 		sh64_dcache_purge_user_pages(mm, start, end);
479 	}
480 }
481 
482 /*
483  * Invalidate the entire contents of both caches, after writing back to
484  * memory any dirty data from the D-cache.
485  */
sh5_flush_cache_all(void * unused)486 static void sh5_flush_cache_all(void *unused)
487 {
488 	sh64_dcache_purge_all();
489 	sh64_icache_inv_all();
490 }
491 
492 /*
493  * Invalidate an entire user-address space from both caches, after
494  * writing back dirty data (e.g. for shared mmap etc).
495  *
496  * This could be coded selectively by inspecting all the tags then
497  * doing 4*alloco on any set containing a match (as for
498  * flush_cache_range), but fork/exit/execve (where this is called from)
499  * are expensive anyway.
500  *
501  * Have to do a purge here, despite the comments re I-cache below.
502  * There could be odd-coloured dirty data associated with the mm still
503  * in the cache - if this gets written out through natural eviction
504  * after the kernel has reused the page there will be chaos.
505  *
506  * The mm being torn down won't ever be active again, so any Icache
507  * lines tagged with its ASID won't be visible for the rest of the
508  * lifetime of this ASID cycle.  Before the ASID gets reused, there
509  * will be a flush_cache_all.  Hence we don't need to touch the
510  * I-cache.  This is similar to the lack of action needed in
511  * flush_tlb_mm - see fault.c.
512  */
sh5_flush_cache_mm(void * unused)513 static void sh5_flush_cache_mm(void *unused)
514 {
515 	sh64_dcache_purge_all();
516 }
517 
518 /*
519  * Invalidate (from both caches) the range [start,end) of virtual
520  * addresses from the user address space specified by mm, after writing
521  * back any dirty data.
522  *
523  * Note, 'end' is 1 byte beyond the end of the range to flush.
524  */
sh5_flush_cache_range(void * args)525 static void sh5_flush_cache_range(void *args)
526 {
527 	struct flusher_data *data = args;
528 	struct vm_area_struct *vma;
529 	unsigned long start, end;
530 
531 	vma = data->vma;
532 	start = data->addr1;
533 	end = data->addr2;
534 
535 	sh64_dcache_purge_user_range(vma->vm_mm, start, end);
536 	sh64_icache_inv_user_page_range(vma->vm_mm, start, end);
537 }
538 
539 /*
540  * Invalidate any entries in either cache for the vma within the user
541  * address space vma->vm_mm for the page starting at virtual address
542  * 'eaddr'.   This seems to be used primarily in breaking COW.  Note,
543  * the I-cache must be searched too in case the page in question is
544  * both writable and being executed from (e.g. stack trampolines.)
545  *
546  * Note, this is called with pte lock held.
547  */
sh5_flush_cache_page(void * args)548 static void sh5_flush_cache_page(void *args)
549 {
550 	struct flusher_data *data = args;
551 	struct vm_area_struct *vma;
552 	unsigned long eaddr, pfn;
553 
554 	vma = data->vma;
555 	eaddr = data->addr1;
556 	pfn = data->addr2;
557 
558 	sh64_dcache_purge_phy_page(pfn << PAGE_SHIFT);
559 
560 	if (vma->vm_flags & VM_EXEC)
561 		sh64_icache_inv_user_page(vma, eaddr);
562 }
563 
sh5_flush_dcache_page(void * page)564 static void sh5_flush_dcache_page(void *page)
565 {
566 	sh64_dcache_purge_phy_page(page_to_phys((struct page *)page));
567 	wmb();
568 }
569 
570 /*
571  * Flush the range [start,end] of kernel virtual address space from
572  * the I-cache.  The corresponding range must be purged from the
573  * D-cache also because the SH-5 doesn't have cache snooping between
574  * the caches.  The addresses will be visible through the superpage
575  * mapping, therefore it's guaranteed that there no cache entries for
576  * the range in cache sets of the wrong colour.
577  */
sh5_flush_icache_range(void * args)578 static void sh5_flush_icache_range(void *args)
579 {
580 	struct flusher_data *data = args;
581 	unsigned long start, end;
582 
583 	start = data->addr1;
584 	end = data->addr2;
585 
586 	__flush_purge_region((void *)start, end);
587 	wmb();
588 	sh64_icache_inv_kernel_range(start, end);
589 }
590 
591 /*
592  * For the address range [start,end), write back the data from the
593  * D-cache and invalidate the corresponding region of the I-cache for the
594  * current process.  Used to flush signal trampolines on the stack to
595  * make them executable.
596  */
sh5_flush_cache_sigtramp(void * vaddr)597 static void sh5_flush_cache_sigtramp(void *vaddr)
598 {
599 	unsigned long end = (unsigned long)vaddr + L1_CACHE_BYTES;
600 
601 	__flush_wback_region(vaddr, L1_CACHE_BYTES);
602 	wmb();
603 	sh64_icache_inv_current_user_range((unsigned long)vaddr, end);
604 }
605 
sh5_cache_init(void)606 void __init sh5_cache_init(void)
607 {
608 	local_flush_cache_all		= sh5_flush_cache_all;
609 	local_flush_cache_mm		= sh5_flush_cache_mm;
610 	local_flush_cache_dup_mm	= sh5_flush_cache_mm;
611 	local_flush_cache_page		= sh5_flush_cache_page;
612 	local_flush_cache_range		= sh5_flush_cache_range;
613 	local_flush_dcache_page		= sh5_flush_dcache_page;
614 	local_flush_icache_range	= sh5_flush_icache_range;
615 	local_flush_cache_sigtramp	= sh5_flush_cache_sigtramp;
616 
617 	/* Reserve a slot for dcache colouring in the DTLB */
618 	dtlb_cache_slot	= sh64_get_wired_dtlb_entry();
619 
620 	sh4__flush_region_init();
621 }
622