1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/unicore32/mm/init.c
4 *
5 * Copyright (C) 2010 GUAN Xue-tao
6 */
7 #include <linux/kernel.h>
8 #include <linux/errno.h>
9 #include <linux/swap.h>
10 #include <linux/init.h>
11 #include <linux/memblock.h>
12 #include <linux/mman.h>
13 #include <linux/nodemask.h>
14 #include <linux/initrd.h>
15 #include <linux/highmem.h>
16 #include <linux/gfp.h>
17 #include <linux/sort.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/export.h>
20
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <linux/sizes.h>
24 #include <asm/tlb.h>
25 #include <asm/memblock.h>
26 #include <mach/map.h>
27
28 #include "mm.h"
29
30 /*
31 * This keeps memory configuration data used by a couple memory
32 * initialization functions, as well as show_mem() for the skipping
33 * of holes in the memory map. It is populated by uc32_add_memory().
34 */
35 struct meminfo meminfo;
36
find_limits(unsigned long * min,unsigned long * max_low,unsigned long * max_high)37 static void __init find_limits(unsigned long *min, unsigned long *max_low,
38 unsigned long *max_high)
39 {
40 struct meminfo *mi = &meminfo;
41 int i;
42
43 *min = -1UL;
44 *max_low = *max_high = 0;
45
46 for_each_bank(i, mi) {
47 struct membank *bank = &mi->bank[i];
48 unsigned long start, end;
49
50 start = bank_pfn_start(bank);
51 end = bank_pfn_end(bank);
52
53 if (*min > start)
54 *min = start;
55 if (*max_high < end)
56 *max_high = end;
57 if (bank->highmem)
58 continue;
59 if (*max_low < end)
60 *max_low = end;
61 }
62 }
63
uc32_bootmem_free(unsigned long min,unsigned long max_low,unsigned long max_high)64 static void __init uc32_bootmem_free(unsigned long min, unsigned long max_low,
65 unsigned long max_high)
66 {
67 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
68 struct memblock_region *reg;
69
70 /*
71 * initialise the zones.
72 */
73 memset(zone_size, 0, sizeof(zone_size));
74
75 /*
76 * The memory size has already been determined. If we need
77 * to do anything fancy with the allocation of this memory
78 * to the zones, now is the time to do it.
79 */
80 zone_size[0] = max_low - min;
81
82 /*
83 * Calculate the size of the holes.
84 * holes = node_size - sum(bank_sizes)
85 */
86 memcpy(zhole_size, zone_size, sizeof(zhole_size));
87 for_each_memblock(memory, reg) {
88 unsigned long start = memblock_region_memory_base_pfn(reg);
89 unsigned long end = memblock_region_memory_end_pfn(reg);
90
91 if (start < max_low) {
92 unsigned long low_end = min(end, max_low);
93 zhole_size[0] -= low_end - start;
94 }
95 }
96
97 /*
98 * Adjust the sizes according to any special requirements for
99 * this machine type.
100 */
101 arch_adjust_zones(zone_size, zhole_size);
102
103 free_area_init_node(0, zone_size, min, zhole_size);
104 }
105
pfn_valid(unsigned long pfn)106 int pfn_valid(unsigned long pfn)
107 {
108 return memblock_is_memory(pfn << PAGE_SHIFT);
109 }
110 EXPORT_SYMBOL(pfn_valid);
111
uc32_memory_present(void)112 static void uc32_memory_present(void)
113 {
114 }
115
meminfo_cmp(const void * _a,const void * _b)116 static int __init meminfo_cmp(const void *_a, const void *_b)
117 {
118 const struct membank *a = _a, *b = _b;
119 long cmp = bank_pfn_start(a) - bank_pfn_start(b);
120 return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
121 }
122
uc32_memblock_init(struct meminfo * mi)123 void __init uc32_memblock_init(struct meminfo *mi)
124 {
125 int i;
126
127 sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]),
128 meminfo_cmp, NULL);
129
130 for (i = 0; i < mi->nr_banks; i++)
131 memblock_add(mi->bank[i].start, mi->bank[i].size);
132
133 /* Register the kernel text, kernel data and initrd with memblock. */
134 memblock_reserve(__pa(_text), _end - _text);
135
136 #ifdef CONFIG_BLK_DEV_INITRD
137 if (!phys_initrd_size) {
138 phys_initrd_start = 0x01000000;
139 phys_initrd_size = SZ_8M;
140 }
141
142 if (phys_initrd_size) {
143 memblock_reserve(phys_initrd_start, phys_initrd_size);
144
145 /* Now convert initrd to virtual addresses */
146 initrd_start = __phys_to_virt(phys_initrd_start);
147 initrd_end = initrd_start + phys_initrd_size;
148 }
149 #endif
150
151 uc32_mm_memblock_reserve();
152
153 memblock_allow_resize();
154 memblock_dump_all();
155 }
156
bootmem_init(void)157 void __init bootmem_init(void)
158 {
159 unsigned long min, max_low, max_high;
160
161 max_low = max_high = 0;
162
163 find_limits(&min, &max_low, &max_high);
164
165 node_set_online(0);
166
167 /*
168 * Sparsemem tries to allocate bootmem in memory_present(),
169 * so must be done after the fixed reservations
170 */
171 uc32_memory_present();
172
173 /*
174 * sparse_init() needs the bootmem allocator up and running.
175 */
176 sparse_init();
177
178 /*
179 * Now free the memory - free_area_init_node needs
180 * the sparse mem_map arrays initialized by sparse_init()
181 * for memmap_init_zone(), otherwise all PFNs are invalid.
182 */
183 uc32_bootmem_free(min, max_low, max_high);
184
185 high_memory = __va((max_low << PAGE_SHIFT) - 1) + 1;
186
187 /*
188 * This doesn't seem to be used by the Linux memory manager any
189 * more, but is used by ll_rw_block. If we can get rid of it, we
190 * also get rid of some of the stuff above as well.
191 *
192 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
193 * the system, not the maximum PFN.
194 */
195 max_low_pfn = max_low - PHYS_PFN_OFFSET;
196 max_pfn = max_high - PHYS_PFN_OFFSET;
197 }
198
199 static inline void
free_memmap(unsigned long start_pfn,unsigned long end_pfn)200 free_memmap(unsigned long start_pfn, unsigned long end_pfn)
201 {
202 struct page *start_pg, *end_pg;
203 unsigned long pg, pgend;
204
205 /*
206 * Convert start_pfn/end_pfn to a struct page pointer.
207 */
208 start_pg = pfn_to_page(start_pfn - 1) + 1;
209 end_pg = pfn_to_page(end_pfn);
210
211 /*
212 * Convert to physical addresses, and
213 * round start upwards and end downwards.
214 */
215 pg = PAGE_ALIGN(__pa(start_pg));
216 pgend = __pa(end_pg) & PAGE_MASK;
217
218 /*
219 * If there are free pages between these,
220 * free the section of the memmap array.
221 */
222 if (pg < pgend)
223 memblock_free(pg, pgend - pg);
224 }
225
226 /*
227 * The mem_map array can get very big. Free the unused area of the memory map.
228 */
free_unused_memmap(struct meminfo * mi)229 static void __init free_unused_memmap(struct meminfo *mi)
230 {
231 unsigned long bank_start, prev_bank_end = 0;
232 unsigned int i;
233
234 /*
235 * This relies on each bank being in address order.
236 * The banks are sorted previously in bootmem_init().
237 */
238 for_each_bank(i, mi) {
239 struct membank *bank = &mi->bank[i];
240
241 bank_start = bank_pfn_start(bank);
242
243 /*
244 * If we had a previous bank, and there is a space
245 * between the current bank and the previous, free it.
246 */
247 if (prev_bank_end && prev_bank_end < bank_start)
248 free_memmap(prev_bank_end, bank_start);
249
250 /*
251 * Align up here since the VM subsystem insists that the
252 * memmap entries are valid from the bank end aligned to
253 * MAX_ORDER_NR_PAGES.
254 */
255 prev_bank_end = ALIGN(bank_pfn_end(bank), MAX_ORDER_NR_PAGES);
256 }
257 }
258
259 /*
260 * mem_init() marks the free areas in the mem_map and tells us how much
261 * memory is free. This is done after various parts of the system have
262 * claimed their memory after the kernel image.
263 */
mem_init(void)264 void __init mem_init(void)
265 {
266 max_mapnr = pfn_to_page(max_pfn + PHYS_PFN_OFFSET) - mem_map;
267
268 free_unused_memmap(&meminfo);
269
270 /* this will put all unused low memory onto the freelists */
271 memblock_free_all();
272
273 mem_init_print_info(NULL);
274
275 BUILD_BUG_ON(TASK_SIZE > MODULES_VADDR);
276 BUG_ON(TASK_SIZE > MODULES_VADDR);
277
278 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
279 /*
280 * On a machine this small we won't get
281 * anywhere without overcommit, so turn
282 * it on by default.
283 */
284 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
285 }
286 }
287