• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/arch/unicore32/mm/mmu.c
4  *
5  * Code specific to PKUnity SoC and UniCore ISA
6  *
7  * Copyright (C) 2001-2010 GUAN Xue-tao
8  */
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/init.h>
13 #include <linux/mman.h>
14 #include <linux/nodemask.h>
15 #include <linux/memblock.h>
16 #include <linux/fs.h>
17 #include <linux/io.h>
18 
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/setup.h>
22 #include <linux/sizes.h>
23 #include <asm/tlb.h>
24 #include <asm/memblock.h>
25 
26 #include <mach/map.h>
27 
28 #include "mm.h"
29 
30 /*
31  * empty_zero_page is a special page that is used for
32  * zero-initialized data and COW.
33  */
34 struct page *empty_zero_page;
35 EXPORT_SYMBOL(empty_zero_page);
36 
37 /*
38  * The pmd table for the upper-most set of pages.
39  */
40 pmd_t *top_pmd;
41 
42 pgprot_t pgprot_user;
43 EXPORT_SYMBOL(pgprot_user);
44 
45 pgprot_t pgprot_kernel;
46 EXPORT_SYMBOL(pgprot_kernel);
47 
noalign_setup(char * __unused)48 static int __init noalign_setup(char *__unused)
49 {
50 	cr_alignment &= ~CR_A;
51 	cr_no_alignment &= ~CR_A;
52 	set_cr(cr_alignment);
53 	return 1;
54 }
55 __setup("noalign", noalign_setup);
56 
adjust_cr(unsigned long mask,unsigned long set)57 void adjust_cr(unsigned long mask, unsigned long set)
58 {
59 	unsigned long flags;
60 
61 	mask &= ~CR_A;
62 
63 	set &= mask;
64 
65 	local_irq_save(flags);
66 
67 	cr_no_alignment = (cr_no_alignment & ~mask) | set;
68 	cr_alignment = (cr_alignment & ~mask) | set;
69 
70 	set_cr((get_cr() & ~mask) | set);
71 
72 	local_irq_restore(flags);
73 }
74 
75 struct map_desc {
76 	unsigned long virtual;
77 	unsigned long pfn;
78 	unsigned long length;
79 	unsigned int type;
80 };
81 
82 #define PROT_PTE_DEVICE		(PTE_PRESENT | PTE_YOUNG |	\
83 				PTE_DIRTY | PTE_READ | PTE_WRITE)
84 #define PROT_SECT_DEVICE	(PMD_TYPE_SECT | PMD_PRESENT |	\
85 				PMD_SECT_READ | PMD_SECT_WRITE)
86 
87 static struct mem_type mem_types[] = {
88 	[MT_DEVICE] = {		  /* Strongly ordered */
89 		.prot_pte	= PROT_PTE_DEVICE,
90 		.prot_l1	= PMD_TYPE_TABLE | PMD_PRESENT,
91 		.prot_sect	= PROT_SECT_DEVICE,
92 	},
93 	/*
94 	 * MT_KUSER: pte for vecpage -- cacheable,
95 	 *       and sect for unigfx mmap -- noncacheable
96 	 */
97 	[MT_KUSER] = {
98 		.prot_pte  = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
99 				PTE_CACHEABLE | PTE_READ | PTE_EXEC,
100 		.prot_l1   = PMD_TYPE_TABLE | PMD_PRESENT,
101 		.prot_sect = PROT_SECT_DEVICE,
102 	},
103 	[MT_HIGH_VECTORS] = {
104 		.prot_pte  = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
105 				PTE_CACHEABLE | PTE_READ | PTE_WRITE |
106 				PTE_EXEC,
107 		.prot_l1   = PMD_TYPE_TABLE | PMD_PRESENT,
108 	},
109 	[MT_MEMORY] = {
110 		.prot_pte  = PTE_PRESENT | PTE_YOUNG | PTE_DIRTY |
111 				PTE_WRITE | PTE_EXEC,
112 		.prot_l1   = PMD_TYPE_TABLE | PMD_PRESENT,
113 		.prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE |
114 				PMD_SECT_READ | PMD_SECT_WRITE | PMD_SECT_EXEC,
115 	},
116 	[MT_ROM] = {
117 		.prot_sect = PMD_TYPE_SECT | PMD_PRESENT | PMD_SECT_CACHEABLE |
118 				PMD_SECT_READ,
119 	},
120 };
121 
get_mem_type(unsigned int type)122 const struct mem_type *get_mem_type(unsigned int type)
123 {
124 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
125 }
126 EXPORT_SYMBOL(get_mem_type);
127 
128 /*
129  * Adjust the PMD section entries according to the CPU in use.
130  */
build_mem_type_table(void)131 static void __init build_mem_type_table(void)
132 {
133 	pgprot_user   = __pgprot(PTE_PRESENT | PTE_YOUNG | PTE_CACHEABLE);
134 	pgprot_kernel = __pgprot(PTE_PRESENT | PTE_YOUNG |
135 				 PTE_DIRTY | PTE_READ | PTE_WRITE |
136 				 PTE_EXEC | PTE_CACHEABLE);
137 }
138 
139 #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
140 
early_pte_alloc(pmd_t * pmd,unsigned long addr,unsigned long prot)141 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
142 		unsigned long prot)
143 {
144 	if (pmd_none(*pmd)) {
145 		size_t size = PTRS_PER_PTE * sizeof(pte_t);
146 		pte_t *pte = memblock_alloc(size, size);
147 
148 		if (!pte)
149 			panic("%s: Failed to allocate %zu bytes align=%zx\n",
150 			      __func__, size, size);
151 
152 		__pmd_populate(pmd, __pa(pte) | prot);
153 	}
154 	BUG_ON(pmd_bad(*pmd));
155 	return pte_offset_kernel(pmd, addr);
156 }
157 
alloc_init_pte(pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,const struct mem_type * type)158 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
159 				  unsigned long end, unsigned long pfn,
160 				  const struct mem_type *type)
161 {
162 	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
163 	do {
164 		set_pte(pte, pfn_pte(pfn, __pgprot(type->prot_pte)));
165 		pfn++;
166 	} while (pte++, addr += PAGE_SIZE, addr != end);
167 }
168 
alloc_init_section(pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long phys,const struct mem_type * type)169 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
170 				      unsigned long end, unsigned long phys,
171 				      const struct mem_type *type)
172 {
173 	pmd_t *pmd = pmd_offset((pud_t *)pgd, addr);
174 
175 	/*
176 	 * Try a section mapping - end, addr and phys must all be aligned
177 	 * to a section boundary.
178 	 */
179 	if (((addr | end | phys) & ~SECTION_MASK) == 0) {
180 		pmd_t *p = pmd;
181 
182 		do {
183 			set_pmd(pmd, __pmd(phys | type->prot_sect));
184 			phys += SECTION_SIZE;
185 		} while (pmd++, addr += SECTION_SIZE, addr != end);
186 
187 		flush_pmd_entry(p);
188 	} else {
189 		/*
190 		 * No need to loop; pte's aren't interested in the
191 		 * individual L1 entries.
192 		 */
193 		alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
194 	}
195 }
196 
197 /*
198  * Create the page directory entries and any necessary
199  * page tables for the mapping specified by `md'.  We
200  * are able to cope here with varying sizes and address
201  * offsets, and we take full advantage of sections.
202  */
create_mapping(struct map_desc * md)203 static void __init create_mapping(struct map_desc *md)
204 {
205 	unsigned long phys, addr, length, end;
206 	const struct mem_type *type;
207 	pgd_t *pgd;
208 
209 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
210 		printk(KERN_WARNING "BUG: not creating mapping for "
211 		       "0x%08llx at 0x%08lx in user region\n",
212 		       __pfn_to_phys((u64)md->pfn), md->virtual);
213 		return;
214 	}
215 
216 	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
217 	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
218 		printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
219 		       "overlaps vmalloc space\n",
220 		       __pfn_to_phys((u64)md->pfn), md->virtual);
221 	}
222 
223 	type = &mem_types[md->type];
224 
225 	addr = md->virtual & PAGE_MASK;
226 	phys = (unsigned long)__pfn_to_phys(md->pfn);
227 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
228 
229 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
230 		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
231 		       "be mapped using pages, ignoring.\n",
232 		       __pfn_to_phys(md->pfn), addr);
233 		return;
234 	}
235 
236 	pgd = pgd_offset_k(addr);
237 	end = addr + length;
238 	do {
239 		unsigned long next = pgd_addr_end(addr, end);
240 
241 		alloc_init_section(pgd, addr, next, phys, type);
242 
243 		phys += next - addr;
244 		addr = next;
245 	} while (pgd++, addr != end);
246 }
247 
248 static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
249 
250 /*
251  * vmalloc=size forces the vmalloc area to be exactly 'size'
252  * bytes. This can be used to increase (or decrease) the vmalloc
253  * area - the default is 128m.
254  */
early_vmalloc(char * arg)255 static int __init early_vmalloc(char *arg)
256 {
257 	unsigned long vmalloc_reserve = memparse(arg, NULL);
258 
259 	if (vmalloc_reserve < SZ_16M) {
260 		vmalloc_reserve = SZ_16M;
261 		printk(KERN_WARNING
262 			"vmalloc area too small, limiting to %luMB\n",
263 			vmalloc_reserve >> 20);
264 	}
265 
266 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
267 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
268 		printk(KERN_WARNING
269 			"vmalloc area is too big, limiting to %luMB\n",
270 			vmalloc_reserve >> 20);
271 	}
272 
273 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
274 	return 0;
275 }
276 early_param("vmalloc", early_vmalloc);
277 
278 static phys_addr_t lowmem_limit __initdata = SZ_1G;
279 
sanity_check_meminfo(void)280 static void __init sanity_check_meminfo(void)
281 {
282 	int i, j;
283 
284 	lowmem_limit = __pa(vmalloc_min - 1) + 1;
285 	memblock_set_current_limit(lowmem_limit);
286 
287 	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
288 		struct membank *bank = &meminfo.bank[j];
289 		*bank = meminfo.bank[i];
290 		j++;
291 	}
292 	meminfo.nr_banks = j;
293 }
294 
prepare_page_table(void)295 static inline void prepare_page_table(void)
296 {
297 	unsigned long addr;
298 	phys_addr_t end;
299 
300 	/*
301 	 * Clear out all the mappings below the kernel image.
302 	 */
303 	for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
304 		pmd_clear(pmd_off_k(addr));
305 
306 	for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
307 		pmd_clear(pmd_off_k(addr));
308 
309 	/*
310 	 * Find the end of the first block of lowmem.
311 	 */
312 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
313 	if (end >= lowmem_limit)
314 		end = lowmem_limit;
315 
316 	/*
317 	 * Clear out all the kernel space mappings, except for the first
318 	 * memory bank, up to the end of the vmalloc region.
319 	 */
320 	for (addr = __phys_to_virt(end);
321 	     addr < VMALLOC_END; addr += PGDIR_SIZE)
322 		pmd_clear(pmd_off_k(addr));
323 }
324 
325 /*
326  * Reserve the special regions of memory
327  */
uc32_mm_memblock_reserve(void)328 void __init uc32_mm_memblock_reserve(void)
329 {
330 	/*
331 	 * Reserve the page tables.  These are already in use,
332 	 * and can only be in node 0.
333 	 */
334 	memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
335 }
336 
337 /*
338  * Set up device the mappings.  Since we clear out the page tables for all
339  * mappings above VMALLOC_END, we will remove any debug device mappings.
340  * This means you have to be careful how you debug this function, or any
341  * called function.  This means you can't use any function or debugging
342  * method which may touch any device, otherwise the kernel _will_ crash.
343  */
devicemaps_init(void)344 static void __init devicemaps_init(void)
345 {
346 	struct map_desc map;
347 	unsigned long addr;
348 	void *vectors;
349 
350 	/*
351 	 * Allocate the vector page early.
352 	 */
353 	vectors = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
354 	if (!vectors)
355 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
356 		      __func__, PAGE_SIZE, PAGE_SIZE);
357 
358 	for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
359 		pmd_clear(pmd_off_k(addr));
360 
361 	/*
362 	 * Create a mapping for the machine vectors at the high-vectors
363 	 * location (0xffff0000).  If we aren't using high-vectors, also
364 	 * create a mapping at the low-vectors virtual address.
365 	 */
366 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
367 	map.virtual = VECTORS_BASE;
368 	map.length = PAGE_SIZE;
369 	map.type = MT_HIGH_VECTORS;
370 	create_mapping(&map);
371 
372 	/*
373 	 * Create a mapping for the kuser page at the special
374 	 * location (0xbfff0000) to the same vectors location.
375 	 */
376 	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
377 	map.virtual = KUSER_VECPAGE_BASE;
378 	map.length = PAGE_SIZE;
379 	map.type = MT_KUSER;
380 	create_mapping(&map);
381 
382 	/*
383 	 * Finally flush the caches and tlb to ensure that we're in a
384 	 * consistent state wrt the writebuffer.  This also ensures that
385 	 * any write-allocated cache lines in the vector page are written
386 	 * back.  After this point, we can start to touch devices again.
387 	 */
388 	local_flush_tlb_all();
389 	flush_cache_all();
390 }
391 
map_lowmem(void)392 static void __init map_lowmem(void)
393 {
394 	struct memblock_region *reg;
395 
396 	/* Map all the lowmem memory banks. */
397 	for_each_memblock(memory, reg) {
398 		phys_addr_t start = reg->base;
399 		phys_addr_t end = start + reg->size;
400 		struct map_desc map;
401 
402 		if (end > lowmem_limit)
403 			end = lowmem_limit;
404 		if (start >= end)
405 			break;
406 
407 		map.pfn = __phys_to_pfn(start);
408 		map.virtual = __phys_to_virt(start);
409 		map.length = end - start;
410 		map.type = MT_MEMORY;
411 
412 		create_mapping(&map);
413 	}
414 }
415 
416 /*
417  * paging_init() sets up the page tables, initialises the zone memory
418  * maps, and sets up the zero page, bad page and bad page tables.
419  */
paging_init(void)420 void __init paging_init(void)
421 {
422 	void *zero_page;
423 
424 	build_mem_type_table();
425 	sanity_check_meminfo();
426 	prepare_page_table();
427 	map_lowmem();
428 	devicemaps_init();
429 
430 	top_pmd = pmd_off_k(0xffff0000);
431 
432 	/* allocate the zero page. */
433 	zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
434 	if (!zero_page)
435 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
436 		      __func__, PAGE_SIZE, PAGE_SIZE);
437 
438 	bootmem_init();
439 
440 	empty_zero_page = virt_to_page(zero_page);
441 	__flush_dcache_page(NULL, empty_zero_page);
442 }
443 
444 /*
445  * In order to soft-boot, we need to insert a 1:1 mapping in place of
446  * the user-mode pages.  This will then ensure that we have predictable
447  * results when turning the mmu off
448  */
setup_mm_for_reboot(void)449 void setup_mm_for_reboot(void)
450 {
451 	unsigned long base_pmdval;
452 	pgd_t *pgd;
453 	int i;
454 
455 	/*
456 	 * We need to access to user-mode page tables here. For kernel threads
457 	 * we don't have any user-mode mappings so we use the context that we
458 	 * "borrowed".
459 	 */
460 	pgd = current->active_mm->pgd;
461 
462 	base_pmdval = PMD_SECT_WRITE | PMD_SECT_READ | PMD_TYPE_SECT;
463 
464 	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
465 		unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
466 		pmd_t *pmd;
467 
468 		pmd = pmd_off(pgd, i << PGDIR_SHIFT);
469 		set_pmd(pmd, __pmd(pmdval));
470 		flush_pmd_entry(pmd);
471 	}
472 
473 	local_flush_tlb_all();
474 }
475 
476 /*
477  * Take care of architecture specific things when placing a new PTE into
478  * a page table, or changing an existing PTE.  Basically, there are two
479  * things that we need to take care of:
480  *
481  *  1. If PG_dcache_clean is not set for the page, we need to ensure
482  *     that any cache entries for the kernels virtual memory
483  *     range are written back to the page.
484  *  2. If we have multiple shared mappings of the same space in
485  *     an object, we need to deal with the cache aliasing issues.
486  *
487  * Note that the pte lock will be held.
488  */
update_mmu_cache(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)489 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
490 	pte_t *ptep)
491 {
492 	unsigned long pfn = pte_pfn(*ptep);
493 	struct address_space *mapping;
494 	struct page *page;
495 
496 	if (!pfn_valid(pfn))
497 		return;
498 
499 	/*
500 	 * The zero page is never written to, so never has any dirty
501 	 * cache lines, and therefore never needs to be flushed.
502 	 */
503 	page = pfn_to_page(pfn);
504 	if (page == ZERO_PAGE(0))
505 		return;
506 
507 	mapping = page_mapping_file(page);
508 	if (!test_and_set_bit(PG_dcache_clean, &page->flags))
509 		__flush_dcache_page(mapping, page);
510 	if (mapping)
511 		if (vma->vm_flags & VM_EXEC)
512 			__flush_icache_all();
513 }
514