• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/hpet.h>
7 #include <linux/cpu.h>
8 #include <linux/irq.h>
9 
10 #include <asm/hpet.h>
11 #include <asm/time.h>
12 #include <asm/mwait.h>
13 
14 #undef  pr_fmt
15 #define pr_fmt(fmt) "hpet: " fmt
16 
17 enum hpet_mode {
18 	HPET_MODE_UNUSED,
19 	HPET_MODE_LEGACY,
20 	HPET_MODE_CLOCKEVT,
21 	HPET_MODE_DEVICE,
22 };
23 
24 struct hpet_channel {
25 	struct clock_event_device	evt;
26 	unsigned int			num;
27 	unsigned int			cpu;
28 	unsigned int			irq;
29 	unsigned int			in_use;
30 	enum hpet_mode			mode;
31 	unsigned int			boot_cfg;
32 	char				name[10];
33 };
34 
35 struct hpet_base {
36 	unsigned int			nr_channels;
37 	unsigned int			nr_clockevents;
38 	unsigned int			boot_cfg;
39 	struct hpet_channel		*channels;
40 };
41 
42 #define HPET_MASK			CLOCKSOURCE_MASK(32)
43 
44 #define HPET_MIN_CYCLES			128
45 #define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
46 
47 /*
48  * HPET address is set in acpi/boot.c, when an ACPI entry exists
49  */
50 unsigned long				hpet_address;
51 u8					hpet_blockid; /* OS timer block num */
52 bool					hpet_msi_disable;
53 
54 #ifdef CONFIG_PCI_MSI
55 static DEFINE_PER_CPU(struct hpet_channel *, cpu_hpet_channel);
56 static struct irq_domain		*hpet_domain;
57 #endif
58 
59 static void __iomem			*hpet_virt_address;
60 
61 static struct hpet_base			hpet_base;
62 
63 static bool				hpet_legacy_int_enabled;
64 static unsigned long			hpet_freq;
65 
66 bool					boot_hpet_disable;
67 bool					hpet_force_user;
68 static bool				hpet_verbose;
69 
70 static inline
clockevent_to_channel(struct clock_event_device * evt)71 struct hpet_channel *clockevent_to_channel(struct clock_event_device *evt)
72 {
73 	return container_of(evt, struct hpet_channel, evt);
74 }
75 
hpet_readl(unsigned int a)76 inline unsigned int hpet_readl(unsigned int a)
77 {
78 	return readl(hpet_virt_address + a);
79 }
80 
hpet_writel(unsigned int d,unsigned int a)81 static inline void hpet_writel(unsigned int d, unsigned int a)
82 {
83 	writel(d, hpet_virt_address + a);
84 }
85 
hpet_set_mapping(void)86 static inline void hpet_set_mapping(void)
87 {
88 	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
89 }
90 
hpet_clear_mapping(void)91 static inline void hpet_clear_mapping(void)
92 {
93 	iounmap(hpet_virt_address);
94 	hpet_virt_address = NULL;
95 }
96 
97 /*
98  * HPET command line enable / disable
99  */
hpet_setup(char * str)100 static int __init hpet_setup(char *str)
101 {
102 	while (str) {
103 		char *next = strchr(str, ',');
104 
105 		if (next)
106 			*next++ = 0;
107 		if (!strncmp("disable", str, 7))
108 			boot_hpet_disable = true;
109 		if (!strncmp("force", str, 5))
110 			hpet_force_user = true;
111 		if (!strncmp("verbose", str, 7))
112 			hpet_verbose = true;
113 		str = next;
114 	}
115 	return 1;
116 }
117 __setup("hpet=", hpet_setup);
118 
disable_hpet(char * str)119 static int __init disable_hpet(char *str)
120 {
121 	boot_hpet_disable = true;
122 	return 1;
123 }
124 __setup("nohpet", disable_hpet);
125 
is_hpet_capable(void)126 static inline int is_hpet_capable(void)
127 {
128 	return !boot_hpet_disable && hpet_address;
129 }
130 
131 /**
132  * is_hpet_enabled - Check whether the legacy HPET timer interrupt is enabled
133  */
is_hpet_enabled(void)134 int is_hpet_enabled(void)
135 {
136 	return is_hpet_capable() && hpet_legacy_int_enabled;
137 }
138 EXPORT_SYMBOL_GPL(is_hpet_enabled);
139 
_hpet_print_config(const char * function,int line)140 static void _hpet_print_config(const char *function, int line)
141 {
142 	u32 i, id, period, cfg, status, channels, l, h;
143 
144 	pr_info("%s(%d):\n", function, line);
145 
146 	id = hpet_readl(HPET_ID);
147 	period = hpet_readl(HPET_PERIOD);
148 	pr_info("ID: 0x%x, PERIOD: 0x%x\n", id, period);
149 
150 	cfg = hpet_readl(HPET_CFG);
151 	status = hpet_readl(HPET_STATUS);
152 	pr_info("CFG: 0x%x, STATUS: 0x%x\n", cfg, status);
153 
154 	l = hpet_readl(HPET_COUNTER);
155 	h = hpet_readl(HPET_COUNTER+4);
156 	pr_info("COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
157 
158 	channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
159 
160 	for (i = 0; i < channels; i++) {
161 		l = hpet_readl(HPET_Tn_CFG(i));
162 		h = hpet_readl(HPET_Tn_CFG(i)+4);
163 		pr_info("T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", i, l, h);
164 
165 		l = hpet_readl(HPET_Tn_CMP(i));
166 		h = hpet_readl(HPET_Tn_CMP(i)+4);
167 		pr_info("T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", i, l, h);
168 
169 		l = hpet_readl(HPET_Tn_ROUTE(i));
170 		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
171 		pr_info("T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", i, l, h);
172 	}
173 }
174 
175 #define hpet_print_config()					\
176 do {								\
177 	if (hpet_verbose)					\
178 		_hpet_print_config(__func__, __LINE__);	\
179 } while (0)
180 
181 /*
182  * When the HPET driver (/dev/hpet) is enabled, we need to reserve
183  * timer 0 and timer 1 in case of RTC emulation.
184  */
185 #ifdef CONFIG_HPET
186 
hpet_reserve_platform_timers(void)187 static void __init hpet_reserve_platform_timers(void)
188 {
189 	struct hpet_data hd;
190 	unsigned int i;
191 
192 	memset(&hd, 0, sizeof(hd));
193 	hd.hd_phys_address	= hpet_address;
194 	hd.hd_address		= hpet_virt_address;
195 	hd.hd_nirqs		= hpet_base.nr_channels;
196 
197 	/*
198 	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
199 	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
200 	 * don't bother configuring *any* comparator interrupts.
201 	 */
202 	hd.hd_irq[0] = HPET_LEGACY_8254;
203 	hd.hd_irq[1] = HPET_LEGACY_RTC;
204 
205 	for (i = 0; i < hpet_base.nr_channels; i++) {
206 		struct hpet_channel *hc = hpet_base.channels + i;
207 
208 		if (i >= 2)
209 			hd.hd_irq[i] = hc->irq;
210 
211 		switch (hc->mode) {
212 		case HPET_MODE_UNUSED:
213 		case HPET_MODE_DEVICE:
214 			hc->mode = HPET_MODE_DEVICE;
215 			break;
216 		case HPET_MODE_CLOCKEVT:
217 		case HPET_MODE_LEGACY:
218 			hpet_reserve_timer(&hd, hc->num);
219 			break;
220 		}
221 	}
222 
223 	hpet_alloc(&hd);
224 }
225 
hpet_select_device_channel(void)226 static void __init hpet_select_device_channel(void)
227 {
228 	int i;
229 
230 	for (i = 0; i < hpet_base.nr_channels; i++) {
231 		struct hpet_channel *hc = hpet_base.channels + i;
232 
233 		/* Associate the first unused channel to /dev/hpet */
234 		if (hc->mode == HPET_MODE_UNUSED) {
235 			hc->mode = HPET_MODE_DEVICE;
236 			return;
237 		}
238 	}
239 }
240 
241 #else
hpet_reserve_platform_timers(void)242 static inline void hpet_reserve_platform_timers(void) { }
hpet_select_device_channel(void)243 static inline void hpet_select_device_channel(void) {}
244 #endif
245 
246 /* Common HPET functions */
hpet_stop_counter(void)247 static void hpet_stop_counter(void)
248 {
249 	u32 cfg = hpet_readl(HPET_CFG);
250 
251 	cfg &= ~HPET_CFG_ENABLE;
252 	hpet_writel(cfg, HPET_CFG);
253 }
254 
hpet_reset_counter(void)255 static void hpet_reset_counter(void)
256 {
257 	hpet_writel(0, HPET_COUNTER);
258 	hpet_writel(0, HPET_COUNTER + 4);
259 }
260 
hpet_start_counter(void)261 static void hpet_start_counter(void)
262 {
263 	unsigned int cfg = hpet_readl(HPET_CFG);
264 
265 	cfg |= HPET_CFG_ENABLE;
266 	hpet_writel(cfg, HPET_CFG);
267 }
268 
hpet_restart_counter(void)269 static void hpet_restart_counter(void)
270 {
271 	hpet_stop_counter();
272 	hpet_reset_counter();
273 	hpet_start_counter();
274 }
275 
hpet_resume_device(void)276 static void hpet_resume_device(void)
277 {
278 	force_hpet_resume();
279 }
280 
hpet_resume_counter(struct clocksource * cs)281 static void hpet_resume_counter(struct clocksource *cs)
282 {
283 	hpet_resume_device();
284 	hpet_restart_counter();
285 }
286 
hpet_enable_legacy_int(void)287 static void hpet_enable_legacy_int(void)
288 {
289 	unsigned int cfg = hpet_readl(HPET_CFG);
290 
291 	cfg |= HPET_CFG_LEGACY;
292 	hpet_writel(cfg, HPET_CFG);
293 	hpet_legacy_int_enabled = true;
294 }
295 
hpet_clkevt_set_state_periodic(struct clock_event_device * evt)296 static int hpet_clkevt_set_state_periodic(struct clock_event_device *evt)
297 {
298 	unsigned int channel = clockevent_to_channel(evt)->num;
299 	unsigned int cfg, cmp, now;
300 	uint64_t delta;
301 
302 	hpet_stop_counter();
303 	delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
304 	delta >>= evt->shift;
305 	now = hpet_readl(HPET_COUNTER);
306 	cmp = now + (unsigned int)delta;
307 	cfg = hpet_readl(HPET_Tn_CFG(channel));
308 	cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
309 	       HPET_TN_32BIT;
310 	hpet_writel(cfg, HPET_Tn_CFG(channel));
311 	hpet_writel(cmp, HPET_Tn_CMP(channel));
312 	udelay(1);
313 	/*
314 	 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
315 	 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
316 	 * bit is automatically cleared after the first write.
317 	 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
318 	 * Publication # 24674)
319 	 */
320 	hpet_writel((unsigned int)delta, HPET_Tn_CMP(channel));
321 	hpet_start_counter();
322 	hpet_print_config();
323 
324 	return 0;
325 }
326 
hpet_clkevt_set_state_oneshot(struct clock_event_device * evt)327 static int hpet_clkevt_set_state_oneshot(struct clock_event_device *evt)
328 {
329 	unsigned int channel = clockevent_to_channel(evt)->num;
330 	unsigned int cfg;
331 
332 	cfg = hpet_readl(HPET_Tn_CFG(channel));
333 	cfg &= ~HPET_TN_PERIODIC;
334 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
335 	hpet_writel(cfg, HPET_Tn_CFG(channel));
336 
337 	return 0;
338 }
339 
hpet_clkevt_set_state_shutdown(struct clock_event_device * evt)340 static int hpet_clkevt_set_state_shutdown(struct clock_event_device *evt)
341 {
342 	unsigned int channel = clockevent_to_channel(evt)->num;
343 	unsigned int cfg;
344 
345 	cfg = hpet_readl(HPET_Tn_CFG(channel));
346 	cfg &= ~HPET_TN_ENABLE;
347 	hpet_writel(cfg, HPET_Tn_CFG(channel));
348 
349 	return 0;
350 }
351 
hpet_clkevt_legacy_resume(struct clock_event_device * evt)352 static int hpet_clkevt_legacy_resume(struct clock_event_device *evt)
353 {
354 	hpet_enable_legacy_int();
355 	hpet_print_config();
356 	return 0;
357 }
358 
359 static int
hpet_clkevt_set_next_event(unsigned long delta,struct clock_event_device * evt)360 hpet_clkevt_set_next_event(unsigned long delta, struct clock_event_device *evt)
361 {
362 	unsigned int channel = clockevent_to_channel(evt)->num;
363 	u32 cnt;
364 	s32 res;
365 
366 	cnt = hpet_readl(HPET_COUNTER);
367 	cnt += (u32) delta;
368 	hpet_writel(cnt, HPET_Tn_CMP(channel));
369 
370 	/*
371 	 * HPETs are a complete disaster. The compare register is
372 	 * based on a equal comparison and neither provides a less
373 	 * than or equal functionality (which would require to take
374 	 * the wraparound into account) nor a simple count down event
375 	 * mode. Further the write to the comparator register is
376 	 * delayed internally up to two HPET clock cycles in certain
377 	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
378 	 * longer delays. We worked around that by reading back the
379 	 * compare register, but that required another workaround for
380 	 * ICH9,10 chips where the first readout after write can
381 	 * return the old stale value. We already had a minimum
382 	 * programming delta of 5us enforced, but a NMI or SMI hitting
383 	 * between the counter readout and the comparator write can
384 	 * move us behind that point easily. Now instead of reading
385 	 * the compare register back several times, we make the ETIME
386 	 * decision based on the following: Return ETIME if the
387 	 * counter value after the write is less than HPET_MIN_CYCLES
388 	 * away from the event or if the counter is already ahead of
389 	 * the event. The minimum programming delta for the generic
390 	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
391 	 */
392 	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
393 
394 	return res < HPET_MIN_CYCLES ? -ETIME : 0;
395 }
396 
hpet_init_clockevent(struct hpet_channel * hc,unsigned int rating)397 static void hpet_init_clockevent(struct hpet_channel *hc, unsigned int rating)
398 {
399 	struct clock_event_device *evt = &hc->evt;
400 
401 	evt->rating		= rating;
402 	evt->irq		= hc->irq;
403 	evt->name		= hc->name;
404 	evt->cpumask		= cpumask_of(hc->cpu);
405 	evt->set_state_oneshot	= hpet_clkevt_set_state_oneshot;
406 	evt->set_next_event	= hpet_clkevt_set_next_event;
407 	evt->set_state_shutdown	= hpet_clkevt_set_state_shutdown;
408 
409 	evt->features = CLOCK_EVT_FEAT_ONESHOT;
410 	if (hc->boot_cfg & HPET_TN_PERIODIC) {
411 		evt->features		|= CLOCK_EVT_FEAT_PERIODIC;
412 		evt->set_state_periodic	= hpet_clkevt_set_state_periodic;
413 	}
414 }
415 
hpet_legacy_clockevent_register(struct hpet_channel * hc)416 static void __init hpet_legacy_clockevent_register(struct hpet_channel *hc)
417 {
418 	/*
419 	 * Start HPET with the boot CPU's cpumask and make it global after
420 	 * the IO_APIC has been initialized.
421 	 */
422 	hc->cpu = boot_cpu_data.cpu_index;
423 	strncpy(hc->name, "hpet", sizeof(hc->name));
424 	hpet_init_clockevent(hc, 50);
425 
426 	hc->evt.tick_resume	= hpet_clkevt_legacy_resume;
427 
428 	/*
429 	 * Legacy horrors and sins from the past. HPET used periodic mode
430 	 * unconditionally forever on the legacy channel 0. Removing the
431 	 * below hack and using the conditional in hpet_init_clockevent()
432 	 * makes at least Qemu and one hardware machine fail to boot.
433 	 * There are two issues which cause the boot failure:
434 	 *
435 	 * #1 After the timer delivery test in IOAPIC and the IOAPIC setup
436 	 *    the next interrupt is not delivered despite the HPET channel
437 	 *    being programmed correctly. Reprogramming the HPET after
438 	 *    switching to IOAPIC makes it work again. After fixing this,
439 	 *    the next issue surfaces:
440 	 *
441 	 * #2 Due to the unconditional periodic mode availability the Local
442 	 *    APIC timer calibration can hijack the global clockevents
443 	 *    event handler without causing damage. Using oneshot at this
444 	 *    stage makes if hang because the HPET does not get
445 	 *    reprogrammed due to the handler hijacking. Duh, stupid me!
446 	 *
447 	 * Both issues require major surgery and especially the kick HPET
448 	 * again after enabling IOAPIC results in really nasty hackery.
449 	 * This 'assume periodic works' magic has survived since HPET
450 	 * support got added, so it's questionable whether this should be
451 	 * fixed. Both Qemu and the failing hardware machine support
452 	 * periodic mode despite the fact that both don't advertise it in
453 	 * the configuration register and both need that extra kick after
454 	 * switching to IOAPIC. Seems to be a feature...
455 	 */
456 	hc->evt.features		|= CLOCK_EVT_FEAT_PERIODIC;
457 	hc->evt.set_state_periodic	= hpet_clkevt_set_state_periodic;
458 
459 	/* Start HPET legacy interrupts */
460 	hpet_enable_legacy_int();
461 
462 	clockevents_config_and_register(&hc->evt, hpet_freq,
463 					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
464 	global_clock_event = &hc->evt;
465 	pr_debug("Clockevent registered\n");
466 }
467 
468 /*
469  * HPET MSI Support
470  */
471 #ifdef CONFIG_PCI_MSI
472 
hpet_msi_unmask(struct irq_data * data)473 void hpet_msi_unmask(struct irq_data *data)
474 {
475 	struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
476 	unsigned int cfg;
477 
478 	cfg = hpet_readl(HPET_Tn_CFG(hc->num));
479 	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
480 	hpet_writel(cfg, HPET_Tn_CFG(hc->num));
481 }
482 
hpet_msi_mask(struct irq_data * data)483 void hpet_msi_mask(struct irq_data *data)
484 {
485 	struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
486 	unsigned int cfg;
487 
488 	cfg = hpet_readl(HPET_Tn_CFG(hc->num));
489 	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
490 	hpet_writel(cfg, HPET_Tn_CFG(hc->num));
491 }
492 
hpet_msi_write(struct hpet_channel * hc,struct msi_msg * msg)493 void hpet_msi_write(struct hpet_channel *hc, struct msi_msg *msg)
494 {
495 	hpet_writel(msg->data, HPET_Tn_ROUTE(hc->num));
496 	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hc->num) + 4);
497 }
498 
hpet_clkevt_msi_resume(struct clock_event_device * evt)499 static int hpet_clkevt_msi_resume(struct clock_event_device *evt)
500 {
501 	struct hpet_channel *hc = clockevent_to_channel(evt);
502 	struct irq_data *data = irq_get_irq_data(hc->irq);
503 	struct msi_msg msg;
504 
505 	/* Restore the MSI msg and unmask the interrupt */
506 	irq_chip_compose_msi_msg(data, &msg);
507 	hpet_msi_write(hc, &msg);
508 	hpet_msi_unmask(data);
509 	return 0;
510 }
511 
hpet_msi_interrupt_handler(int irq,void * data)512 static irqreturn_t hpet_msi_interrupt_handler(int irq, void *data)
513 {
514 	struct hpet_channel *hc = data;
515 	struct clock_event_device *evt = &hc->evt;
516 
517 	if (!evt->event_handler) {
518 		pr_info("Spurious interrupt HPET channel %d\n", hc->num);
519 		return IRQ_HANDLED;
520 	}
521 
522 	evt->event_handler(evt);
523 	return IRQ_HANDLED;
524 }
525 
hpet_setup_msi_irq(struct hpet_channel * hc)526 static int hpet_setup_msi_irq(struct hpet_channel *hc)
527 {
528 	if (request_irq(hc->irq, hpet_msi_interrupt_handler,
529 			IRQF_TIMER | IRQF_NOBALANCING,
530 			hc->name, hc))
531 		return -1;
532 
533 	disable_irq(hc->irq);
534 	irq_set_affinity(hc->irq, cpumask_of(hc->cpu));
535 	enable_irq(hc->irq);
536 
537 	pr_debug("%s irq %u for MSI\n", hc->name, hc->irq);
538 
539 	return 0;
540 }
541 
542 /* Invoked from the hotplug callback on @cpu */
init_one_hpet_msi_clockevent(struct hpet_channel * hc,int cpu)543 static void init_one_hpet_msi_clockevent(struct hpet_channel *hc, int cpu)
544 {
545 	struct clock_event_device *evt = &hc->evt;
546 
547 	hc->cpu = cpu;
548 	per_cpu(cpu_hpet_channel, cpu) = hc;
549 	hpet_setup_msi_irq(hc);
550 
551 	hpet_init_clockevent(hc, 110);
552 	evt->tick_resume = hpet_clkevt_msi_resume;
553 
554 	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
555 					0x7FFFFFFF);
556 }
557 
hpet_get_unused_clockevent(void)558 static struct hpet_channel *hpet_get_unused_clockevent(void)
559 {
560 	int i;
561 
562 	for (i = 0; i < hpet_base.nr_channels; i++) {
563 		struct hpet_channel *hc = hpet_base.channels + i;
564 
565 		if (hc->mode != HPET_MODE_CLOCKEVT || hc->in_use)
566 			continue;
567 		hc->in_use = 1;
568 		return hc;
569 	}
570 	return NULL;
571 }
572 
hpet_cpuhp_online(unsigned int cpu)573 static int hpet_cpuhp_online(unsigned int cpu)
574 {
575 	struct hpet_channel *hc = hpet_get_unused_clockevent();
576 
577 	if (hc)
578 		init_one_hpet_msi_clockevent(hc, cpu);
579 	return 0;
580 }
581 
hpet_cpuhp_dead(unsigned int cpu)582 static int hpet_cpuhp_dead(unsigned int cpu)
583 {
584 	struct hpet_channel *hc = per_cpu(cpu_hpet_channel, cpu);
585 
586 	if (!hc)
587 		return 0;
588 	free_irq(hc->irq, hc);
589 	hc->in_use = 0;
590 	per_cpu(cpu_hpet_channel, cpu) = NULL;
591 	return 0;
592 }
593 
hpet_select_clockevents(void)594 static void __init hpet_select_clockevents(void)
595 {
596 	unsigned int i;
597 
598 	hpet_base.nr_clockevents = 0;
599 
600 	/* No point if MSI is disabled or CPU has an Always Runing APIC Timer */
601 	if (hpet_msi_disable || boot_cpu_has(X86_FEATURE_ARAT))
602 		return;
603 
604 	hpet_print_config();
605 
606 	hpet_domain = hpet_create_irq_domain(hpet_blockid);
607 	if (!hpet_domain)
608 		return;
609 
610 	for (i = 0; i < hpet_base.nr_channels; i++) {
611 		struct hpet_channel *hc = hpet_base.channels + i;
612 		int irq;
613 
614 		if (hc->mode != HPET_MODE_UNUSED)
615 			continue;
616 
617 		/* Only consider HPET channel with MSI support */
618 		if (!(hc->boot_cfg & HPET_TN_FSB_CAP))
619 			continue;
620 
621 		sprintf(hc->name, "hpet%d", i);
622 
623 		irq = hpet_assign_irq(hpet_domain, hc, hc->num);
624 		if (irq <= 0)
625 			continue;
626 
627 		hc->irq = irq;
628 		hc->mode = HPET_MODE_CLOCKEVT;
629 
630 		if (++hpet_base.nr_clockevents == num_possible_cpus())
631 			break;
632 	}
633 
634 	pr_info("%d channels of %d reserved for per-cpu timers\n",
635 		hpet_base.nr_channels, hpet_base.nr_clockevents);
636 }
637 
638 #else
639 
hpet_select_clockevents(void)640 static inline void hpet_select_clockevents(void) { }
641 
642 #define hpet_cpuhp_online	NULL
643 #define hpet_cpuhp_dead		NULL
644 
645 #endif
646 
647 /*
648  * Clock source related code
649  */
650 #if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
651 /*
652  * Reading the HPET counter is a very slow operation. If a large number of
653  * CPUs are trying to access the HPET counter simultaneously, it can cause
654  * massive delays and slow down system performance dramatically. This may
655  * happen when HPET is the default clock source instead of TSC. For a
656  * really large system with hundreds of CPUs, the slowdown may be so
657  * severe, that it can actually crash the system because of a NMI watchdog
658  * soft lockup, for example.
659  *
660  * If multiple CPUs are trying to access the HPET counter at the same time,
661  * we don't actually need to read the counter multiple times. Instead, the
662  * other CPUs can use the counter value read by the first CPU in the group.
663  *
664  * This special feature is only enabled on x86-64 systems. It is unlikely
665  * that 32-bit x86 systems will have enough CPUs to require this feature
666  * with its associated locking overhead. We also need 64-bit atomic read.
667  *
668  * The lock and the HPET value are stored together and can be read in a
669  * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
670  * is 32 bits in size.
671  */
672 union hpet_lock {
673 	struct {
674 		arch_spinlock_t lock;
675 		u32 value;
676 	};
677 	u64 lockval;
678 };
679 
680 static union hpet_lock hpet __cacheline_aligned = {
681 	{ .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
682 };
683 
read_hpet(struct clocksource * cs)684 static u64 read_hpet(struct clocksource *cs)
685 {
686 	unsigned long flags;
687 	union hpet_lock old, new;
688 
689 	BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
690 
691 	/*
692 	 * Read HPET directly if in NMI.
693 	 */
694 	if (in_nmi())
695 		return (u64)hpet_readl(HPET_COUNTER);
696 
697 	/*
698 	 * Read the current state of the lock and HPET value atomically.
699 	 */
700 	old.lockval = READ_ONCE(hpet.lockval);
701 
702 	if (arch_spin_is_locked(&old.lock))
703 		goto contended;
704 
705 	local_irq_save(flags);
706 	if (arch_spin_trylock(&hpet.lock)) {
707 		new.value = hpet_readl(HPET_COUNTER);
708 		/*
709 		 * Use WRITE_ONCE() to prevent store tearing.
710 		 */
711 		WRITE_ONCE(hpet.value, new.value);
712 		arch_spin_unlock(&hpet.lock);
713 		local_irq_restore(flags);
714 		return (u64)new.value;
715 	}
716 	local_irq_restore(flags);
717 
718 contended:
719 	/*
720 	 * Contended case
721 	 * --------------
722 	 * Wait until the HPET value change or the lock is free to indicate
723 	 * its value is up-to-date.
724 	 *
725 	 * It is possible that old.value has already contained the latest
726 	 * HPET value while the lock holder was in the process of releasing
727 	 * the lock. Checking for lock state change will enable us to return
728 	 * the value immediately instead of waiting for the next HPET reader
729 	 * to come along.
730 	 */
731 	do {
732 		cpu_relax();
733 		new.lockval = READ_ONCE(hpet.lockval);
734 	} while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
735 
736 	return (u64)new.value;
737 }
738 #else
739 /*
740  * For UP or 32-bit.
741  */
read_hpet(struct clocksource * cs)742 static u64 read_hpet(struct clocksource *cs)
743 {
744 	return (u64)hpet_readl(HPET_COUNTER);
745 }
746 #endif
747 
748 static struct clocksource clocksource_hpet = {
749 	.name		= "hpet",
750 	.rating		= 250,
751 	.read		= read_hpet,
752 	.mask		= HPET_MASK,
753 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
754 	.resume		= hpet_resume_counter,
755 };
756 
757 /*
758  * AMD SB700 based systems with spread spectrum enabled use a SMM based
759  * HPET emulation to provide proper frequency setting.
760  *
761  * On such systems the SMM code is initialized with the first HPET register
762  * access and takes some time to complete. During this time the config
763  * register reads 0xffffffff. We check for max 1000 loops whether the
764  * config register reads a non-0xffffffff value to make sure that the
765  * HPET is up and running before we proceed any further.
766  *
767  * A counting loop is safe, as the HPET access takes thousands of CPU cycles.
768  *
769  * On non-SB700 based machines this check is only done once and has no
770  * side effects.
771  */
hpet_cfg_working(void)772 static bool __init hpet_cfg_working(void)
773 {
774 	int i;
775 
776 	for (i = 0; i < 1000; i++) {
777 		if (hpet_readl(HPET_CFG) != 0xFFFFFFFF)
778 			return true;
779 	}
780 
781 	pr_warn("Config register invalid. Disabling HPET\n");
782 	return false;
783 }
784 
hpet_counting(void)785 static bool __init hpet_counting(void)
786 {
787 	u64 start, now, t1;
788 
789 	hpet_restart_counter();
790 
791 	t1 = hpet_readl(HPET_COUNTER);
792 	start = rdtsc();
793 
794 	/*
795 	 * We don't know the TSC frequency yet, but waiting for
796 	 * 200000 TSC cycles is safe:
797 	 * 4 GHz == 50us
798 	 * 1 GHz == 200us
799 	 */
800 	do {
801 		if (t1 != hpet_readl(HPET_COUNTER))
802 			return true;
803 		now = rdtsc();
804 	} while ((now - start) < 200000UL);
805 
806 	pr_warn("Counter not counting. HPET disabled\n");
807 	return false;
808 }
809 
mwait_pc10_supported(void)810 static bool __init mwait_pc10_supported(void)
811 {
812 	unsigned int eax, ebx, ecx, mwait_substates;
813 
814 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
815 		return false;
816 
817 	if (!cpu_feature_enabled(X86_FEATURE_MWAIT))
818 		return false;
819 
820 	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
821 		return false;
822 
823 	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &mwait_substates);
824 
825 	return (ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) &&
826 	       (ecx & CPUID5_ECX_INTERRUPT_BREAK) &&
827 	       (mwait_substates & (0xF << 28));
828 }
829 
830 /*
831  * Check whether the system supports PC10. If so force disable HPET as that
832  * stops counting in PC10. This check is overbroad as it does not take any
833  * of the following into account:
834  *
835  *	- ACPI tables
836  *	- Enablement of intel_idle
837  *	- Command line arguments which limit intel_idle C-state support
838  *
839  * That's perfectly fine. HPET is a piece of hardware designed by committee
840  * and the only reasons why it is still in use on modern systems is the
841  * fact that it is impossible to reliably query TSC and CPU frequency via
842  * CPUID or firmware.
843  *
844  * If HPET is functional it is useful for calibrating TSC, but this can be
845  * done via PMTIMER as well which seems to be the last remaining timer on
846  * X86/INTEL platforms that has not been completely wreckaged by feature
847  * creep.
848  *
849  * In theory HPET support should be removed altogether, but there are older
850  * systems out there which depend on it because TSC and APIC timer are
851  * dysfunctional in deeper C-states.
852  *
853  * It's only 20 years now that hardware people have been asked to provide
854  * reliable and discoverable facilities which can be used for timekeeping
855  * and per CPU timer interrupts.
856  *
857  * The probability that this problem is going to be solved in the
858  * forseeable future is close to zero, so the kernel has to be cluttered
859  * with heuristics to keep up with the ever growing amount of hardware and
860  * firmware trainwrecks. Hopefully some day hardware people will understand
861  * that the approach of "This can be fixed in software" is not sustainable.
862  * Hope dies last...
863  */
hpet_is_pc10_damaged(void)864 static bool __init hpet_is_pc10_damaged(void)
865 {
866 	unsigned long long pcfg;
867 
868 	/* Check whether PC10 substates are supported */
869 	if (!mwait_pc10_supported())
870 		return false;
871 
872 	/* Check whether PC10 is enabled in PKG C-state limit */
873 	rdmsrl(MSR_PKG_CST_CONFIG_CONTROL, pcfg);
874 	if ((pcfg & 0xF) < 8)
875 		return false;
876 
877 	if (hpet_force_user) {
878 		pr_warn("HPET force enabled via command line, but dysfunctional in PC10.\n");
879 		return false;
880 	}
881 
882 	pr_info("HPET dysfunctional in PC10. Force disabled.\n");
883 	boot_hpet_disable = true;
884 	return true;
885 }
886 
887 /**
888  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
889  */
hpet_enable(void)890 int __init hpet_enable(void)
891 {
892 	u32 hpet_period, cfg, id, irq;
893 	unsigned int i, channels;
894 	struct hpet_channel *hc;
895 	u64 freq;
896 
897 	if (!is_hpet_capable())
898 		return 0;
899 
900 	if (hpet_is_pc10_damaged())
901 		return 0;
902 
903 	hpet_set_mapping();
904 	if (!hpet_virt_address)
905 		return 0;
906 
907 	/* Validate that the config register is working */
908 	if (!hpet_cfg_working())
909 		goto out_nohpet;
910 
911 	/*
912 	 * Read the period and check for a sane value:
913 	 */
914 	hpet_period = hpet_readl(HPET_PERIOD);
915 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
916 		goto out_nohpet;
917 
918 	/* The period is a femtoseconds value. Convert it to a frequency. */
919 	freq = FSEC_PER_SEC;
920 	do_div(freq, hpet_period);
921 	hpet_freq = freq;
922 
923 	/*
924 	 * Read the HPET ID register to retrieve the IRQ routing
925 	 * information and the number of channels
926 	 */
927 	id = hpet_readl(HPET_ID);
928 	hpet_print_config();
929 
930 	/* This is the HPET channel number which is zero based */
931 	channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
932 
933 	/*
934 	 * The legacy routing mode needs at least two channels, tick timer
935 	 * and the rtc emulation channel.
936 	 */
937 	if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC) && channels < 2)
938 		goto out_nohpet;
939 
940 	hc = kcalloc(channels, sizeof(*hc), GFP_KERNEL);
941 	if (!hc) {
942 		pr_warn("Disabling HPET.\n");
943 		goto out_nohpet;
944 	}
945 	hpet_base.channels = hc;
946 	hpet_base.nr_channels = channels;
947 
948 	/* Read, store and sanitize the global configuration */
949 	cfg = hpet_readl(HPET_CFG);
950 	hpet_base.boot_cfg = cfg;
951 	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
952 	hpet_writel(cfg, HPET_CFG);
953 	if (cfg)
954 		pr_warn("Global config: Unknown bits %#x\n", cfg);
955 
956 	/* Read, store and sanitize the per channel configuration */
957 	for (i = 0; i < channels; i++, hc++) {
958 		hc->num = i;
959 
960 		cfg = hpet_readl(HPET_Tn_CFG(i));
961 		hc->boot_cfg = cfg;
962 		irq = (cfg & Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
963 		hc->irq = irq;
964 
965 		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
966 		hpet_writel(cfg, HPET_Tn_CFG(i));
967 
968 		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
969 			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
970 			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
971 		if (cfg)
972 			pr_warn("Channel #%u config: Unknown bits %#x\n", i, cfg);
973 	}
974 	hpet_print_config();
975 
976 	/*
977 	 * Validate that the counter is counting. This needs to be done
978 	 * after sanitizing the config registers to properly deal with
979 	 * force enabled HPETs.
980 	 */
981 	if (!hpet_counting())
982 		goto out_nohpet;
983 
984 	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
985 
986 	if (id & HPET_ID_LEGSUP) {
987 		hpet_legacy_clockevent_register(&hpet_base.channels[0]);
988 		hpet_base.channels[0].mode = HPET_MODE_LEGACY;
989 		if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC))
990 			hpet_base.channels[1].mode = HPET_MODE_LEGACY;
991 		return 1;
992 	}
993 	return 0;
994 
995 out_nohpet:
996 	kfree(hpet_base.channels);
997 	hpet_base.channels = NULL;
998 	hpet_base.nr_channels = 0;
999 	hpet_clear_mapping();
1000 	hpet_address = 0;
1001 	return 0;
1002 }
1003 
1004 /*
1005  * The late initialization runs after the PCI quirks have been invoked
1006  * which might have detected a system on which the HPET can be enforced.
1007  *
1008  * Also, the MSI machinery is not working yet when the HPET is initialized
1009  * early.
1010  *
1011  * If the HPET is enabled, then:
1012  *
1013  *  1) Reserve one channel for /dev/hpet if CONFIG_HPET=y
1014  *  2) Reserve up to num_possible_cpus() channels as per CPU clockevents
1015  *  3) Setup /dev/hpet if CONFIG_HPET=y
1016  *  4) Register hotplug callbacks when clockevents are available
1017  */
hpet_late_init(void)1018 static __init int hpet_late_init(void)
1019 {
1020 	int ret;
1021 
1022 	if (!hpet_address) {
1023 		if (!force_hpet_address)
1024 			return -ENODEV;
1025 
1026 		hpet_address = force_hpet_address;
1027 		hpet_enable();
1028 	}
1029 
1030 	if (!hpet_virt_address)
1031 		return -ENODEV;
1032 
1033 	hpet_select_device_channel();
1034 	hpet_select_clockevents();
1035 	hpet_reserve_platform_timers();
1036 	hpet_print_config();
1037 
1038 	if (!hpet_base.nr_clockevents)
1039 		return 0;
1040 
1041 	ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
1042 				hpet_cpuhp_online, NULL);
1043 	if (ret)
1044 		return ret;
1045 	ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
1046 				hpet_cpuhp_dead);
1047 	if (ret)
1048 		goto err_cpuhp;
1049 	return 0;
1050 
1051 err_cpuhp:
1052 	cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1053 	return ret;
1054 }
1055 fs_initcall(hpet_late_init);
1056 
hpet_disable(void)1057 void hpet_disable(void)
1058 {
1059 	unsigned int i;
1060 	u32 cfg;
1061 
1062 	if (!is_hpet_capable() || !hpet_virt_address)
1063 		return;
1064 
1065 	/* Restore boot configuration with the enable bit cleared */
1066 	cfg = hpet_base.boot_cfg;
1067 	cfg &= ~HPET_CFG_ENABLE;
1068 	hpet_writel(cfg, HPET_CFG);
1069 
1070 	/* Restore the channel boot configuration */
1071 	for (i = 0; i < hpet_base.nr_channels; i++)
1072 		hpet_writel(hpet_base.channels[i].boot_cfg, HPET_Tn_CFG(i));
1073 
1074 	/* If the HPET was enabled at boot time, reenable it */
1075 	if (hpet_base.boot_cfg & HPET_CFG_ENABLE)
1076 		hpet_writel(hpet_base.boot_cfg, HPET_CFG);
1077 }
1078 
1079 #ifdef CONFIG_HPET_EMULATE_RTC
1080 
1081 /*
1082  * HPET in LegacyReplacement mode eats up the RTC interrupt line. When HPET
1083  * is enabled, we support RTC interrupt functionality in software.
1084  *
1085  * RTC has 3 kinds of interrupts:
1086  *
1087  *  1) Update Interrupt - generate an interrupt, every second, when the
1088  *     RTC clock is updated
1089  *  2) Alarm Interrupt - generate an interrupt at a specific time of day
1090  *  3) Periodic Interrupt - generate periodic interrupt, with frequencies
1091  *     2Hz-8192Hz (2Hz-64Hz for non-root user) (all frequencies in powers of 2)
1092  *
1093  * (1) and (2) above are implemented using polling at a frequency of 64 Hz:
1094  * DEFAULT_RTC_INT_FREQ.
1095  *
1096  * The exact frequency is a tradeoff between accuracy and interrupt overhead.
1097  *
1098  * For (3), we use interrupts at 64 Hz, or the user specified periodic frequency,
1099  * if it's higher.
1100  */
1101 #include <linux/mc146818rtc.h>
1102 #include <linux/rtc.h>
1103 
1104 #define DEFAULT_RTC_INT_FREQ	64
1105 #define DEFAULT_RTC_SHIFT	6
1106 #define RTC_NUM_INTS		1
1107 
1108 static unsigned long hpet_rtc_flags;
1109 static int hpet_prev_update_sec;
1110 static struct rtc_time hpet_alarm_time;
1111 static unsigned long hpet_pie_count;
1112 static u32 hpet_t1_cmp;
1113 static u32 hpet_default_delta;
1114 static u32 hpet_pie_delta;
1115 static unsigned long hpet_pie_limit;
1116 
1117 static rtc_irq_handler irq_handler;
1118 
1119 /*
1120  * Check that the HPET counter c1 is ahead of c2
1121  */
hpet_cnt_ahead(u32 c1,u32 c2)1122 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1123 {
1124 	return (s32)(c2 - c1) < 0;
1125 }
1126 
1127 /*
1128  * Registers a IRQ handler.
1129  */
hpet_register_irq_handler(rtc_irq_handler handler)1130 int hpet_register_irq_handler(rtc_irq_handler handler)
1131 {
1132 	if (!is_hpet_enabled())
1133 		return -ENODEV;
1134 	if (irq_handler)
1135 		return -EBUSY;
1136 
1137 	irq_handler = handler;
1138 
1139 	return 0;
1140 }
1141 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1142 
1143 /*
1144  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1145  * and does cleanup.
1146  */
hpet_unregister_irq_handler(rtc_irq_handler handler)1147 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1148 {
1149 	if (!is_hpet_enabled())
1150 		return;
1151 
1152 	irq_handler = NULL;
1153 	hpet_rtc_flags = 0;
1154 }
1155 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1156 
1157 /*
1158  * Channel 1 for RTC emulation. We use one shot mode, as periodic mode
1159  * is not supported by all HPET implementations for channel 1.
1160  *
1161  * hpet_rtc_timer_init() is called when the rtc is initialized.
1162  */
hpet_rtc_timer_init(void)1163 int hpet_rtc_timer_init(void)
1164 {
1165 	unsigned int cfg, cnt, delta;
1166 	unsigned long flags;
1167 
1168 	if (!is_hpet_enabled())
1169 		return 0;
1170 
1171 	if (!hpet_default_delta) {
1172 		struct clock_event_device *evt = &hpet_base.channels[0].evt;
1173 		uint64_t clc;
1174 
1175 		clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1176 		clc >>= evt->shift + DEFAULT_RTC_SHIFT;
1177 		hpet_default_delta = clc;
1178 	}
1179 
1180 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1181 		delta = hpet_default_delta;
1182 	else
1183 		delta = hpet_pie_delta;
1184 
1185 	local_irq_save(flags);
1186 
1187 	cnt = delta + hpet_readl(HPET_COUNTER);
1188 	hpet_writel(cnt, HPET_T1_CMP);
1189 	hpet_t1_cmp = cnt;
1190 
1191 	cfg = hpet_readl(HPET_T1_CFG);
1192 	cfg &= ~HPET_TN_PERIODIC;
1193 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1194 	hpet_writel(cfg, HPET_T1_CFG);
1195 
1196 	local_irq_restore(flags);
1197 
1198 	return 1;
1199 }
1200 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1201 
hpet_disable_rtc_channel(void)1202 static void hpet_disable_rtc_channel(void)
1203 {
1204 	u32 cfg = hpet_readl(HPET_T1_CFG);
1205 
1206 	cfg &= ~HPET_TN_ENABLE;
1207 	hpet_writel(cfg, HPET_T1_CFG);
1208 }
1209 
1210 /*
1211  * The functions below are called from rtc driver.
1212  * Return 0 if HPET is not being used.
1213  * Otherwise do the necessary changes and return 1.
1214  */
hpet_mask_rtc_irq_bit(unsigned long bit_mask)1215 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1216 {
1217 	if (!is_hpet_enabled())
1218 		return 0;
1219 
1220 	hpet_rtc_flags &= ~bit_mask;
1221 	if (unlikely(!hpet_rtc_flags))
1222 		hpet_disable_rtc_channel();
1223 
1224 	return 1;
1225 }
1226 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1227 
hpet_set_rtc_irq_bit(unsigned long bit_mask)1228 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1229 {
1230 	unsigned long oldbits = hpet_rtc_flags;
1231 
1232 	if (!is_hpet_enabled())
1233 		return 0;
1234 
1235 	hpet_rtc_flags |= bit_mask;
1236 
1237 	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1238 		hpet_prev_update_sec = -1;
1239 
1240 	if (!oldbits)
1241 		hpet_rtc_timer_init();
1242 
1243 	return 1;
1244 }
1245 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1246 
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)1247 int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1248 {
1249 	if (!is_hpet_enabled())
1250 		return 0;
1251 
1252 	hpet_alarm_time.tm_hour = hrs;
1253 	hpet_alarm_time.tm_min = min;
1254 	hpet_alarm_time.tm_sec = sec;
1255 
1256 	return 1;
1257 }
1258 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1259 
hpet_set_periodic_freq(unsigned long freq)1260 int hpet_set_periodic_freq(unsigned long freq)
1261 {
1262 	uint64_t clc;
1263 
1264 	if (!is_hpet_enabled())
1265 		return 0;
1266 
1267 	if (freq <= DEFAULT_RTC_INT_FREQ) {
1268 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1269 	} else {
1270 		struct clock_event_device *evt = &hpet_base.channels[0].evt;
1271 
1272 		clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1273 		do_div(clc, freq);
1274 		clc >>= evt->shift;
1275 		hpet_pie_delta = clc;
1276 		hpet_pie_limit = 0;
1277 	}
1278 
1279 	return 1;
1280 }
1281 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1282 
hpet_rtc_dropped_irq(void)1283 int hpet_rtc_dropped_irq(void)
1284 {
1285 	return is_hpet_enabled();
1286 }
1287 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1288 
hpet_rtc_timer_reinit(void)1289 static void hpet_rtc_timer_reinit(void)
1290 {
1291 	unsigned int delta;
1292 	int lost_ints = -1;
1293 
1294 	if (unlikely(!hpet_rtc_flags))
1295 		hpet_disable_rtc_channel();
1296 
1297 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1298 		delta = hpet_default_delta;
1299 	else
1300 		delta = hpet_pie_delta;
1301 
1302 	/*
1303 	 * Increment the comparator value until we are ahead of the
1304 	 * current count.
1305 	 */
1306 	do {
1307 		hpet_t1_cmp += delta;
1308 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1309 		lost_ints++;
1310 	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1311 
1312 	if (lost_ints) {
1313 		if (hpet_rtc_flags & RTC_PIE)
1314 			hpet_pie_count += lost_ints;
1315 		if (printk_ratelimit())
1316 			pr_warn("Lost %d RTC interrupts\n", lost_ints);
1317 	}
1318 }
1319 
hpet_rtc_interrupt(int irq,void * dev_id)1320 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1321 {
1322 	struct rtc_time curr_time;
1323 	unsigned long rtc_int_flag = 0;
1324 
1325 	hpet_rtc_timer_reinit();
1326 	memset(&curr_time, 0, sizeof(struct rtc_time));
1327 
1328 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1329 		mc146818_get_time(&curr_time);
1330 
1331 	if (hpet_rtc_flags & RTC_UIE &&
1332 	    curr_time.tm_sec != hpet_prev_update_sec) {
1333 		if (hpet_prev_update_sec >= 0)
1334 			rtc_int_flag = RTC_UF;
1335 		hpet_prev_update_sec = curr_time.tm_sec;
1336 	}
1337 
1338 	if (hpet_rtc_flags & RTC_PIE && ++hpet_pie_count >= hpet_pie_limit) {
1339 		rtc_int_flag |= RTC_PF;
1340 		hpet_pie_count = 0;
1341 	}
1342 
1343 	if (hpet_rtc_flags & RTC_AIE &&
1344 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1345 	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1346 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1347 		rtc_int_flag |= RTC_AF;
1348 
1349 	if (rtc_int_flag) {
1350 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1351 		if (irq_handler)
1352 			irq_handler(rtc_int_flag, dev_id);
1353 	}
1354 	return IRQ_HANDLED;
1355 }
1356 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1357 #endif
1358