• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *		Probes initial implementation ( includes contributions from
9  *		Rusty Russell).
10  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
11  *		interface to access function arguments.
12  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
13  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
14  * 2005-Mar	Roland McGrath <roland@redhat.com>
15  *		Fixed to handle %rip-relative addressing mode correctly.
16  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18  *		<prasanna@in.ibm.com> added function-return probes.
19  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
20  *		Added function return probes functionality
21  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
22  *		kprobe-booster and kretprobe-booster for i386.
23  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
24  *		and kretprobe-booster for x86-64
25  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
26  *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
27  *		unified x86 kprobes code.
28  */
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/string.h>
32 #include <linux/slab.h>
33 #include <linux/hardirq.h>
34 #include <linux/preempt.h>
35 #include <linux/sched/debug.h>
36 #include <linux/extable.h>
37 #include <linux/kdebug.h>
38 #include <linux/kallsyms.h>
39 #include <linux/ftrace.h>
40 #include <linux/frame.h>
41 #include <linux/kasan.h>
42 #include <linux/moduleloader.h>
43 
44 #include <asm/text-patching.h>
45 #include <asm/cacheflush.h>
46 #include <asm/desc.h>
47 #include <asm/pgtable.h>
48 #include <linux/uaccess.h>
49 #include <asm/alternative.h>
50 #include <asm/insn.h>
51 #include <asm/debugreg.h>
52 #include <asm/set_memory.h>
53 
54 #include "common.h"
55 
56 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
57 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
58 
59 #define stack_addr(regs) ((unsigned long *)regs->sp)
60 
61 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
62 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
63 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
64 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
65 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
66 	 << (row % 32))
67 	/*
68 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
69 	 * Groups, and some special opcodes can not boost.
70 	 * This is non-const and volatile to keep gcc from statically
71 	 * optimizing it out, as variable_test_bit makes gcc think only
72 	 * *(unsigned long*) is used.
73 	 */
74 static volatile u32 twobyte_is_boostable[256 / 32] = {
75 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
76 	/*      ----------------------------------------------          */
77 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
78 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
79 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
80 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
81 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
82 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
83 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
84 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
85 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
86 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
87 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
88 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
89 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
90 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
91 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
92 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
93 	/*      -----------------------------------------------         */
94 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
95 };
96 #undef W
97 
98 struct kretprobe_blackpoint kretprobe_blacklist[] = {
99 	{"__switch_to", }, /* This function switches only current task, but
100 			      doesn't switch kernel stack.*/
101 	{NULL, NULL}	/* Terminator */
102 };
103 
104 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
105 
106 static nokprobe_inline void
__synthesize_relative_insn(void * dest,void * from,void * to,u8 op)107 __synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
108 {
109 	struct __arch_relative_insn {
110 		u8 op;
111 		s32 raddr;
112 	} __packed *insn;
113 
114 	insn = (struct __arch_relative_insn *)dest;
115 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
116 	insn->op = op;
117 }
118 
119 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
synthesize_reljump(void * dest,void * from,void * to)120 void synthesize_reljump(void *dest, void *from, void *to)
121 {
122 	__synthesize_relative_insn(dest, from, to, RELATIVEJUMP_OPCODE);
123 }
124 NOKPROBE_SYMBOL(synthesize_reljump);
125 
126 /* Insert a call instruction at address 'from', which calls address 'to'.*/
synthesize_relcall(void * dest,void * from,void * to)127 void synthesize_relcall(void *dest, void *from, void *to)
128 {
129 	__synthesize_relative_insn(dest, from, to, RELATIVECALL_OPCODE);
130 }
131 NOKPROBE_SYMBOL(synthesize_relcall);
132 
133 /*
134  * Skip the prefixes of the instruction.
135  */
skip_prefixes(kprobe_opcode_t * insn)136 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
137 {
138 	insn_attr_t attr;
139 
140 	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
141 	while (inat_is_legacy_prefix(attr)) {
142 		insn++;
143 		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
144 	}
145 #ifdef CONFIG_X86_64
146 	if (inat_is_rex_prefix(attr))
147 		insn++;
148 #endif
149 	return insn;
150 }
151 NOKPROBE_SYMBOL(skip_prefixes);
152 
153 /*
154  * Returns non-zero if INSN is boostable.
155  * RIP relative instructions are adjusted at copying time in 64 bits mode
156  */
can_boost(struct insn * insn,void * addr)157 int can_boost(struct insn *insn, void *addr)
158 {
159 	kprobe_opcode_t opcode;
160 	insn_byte_t prefix;
161 	int i;
162 
163 	if (search_exception_tables((unsigned long)addr))
164 		return 0;	/* Page fault may occur on this address. */
165 
166 	/* 2nd-byte opcode */
167 	if (insn->opcode.nbytes == 2)
168 		return test_bit(insn->opcode.bytes[1],
169 				(unsigned long *)twobyte_is_boostable);
170 
171 	if (insn->opcode.nbytes != 1)
172 		return 0;
173 
174 	for_each_insn_prefix(insn, i, prefix) {
175 		insn_attr_t attr;
176 
177 		attr = inat_get_opcode_attribute(prefix);
178 		/* Can't boost Address-size override prefix and CS override prefix */
179 		if (prefix == 0x2e || inat_is_address_size_prefix(attr))
180 			return 0;
181 	}
182 
183 	opcode = insn->opcode.bytes[0];
184 
185 	switch (opcode & 0xf0) {
186 	case 0x60:
187 		/* can't boost "bound" */
188 		return (opcode != 0x62);
189 	case 0x70:
190 		return 0; /* can't boost conditional jump */
191 	case 0x90:
192 		return opcode != 0x9a;	/* can't boost call far */
193 	case 0xc0:
194 		/* can't boost software-interruptions */
195 		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
196 	case 0xd0:
197 		/* can boost AA* and XLAT */
198 		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
199 	case 0xe0:
200 		/* can boost in/out and absolute jmps */
201 		return ((opcode & 0x04) || opcode == 0xea);
202 	case 0xf0:
203 		/* clear and set flags are boostable */
204 		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
205 	default:
206 		/* call is not boostable */
207 		return opcode != 0x9a;
208 	}
209 }
210 
211 static unsigned long
__recover_probed_insn(kprobe_opcode_t * buf,unsigned long addr)212 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
213 {
214 	struct kprobe *kp;
215 	unsigned long faddr;
216 
217 	kp = get_kprobe((void *)addr);
218 	faddr = ftrace_location(addr);
219 	/*
220 	 * Addresses inside the ftrace location are refused by
221 	 * arch_check_ftrace_location(). Something went terribly wrong
222 	 * if such an address is checked here.
223 	 */
224 	if (WARN_ON(faddr && faddr != addr))
225 		return 0UL;
226 	/*
227 	 * Use the current code if it is not modified by Kprobe
228 	 * and it cannot be modified by ftrace.
229 	 */
230 	if (!kp && !faddr)
231 		return addr;
232 
233 	/*
234 	 * Basically, kp->ainsn.insn has an original instruction.
235 	 * However, RIP-relative instruction can not do single-stepping
236 	 * at different place, __copy_instruction() tweaks the displacement of
237 	 * that instruction. In that case, we can't recover the instruction
238 	 * from the kp->ainsn.insn.
239 	 *
240 	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
241 	 * of the first byte of the probed instruction, which is overwritten
242 	 * by int3. And the instruction at kp->addr is not modified by kprobes
243 	 * except for the first byte, we can recover the original instruction
244 	 * from it and kp->opcode.
245 	 *
246 	 * In case of Kprobes using ftrace, we do not have a copy of
247 	 * the original instruction. In fact, the ftrace location might
248 	 * be modified at anytime and even could be in an inconsistent state.
249 	 * Fortunately, we know that the original code is the ideal 5-byte
250 	 * long NOP.
251 	 */
252 	if (probe_kernel_read(buf, (void *)addr,
253 		MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
254 		return 0UL;
255 
256 	if (faddr)
257 		memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
258 	else
259 		buf[0] = kp->opcode;
260 	return (unsigned long)buf;
261 }
262 
263 /*
264  * Recover the probed instruction at addr for further analysis.
265  * Caller must lock kprobes by kprobe_mutex, or disable preemption
266  * for preventing to release referencing kprobes.
267  * Returns zero if the instruction can not get recovered (or access failed).
268  */
recover_probed_instruction(kprobe_opcode_t * buf,unsigned long addr)269 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
270 {
271 	unsigned long __addr;
272 
273 	__addr = __recover_optprobed_insn(buf, addr);
274 	if (__addr != addr)
275 		return __addr;
276 
277 	return __recover_probed_insn(buf, addr);
278 }
279 
280 /* Check if paddr is at an instruction boundary */
can_probe(unsigned long paddr)281 static int can_probe(unsigned long paddr)
282 {
283 	unsigned long addr, __addr, offset = 0;
284 	struct insn insn;
285 	kprobe_opcode_t buf[MAX_INSN_SIZE];
286 
287 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
288 		return 0;
289 
290 	/* Decode instructions */
291 	addr = paddr - offset;
292 	while (addr < paddr) {
293 		/*
294 		 * Check if the instruction has been modified by another
295 		 * kprobe, in which case we replace the breakpoint by the
296 		 * original instruction in our buffer.
297 		 * Also, jump optimization will change the breakpoint to
298 		 * relative-jump. Since the relative-jump itself is
299 		 * normally used, we just go through if there is no kprobe.
300 		 */
301 		__addr = recover_probed_instruction(buf, addr);
302 		if (!__addr)
303 			return 0;
304 		kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
305 		insn_get_length(&insn);
306 
307 		/*
308 		 * Another debugging subsystem might insert this breakpoint.
309 		 * In that case, we can't recover it.
310 		 */
311 		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
312 			return 0;
313 		addr += insn.length;
314 	}
315 
316 	return (addr == paddr);
317 }
318 
319 /*
320  * Returns non-zero if opcode modifies the interrupt flag.
321  */
is_IF_modifier(kprobe_opcode_t * insn)322 static int is_IF_modifier(kprobe_opcode_t *insn)
323 {
324 	/* Skip prefixes */
325 	insn = skip_prefixes(insn);
326 
327 	switch (*insn) {
328 	case 0xfa:		/* cli */
329 	case 0xfb:		/* sti */
330 	case 0xcf:		/* iret/iretd */
331 	case 0x9d:		/* popf/popfd */
332 		return 1;
333 	}
334 
335 	return 0;
336 }
337 
338 /*
339  * Copy an instruction with recovering modified instruction by kprobes
340  * and adjust the displacement if the instruction uses the %rip-relative
341  * addressing mode. Note that since @real will be the final place of copied
342  * instruction, displacement must be adjust by @real, not @dest.
343  * This returns the length of copied instruction, or 0 if it has an error.
344  */
__copy_instruction(u8 * dest,u8 * src,u8 * real,struct insn * insn)345 int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
346 {
347 	kprobe_opcode_t buf[MAX_INSN_SIZE];
348 	unsigned long recovered_insn =
349 		recover_probed_instruction(buf, (unsigned long)src);
350 
351 	if (!recovered_insn || !insn)
352 		return 0;
353 
354 	/* This can access kernel text if given address is not recovered */
355 	if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE))
356 		return 0;
357 
358 	kernel_insn_init(insn, dest, MAX_INSN_SIZE);
359 	insn_get_length(insn);
360 
361 	/* We can not probe force emulate prefixed instruction */
362 	if (insn_has_emulate_prefix(insn))
363 		return 0;
364 
365 	/* Another subsystem puts a breakpoint, failed to recover */
366 	if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
367 		return 0;
368 
369 	/* We should not singlestep on the exception masking instructions */
370 	if (insn_masking_exception(insn))
371 		return 0;
372 
373 #ifdef CONFIG_X86_64
374 	/* Only x86_64 has RIP relative instructions */
375 	if (insn_rip_relative(insn)) {
376 		s64 newdisp;
377 		u8 *disp;
378 		/*
379 		 * The copied instruction uses the %rip-relative addressing
380 		 * mode.  Adjust the displacement for the difference between
381 		 * the original location of this instruction and the location
382 		 * of the copy that will actually be run.  The tricky bit here
383 		 * is making sure that the sign extension happens correctly in
384 		 * this calculation, since we need a signed 32-bit result to
385 		 * be sign-extended to 64 bits when it's added to the %rip
386 		 * value and yield the same 64-bit result that the sign-
387 		 * extension of the original signed 32-bit displacement would
388 		 * have given.
389 		 */
390 		newdisp = (u8 *) src + (s64) insn->displacement.value
391 			  - (u8 *) real;
392 		if ((s64) (s32) newdisp != newdisp) {
393 			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
394 			return 0;
395 		}
396 		disp = (u8 *) dest + insn_offset_displacement(insn);
397 		*(s32 *) disp = (s32) newdisp;
398 	}
399 #endif
400 	return insn->length;
401 }
402 
403 /* Prepare reljump right after instruction to boost */
prepare_boost(kprobe_opcode_t * buf,struct kprobe * p,struct insn * insn)404 static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p,
405 			  struct insn *insn)
406 {
407 	int len = insn->length;
408 
409 	if (can_boost(insn, p->addr) &&
410 	    MAX_INSN_SIZE - len >= RELATIVEJUMP_SIZE) {
411 		/*
412 		 * These instructions can be executed directly if it
413 		 * jumps back to correct address.
414 		 */
415 		synthesize_reljump(buf + len, p->ainsn.insn + len,
416 				   p->addr + insn->length);
417 		len += RELATIVEJUMP_SIZE;
418 		p->ainsn.boostable = true;
419 	} else {
420 		p->ainsn.boostable = false;
421 	}
422 
423 	return len;
424 }
425 
426 /* Make page to RO mode when allocate it */
alloc_insn_page(void)427 void *alloc_insn_page(void)
428 {
429 	void *page;
430 
431 	page = module_alloc(PAGE_SIZE);
432 	if (!page)
433 		return NULL;
434 
435 	set_vm_flush_reset_perms(page);
436 	/*
437 	 * First make the page read-only, and only then make it executable to
438 	 * prevent it from being W+X in between.
439 	 */
440 	set_memory_ro((unsigned long)page, 1);
441 
442 	/*
443 	 * TODO: Once additional kernel code protection mechanisms are set, ensure
444 	 * that the page was not maliciously altered and it is still zeroed.
445 	 */
446 	set_memory_x((unsigned long)page, 1);
447 
448 	return page;
449 }
450 
451 /* Recover page to RW mode before releasing it */
free_insn_page(void * page)452 void free_insn_page(void *page)
453 {
454 	module_memfree(page);
455 }
456 
arch_copy_kprobe(struct kprobe * p)457 static int arch_copy_kprobe(struct kprobe *p)
458 {
459 	struct insn insn;
460 	kprobe_opcode_t buf[MAX_INSN_SIZE];
461 	int len;
462 
463 	/* Copy an instruction with recovering if other optprobe modifies it.*/
464 	len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
465 	if (!len)
466 		return -EINVAL;
467 
468 	/*
469 	 * __copy_instruction can modify the displacement of the instruction,
470 	 * but it doesn't affect boostable check.
471 	 */
472 	len = prepare_boost(buf, p, &insn);
473 
474 	/* Check whether the instruction modifies Interrupt Flag or not */
475 	p->ainsn.if_modifier = is_IF_modifier(buf);
476 
477 	/* Also, displacement change doesn't affect the first byte */
478 	p->opcode = buf[0];
479 
480 	/* OK, write back the instruction(s) into ROX insn buffer */
481 	text_poke(p->ainsn.insn, buf, len);
482 
483 	return 0;
484 }
485 
arch_prepare_kprobe(struct kprobe * p)486 int arch_prepare_kprobe(struct kprobe *p)
487 {
488 	int ret;
489 
490 	if (alternatives_text_reserved(p->addr, p->addr))
491 		return -EINVAL;
492 
493 	if (!can_probe((unsigned long)p->addr))
494 		return -EILSEQ;
495 	/* insn: must be on special executable page on x86. */
496 	p->ainsn.insn = get_insn_slot();
497 	if (!p->ainsn.insn)
498 		return -ENOMEM;
499 
500 	ret = arch_copy_kprobe(p);
501 	if (ret) {
502 		free_insn_slot(p->ainsn.insn, 0);
503 		p->ainsn.insn = NULL;
504 	}
505 
506 	return ret;
507 }
508 
arch_arm_kprobe(struct kprobe * p)509 void arch_arm_kprobe(struct kprobe *p)
510 {
511 	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
512 }
513 
arch_disarm_kprobe(struct kprobe * p)514 void arch_disarm_kprobe(struct kprobe *p)
515 {
516 	text_poke(p->addr, &p->opcode, 1);
517 }
518 
arch_remove_kprobe(struct kprobe * p)519 void arch_remove_kprobe(struct kprobe *p)
520 {
521 	if (p->ainsn.insn) {
522 		free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
523 		p->ainsn.insn = NULL;
524 	}
525 }
526 
527 static nokprobe_inline void
save_previous_kprobe(struct kprobe_ctlblk * kcb)528 save_previous_kprobe(struct kprobe_ctlblk *kcb)
529 {
530 	kcb->prev_kprobe.kp = kprobe_running();
531 	kcb->prev_kprobe.status = kcb->kprobe_status;
532 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
533 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
534 }
535 
536 static nokprobe_inline void
restore_previous_kprobe(struct kprobe_ctlblk * kcb)537 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
538 {
539 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
540 	kcb->kprobe_status = kcb->prev_kprobe.status;
541 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
542 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
543 }
544 
545 static nokprobe_inline void
set_current_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)546 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
547 		   struct kprobe_ctlblk *kcb)
548 {
549 	__this_cpu_write(current_kprobe, p);
550 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
551 		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
552 	if (p->ainsn.if_modifier)
553 		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
554 }
555 
clear_btf(void)556 static nokprobe_inline void clear_btf(void)
557 {
558 	if (test_thread_flag(TIF_BLOCKSTEP)) {
559 		unsigned long debugctl = get_debugctlmsr();
560 
561 		debugctl &= ~DEBUGCTLMSR_BTF;
562 		update_debugctlmsr(debugctl);
563 	}
564 }
565 
restore_btf(void)566 static nokprobe_inline void restore_btf(void)
567 {
568 	if (test_thread_flag(TIF_BLOCKSTEP)) {
569 		unsigned long debugctl = get_debugctlmsr();
570 
571 		debugctl |= DEBUGCTLMSR_BTF;
572 		update_debugctlmsr(debugctl);
573 	}
574 }
575 
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)576 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
577 {
578 	unsigned long *sara = stack_addr(regs);
579 
580 	ri->ret_addr = (kprobe_opcode_t *) *sara;
581 	ri->fp = sara;
582 
583 	/* Replace the return addr with trampoline addr */
584 	*sara = (unsigned long) &kretprobe_trampoline;
585 }
586 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
587 
setup_singlestep(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb,int reenter)588 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
589 			     struct kprobe_ctlblk *kcb, int reenter)
590 {
591 	if (setup_detour_execution(p, regs, reenter))
592 		return;
593 
594 #if !defined(CONFIG_PREEMPTION)
595 	if (p->ainsn.boostable && !p->post_handler) {
596 		/* Boost up -- we can execute copied instructions directly */
597 		if (!reenter)
598 			reset_current_kprobe();
599 		/*
600 		 * Reentering boosted probe doesn't reset current_kprobe,
601 		 * nor set current_kprobe, because it doesn't use single
602 		 * stepping.
603 		 */
604 		regs->ip = (unsigned long)p->ainsn.insn;
605 		return;
606 	}
607 #endif
608 	if (reenter) {
609 		save_previous_kprobe(kcb);
610 		set_current_kprobe(p, regs, kcb);
611 		kcb->kprobe_status = KPROBE_REENTER;
612 	} else
613 		kcb->kprobe_status = KPROBE_HIT_SS;
614 	/* Prepare real single stepping */
615 	clear_btf();
616 	regs->flags |= X86_EFLAGS_TF;
617 	regs->flags &= ~X86_EFLAGS_IF;
618 	/* single step inline if the instruction is an int3 */
619 	if (p->opcode == BREAKPOINT_INSTRUCTION)
620 		regs->ip = (unsigned long)p->addr;
621 	else
622 		regs->ip = (unsigned long)p->ainsn.insn;
623 }
624 NOKPROBE_SYMBOL(setup_singlestep);
625 
626 /*
627  * We have reentered the kprobe_handler(), since another probe was hit while
628  * within the handler. We save the original kprobes variables and just single
629  * step on the instruction of the new probe without calling any user handlers.
630  */
reenter_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)631 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
632 			  struct kprobe_ctlblk *kcb)
633 {
634 	switch (kcb->kprobe_status) {
635 	case KPROBE_HIT_SSDONE:
636 	case KPROBE_HIT_ACTIVE:
637 	case KPROBE_HIT_SS:
638 		kprobes_inc_nmissed_count(p);
639 		setup_singlestep(p, regs, kcb, 1);
640 		break;
641 	case KPROBE_REENTER:
642 		/* A probe has been hit in the codepath leading up to, or just
643 		 * after, single-stepping of a probed instruction. This entire
644 		 * codepath should strictly reside in .kprobes.text section.
645 		 * Raise a BUG or we'll continue in an endless reentering loop
646 		 * and eventually a stack overflow.
647 		 */
648 		pr_err("Unrecoverable kprobe detected.\n");
649 		dump_kprobe(p);
650 		BUG();
651 	default:
652 		/* impossible cases */
653 		WARN_ON(1);
654 		return 0;
655 	}
656 
657 	return 1;
658 }
659 NOKPROBE_SYMBOL(reenter_kprobe);
660 
661 /*
662  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
663  * remain disabled throughout this function.
664  */
kprobe_int3_handler(struct pt_regs * regs)665 int kprobe_int3_handler(struct pt_regs *regs)
666 {
667 	kprobe_opcode_t *addr;
668 	struct kprobe *p;
669 	struct kprobe_ctlblk *kcb;
670 
671 	if (user_mode(regs))
672 		return 0;
673 
674 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
675 	/*
676 	 * We don't want to be preempted for the entire duration of kprobe
677 	 * processing. Since int3 and debug trap disables irqs and we clear
678 	 * IF while singlestepping, it must be no preemptible.
679 	 */
680 
681 	kcb = get_kprobe_ctlblk();
682 	p = get_kprobe(addr);
683 
684 	if (p) {
685 		if (kprobe_running()) {
686 			if (reenter_kprobe(p, regs, kcb))
687 				return 1;
688 		} else {
689 			set_current_kprobe(p, regs, kcb);
690 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
691 
692 			/*
693 			 * If we have no pre-handler or it returned 0, we
694 			 * continue with normal processing.  If we have a
695 			 * pre-handler and it returned non-zero, that means
696 			 * user handler setup registers to exit to another
697 			 * instruction, we must skip the single stepping.
698 			 */
699 			if (!p->pre_handler || !p->pre_handler(p, regs))
700 				setup_singlestep(p, regs, kcb, 0);
701 			else
702 				reset_current_kprobe();
703 			return 1;
704 		}
705 	} else if (*addr != BREAKPOINT_INSTRUCTION) {
706 		/*
707 		 * The breakpoint instruction was removed right
708 		 * after we hit it.  Another cpu has removed
709 		 * either a probepoint or a debugger breakpoint
710 		 * at this address.  In either case, no further
711 		 * handling of this interrupt is appropriate.
712 		 * Back up over the (now missing) int3 and run
713 		 * the original instruction.
714 		 */
715 		regs->ip = (unsigned long)addr;
716 		return 1;
717 	} /* else: not a kprobe fault; let the kernel handle it */
718 
719 	return 0;
720 }
721 NOKPROBE_SYMBOL(kprobe_int3_handler);
722 
723 /*
724  * When a retprobed function returns, this code saves registers and
725  * calls trampoline_handler() runs, which calls the kretprobe's handler.
726  */
727 asm(
728 	".text\n"
729 	".global kretprobe_trampoline\n"
730 	".type kretprobe_trampoline, @function\n"
731 	"kretprobe_trampoline:\n"
732 	/* We don't bother saving the ss register */
733 #ifdef CONFIG_X86_64
734 	"	pushq %rsp\n"
735 	"	pushfq\n"
736 	SAVE_REGS_STRING
737 	"	movq %rsp, %rdi\n"
738 	"	call trampoline_handler\n"
739 	/* Replace saved sp with true return address. */
740 	"	movq %rax, 19*8(%rsp)\n"
741 	RESTORE_REGS_STRING
742 	"	popfq\n"
743 #else
744 	"	pushl %esp\n"
745 	"	pushfl\n"
746 	SAVE_REGS_STRING
747 	"	movl %esp, %eax\n"
748 	"	call trampoline_handler\n"
749 	/* Replace saved sp with true return address. */
750 	"	movl %eax, 15*4(%esp)\n"
751 	RESTORE_REGS_STRING
752 	"	popfl\n"
753 #endif
754 	"	ret\n"
755 	".size kretprobe_trampoline, .-kretprobe_trampoline\n"
756 );
757 NOKPROBE_SYMBOL(kretprobe_trampoline);
758 STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
759 
760 /*
761  * Called from kretprobe_trampoline
762  */
trampoline_handler(struct pt_regs * regs)763 __used __visible void *trampoline_handler(struct pt_regs *regs)
764 {
765 	struct kretprobe_instance *ri = NULL;
766 	struct hlist_head *head, empty_rp;
767 	struct hlist_node *tmp;
768 	unsigned long flags, orig_ret_address = 0;
769 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
770 	kprobe_opcode_t *correct_ret_addr = NULL;
771 	void *frame_pointer;
772 	bool skipped = false;
773 
774 	/*
775 	 * Set a dummy kprobe for avoiding kretprobe recursion.
776 	 * Since kretprobe never run in kprobe handler, kprobe must not
777 	 * be running at this point.
778 	 */
779 	kprobe_busy_begin();
780 
781 	INIT_HLIST_HEAD(&empty_rp);
782 	kretprobe_hash_lock(current, &head, &flags);
783 	/* fixup registers */
784 	regs->cs = __KERNEL_CS;
785 #ifdef CONFIG_X86_32
786 	regs->cs |= get_kernel_rpl();
787 	regs->gs = 0;
788 #endif
789 	/* We use pt_regs->sp for return address holder. */
790 	frame_pointer = &regs->sp;
791 	regs->ip = trampoline_address;
792 	regs->orig_ax = ~0UL;
793 
794 	/*
795 	 * It is possible to have multiple instances associated with a given
796 	 * task either because multiple functions in the call path have
797 	 * return probes installed on them, and/or more than one
798 	 * return probe was registered for a target function.
799 	 *
800 	 * We can handle this because:
801 	 *     - instances are always pushed into the head of the list
802 	 *     - when multiple return probes are registered for the same
803 	 *	 function, the (chronologically) first instance's ret_addr
804 	 *	 will be the real return address, and all the rest will
805 	 *	 point to kretprobe_trampoline.
806 	 */
807 	hlist_for_each_entry(ri, head, hlist) {
808 		if (ri->task != current)
809 			/* another task is sharing our hash bucket */
810 			continue;
811 		/*
812 		 * Return probes must be pushed on this hash list correct
813 		 * order (same as return order) so that it can be popped
814 		 * correctly. However, if we find it is pushed it incorrect
815 		 * order, this means we find a function which should not be
816 		 * probed, because the wrong order entry is pushed on the
817 		 * path of processing other kretprobe itself.
818 		 */
819 		if (ri->fp != frame_pointer) {
820 			if (!skipped)
821 				pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n");
822 			skipped = true;
823 			continue;
824 		}
825 
826 		orig_ret_address = (unsigned long)ri->ret_addr;
827 		if (skipped)
828 			pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n",
829 				ri->rp->kp.addr);
830 
831 		if (orig_ret_address != trampoline_address)
832 			/*
833 			 * This is the real return address. Any other
834 			 * instances associated with this task are for
835 			 * other calls deeper on the call stack
836 			 */
837 			break;
838 	}
839 
840 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
841 
842 	correct_ret_addr = ri->ret_addr;
843 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
844 		if (ri->task != current)
845 			/* another task is sharing our hash bucket */
846 			continue;
847 		if (ri->fp != frame_pointer)
848 			continue;
849 
850 		orig_ret_address = (unsigned long)ri->ret_addr;
851 		if (ri->rp && ri->rp->handler) {
852 			__this_cpu_write(current_kprobe, &ri->rp->kp);
853 			ri->ret_addr = correct_ret_addr;
854 			ri->rp->handler(ri, regs);
855 			__this_cpu_write(current_kprobe, &kprobe_busy);
856 		}
857 
858 		recycle_rp_inst(ri, &empty_rp);
859 
860 		if (orig_ret_address != trampoline_address)
861 			/*
862 			 * This is the real return address. Any other
863 			 * instances associated with this task are for
864 			 * other calls deeper on the call stack
865 			 */
866 			break;
867 	}
868 
869 	kretprobe_hash_unlock(current, &flags);
870 
871 	kprobe_busy_end();
872 
873 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
874 		hlist_del(&ri->hlist);
875 		kfree(ri);
876 	}
877 	return (void *)orig_ret_address;
878 }
879 NOKPROBE_SYMBOL(trampoline_handler);
880 
881 /*
882  * Called after single-stepping.  p->addr is the address of the
883  * instruction whose first byte has been replaced by the "int 3"
884  * instruction.  To avoid the SMP problems that can occur when we
885  * temporarily put back the original opcode to single-step, we
886  * single-stepped a copy of the instruction.  The address of this
887  * copy is p->ainsn.insn.
888  *
889  * This function prepares to return from the post-single-step
890  * interrupt.  We have to fix up the stack as follows:
891  *
892  * 0) Except in the case of absolute or indirect jump or call instructions,
893  * the new ip is relative to the copied instruction.  We need to make
894  * it relative to the original instruction.
895  *
896  * 1) If the single-stepped instruction was pushfl, then the TF and IF
897  * flags are set in the just-pushed flags, and may need to be cleared.
898  *
899  * 2) If the single-stepped instruction was a call, the return address
900  * that is atop the stack is the address following the copied instruction.
901  * We need to make it the address following the original instruction.
902  *
903  * If this is the first time we've single-stepped the instruction at
904  * this probepoint, and the instruction is boostable, boost it: add a
905  * jump instruction after the copied instruction, that jumps to the next
906  * instruction after the probepoint.
907  */
resume_execution(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)908 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
909 			     struct kprobe_ctlblk *kcb)
910 {
911 	unsigned long *tos = stack_addr(regs);
912 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
913 	unsigned long orig_ip = (unsigned long)p->addr;
914 	kprobe_opcode_t *insn = p->ainsn.insn;
915 
916 	/* Skip prefixes */
917 	insn = skip_prefixes(insn);
918 
919 	regs->flags &= ~X86_EFLAGS_TF;
920 	switch (*insn) {
921 	case 0x9c:	/* pushfl */
922 		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
923 		*tos |= kcb->kprobe_old_flags;
924 		break;
925 	case 0xc2:	/* iret/ret/lret */
926 	case 0xc3:
927 	case 0xca:
928 	case 0xcb:
929 	case 0xcf:
930 	case 0xea:	/* jmp absolute -- ip is correct */
931 		/* ip is already adjusted, no more changes required */
932 		p->ainsn.boostable = true;
933 		goto no_change;
934 	case 0xe8:	/* call relative - Fix return addr */
935 		*tos = orig_ip + (*tos - copy_ip);
936 		break;
937 #ifdef CONFIG_X86_32
938 	case 0x9a:	/* call absolute -- same as call absolute, indirect */
939 		*tos = orig_ip + (*tos - copy_ip);
940 		goto no_change;
941 #endif
942 	case 0xff:
943 		if ((insn[1] & 0x30) == 0x10) {
944 			/*
945 			 * call absolute, indirect
946 			 * Fix return addr; ip is correct.
947 			 * But this is not boostable
948 			 */
949 			*tos = orig_ip + (*tos - copy_ip);
950 			goto no_change;
951 		} else if (((insn[1] & 0x31) == 0x20) ||
952 			   ((insn[1] & 0x31) == 0x21)) {
953 			/*
954 			 * jmp near and far, absolute indirect
955 			 * ip is correct. And this is boostable
956 			 */
957 			p->ainsn.boostable = true;
958 			goto no_change;
959 		}
960 	default:
961 		break;
962 	}
963 
964 	regs->ip += orig_ip - copy_ip;
965 
966 no_change:
967 	restore_btf();
968 }
969 NOKPROBE_SYMBOL(resume_execution);
970 
971 /*
972  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
973  * remain disabled throughout this function.
974  */
kprobe_debug_handler(struct pt_regs * regs)975 int kprobe_debug_handler(struct pt_regs *regs)
976 {
977 	struct kprobe *cur = kprobe_running();
978 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
979 
980 	if (!cur)
981 		return 0;
982 
983 	resume_execution(cur, regs, kcb);
984 	regs->flags |= kcb->kprobe_saved_flags;
985 
986 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
987 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
988 		cur->post_handler(cur, regs, 0);
989 	}
990 
991 	/* Restore back the original saved kprobes variables and continue. */
992 	if (kcb->kprobe_status == KPROBE_REENTER) {
993 		restore_previous_kprobe(kcb);
994 		goto out;
995 	}
996 	reset_current_kprobe();
997 out:
998 	/*
999 	 * if somebody else is singlestepping across a probe point, flags
1000 	 * will have TF set, in which case, continue the remaining processing
1001 	 * of do_debug, as if this is not a probe hit.
1002 	 */
1003 	if (regs->flags & X86_EFLAGS_TF)
1004 		return 0;
1005 
1006 	return 1;
1007 }
1008 NOKPROBE_SYMBOL(kprobe_debug_handler);
1009 
kprobe_fault_handler(struct pt_regs * regs,int trapnr)1010 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1011 {
1012 	struct kprobe *cur = kprobe_running();
1013 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1014 
1015 	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
1016 		/* This must happen on single-stepping */
1017 		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
1018 			kcb->kprobe_status != KPROBE_REENTER);
1019 		/*
1020 		 * We are here because the instruction being single
1021 		 * stepped caused a page fault. We reset the current
1022 		 * kprobe and the ip points back to the probe address
1023 		 * and allow the page fault handler to continue as a
1024 		 * normal page fault.
1025 		 */
1026 		regs->ip = (unsigned long)cur->addr;
1027 		/*
1028 		 * Trap flag (TF) has been set here because this fault
1029 		 * happened where the single stepping will be done.
1030 		 * So clear it by resetting the current kprobe:
1031 		 */
1032 		regs->flags &= ~X86_EFLAGS_TF;
1033 		/*
1034 		 * Since the single step (trap) has been cancelled,
1035 		 * we need to restore BTF here.
1036 		 */
1037 		restore_btf();
1038 
1039 		/*
1040 		 * If the TF flag was set before the kprobe hit,
1041 		 * don't touch it:
1042 		 */
1043 		regs->flags |= kcb->kprobe_old_flags;
1044 
1045 		if (kcb->kprobe_status == KPROBE_REENTER)
1046 			restore_previous_kprobe(kcb);
1047 		else
1048 			reset_current_kprobe();
1049 	} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
1050 		   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
1051 		/*
1052 		 * We increment the nmissed count for accounting,
1053 		 * we can also use npre/npostfault count for accounting
1054 		 * these specific fault cases.
1055 		 */
1056 		kprobes_inc_nmissed_count(cur);
1057 
1058 		/*
1059 		 * We come here because instructions in the pre/post
1060 		 * handler caused the page_fault, this could happen
1061 		 * if handler tries to access user space by
1062 		 * copy_from_user(), get_user() etc. Let the
1063 		 * user-specified handler try to fix it first.
1064 		 */
1065 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1066 			return 1;
1067 	}
1068 
1069 	return 0;
1070 }
1071 NOKPROBE_SYMBOL(kprobe_fault_handler);
1072 
arch_populate_kprobe_blacklist(void)1073 int __init arch_populate_kprobe_blacklist(void)
1074 {
1075 	int ret;
1076 
1077 	ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
1078 					 (unsigned long)__irqentry_text_end);
1079 	if (ret)
1080 		return ret;
1081 
1082 	return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
1083 					 (unsigned long)__entry_text_end);
1084 }
1085 
arch_init_kprobes(void)1086 int __init arch_init_kprobes(void)
1087 {
1088 	return 0;
1089 }
1090 
arch_trampoline_kprobe(struct kprobe * p)1091 int arch_trampoline_kprobe(struct kprobe *p)
1092 {
1093 	return 0;
1094 }
1095