• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17 
18 /*
19  * We need the mmu code to access both 32-bit and 64-bit guest ptes,
20  * so the code in this file is compiled twice, once per pte size.
21  */
22 
23 #if PTTYPE == 64
24 	#define pt_element_t u64
25 	#define guest_walker guest_walker64
26 	#define FNAME(name) paging##64_##name
27 	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
28 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
29 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
30 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
31 	#define PT_LEVEL_BITS PT64_LEVEL_BITS
32 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
33 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
34 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
35 	#ifdef CONFIG_X86_64
36 	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
37 	#define CMPXCHG "cmpxchgq"
38 	#else
39 	#define PT_MAX_FULL_LEVELS 2
40 	#endif
41 #elif PTTYPE == 32
42 	#define pt_element_t u32
43 	#define guest_walker guest_walker32
44 	#define FNAME(name) paging##32_##name
45 	#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
46 	#define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
47 	#define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
48 	#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
49 	#define PT_LEVEL_BITS PT32_LEVEL_BITS
50 	#define PT_MAX_FULL_LEVELS 2
51 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
52 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
53 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
54 	#define CMPXCHG "cmpxchgl"
55 #elif PTTYPE == PTTYPE_EPT
56 	#define pt_element_t u64
57 	#define guest_walker guest_walkerEPT
58 	#define FNAME(name) ept_##name
59 	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
60 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
61 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
62 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
63 	#define PT_LEVEL_BITS PT64_LEVEL_BITS
64 	#define PT_GUEST_DIRTY_SHIFT 9
65 	#define PT_GUEST_ACCESSED_SHIFT 8
66 	#define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
67 	#define PT_MAX_FULL_LEVELS 4
68 	#ifdef CONFIG_X86_64
69 	#define CMPXCHG "cmpxchgq"
70 	#endif
71 #else
72 	#error Invalid PTTYPE value
73 #endif
74 
75 #define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT)
76 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
77 
78 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
79 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
80 
81 /*
82  * The guest_walker structure emulates the behavior of the hardware page
83  * table walker.
84  */
85 struct guest_walker {
86 	int level;
87 	unsigned max_level;
88 	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
89 	pt_element_t ptes[PT_MAX_FULL_LEVELS];
90 	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
91 	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
92 	pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
93 	bool pte_writable[PT_MAX_FULL_LEVELS];
94 	unsigned int pt_access[PT_MAX_FULL_LEVELS];
95 	unsigned int pte_access;
96 	gfn_t gfn;
97 	struct x86_exception fault;
98 };
99 
gpte_to_gfn_lvl(pt_element_t gpte,int lvl)100 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
101 {
102 	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
103 }
104 
FNAME(protect_clean_gpte)105 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
106 					     unsigned gpte)
107 {
108 	unsigned mask;
109 
110 	/* dirty bit is not supported, so no need to track it */
111 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
112 		return;
113 
114 	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
115 
116 	mask = (unsigned)~ACC_WRITE_MASK;
117 	/* Allow write access to dirty gptes */
118 	mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
119 		PT_WRITABLE_MASK;
120 	*access &= mask;
121 }
122 
FNAME(is_present_gpte)123 static inline int FNAME(is_present_gpte)(unsigned long pte)
124 {
125 #if PTTYPE != PTTYPE_EPT
126 	return pte & PT_PRESENT_MASK;
127 #else
128 	return pte & 7;
129 #endif
130 }
131 
FNAME(cmpxchg_gpte)132 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
133 			       pt_element_t __user *ptep_user, unsigned index,
134 			       pt_element_t orig_pte, pt_element_t new_pte)
135 {
136 	int r = -EFAULT;
137 
138 	if (!user_access_begin(ptep_user, sizeof(pt_element_t)))
139 		return -EFAULT;
140 
141 #ifdef CMPXCHG
142 	asm volatile("1:" LOCK_PREFIX CMPXCHG " %[new], %[ptr]\n"
143 		     "mov $0, %[r]\n"
144 		     "setnz %b[r]\n"
145 		     "2:"
146 		     _ASM_EXTABLE_UA(1b, 2b)
147 		     : [ptr] "+m" (*ptep_user),
148 		       [old] "+a" (orig_pte),
149 		       [r] "+q" (r)
150 		     : [new] "r" (new_pte)
151 		     : "memory");
152 #else
153 	asm volatile("1:" LOCK_PREFIX "cmpxchg8b %[ptr]\n"
154 		     "movl $0, %[r]\n"
155 		     "jz 2f\n"
156 		     "incl %[r]\n"
157 		     "2:"
158 		     _ASM_EXTABLE_UA(1b, 2b)
159 		     : [ptr] "+m" (*ptep_user),
160 		       [old] "+A" (orig_pte),
161 		       [r] "+rm" (r)
162 		     : [new_lo] "b" ((u32)new_pte),
163 		       [new_hi] "c" ((u32)(new_pte >> 32))
164 		     : "memory");
165 #endif
166 
167 	user_access_end();
168 	return r;
169 }
170 
FNAME(prefetch_invalid_gpte)171 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
172 				  struct kvm_mmu_page *sp, u64 *spte,
173 				  u64 gpte)
174 {
175 	if (is_rsvd_bits_set(vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
176 		goto no_present;
177 
178 	if (!FNAME(is_present_gpte)(gpte))
179 		goto no_present;
180 
181 	/* if accessed bit is not supported prefetch non accessed gpte */
182 	if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
183 	    !(gpte & PT_GUEST_ACCESSED_MASK))
184 		goto no_present;
185 
186 	return false;
187 
188 no_present:
189 	drop_spte(vcpu->kvm, spte);
190 	return true;
191 }
192 
193 /*
194  * For PTTYPE_EPT, a page table can be executable but not readable
195  * on supported processors. Therefore, set_spte does not automatically
196  * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
197  * to signify readability since it isn't used in the EPT case
198  */
FNAME(gpte_access)199 static inline unsigned FNAME(gpte_access)(u64 gpte)
200 {
201 	unsigned access;
202 #if PTTYPE == PTTYPE_EPT
203 	access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
204 		((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
205 		((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
206 #else
207 	BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
208 	BUILD_BUG_ON(ACC_EXEC_MASK != 1);
209 	access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
210 	/* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
211 	access ^= (gpte >> PT64_NX_SHIFT);
212 #endif
213 
214 	return access;
215 }
216 
FNAME(update_accessed_dirty_bits)217 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
218 					     struct kvm_mmu *mmu,
219 					     struct guest_walker *walker,
220 					     gpa_t addr, int write_fault)
221 {
222 	unsigned level, index;
223 	pt_element_t pte, orig_pte;
224 	pt_element_t __user *ptep_user;
225 	gfn_t table_gfn;
226 	int ret;
227 
228 	/* dirty/accessed bits are not supported, so no need to update them */
229 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
230 		return 0;
231 
232 	for (level = walker->max_level; level >= walker->level; --level) {
233 		pte = orig_pte = walker->ptes[level - 1];
234 		table_gfn = walker->table_gfn[level - 1];
235 		ptep_user = walker->ptep_user[level - 1];
236 		index = offset_in_page(ptep_user) / sizeof(pt_element_t);
237 		if (!(pte & PT_GUEST_ACCESSED_MASK)) {
238 			trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
239 			pte |= PT_GUEST_ACCESSED_MASK;
240 		}
241 		if (level == walker->level && write_fault &&
242 				!(pte & PT_GUEST_DIRTY_MASK)) {
243 			trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
244 #if PTTYPE == PTTYPE_EPT
245 			if (kvm_arch_write_log_dirty(vcpu, addr))
246 				return -EINVAL;
247 #endif
248 			pte |= PT_GUEST_DIRTY_MASK;
249 		}
250 		if (pte == orig_pte)
251 			continue;
252 
253 		/*
254 		 * If the slot is read-only, simply do not process the accessed
255 		 * and dirty bits.  This is the correct thing to do if the slot
256 		 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
257 		 * are only supported if the accessed and dirty bits are already
258 		 * set in the ROM (so that MMIO writes are never needed).
259 		 *
260 		 * Note that NPT does not allow this at all and faults, since
261 		 * it always wants nested page table entries for the guest
262 		 * page tables to be writable.  And EPT works but will simply
263 		 * overwrite the read-only memory to set the accessed and dirty
264 		 * bits.
265 		 */
266 		if (unlikely(!walker->pte_writable[level - 1]))
267 			continue;
268 
269 		ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
270 		if (ret)
271 			return ret;
272 
273 		kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
274 		walker->ptes[level - 1] = pte;
275 	}
276 	return 0;
277 }
278 
FNAME(gpte_pkeys)279 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
280 {
281 	unsigned pkeys = 0;
282 #if PTTYPE == 64
283 	pte_t pte = {.pte = gpte};
284 
285 	pkeys = pte_flags_pkey(pte_flags(pte));
286 #endif
287 	return pkeys;
288 }
289 
290 /*
291  * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
292  */
FNAME(walk_addr_generic)293 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
294 				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
295 				    gpa_t addr, u32 access)
296 {
297 	int ret;
298 	pt_element_t pte;
299 	pt_element_t __user *uninitialized_var(ptep_user);
300 	gfn_t table_gfn;
301 	u64 pt_access, pte_access;
302 	unsigned index, accessed_dirty, pte_pkey;
303 	unsigned nested_access;
304 	gpa_t pte_gpa;
305 	bool have_ad;
306 	int offset;
307 	u64 walk_nx_mask = 0;
308 	const int write_fault = access & PFERR_WRITE_MASK;
309 	const int user_fault  = access & PFERR_USER_MASK;
310 	const int fetch_fault = access & PFERR_FETCH_MASK;
311 	u16 errcode = 0;
312 	gpa_t real_gpa;
313 	gfn_t gfn;
314 
315 	trace_kvm_mmu_pagetable_walk(addr, access);
316 retry_walk:
317 	walker->level = mmu->root_level;
318 	pte           = mmu->get_cr3(vcpu);
319 	have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu);
320 
321 #if PTTYPE == 64
322 	walk_nx_mask = 1ULL << PT64_NX_SHIFT;
323 	if (walker->level == PT32E_ROOT_LEVEL) {
324 		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
325 		trace_kvm_mmu_paging_element(pte, walker->level);
326 		if (!FNAME(is_present_gpte)(pte))
327 			goto error;
328 		--walker->level;
329 	}
330 #endif
331 	walker->max_level = walker->level;
332 	ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
333 
334 	/*
335 	 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
336 	 * by the MOV to CR instruction are treated as reads and do not cause the
337 	 * processor to set the dirty flag in any EPT paging-structure entry.
338 	 */
339 	nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
340 
341 	pte_access = ~0;
342 	++walker->level;
343 
344 	do {
345 		gfn_t real_gfn;
346 		unsigned long host_addr;
347 
348 		pt_access = pte_access;
349 		--walker->level;
350 
351 		index = PT_INDEX(addr, walker->level);
352 		table_gfn = gpte_to_gfn(pte);
353 		offset    = index * sizeof(pt_element_t);
354 		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
355 
356 		BUG_ON(walker->level < 1);
357 		walker->table_gfn[walker->level - 1] = table_gfn;
358 		walker->pte_gpa[walker->level - 1] = pte_gpa;
359 
360 		real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
361 					      nested_access,
362 					      &walker->fault);
363 
364 		/*
365 		 * FIXME: This can happen if emulation (for of an INS/OUTS
366 		 * instruction) triggers a nested page fault.  The exit
367 		 * qualification / exit info field will incorrectly have
368 		 * "guest page access" as the nested page fault's cause,
369 		 * instead of "guest page structure access".  To fix this,
370 		 * the x86_exception struct should be augmented with enough
371 		 * information to fix the exit_qualification or exit_info_1
372 		 * fields.
373 		 */
374 		if (unlikely(real_gfn == UNMAPPED_GVA))
375 			return 0;
376 
377 		real_gfn = gpa_to_gfn(real_gfn);
378 
379 		host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
380 					    &walker->pte_writable[walker->level - 1]);
381 		if (unlikely(kvm_is_error_hva(host_addr)))
382 			goto error;
383 
384 		ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
385 		if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
386 			goto error;
387 		walker->ptep_user[walker->level - 1] = ptep_user;
388 
389 		trace_kvm_mmu_paging_element(pte, walker->level);
390 
391 		/*
392 		 * Inverting the NX it lets us AND it like other
393 		 * permission bits.
394 		 */
395 		pte_access = pt_access & (pte ^ walk_nx_mask);
396 
397 		if (unlikely(!FNAME(is_present_gpte)(pte)))
398 			goto error;
399 
400 		if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) {
401 			errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
402 			goto error;
403 		}
404 
405 		walker->ptes[walker->level - 1] = pte;
406 
407 		/* Convert to ACC_*_MASK flags for struct guest_walker.  */
408 		walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
409 	} while (!is_last_gpte(mmu, walker->level, pte));
410 
411 	pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
412 	accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
413 
414 	/* Convert to ACC_*_MASK flags for struct guest_walker.  */
415 	walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
416 	errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
417 	if (unlikely(errcode))
418 		goto error;
419 
420 	gfn = gpte_to_gfn_lvl(pte, walker->level);
421 	gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
422 
423 	if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
424 		gfn += pse36_gfn_delta(pte);
425 
426 	real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
427 	if (real_gpa == UNMAPPED_GVA)
428 		return 0;
429 
430 	walker->gfn = real_gpa >> PAGE_SHIFT;
431 
432 	if (!write_fault)
433 		FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
434 	else
435 		/*
436 		 * On a write fault, fold the dirty bit into accessed_dirty.
437 		 * For modes without A/D bits support accessed_dirty will be
438 		 * always clear.
439 		 */
440 		accessed_dirty &= pte >>
441 			(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
442 
443 	if (unlikely(!accessed_dirty)) {
444 		ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
445 							addr, write_fault);
446 		if (unlikely(ret < 0))
447 			goto error;
448 		else if (ret)
449 			goto retry_walk;
450 	}
451 
452 	pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
453 		 __func__, (u64)pte, walker->pte_access,
454 		 walker->pt_access[walker->level - 1]);
455 	return 1;
456 
457 error:
458 	errcode |= write_fault | user_fault;
459 	if (fetch_fault && (mmu->nx ||
460 			    kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
461 		errcode |= PFERR_FETCH_MASK;
462 
463 	walker->fault.vector = PF_VECTOR;
464 	walker->fault.error_code_valid = true;
465 	walker->fault.error_code = errcode;
466 
467 #if PTTYPE == PTTYPE_EPT
468 	/*
469 	 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
470 	 * misconfiguration requires to be injected. The detection is
471 	 * done by is_rsvd_bits_set() above.
472 	 *
473 	 * We set up the value of exit_qualification to inject:
474 	 * [2:0] - Derive from the access bits. The exit_qualification might be
475 	 *         out of date if it is serving an EPT misconfiguration.
476 	 * [5:3] - Calculated by the page walk of the guest EPT page tables
477 	 * [7:8] - Derived from [7:8] of real exit_qualification
478 	 *
479 	 * The other bits are set to 0.
480 	 */
481 	if (!(errcode & PFERR_RSVD_MASK)) {
482 		vcpu->arch.exit_qualification &= 0x180;
483 		if (write_fault)
484 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
485 		if (user_fault)
486 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
487 		if (fetch_fault)
488 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
489 		vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
490 	}
491 #endif
492 	walker->fault.address = addr;
493 	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
494 
495 	trace_kvm_mmu_walker_error(walker->fault.error_code);
496 	return 0;
497 }
498 
FNAME(walk_addr)499 static int FNAME(walk_addr)(struct guest_walker *walker,
500 			    struct kvm_vcpu *vcpu, gpa_t addr, u32 access)
501 {
502 	return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
503 					access);
504 }
505 
506 #if PTTYPE != PTTYPE_EPT
FNAME(walk_addr_nested)507 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
508 				   struct kvm_vcpu *vcpu, gva_t addr,
509 				   u32 access)
510 {
511 	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
512 					addr, access);
513 }
514 #endif
515 
516 static bool
FNAME(prefetch_gpte)517 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
518 		     u64 *spte, pt_element_t gpte, bool no_dirty_log)
519 {
520 	unsigned pte_access;
521 	gfn_t gfn;
522 	kvm_pfn_t pfn;
523 
524 	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
525 		return false;
526 
527 	pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
528 
529 	gfn = gpte_to_gfn(gpte);
530 	pte_access = sp->role.access & FNAME(gpte_access)(gpte);
531 	FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
532 	pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
533 			no_dirty_log && (pte_access & ACC_WRITE_MASK));
534 	if (is_error_pfn(pfn))
535 		return false;
536 
537 	/*
538 	 * we call mmu_set_spte() with host_writable = true because
539 	 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
540 	 */
541 	mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
542 		     true, true);
543 
544 	kvm_release_pfn_clean(pfn);
545 	return true;
546 }
547 
FNAME(update_pte)548 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
549 			      u64 *spte, const void *pte)
550 {
551 	pt_element_t gpte = *(const pt_element_t *)pte;
552 
553 	FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
554 }
555 
FNAME(gpte_changed)556 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
557 				struct guest_walker *gw, int level)
558 {
559 	pt_element_t curr_pte;
560 	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
561 	u64 mask;
562 	int r, index;
563 
564 	if (level == PT_PAGE_TABLE_LEVEL) {
565 		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
566 		base_gpa = pte_gpa & ~mask;
567 		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
568 
569 		r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
570 				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
571 		curr_pte = gw->prefetch_ptes[index];
572 	} else
573 		r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
574 				  &curr_pte, sizeof(curr_pte));
575 
576 	return r || curr_pte != gw->ptes[level - 1];
577 }
578 
FNAME(pte_prefetch)579 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
580 				u64 *sptep)
581 {
582 	struct kvm_mmu_page *sp;
583 	pt_element_t *gptep = gw->prefetch_ptes;
584 	u64 *spte;
585 	int i;
586 
587 	sp = page_header(__pa(sptep));
588 
589 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
590 		return;
591 
592 	if (sp->role.direct)
593 		return __direct_pte_prefetch(vcpu, sp, sptep);
594 
595 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
596 	spte = sp->spt + i;
597 
598 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
599 		if (spte == sptep)
600 			continue;
601 
602 		if (is_shadow_present_pte(*spte))
603 			continue;
604 
605 		if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
606 			break;
607 	}
608 }
609 
610 /*
611  * Fetch a shadow pte for a specific level in the paging hierarchy.
612  * If the guest tries to write a write-protected page, we need to
613  * emulate this operation, return 1 to indicate this case.
614  */
FNAME(fetch)615 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gpa_t addr,
616 			 struct guest_walker *gw,
617 			 int write_fault, int hlevel,
618 			 kvm_pfn_t pfn, bool map_writable, bool prefault,
619 			 bool lpage_disallowed)
620 {
621 	struct kvm_mmu_page *sp = NULL;
622 	struct kvm_shadow_walk_iterator it;
623 	unsigned int direct_access, access;
624 	int top_level, ret;
625 	gfn_t gfn, base_gfn;
626 
627 	direct_access = gw->pte_access;
628 
629 	top_level = vcpu->arch.mmu->root_level;
630 	if (top_level == PT32E_ROOT_LEVEL)
631 		top_level = PT32_ROOT_LEVEL;
632 	/*
633 	 * Verify that the top-level gpte is still there.  Since the page
634 	 * is a root page, it is either write protected (and cannot be
635 	 * changed from now on) or it is invalid (in which case, we don't
636 	 * really care if it changes underneath us after this point).
637 	 */
638 	if (FNAME(gpte_changed)(vcpu, gw, top_level))
639 		goto out_gpte_changed;
640 
641 	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
642 		goto out_gpte_changed;
643 
644 	for (shadow_walk_init(&it, vcpu, addr);
645 	     shadow_walk_okay(&it) && it.level > gw->level;
646 	     shadow_walk_next(&it)) {
647 		gfn_t table_gfn;
648 
649 		clear_sp_write_flooding_count(it.sptep);
650 		drop_large_spte(vcpu, it.sptep);
651 
652 		sp = NULL;
653 		if (!is_shadow_present_pte(*it.sptep)) {
654 			table_gfn = gw->table_gfn[it.level - 2];
655 			access = gw->pt_access[it.level - 2];
656 			sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
657 					      false, access);
658 		}
659 
660 		/*
661 		 * Verify that the gpte in the page we've just write
662 		 * protected is still there.
663 		 */
664 		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
665 			goto out_gpte_changed;
666 
667 		if (sp)
668 			link_shadow_page(vcpu, it.sptep, sp);
669 	}
670 
671 	/*
672 	 * FNAME(page_fault) might have clobbered the bottom bits of
673 	 * gw->gfn, restore them from the virtual address.
674 	 */
675 	gfn = gw->gfn | ((addr & PT_LVL_OFFSET_MASK(gw->level)) >> PAGE_SHIFT);
676 	base_gfn = gfn;
677 
678 	trace_kvm_mmu_spte_requested(addr, gw->level, pfn);
679 
680 	for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
681 		clear_sp_write_flooding_count(it.sptep);
682 
683 		/*
684 		 * We cannot overwrite existing page tables with an NX
685 		 * large page, as the leaf could be executable.
686 		 */
687 		disallowed_hugepage_adjust(it, gfn, &pfn, &hlevel);
688 
689 		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
690 		if (it.level == hlevel)
691 			break;
692 
693 		validate_direct_spte(vcpu, it.sptep, direct_access);
694 
695 		drop_large_spte(vcpu, it.sptep);
696 
697 		if (!is_shadow_present_pte(*it.sptep)) {
698 			sp = kvm_mmu_get_page(vcpu, base_gfn, addr,
699 					      it.level - 1, true, direct_access);
700 			link_shadow_page(vcpu, it.sptep, sp);
701 			if (lpage_disallowed)
702 				account_huge_nx_page(vcpu->kvm, sp);
703 		}
704 	}
705 
706 	ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
707 			   it.level, base_gfn, pfn, prefault, map_writable);
708 	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
709 	++vcpu->stat.pf_fixed;
710 	return ret;
711 
712 out_gpte_changed:
713 	return RET_PF_RETRY;
714 }
715 
716  /*
717  * To see whether the mapped gfn can write its page table in the current
718  * mapping.
719  *
720  * It is the helper function of FNAME(page_fault). When guest uses large page
721  * size to map the writable gfn which is used as current page table, we should
722  * force kvm to use small page size to map it because new shadow page will be
723  * created when kvm establishes shadow page table that stop kvm using large
724  * page size. Do it early can avoid unnecessary #PF and emulation.
725  *
726  * @write_fault_to_shadow_pgtable will return true if the fault gfn is
727  * currently used as its page table.
728  *
729  * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
730  * since the PDPT is always shadowed, that means, we can not use large page
731  * size to map the gfn which is used as PDPT.
732  */
733 static bool
FNAME(is_self_change_mapping)734 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
735 			      struct guest_walker *walker, int user_fault,
736 			      bool *write_fault_to_shadow_pgtable)
737 {
738 	int level;
739 	gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
740 	bool self_changed = false;
741 
742 	if (!(walker->pte_access & ACC_WRITE_MASK ||
743 	      (!is_write_protection(vcpu) && !user_fault)))
744 		return false;
745 
746 	for (level = walker->level; level <= walker->max_level; level++) {
747 		gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
748 
749 		self_changed |= !(gfn & mask);
750 		*write_fault_to_shadow_pgtable |= !gfn;
751 	}
752 
753 	return self_changed;
754 }
755 
756 /*
757  * Page fault handler.  There are several causes for a page fault:
758  *   - there is no shadow pte for the guest pte
759  *   - write access through a shadow pte marked read only so that we can set
760  *     the dirty bit
761  *   - write access to a shadow pte marked read only so we can update the page
762  *     dirty bitmap, when userspace requests it
763  *   - mmio access; in this case we will never install a present shadow pte
764  *   - normal guest page fault due to the guest pte marked not present, not
765  *     writable, or not executable
766  *
767  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
768  *           a negative value on error.
769  */
FNAME(page_fault)770 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gpa_t addr, u32 error_code,
771 			     bool prefault)
772 {
773 	int write_fault = error_code & PFERR_WRITE_MASK;
774 	int user_fault = error_code & PFERR_USER_MASK;
775 	struct guest_walker walker;
776 	int r;
777 	kvm_pfn_t pfn;
778 	int level = PT_PAGE_TABLE_LEVEL;
779 	unsigned long mmu_seq;
780 	bool map_writable, is_self_change_mapping;
781 	bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
782 				is_nx_huge_page_enabled();
783 	bool force_pt_level = lpage_disallowed;
784 
785 	pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
786 
787 	r = mmu_topup_memory_caches(vcpu);
788 	if (r)
789 		return r;
790 
791 	/*
792 	 * If PFEC.RSVD is set, this is a shadow page fault.
793 	 * The bit needs to be cleared before walking guest page tables.
794 	 */
795 	error_code &= ~PFERR_RSVD_MASK;
796 
797 	/*
798 	 * Look up the guest pte for the faulting address.
799 	 */
800 	r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
801 
802 	/*
803 	 * The page is not mapped by the guest.  Let the guest handle it.
804 	 */
805 	if (!r) {
806 		pgprintk("%s: guest page fault\n", __func__);
807 		if (!prefault)
808 			inject_page_fault(vcpu, &walker.fault);
809 
810 		return RET_PF_RETRY;
811 	}
812 
813 	if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
814 		shadow_page_table_clear_flood(vcpu, addr);
815 		return RET_PF_EMULATE;
816 	}
817 
818 	vcpu->arch.write_fault_to_shadow_pgtable = false;
819 
820 	is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
821 	      &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
822 
823 	if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) {
824 		level = mapping_level(vcpu, walker.gfn, &force_pt_level);
825 		if (likely(!force_pt_level)) {
826 			level = min(walker.level, level);
827 			walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
828 		}
829 	} else
830 		force_pt_level = true;
831 
832 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
833 	smp_rmb();
834 
835 	if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
836 			 &map_writable))
837 		return RET_PF_RETRY;
838 
839 	if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
840 		return r;
841 
842 	/*
843 	 * Do not change pte_access if the pfn is a mmio page, otherwise
844 	 * we will cache the incorrect access into mmio spte.
845 	 */
846 	if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
847 	     !is_write_protection(vcpu) && !user_fault &&
848 	      !is_noslot_pfn(pfn)) {
849 		walker.pte_access |= ACC_WRITE_MASK;
850 		walker.pte_access &= ~ACC_USER_MASK;
851 
852 		/*
853 		 * If we converted a user page to a kernel page,
854 		 * so that the kernel can write to it when cr0.wp=0,
855 		 * then we should prevent the kernel from executing it
856 		 * if SMEP is enabled.
857 		 */
858 		if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
859 			walker.pte_access &= ~ACC_EXEC_MASK;
860 	}
861 
862 	r = RET_PF_RETRY;
863 	spin_lock(&vcpu->kvm->mmu_lock);
864 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
865 		goto out_unlock;
866 
867 	kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
868 	if (make_mmu_pages_available(vcpu) < 0)
869 		goto out_unlock;
870 	if (!force_pt_level)
871 		transparent_hugepage_adjust(vcpu, walker.gfn, &pfn, &level);
872 	r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
873 			 level, pfn, map_writable, prefault, lpage_disallowed);
874 	kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
875 
876 out_unlock:
877 	spin_unlock(&vcpu->kvm->mmu_lock);
878 	kvm_release_pfn_clean(pfn);
879 	return r;
880 }
881 
FNAME(get_level1_sp_gpa)882 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
883 {
884 	int offset = 0;
885 
886 	WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
887 
888 	if (PTTYPE == 32)
889 		offset = sp->role.quadrant << PT64_LEVEL_BITS;
890 
891 	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
892 }
893 
FNAME(invlpg)894 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
895 {
896 	struct kvm_shadow_walk_iterator iterator;
897 	struct kvm_mmu_page *sp;
898 	int level;
899 	u64 *sptep;
900 
901 	vcpu_clear_mmio_info(vcpu, gva);
902 
903 	/*
904 	 * No need to check return value here, rmap_can_add() can
905 	 * help us to skip pte prefetch later.
906 	 */
907 	mmu_topup_memory_caches(vcpu);
908 
909 	if (!VALID_PAGE(root_hpa)) {
910 		WARN_ON(1);
911 		return;
912 	}
913 
914 	spin_lock(&vcpu->kvm->mmu_lock);
915 	for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
916 		level = iterator.level;
917 		sptep = iterator.sptep;
918 
919 		sp = page_header(__pa(sptep));
920 		if (is_last_spte(*sptep, level)) {
921 			pt_element_t gpte;
922 			gpa_t pte_gpa;
923 
924 			if (!sp->unsync)
925 				break;
926 
927 			pte_gpa = FNAME(get_level1_sp_gpa)(sp);
928 			pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
929 
930 			if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
931 				kvm_flush_remote_tlbs_with_address(vcpu->kvm,
932 					sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
933 
934 			if (!rmap_can_add(vcpu))
935 				break;
936 
937 			if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
938 						       sizeof(pt_element_t)))
939 				break;
940 
941 			FNAME(update_pte)(vcpu, sp, sptep, &gpte);
942 		}
943 
944 		if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
945 			break;
946 	}
947 	spin_unlock(&vcpu->kvm->mmu_lock);
948 }
949 
950 /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
FNAME(gva_to_gpa)951 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t addr, u32 access,
952 			       struct x86_exception *exception)
953 {
954 	struct guest_walker walker;
955 	gpa_t gpa = UNMAPPED_GVA;
956 	int r;
957 
958 	r = FNAME(walk_addr)(&walker, vcpu, addr, access);
959 
960 	if (r) {
961 		gpa = gfn_to_gpa(walker.gfn);
962 		gpa |= addr & ~PAGE_MASK;
963 	} else if (exception)
964 		*exception = walker.fault;
965 
966 	return gpa;
967 }
968 
969 #if PTTYPE != PTTYPE_EPT
970 /* Note, gva_to_gpa_nested() is only used to translate L2 GVAs. */
FNAME(gva_to_gpa_nested)971 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gpa_t vaddr,
972 				      u32 access,
973 				      struct x86_exception *exception)
974 {
975 	struct guest_walker walker;
976 	gpa_t gpa = UNMAPPED_GVA;
977 	int r;
978 
979 #ifndef CONFIG_X86_64
980 	/* A 64-bit GVA should be impossible on 32-bit KVM. */
981 	WARN_ON_ONCE(vaddr >> 32);
982 #endif
983 
984 	r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
985 
986 	if (r) {
987 		gpa = gfn_to_gpa(walker.gfn);
988 		gpa |= vaddr & ~PAGE_MASK;
989 	} else if (exception)
990 		*exception = walker.fault;
991 
992 	return gpa;
993 }
994 #endif
995 
996 /*
997  * Using the cached information from sp->gfns is safe because:
998  * - The spte has a reference to the struct page, so the pfn for a given gfn
999  *   can't change unless all sptes pointing to it are nuked first.
1000  *
1001  * Note:
1002  *   We should flush all tlbs if spte is dropped even though guest is
1003  *   responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
1004  *   and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
1005  *   used by guest then tlbs are not flushed, so guest is allowed to access the
1006  *   freed pages.
1007  *   And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
1008  */
FNAME(sync_page)1009 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1010 {
1011 	int i, nr_present = 0;
1012 	bool host_writable;
1013 	gpa_t first_pte_gpa;
1014 	int set_spte_ret = 0;
1015 
1016 	/* direct kvm_mmu_page can not be unsync. */
1017 	BUG_ON(sp->role.direct);
1018 
1019 	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
1020 
1021 	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
1022 		unsigned pte_access;
1023 		pt_element_t gpte;
1024 		gpa_t pte_gpa;
1025 		gfn_t gfn;
1026 
1027 		if (!sp->spt[i])
1028 			continue;
1029 
1030 		pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
1031 
1032 		if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
1033 					       sizeof(pt_element_t)))
1034 			return 0;
1035 
1036 		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
1037 			/*
1038 			 * Update spte before increasing tlbs_dirty to make
1039 			 * sure no tlb flush is lost after spte is zapped; see
1040 			 * the comments in kvm_flush_remote_tlbs().
1041 			 */
1042 			smp_wmb();
1043 			vcpu->kvm->tlbs_dirty++;
1044 			continue;
1045 		}
1046 
1047 		gfn = gpte_to_gfn(gpte);
1048 		pte_access = sp->role.access;
1049 		pte_access &= FNAME(gpte_access)(gpte);
1050 		FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
1051 
1052 		if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
1053 		      &nr_present))
1054 			continue;
1055 
1056 		if (gfn != sp->gfns[i]) {
1057 			drop_spte(vcpu->kvm, &sp->spt[i]);
1058 			/*
1059 			 * The same as above where we are doing
1060 			 * prefetch_invalid_gpte().
1061 			 */
1062 			smp_wmb();
1063 			vcpu->kvm->tlbs_dirty++;
1064 			continue;
1065 		}
1066 
1067 		nr_present++;
1068 
1069 		host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
1070 
1071 		set_spte_ret |= set_spte(vcpu, &sp->spt[i],
1072 					 pte_access, PT_PAGE_TABLE_LEVEL,
1073 					 gfn, spte_to_pfn(sp->spt[i]),
1074 					 true, false, host_writable);
1075 	}
1076 
1077 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH)
1078 		kvm_flush_remote_tlbs(vcpu->kvm);
1079 
1080 	return nr_present;
1081 }
1082 
1083 #undef pt_element_t
1084 #undef guest_walker
1085 #undef FNAME
1086 #undef PT_BASE_ADDR_MASK
1087 #undef PT_INDEX
1088 #undef PT_LVL_ADDR_MASK
1089 #undef PT_LVL_OFFSET_MASK
1090 #undef PT_LEVEL_BITS
1091 #undef PT_MAX_FULL_LEVELS
1092 #undef gpte_to_gfn
1093 #undef gpte_to_gfn_lvl
1094 #undef CMPXCHG
1095 #undef PT_GUEST_ACCESSED_MASK
1096 #undef PT_GUEST_DIRTY_MASK
1097 #undef PT_GUEST_DIRTY_SHIFT
1098 #undef PT_GUEST_ACCESSED_SHIFT
1099 #undef PT_HAVE_ACCESSED_DIRTY
1100